
Tracing our journey into 
Distributed Tracing

A tale of introducing new technologies in large scale organizations

Pedro Alves @ SRECon 2023



Why am I here?



“How did you adopt Distribute Tracing in your 
organization?”

In this talk I will walk you through the process of adopting Distributed Tracing in a 
large scale organization.



“How did you adopt ${SOME_TECH} in your 
organization?”

Onboarding new technologies is something large companies do with some regularity. 
So we’ll use this story to identify key learnings and practices that could be reused to 
adopt other technologies in your own orgs.



● 3-4K services

● Engineering population >1K

● Different types of services involved (RPC, event driven)

● Different technologies (Golang, Java, JS, Python, …)

● Fresh out of the move to microservices and cloud

● Events took place in 2018

Org Context

For some context, the organization where we rolled out distributed tracing was 
running 3-4K services, and had an engineering population of over 1K engineers.
There were different types of services involved (RPC, event driven), as well as 
different technologies (Golang, Java, JS, Python, …)
Most of the events took place in 2018



“Do we have the right tools?”



Where were we?

We moved to microservices in the cloud → But our monitoring tools and practices 
were still from the monolith age

Back when the company migrated to Micro Services on the Cloud, with every team 
working in a “you build it you run it” fashion, all the previous tools we used to monitor 
our applications weren’t as helpful anymore.

The main challenge we faced at the time was adapting to a growing number of 
services, when all our monitoring processes and tooling were designed for a 
monolithic architecture.



Where were we?
Initial solutions:

● Flow ID
○ Propagated across service boundaries
○ Used to group logs

● APM solutions
○ Running with some services
○ Collects metrics and tracing

● Legacy logging tool → New SaaS logging tool

● Legacy metrics tool → Added new features & data sources

We did try different things



But:

● Logs were siloed in team accounts → FlowID could not group logs across team 
boundaries

● APM solutions had limited coverage of runtimes

● Growing service count → Legacy monitoring tool struggled with the storing and 
querying of time series data

Where were we?

Whatever we did, we kept hitting limitations



Incident response was the most affected by the limitations:

● Teams alerted on siloed signals

● False Positives were extremely common

● Troubleshooting incidents required constant hopping between different teams
○

○

Why did we need Distributed Tracing?

“What do your logs say?”
“Gimme something to 

search for.”

“We’re seeing high latency 
coming from your service.”

“Nope, all good on my 
dashboard.”

The limitations we covered before effectively hindered reliability. Particularly with 
regards to incident response. Teams would alert on their siloed signals, with those 
signals often triggering False Positive Alerts. Understanding the source of a given 
incident in order to mitigate it, would regularly take longer than it should. Because 
teams could not understand each other’s signals, aligning on the source of the issue 
was more time consuming.



Our monitoring practices and tools were missing some critical aspects:

● Causality

● Democratized

● Implicit golden signals

Why did we need Distributed Tracing?

Our monitoring practices and tools were missing some critical aspects:
● Causality - The telemetry we had was mostly isolated data points. Neither 

metrics nor logs would implicitly establish a link between one signal/event and 
the other.

● Democratized - Some logs were only available to some people. No one person 
could get a full picture from log data. Metrics data was available to everyone, 
but with different teams adopting different naming practices, and collecting and 
aggregating metrics differently, discovering metrics outside the ones emitted 
by your services was challenging.

● Implicit golden signals - Throughput, duration, errors, all required individual 
measurements. Nothing could provide even two of those signals implicitly.



The goal → Understand the flow of a request across our growing service landscape.

● How did all those services interact?

● Where was a given error coming from?

● Why were some requests so slow?

Why did we need Distributed Tracing?

But, more to the point of this talk, our ultimate goal was understanding the flow of a 
request across that growing service landscape.



The goal → Understand the flow of a request across our growing service landscape.

● How did all those services interact?

● Where was a given error coming from?

● Why were some requests so slow?

We found the answer to these problems in Distributed Tracing

Why did we need Distributed Tracing?



“Time for some experiments!”



We had one strict requirement: Must be OpenTracing compatible.

