
An SRE guide to Linux
Kernel upgrades
Ignat Korchagin
@ignatkn

$ whoami

● Linux team at Cloudflare

● Systems security and performance

● Low-level programming

@ignatkn

What do you do in
this case?

@ignatkn

Updates available!

@ignatkn

Updates available for production systems!

@ignatkn

How do we perceive
software updates?

@ignatkn

Software updates perception

@ignatkn

Regular software upgrades

Software updates perception

Linux Kernel upgrades

@ignatkn

Regular software upgrades

Regular software updates

@ignatkn

Regular software updates

@ignatkn

systemd service unit file

…
[Service]
Restart=always
…

Regular software updates

@ignatkn

systemd service unit file

…
[Service]
Restart=always
…

Linux Kernel updates

@ignatkn

Linux Kernel updates

@ignatkn

Common risks of not applying
software updates
And Linux Kernel in particular

@ignatkn

Bugs are not getting fixed

@ignatkn

Bugs are not getting fixed

@ignatkn

Bugs are not getting fixed Out of 116 releases:
● 59 with >= 100 commits
● 21 with >= 200 commits
● 8 with >= 500 commits

@ignatkn

Missing out on performance improvements

@ignatkn

Missing out on performance improvements
Linux 5.4 to 5.10 migration

@ignatkn

Missing out on performance improvements
Linux 5.4 to 5.10 migration

@ignatkn

5.4.x 5.4.x

5.10.x

Missing out on performance improvements
Linux 5.4 to 5.10 migration: saved ~4.5 GiB of RAM per server

@ignatkn

5.4.x 5.4.x

5.10.x

Missing out on performance improvements
Linux 5.4 to 5.10 migration: saved ~4.5 GiB of RAM per server

@ignatkn

https://patchwork.kernel.org/project/linux-mm/cover/20191018002820.307763-1-guro@fb.com/

5.4.x 5.4.x

5.10.x

https://patchwork.kernel.org/project/linux-mm/cover/20191018002820.307763-1-guro@fb.com/

Accumulating change delta

@ignatkn

Accumulating change delta

@ignatkn

2196 commits

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196

Accumulating change delta

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436

5436 commits

Accumulating change delta

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436
● 5436/2196 = ~2.48

5436 commits

Accumulating change delta

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436
● 5436/2196 = ~2.48
● for 2x delay we get ~2.48 more risk!

5436 commits

Security vulnerabilities are not getting fixed

@ignatkn

https://www.vecteezy.com/free-photos

Security vulnerabilities are not getting fixed

@ignatkn

source: https://www.linuxkernelcves.com

https://www.linuxkernelcves.com/

Security vulnerabilities are not getting fixed

Out of 113 releases:
● 90 with >= 1 CVE patched
● 23 with >= 5 CVEs patched

@ignatkn

source: https://www.linuxkernelcves.com

https://www.linuxkernelcves.com/

Compliance risks

@ignatkn

Compliance risks

@ignatkn

6.3.3 All system components are protected from known
vulnerabilities by installing applicable security
patches/updates as follows:
● Critical or high-security patches/updates (identified

according to the risk ranking process at Requirement 6.3.1)
are installed within one month of release.

● All other applicable security patches/updates are installed
within an appropriate time frame as determined by the entity
(for example, within three months of release).

PCI DSS v4.0

Compliance risks

@ignatkn

Remember?

(Not so)fun fact:
if your uptime >= 30 days,

you’re system is likely
vulnerable!

@ignatkn

Common anti patterns for
Linux Kernel releases

@ignatkn

Which things from the
changelog are

applicable to us?

@ignatkn

Let’s justify the upgrade

Let’s justify the upgrade

@ignatkn

Out of 116 releases:
● 59 with >= 100 commits
● 21 with >= 200 commits
● 8 with >= 500 commits

Let’s justify the upgrade

@ignatkn

Is this security
vulnerability actually

exploitable on our
systems?

@ignatkn

Let’s justify the upgrade

Is this vulnerability applicable to us?

The attacker
● Highly motivated to break into the

system
● Spends exclusively almost 24/7 to design

and implement a successful exploit

@ignatkn

Is this vulnerability applicable to us?

The attacker
● Highly motivated to break into the

system
● Spends exclusively almost 24/7 to design

and implement a successful exploit

@ignatkn

Is this vulnerability applicable to us?

The attacker
● Highly motivated to break into the

system
● Spends exclusively almost 24/7 to design

and implement a successful exploit

Security patch reviewer
● Highly motivated to go home on time
● Needs to review several patches a day
● Has other competing priorities

@ignatkn

Is this vulnerability applicable to us?

The attacker
● Highly motivated to break into the

system
● Spends exclusively almost 24/7 to design

and implement a successful exploit

Security patch reviewer
● Highly motivated to go home on time
● Needs to review several patches a day
● Has other competing priorities

@ignatkn

Let’s soak it for 1 month in
canary to ensure it is stable

@ignatkn

Let it soak

Let it soak

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436
● 5436/2196 = ~2.48
● for 2x delay we get ~2.48 more risk!

Let it soak

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436
● 5436/2196 = ~2.48
● for 2x delay we get ~2.48 more risk!

