
How to Not Destroy Your
Kubernetes Clusters

Qian Ding

Background

...

Kube-on-Kube

#K8S Dev 30
#K8S SRE 10
#Clusters 100+

#Nodes 100K
#Pods 3M

Max
(#nodes/cluster) 17K

Max
(#pods/cluster) 620K

🤦
Greatest

Hits*

☸ 01 The powerful operator

🏁 02 The paradoxical finalizer

🪝 03 The evil webhook

*This list is based on our postmortem database and ranked by the number of internal reads.

The powerful operator
☸ 01

Let’s NOT make too many operators…

Number of service objects in the victim cluster

victim

Victim cluster property
Size:2K nodes, 30K pods
Usage: CI/CD, dev production
Status: Deprecating, ETA 2023

17:20 War room declared

17:30 Locate the offending
operator • Audit logs indicated all svc were

deleted from a single IP.

• It was a custom load balancer
operator.

17:20 War room declared

17:30 Locate the offending operator

• No change to the operator in the
past 90 days.

17:32 Another cluster
screamed due to high
traffic load

17:35 More users came in
and complained

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

Victim cluster property
Size:2K nodes, 30K pods
Usage: CI/CD, dev production
Status: Deprecating, ETA 2023

• Collect svc from audit logs and
other monitoring data

• Encourage users to self-restore22:25 All services fully recovered

Service
restoring

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

18:10

22:25 All services fully recovered

• Second Wave: Stop creating pods

Alert:TooManySLOFailures
PodCreation

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

18:10 Alert:TooManySLOFailuresOnPodCreation

custom
webhooks

19:16 Pinpoint the missing service
for pod creation

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

22:25 All services fully recovered

19:16 Pinpoint the missing service for pod creation

19:20 Fix all critical webhook svcs

Human errors by service
owners delayed the recovery

18:10 Alert:TooManySLOFailuresOnPodCreation

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

22:25 All services fully recovered

custom
webhooks

19:20 Fix all critical webhook svcs

19:37 Root cause understood

AppLoadBalancer
operator

ingress

service

AppLoadBalancer
name as label

19:16 Pinpoint the missing service for pod creation

18:10 Alert:TooManySLOFailuresOnPodCreation

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

22:25 All services fully recovered

19:37 Root cause understood

23:57 Operator code fixed

// apimachinery/pkg/labels/selector.go
// SelectorFromSet returns a Selector which will match
// exactly the given Set. A nil and empty Sets are
// considered equivalent to Everything().

if len(labelKey) > qualifiedNameMaxLength
return "A nil Selector Set"

Operator selected ALL services from a nil
selector and deleted them

/// from standard k8s pkg.
qualifiedNameMaxLength = 63operator

/// from our custom k8s pkg.
qualifiedNameMaxLength = 127

Victim cluster

19:20 Fix all critical webhook svcs

19:16

18:10 Alert:TooManySLOFailuresOnPodCreation

17:20 War room declared

17:30 Locate the offending operator

17:32 Another cluster screamed due to high traffic load

17:35 More users came in and complained

17:45 Shut down the operator

22:25 All services fully recovered

Pinpoint the missing service for pod creation

17:00 – A test engineer accidentally created an AppLoadBalancer

with the name length > 63 and deleted it.

Observability
Audit log is important.

Data Integrity
Backup! Backup! Backup!

Operator Development
Audit the permission and scope.
Use shared client library.

Precaution
Rate limiting on risky operations
like mutation / deletion.
Alert on abnormal cluster-level
behaviors.

Lesson Learned

The paradoxical finalizer
🏁 02

Let’s NOT create any dependency loop.

🔥🔥🔥 03:51:00AM Alert:TooManyPodCreationFailures at cluster X

🔥🔥🔥 03:51:15AM Alert:TooManyPodDeletionFailures at cluster Y

🔥🔥🔥 03:51:20AM Alert:TooManyPodCreationFailures at cluster Z

🔥🔥🔥 03:52:30AM Alert:TooManyPodDeletionFailures at cluster T

…

Rollout High
Traffic Load

Global
Dependencies

❌ ❌ ❓

Possible Guess
It’s 4AM, so…

🚪
ReadinessGates

Legacy
CMDB
service

🏁
Finalizers

Global
Dependencies

SQLDataException: ‘2.157132229E9’ in
column ‘1’ is outside valid range for the
datatype INTEGER.

It’s called legacy for a reason

intàlong

Mitigation

Package Test Deploy

✅✅✅

Ideally...

🚪
ReadinessGates

Legacy
CMDB
service

🏁
Finalizers

Dependency
Loop

Mitigation

intàlong Package Test Deploy

⚠✅✅

🛠
manual ops

In reality...

Dependency Loops
Remove global dependency

Legacy Systems
Examine by chaos attack

Automation
Practice manual operations

Lesson Learned

The evil webhook
🪝03

How would you do a canary rollout for a webhook?

Number of restarted PODS in the victim cluster
Victim cluster property
Size:1K nodes, 23K pods
Usage: canary, 1% production
Status: Serving

Given the following conditions:

• Pods belonged to multiple owners with no obvious correlation

• DeamonSet, Deployment, StatefulSet pods were all affected

• Not sure if another wave was coming in

Victim cluster property
Size:1K nodes, 23K pods
Usage: canary, 1% production
Status: Serving

🤔

old new

The Pod Spec Change

"securityContext”: {
...
“capabilities”: {},

...
}

"securityContext”: {
.....
“capabilities”: {

“drop”:[
“SYS_MODULE”,
”DAC_READ_SEARCH”

]
},
.....

}

from a dynamic mutating admission webhook

Mutate on CREATE / UPDATE events for pods IFF dedicated label xyz = true.

The Webhook: Previously
apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
.....
rules:
- apiGroups:

- ""
apiVersions:
- v1
operations:
- CREATE
- UPDATE
resources:
- pods
scope: ‘*’

label.xyz = true

label.xyz = false

label.xyz

webhook

Mutate on CREATE / UPDATE events for pods IFF dedicated label xyz = true.

Don’t mutate on CREATE / UPDATE events for pods IFF dedicated label xyz = false.

The Webhook: Buggy
apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
.....
rules:
- apiGroups:

- ""
apiVersions:
- v1
operations:
- CREATE
- UPDATE
resources:
- pods
scope: ‘*’

label.xyz = true

label.xyz = false

label.xyz

webhook

Progressive Rollout
Set blast radius for webhooks
explicitly.

Audit log
Organize monitoring data to
facilitate debugging.

Change Management
Restrict the usage of dynamic mutating
webhooks.

Team Collaboration
Educate and communicate in the same
language.

Lesson Learned

Summary
It’s already too complicated…

Trends

kube-apiserver performance
during our 1.16 -> 1.18 upgrade

of outages and average MTTR

Observability is still the key: #audit #log #traces

Change management is hard: #scopes #permissions #dependencies

Large-scale clusters have different implication: #integrity #redundancy

Communication and education: #manual ops #incident management

Key Takeaways

Thanks