Relying on industry standards means:

● Reduced vendor lock-in

● Reduced instrumentation effort when switching vendors

● More potential to plug in different tools

● Semantic conventions

● Wealth of industry knowledge available

Industry standards FTW!

There was one thing in our requirement list for whatever Distributed Tracing solution 
we went for: it had to be OpenTracing compatible. The reason was strategic.

After going through a few monitoring vendors in recent years, we learned that 
reinstrumenting services was a considerable cost. We wanted to avoid the same cost 
in case we needed to migrate to another solution. Adhering to the standard would 
make that a possibility. We could, with minimal changes to application setup (tracer 
change), change to a new vendor, without having to change any of the 
instrumentation of the application code itself.
Admittedly, at our service count at the time (~3-4K services), this would still take a 
long time to redeploy the entire fleet. Still, the effort was much reduced, compared to 
instrument services all over again.
Today, with OpenTelemetry and its collectors, things could even be simpler to migrate.

There are more benefits in using an industry standard. The standardized data model 
allows for easier integration with other tools.
The semantic conventions guide with instrumentation, and define how to represent 
common concepts.
Plus, there is a wealth of industry knowledge.



Proof of Concept Phase
Collecting answers for:

● What is the best tool?
○ Setting up open source tooling, and trialing vendor tools.

● Would this technology solve our problems as we expect it to?
○ Instrumenting services

○ Running Game Days and measuring the TTR.

● Is it compatible with our scale?
○ Running load tests.

Experiments were ran during a Proof of Concept phase.

We ran a few experiments with open source tooling. We tried to understand what 
would it take to run the whole thing ourselves, at the scale we were at the time, and 
beyond. In parallel, we also reached out to vendors and tried their solutions as well.

To try and demonstrate the usefulness of Tracing, we ran a couple of game days 
measuring the TTR for each exercise. This KPI turned out to be a poor choice, as the 
learnings were not useful. Nevertheless, the visibility Tracing provided was in line with 
what we were looking to get, which was enough to maintain the motivation in the 
project.

We also ran load tests to understand if it would be compatible with our scale, and our 
predicted growth.



● Build or Buy?
● Costs

○ Vendor fee VS Staffing + maintenance + infrastructure

● Expertise required
○ Would build require a new set of capabilities that your org currently does not have?

● The scale that it can handle
○ What tool can support your current scale? What about the predicted growth?

● Feature set
○ Which tool has the most complete feature set?

● Level of customization of the tool
○ Nothing will be a perfect fit. Can you customize the tool for it to fit your org’s practices?

Picking the right tool

Tracing data needs to be ingested, processed, and visualised. To do all of that, we 
need the right tool.
The tools we experimented with, open source or third party, were evaluated on the 
same criteria.



Making a decision
Which tool? → Team went with ‘buy’.

Getting the OK from management:

 → Present PoC outcome.

 → Defining expectations for Return On Investment.

 → Reminding the reason why the initiative was started

As for Build or Buy, the team decided in favor of ‘buying’.

When we collected all the numbers we could, and documented our recommendations, 
it was time to bring it up to management so that a decision could be made.

We presented the PoC outcome, our learnings and recommendations.
We also gave some idea of the return on investment in tracing. This was mostly 
reminding management of why we were looking at tracing in the first place.
We highlighted the limitations teams were facing.
How on-call work is that much more difficult.
How reliability was affected.
And, of course, how Distributed Tracing could help us with that.



“Let the rollout commence!”



Splitting the work

Monitoring team

- handles vendor 
relationship

- manages metrics 
& tracing 
infrastructure

- ~4 engineers

SRE Team

- in charge of the 
rollout

- closer to the feature 
developers

- 5 engineers
- 1 program manager

The work described so far was driven by the team managing all of the monitoring 
tools, and infrastructure. Right around the time the PoC was about to wrap up, an 
SRE team had just been created. After getting the go-ahead from management, the 
SRE team was tasked with the rollout of Distributed Tracing to the rest of the 
engineering org - that is actually when I came into the project. This assignment did not 
come out of the blue. Members of the new SRE team were already working together 
with the team owning the monitoring tools, so there was a bit of history already.