Out of 113 releases:
● 90 with >= 1 CVE patched
● 23 with >= 5 CVEs patched

Let it soak

@ignatkn

Change delta (risk):
● 5.15.16 vs 5.15.32: 2196
● 5.15.16 vs 5.15.48: 5436
● 5436/2196 = ~2.48
● for 2x delay we get ~2.48 more risk!

Out of 113 releases:
● 90 with >= 1 CVE patched
● 23 with >= 5 CVEs patched

Let it soak

High “soak” times probably means
● We don’t know what we are looking for

● Lack of metrics/observability

@ignatkn

Let it soak

High “soak” times probably means
● We don’t know what we are looking for

● Lack of metrics/observability
● We don’t know our workload

● What kernel features/subsystems are important to us

@ignatkn

Let it soak

High “soak” times probably means
● We don’t know what we are looking for

● Lack of metrics/observability
● We don’t know our workload

● What kernel features/subsystems are important to us
● Lack of sufficient pre-production kernel testing

● Unit tests
● Integration tests
● Performance tests

@ignatkn

The Kernel is too critical! Let’s
have more approvals before the

deploy!

@ignatkn

Too risky!

The Kernel is too critical! Let’s
have more approvals before the

deploy!

@ignatkn

Too risky!

@ignatkn

Too risky!

Automated software deploys

@ignatkn

Automated software deploys

@ignatkn

Regular software
● Upgrade software package

Automated software deploys

@ignatkn

Regular software
● Upgrade software package
● Service restart

● graceful/non-graceful

Automated software deploys

@ignatkn

Regular software
● Upgrade software package
● Service restart

● graceful/non-graceful
● New (bad or good) code can propagate

to production in minutes without
appropriate safeguards

● https://blog.cloudflare.com/incident-report-o
n-memory-leak-caused-by-cloudflare-parser
-bug/

● https://blog.cloudflare.com/details-of-the-clo
udflare-outage-on-july-2-2019/

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Automated software deploys

@ignatkn

Regular software
● Upgrade software package
● Service restart

● graceful/non-graceful
● New (bad or good) code can propagate

to production in minutes without
appropriate safeguards

● https://blog.cloudflare.com/incident-report-o
n-memory-leak-caused-by-cloudflare-parser
-bug/

● https://blog.cloudflare.com/details-of-the-clo
udflare-outage-on-july-2-2019/

Linux Kernel
● Requires a reboot

● Drain traffic from the server
● Put it out of production
● Reboot
● Wait for it to be re-configured
● Run acceptance tests
● Put back in production

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Automated software deploys

@ignatkn

Regular software
● Upgrade software package
● Service restart

● graceful/non-graceful
● New (bad or good) code can propagate

to production in minutes without
appropriate safeguards

● https://blog.cloudflare.com/incident-report-o
n-memory-leak-caused-by-cloudflare-parser
-bug/

● https://blog.cloudflare.com/details-of-the-clo
udflare-outage-on-july-2-2019/

Linux Kernel
● Requires a reboot

● Drain traffic from the server
● Put it out of production
● Reboot
● Wait for it to be re-configured
● Run acceptance tests
● Put back in production

● We don’t reboot all servers at once

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Automated software deploys

@ignatkn

Regular software
● Upgrade software package
● Service restart

● graceful/non-graceful
● New (bad or good) code can propagate

to production in minutes without
appropriate safeguards

● https://blog.cloudflare.com/incident-report-o
n-memory-leak-caused-by-cloudflare-parser
-bug/

● https://blog.cloudflare.com/details-of-the-clo
udflare-outage-on-july-2-2019/

Linux Kernel
● Requires a reboot

● Drain traffic from the server
● Put it out of production
● Reboot
● Wait for it to be re-configured
● Run acceptance tests
● Put back in production

● We don’t reboot all servers at once
● Inherently slow-paced gradual rollout

with minimal impact, if things go wrong

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Linux Kernel releases explained
@ignatkn

Not every kernel release is created equal

X.XX.XX

@ignatkn

Kernel release numbers

X.XX.XX
(ex 5.15.32)

@ignatkn

Kernel release numbers

X.XX.XX
(ex 5.15.32)

@ignatkn

Kernel release numbers

https://semver.org/

https://semver.org/

X.XX.XX
(ex 5.15.32)

But it is NOT a semver!