This may seem a bit of a detail, but there was an important ingredient that this SRE 
team brought: we were much closer to the feature developers (the ‘customers’), than 
the infrastructure teams. This proximity gave us an extra insight on how to bring this 
new technology to the wider engineering population.



Get a Program/Project Manager
Rolling out a technology in a large scale org will require a lot of:

● Coordination

● Communication

● Cross-team alignment

Underestimate the amount and relevance of this work at your own peril!

Get someone that can help you navigate all of that!

Speaking of the SRE team, we had 5 engineers, and one Program Manager. For such 
a large scale endeavor, having a Program (or Project) Manager can really make a 
difference. In our case it certainly did. The amount of coordination, communication, 
and cross-team alignment that is required is not to be underestimated. Get someone 
that can help you navigate all of that.



Finding Leverage
At any given point in time in any large organization there are several high priority 

projects, all vying for precious engineering resources.



Finding Leverage
At any given point in time in any large organization there are several high priority 

projects, all vying for precious engineering resources.

And you want to bring another one to the whole org.

When you are rolling out a technology for an entire company, and you need support 
from all those teams, it’s important to remember that every one of those teams will 
have 1 to 3 “Number 1” priorities. How will you get support for your rollout, when 
you’re competing with all those projects?



Finding Leverage
At any given point in time in any large organization there are several high priority 

projects, all vying for precious engineering resources.

And you want to bring another one to the whole org.

You need to find some leverage.

We needed to get everyone’s attention, and find our way to the top of their list of 
priorities.



At any given point in time in any large organization there are several high priority 
projects, all vying for precious engineering resources.

And you want to bring another one to the whole org.

You need to find some leverage.

For us that was that year’s Cyber Week preparations.

Finding Leverage

Fortunately for us, one of the projects that was very high in the priority list for every 
team, was something that we could piggy back on. It was the preparation for that 
year's Cyber Week.



● Preparing for Cyber Week is a very high priority project

● Affects almost the whole company

● High traffic week (several times the typical traffic)

● Requires scaling a platform to a level that is many times its typical scale

Why Cyber Week?

Cyber Week is a week of high traffic on e-commerce systems that have these 
campaigns. The traffic can be several times the traffic on even a busy day in any 
other time of the year. The impact of an incident during that week will have a 
proportionally higher impact on revenue and reputation.



● Preparing for Cyber Week is a very high priority project

● Affects almost the whole company

● High traffic week (several times the typical traffic)

●

Why Cyber Week?

Requires scaling a platform to a level that is many times its typical scale

But with only traffic estimations at the edge, what guidance do you give 
to application owners on scaling targets?

To prepare for Cyber Week, and scale our platform we only had rough estimates of 
edge traffic. We still had to find the right target for scaling the different services



Challenge: going from traffic expectations at the edge, to concrete scaling guidance for 
individual services in a distributed system.

Distributed Tracing reveals all the systems that participate in a transaction.

A trace will:

a) Identify all services that needed to be scaled up.

b) Uncover bottlenecks during the load tests.

Why Cyber Week?

To ensure the platform will handle the expected traffic we need to scale it to a given 
level, and validate that scale against the expected throughput with load tests.

We argued that Tracing could help with the scaling efforts by a) identifying the 
services that need to be scaled, and b) identifying bottlenecks during load tests.

The help with the load tests was part of the reason why management agreed on 
moving forward with this



Cyber Week’s high traffic + Struggling metrics tool

Distributed Tracing would be an alternative source of visibility.

Why Cyber Week?

Given the struggles that our legacy monitoring system had with even the typical scale, 
there were concerns that scaling all those services would overload our monitoring 
system. Of course, Distributed Tracing would not replace that. But it would certainly 
bring an alternative, so we wouldn't be blind if/when the monitoring system would 
have an outage.

The usefulness of Tracing for the Cyber Week preparation efforts was enough to 
make rolling out Distributed Tracing to the affected systems a priority. We had found 
our leverage.



“Meeting the teams.”



A rollout should cover three aspects:

● Teaching our engineers how tracing works, and how to instrument their 
applications

● Instrumenting applications with OpenTracing

● Changing processes to collect the benefits of Distributed Tracing

Rolling out to the engineering teams

We brainstormed a bit how to approach this rollout. We soon realized that a proper 
rollout had to cover three aspects:



A rollout should cover three aspects:

● Teaching our engineers how tracing works, and how to instrument their 
applications

● Instrumenting applications with OpenTracing

● Changing processes to collect the benefits of Distributed Tracing

Rolling out to the engineering teams

Optimizing for knowledge distribution to give engineers the 
confidence to use tracing, and to add instrumentation to their 

applications to increase observability.

Teaching our engineers how tracing works, and how to instrument their 
applications

This may sound slow - and it is, in the short term -, but we optimized for knowledge 
distribution. Our guiding principle was to grant engineers with enough knowledge so 
that tracing would not be some black box that they had no idea of how it worked. We 
wanted them to use tracing, and we wanted them to feel comfortable adding 
more instrumentation to their applications to increase observability.



A rollout should cover three aspects:

● Teaching our engineers how tracing works, and how to instrument their 
applications

● Instrumenting applications with OpenTracing

● Changing processes to collect the benefits of Distributed Tracing

Rolling out to the engineering teams

Distributed Tracing by itself will not fix/improve 
anything, unless it is used where it can bring benefits.

This last point is key. Distributed Tracing by itself will not fix/improve anything, unless 
it is used where it can bring benefits.



A rollout should cover three aspects:

● Teaching → Workshop covering the OpenTracing spec, and hands-on 
instrumentation of a few services.

● Instrumenting → See some value early on, to motivate the rest of the engineers.

● Changing processes → Facilitate Cyber Week’s load tests, improve observability, 
and facilitate incident troubleshooting.

Rolling out to the engineering teams

Our approach to start spreading the knowledge about OpenTracing across the org 
was a workshop. In it, we covered the basics of OpenTracing, coupled with a 
hands-on part where we instrumented a few services (very similar to the content we 
brought to SRECon in 2019).

With instrumenting applications we were aiming to see some value early on, to 
motivate the rest of the org. We could not instrument everything ourselves, so we 
relied on generating enough interest in Tracing to get enough people to instrument 
their applications.

Finally, regarding the processes where we’d use Tracing to collect benefits, that was 
easy. That is where we started the whole thing. We wanted to increase observability, 
and facilitate incident troubleshooting. On top of that we also had our promised 
contribution to the Cyber Week project.



Planning the work

Execution 
Plan

Broad adoption of 
Distributed Tracing

Help with Cyber 
Week preparations

Fulfill rollout 
goals

Now it’s time to take our initial goal of rolling out Distributed Tracing, our promised 
contribution to the Cyber Week project (our sponsor project), and the points we 
wanted to cover during the rollout, and come up with a concrete execution plan that 
would bring together all three.



Key ingredient: Instead of instrumenting applications, we decided to instrument entire 
customer operations.

Why the change to operations?

1. Load testing Critical User Operations for Cyber Week

2. OpenTracing’s guidance: “Crawl, Walk, Run.”

Planning the work

The ingredient that was missing in our plan came after a change in the way we looked 
at instrumentation. We changed the goal from instrumenting applications, to 
instrumenting customer operations.



Traffic estimations at the edge (Orders, browsing, cart, …)

Planning the work

Load test these operations Instrument these 
operations

OT Workshops with teams 
that contribute to these 

operations

Critical User Operations

Cyber Week gave us the framing we needed to put in practice what we planned for 
the rollout.

As mentioned before, we had rough traffic estimates at the edge (number of orders, 
customers browsing the catalog, adding articles to the cart, …)
Together with experienced engineers, we mapped those estimates to concrete 
operations in the online store, and from there created a list of critical user operations.

For the load tests we would hit the different parts of the platform that served those 
critical user operations.
We used that list to plan the operations to instrument, and, through that, the teams to 
run the workshops with.
We chose the teams that developed and operated the services that contributed to 
those critical operations.