@ignatkn

Kernel release numbers

https://semver.org/

https://semver.org/

X.XX.XX

@ignatkn

Kernel release numbers

X.XX.XX

@ignatkn

Kernel release numbers

Major
version

X.XX.XX

@ignatkn

Kernel release numbers

Major
version

(NOT major/minor)

X.XX.XX

@ignatkn

Kernel release numbers

Major
version

Bugs and
security

fixes
(NOT major/minor)

X.XX.XX

@ignatkn

Kernel release numbers

Major
version

Bugs and
security

fixes

Never new features
or major subsystem

rewrites

(NOT major/minor)

@ignatkn

Kernel release flow

torvalds/linux.git

@ignatkn

Kernel release flow

torvalds/linux.git

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

9-10 weeks

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

5.11.1

9-10 weeks

tagged

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

5.11.1

9-10 weeks

bugfix

tagged

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

5.11.1

9-10 weeks

bugfix

tagged

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

5.11.1

9-10 weeks

bugfix

tagged

cherry
pick

@ignatkn

Kernel release flow

torvalds/linux.git

drivers mm net

mergemerge

5.10 5.11 5.12

branch
out

branch
out

5.11.1 5.11.2

tagged

9-10 weeks

every week

bugfix

tagged

cherry
pick

Linux Kernel releases

● A new major (stable) kernel version is released every 9-10 weeks
● 2 weeks for development/7 weeks for bugfixing

@ignatkn

Linux Kernel releases

● A new major (stable) kernel version is released every 9-10 weeks
● 2 weeks for development/7 weeks for bugfixing

● Leftmost version number means nothing
● 4.19.x -> 4.20.x upgrade can contain more features/breaking

changes than 4.20.x -> 5.0.x

@ignatkn

Linux Kernel releases

● A new major (stable) kernel version is released every 9-10 weeks
● 2 weeks for development/7 weeks for bugfixing

● Leftmost version number means nothing
● 4.19.x -> 4.20.x upgrade can contain more features/breaking

changes than 4.20.x -> 5.0.x
● Bugfix/patch releases are released around once a week

● Denoted by rightmost version number
● Usually cherry-picked from the main Linux branch
● No new features, therefore regressions are quite rare
● May contain critical security patches
● You almost always want to apply them

@ignatkn

Longterm releases

● Usually a stable release branch is active around 2-3 months
● After that it is EOL and no bugfixes are backported (including

critical security vulnerabilities)
● A new major stable version should be available at this point

@ignatkn

Longterm releases

● Usually a stable release branch is active around 2-3 months
● After that it is EOL and no bugfixes are backported (including

critical security vulnerabilities)
● A new major stable version should be available at this point

● But there are “longterm” stable releases
● Bug and security fixes are backported for at least 2 years
● Usually the last stable release of the year

● Therefore, released once a year
● Provides enough time for more rigid evaluation of the next

“longterm” release

@ignatkn

Longterm releases

● Usually a stable release branch is active around 2-3 months
● After that it is EOL and no bugfixes are backported (including

critical security vulnerabilities)
● A new major stable version should be available at this point

● But there are “longterm” stable releases
● Bug and security fixes are backported for at least 2 years
● Usually the last stable release of the year

● Therefore, released once a year
● Provides enough time for more rigid evaluation of the next

“longterm” release

@ignatkn

https://www.kernel.org/category/releases.html

https://www.kernel.org/category/releases.html

Safe and easy production kernel
upgrades

@ignatkn

Safe and easy production kernel upgrades

Don’t create a dedicated deploy
process for the Linux Kernel

@ignatkn

Safe and easy production kernel upgrades

Don’t create a dedicated deploy
process for the Linux Kernel

● Kernel upgrades are usually less risky than other software
● A simple staged rollout is usually enough
● Kernel upgrades are naturally slow paced, because they require a

reboot
● A lot of headroom to abort the deploy if things look wrong

@ignatkn

Safe and easy production kernel upgrades

Avoid justifying a bugfix kernel
upgrades

@ignatkn

Safe and easy production kernel upgrades

Avoid justifying a bugfix kernel
upgrades

● Should be released with “no questions asked”
● Contain only bug fixes and security patches

● And most likely some are always applicable
● Regressions are quite uncommon
● Minimise canary “soak” times

● Use metrics-driven approach instead

@ignatkn

Safe and easy production kernel upgrades

Stay on the “longterm” branch, if
validating a major version is costly

@ignatkn

Safe and easy production kernel upgrades

Stay on the “longterm” branch, if
validating a major version is costly

● At least two years of bugfixes and security patches
● But start evaluating the next “longterm” release early in ~1 year

● More features
● Better performance and resource utilisation

● Accumulating less change delta

@ignatkn

Safe and easy production kernel upgrades

Implement/improve pre-production
testing for major version validation

@ignatkn

Safe and easy production kernel upgrades

Implement/improve pre-production
testing for major version validation

● Understand your workload
● Write tests, which exercise various kernel subsystems required by your

workload
● Can help when communicating issues to the kernel community

● Make metrics-driven decisions
● Not time-based decisions (minise “soak” times)

@ignatkn

Safe and easy production kernel upgrades

Metrics, monitoring and deploy automation
can help with human risk perception

@ignatkn

Safe and easy production kernel upgrades

Metrics, monitoring and deploy automation
can help with human risk perception

● Data-driven decision if the deploy looks good
● Provides quick early signals about regressions
● Can save the engineering team a debugging cycle
● Automation encourages regular upgrades

● Removes the need for an operator to perform a “potentially risky”
release

@ignatkn

Conclusions

● Linux Kernel upgrades are not more risky than any other software

● You need to patch early and patch often

● Bugfix kernel releases should be applied with “no questions asked”

● Understanding your workload, metrics, monitoring and automation allow

your systems to stay patched and secure

@ignatkn

Thank you!

Questions?

@ignatkn