“The greatest value is going to come from building just enough coverage to generate 

end-to-end traces for some number of high-value transactions. It is important to 

visualize your instrumentation as early as possible.”

- https://opentracing.io/docs/best-practices/instrumenting-your-application/#crawl-walk-run

Planning the work

OpenTracing also has a best practice for instrumentations named “Crawl, Walk, Run”. 
From the documentation: “The greatest value is going to come from building just 
enough coverage to generate end-to-end traces for some number of high-value 
transactions. It is important to visualize your instrumentation as early as 
possible.”
“Generate end-to-end traces” → instrumenting an operation end to end.
“high-value transactions” → or critical operations
“visualize your instrumentation as early as possible.” → which fit perfectly with our 
guiding principle for instrumentation

https://opentracing.io/docs/best-practices/instrumenting-your-application/#crawl-walk-run
https://opentracing.io/docs/best-practices/instrumenting-your-application/#crawl-walk-run


Planning the work

Critical User 
Operations

Help with Cyber 
Week preparations

Load test the 
operations in the 

list

We would end with the 
critical components 

instrumented

We had concrete goals 
for the workshops and 

the instrumentation

Broad adoption of 
Distributed Tracing

Fulfill rollout 
goals

I cannot overstate how fundamental that selection, and its criteria, was to the success 
of the project. It’s what tied everything together. 

The decision to focus on the critical user operations allowed us to work on something 
more concrete, achievable, aligned with the Cyber Week project, and through that it 
gathered support from management.



Planning the work
The roll out team is typically small (4 to 6 people).

The audience for the rollout is measured in the hundreds, or maybe thousands.

Creating a plan for the rollout is crucial to maximize the impact of the technology 
and gain momentum for a wider adoption.

That list is what allowed a small team to have such a big impact.
Typically, the team in charge of such rollouts is fairly small. In our case there were 6 
people working on the rollout, with a team of the same size handling the tracing 
infrastructure.
Those four engineers could not, in a timely manner, instrument all services. 
Regarding the training, each workshop was 3-4 h long. Even by training several 
teams together, it would still take a long time to train every single team.



“Full speed ahead!”

We had our foot on the door. We kick started the rollout. But it was still a large org. 
We needed to get those operations instrumented in time for Cyber Week. We needed 
momentum.



Why is momentum important?

The bulk of Distributed Tracing adoption was done over a period close to one year.

In that time, it is easy for people to lose interest.

You need to keep them motivated, and keep making progress on the rollout.

We needed to keep people engaged. This kind of effort is typically done over a long 
period of time. It is easy for people to lose interest. You need to keep them motivated, 
and keep making progress on the rollout.



1. Pick two Critical User Operations that are simple enough

2. Instrument it ourselves

3. Use the resulting traces to demonstrate to other teams to generate interest and 
motivation

Kick starting the instrumentation

The change to instrumenting critical business operations did not mean that the rollout 
team could single handedly instrument them all. Those operations still passed through 
many services. And with different tech stacks.
But we did want to have something to show teams. Some traces from those critical 
user operations that others could look at to generate interest, and motivation.

So, from the list of critical user operations we selected two that would be critical 
enough, but also simple enough that we could instrument ourselves.
Having those examples would help with promoting Distributed Tracing to other teams, 
as they could see concretely what they would get out of their efforts with examples 
from our own systems.



1. Pick two Critical User Operations that are simple enough

2. Instrument it ourselves

3. Use the resulting traces to demonstrate to other teams to generate interest and 
motivation

Kick starting the instrumentation

Fun fact: Although we proposed to those teams that we would do the 
instrumentation ourselves, and they only had to review the code changes, it 

wasn't long before they took over, excited with the promise of improved 
observability.



Building momentum

Showcase the 
operations 

instrumented initially

Collect success stories 
of how other teams 

used Tracing to solve 
problems

Semantic Conventions 
Working Group

Promote Tracing in the 
SRE Guild

Using tracing in 
Incidents, and in 

PostMortems

Instrumenting those initial operations was already a big help. With those operations 
instrumented we could go to other teams, and rather than promises like "Tracing will 
be great for you", we would say "Look how great it looks like for these operations".

Teams often asked how Tracing’s improved observability could actually helps them. 
To provide concrete answers we started collecting success stories. Episodes of how 
other teams in the org used Distributed Tracing to help fix problems, or even 
identifying problems they didn't even know they had. How those episodes improved 
latency, helped optimize resource usage, and fixed latent errors.

We also created a Semantic Conventions Working Group to build on top of 
OpenTracing’s semantic conventions, defining common tags and best practices for 
our specific use cases.

The SRE team also ran the SRE Guild. The guild was often used to promote tracing. 
For example, we would often invite the writers of some of those success stories to 
guide the audience through those experiences.

Incident handling was a key use case, so during incidents, in our role as Incident 
Commanders, we would often ask for traces to demonstrate the issue we were facing 
at the time. In postmortems we would highlight situations where tracing could have 
been instrumental to solving the incident, and recommend as an action item of the 
postmortem instrumenting the services involved.



“Instrumenting → See some value early on, to motivate the rest of the engineers.”

By focusing on building value early, we could reap benefits sooner.

Those benefits could then be used to generate more momentum.

Building momentum

Going back to the three aspects of the rollout, because we set out to generate value 
early with our instrumentation approach, we were also able to start collecting benefits 
early from Distributed Tracing.
As coverage increased, processes also started changing to benefit from Tracing. And 
we used those benefits to feed into generating more momentum.



Initial reactions to the technology
● Excitement with the technology.

● Initial distrust, but going along with it anyway.

● Working on it, but just because they were told to.

● Ignoring the rollout altogether.

● Open opposition.

What was the reaction from the engineering community to all of these initiatives? I 
think we had a very diverse set of reactions.

You’ll notice that not all reactions are that positive. Building and maintaining 
momentum also means addressing that initial resistance to the technology.



Addressing open opposition

“We don’t need tracing. We already have metrics and logs.”

“We don’t need to see what our clients or our dependencies are doing.”

“We have no dependencies.”

“I refuse to bloat my application’s code with tracing instrumentation.”

“I added tracing to my service, and it immediately started failing. Clearly, 
tracing is the problem, so I won’t use it.”

But now I'd like to talk about the open opposition we also got.

Some of these quotes showcase really well how we sometimes cling to our tools, 
pushing aside alternatives that provide more benefits.



A new technology can have a big impact on the things we do every day.

To some, they may seem threatening to the current practices that people rely 
on.

You can’t win them all, but be sure to address detractors that can influence 
their team or department.

When done right, you can turn a key detractor, to a key promoter.

Addressing open opposition

We did not reach out to every single team, or person that was opposed to Distributed 
Tracing. But we did engage with some of them. Typically because they were blockers 
to instrument critical operations, or at least part of those operations.

What is important is to recognize that new technologies can have a big impact on the 
things we do every day. To some, they seem threatening to the current practices that 
they rely on. It's like you are taking away the very thing that allows them to be 
effective at their job, and replacing it with something unknown. As with all things, 
change can be scary.
Do not ignore that. Do not assume that those are some random individuals too set in 
their ways. Some of those random individuals can actually have quite a big influence 
within a team, or department. Others you can afford to give them some more time, so 
give them that time.



“Are we done yet?”

The rollout was ‘attached’ to the cyber week project, so when that was done, so was 
the rollout. We did get the critical user operations instrumented in time for the load 
tests, which were a success, and we could rely on tracing to monitor the performance 
of those operations during the event itself.



Post rollout
● Tracing data is a primary tool in incident handling.

● New services are bootstrapped with Open Tracing instrumentation already 
included.

● New tools developed based on OpenTracing data: Alerting tool, New SLO 
framework, Automatic service diagram, Traffic estimation tool.

● Automated tracing configuration

By now we are past the adoption phase. Distributed Tracing is well established in the 
company. Of course, there is still a long tail of adopters, but more often than not, you’ll 
find tracing wherever you will go.

Tracing data became the primary tool in incident handling.

New projects are bootstrapped with tracing instrumentation already included.

By accessing the tracing data programmatically we were able to develop tools that 
helped with some operational challenges. We developed an alerting and triaging tool, 
developed a new SLO framework, used tracing data with other tools to create a 
service diagram, developed a traffic estimation tool to help load testing, and capacity 
planning.

We also kept our ears open to feedback from developers, which is how we learned 
that configuring the Tracer was still annoying. We developed self configuring libraries 
for the main programming languages.



“What did we learn?”

Personally speaking, this was a very exciting project to work on. It was full of different 
challenges, and the end result was really rewarding to see. We changed the way an 
entire engineering organization worked, and we built some very cool stuff in the 
process.

But I’d like for you to leave this talk with something more than storytelling, so let’s look 
at what learnings we can take from this story.



Solve a problem, or find an opportunity

Lessons learned

Solve a problem, or find an opportunity
● Start from this, and the purpose for whatever technology you are trying to 

onboard will always be clear. To you, or to the people you are bringing the 
technology to.

● In our case, the problem was observing a distributed system. But new 
technologies don’t have to solve problems exclusively. They can also be 
onboarded to leverage new business opportunities.



Lessons learned

Run a PoC phase to answer 2 questions:
● Does this technology solve this problem/enable some new use case?
● What is the best tool for the job?

Run a PoC phase to answer 2 questions:
● Does this technology solve this problem/enable some new use case?
● What is the best tool for the job?
● The decision to build or buy depends greatly on the culture and strategy of an 

engineering org, of course. If you’re still on the fence, though, remember to set 
clear criteria on which to evaluate whatever options you consider

○ Cost, scale, staffing, talent, features, customization, etc…



Lessons learned

Define a rollout plan covering education, broad usage, 
collecting benefits

● Educate your engineers on the technology so that they look at it with 
confidence, instead of distrust

● Promote the technology to achieve broad adoption
● Change/create processes to achieve your original goals

Rollout plans should be more than just ticking a box that a given technology is 
somehow available in some team, or is being used in X services. That being said, 
remember to define a rollout plan covering education, broad usage, collecting benefits

● Educate your engineers on using the technology so that they look at it with 
added confidence, instead of distrust

● Promote the technology to achieve broad adoption
○ Find some seeds in the org that you can later use to showcase the 

benefits of the technology
○ Scale your efforts by finding other promoters in different parts of your 

company
○ Advertise success stories to help build and maintain momentum.

● Change/create processes to achieve your original goals
○ Your work is not done when something is everywhere, but rather if it is 

being used in enough places, solving the original purpose
○ Remember your initial goal (problem solving, or new opportunity) and 

make sure to make changes where needed so that your company can 
reap the benefits of the investment



Lessons learned

Find a sponsor for the rollout.

Find a key sponsor for the rollout.
● This will also help validate the promised benefit the technology brings to the 

org.
● You may have thought you already had that when you passed the PoC phase, 

but if you are coming from a central team (which was our case) in a large 
enough org, there are many competing priorities and projects.

● Your key partner may be a high priority project, or one or more managers that 
believe in the benefits promised with the new technology, and will support the 
adoption of the technology in their orgs.



Lessons learned

The more disruptive a technology is, the more detractors you 
are likely to find. Be prepared for those.

The more disruptive a technology is, the more detractors you are likely to find. Be 
prepared for those.

● You can’t reach all of them, but acknowledge and address elements in key 
areas of the org.

● When done right, those will eventually become your main promoters.



Lessons learned

Focus the rollout on adding value.

Focus the rollout on adding value
● I keep coming back to this, but this was the mindset throughout the whole 

project.
● Don’t tell teams “You have to do this”. Tell them “You can use this to solve 

those problems you have.”
● If you’re out to solve people’s problems, they are a lot more likely to adopt 

whatever it is you are proposing.
● If you’re just pushing it to them, then, sure, you may get the coverage you’re 

aiming for, but you will not be able to collect the same benefits.
● By focusing on adding value, it also becomes more easy to motivate yourself.



Thank you!

Pedro Alves @ SRECon 2023


