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Machine learning is 
treated as magic

Joseph Pigenot

https://memegen.corp.google.com/template/just_add_machine_learning/usage?sort=new


Productionizing ML 
is not magic

The “magic” part of ML is just another 
limited-observability system. Most of the 
same principles apply.



What (one) ML production platform looks like

What failure looks like

4 things to do to manage risk
Today’s 

talk



4 things you can do for more reliable ML

1. Make failure obvious
2. Validate production changes
3. Clarify data integrity requirements
4. Handle pipeline backlogs



Design of (one) ML platform
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Photo 
features Is cat? 

0/1 P(cat) = f(Stuff)
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A lot of data dependencies

That’s, like, the whole point. 
But, it’s kind of messy

Pipeline of pipelines

ML pipelines are sometimes 
dependent on each other, 
may share feature data

Atypical workloads, at scale

Feature processing can be very 
I/O heavy; training can be very 
compute-heavy. This gets 
interesting with many models 
and a large amount of data.

What makes ML in prod interesting



When something goes wrong



What goes wrong?
● Usually not ML-specific things:

○ incorrectly validated rollout
○ load balancing / overload issues
○ unexpected / error-prone interactions between systems

● See: Papasian and Underwood, “How ML Breaks: Fifteen years of ML 
production pipeline outages and insight”, OpML 2020
○ Root cause analysis of 15 years of ML system postmortems:

■ 30% were “inherent to ML”
■ 40% were “inherent to distributed systems”

https://www.usenix.org/conference/opml20/presentation/papasian


What goes wrong?
● Successful risk mitigation considers both general best practices, and 

contextual best practices based on what you know about your systems.

● Our ML platform is a set of distributed, data-intensive, pipeline systems.



4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs



ML outages from the outside



ML outages from the outside
(no safeguards)

something went wrong  :-(

No new models (or 
bad models) go to 
serving, inferences get 
worse, eventually user 
trust degrades



ML outages from the outside
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ML outages from the outside
(human safeguards)

something went wrong  :-(

Orchestration

Model developer notices 
their quality dashboards 
aren’t doing great before 
too many users see it, 
manually adjusts



4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs



Where changes happen: binaries
Feature processing binaries Training pipeline binaries Serving binaries



Where changes happen: configuration
Feature processing binaries
Data schema/configurations

Training pipeline binaries
Training configurationsConfig data schema

Serving binaries
Serving configurations



Validating binary and config changes

staging staging staging



Validating binary and config changes

staging staging staging

Run binary rollouts and 
config changes in staging 
environments. In particular, 
monitor for performance 
degradations.

monitoring



Where changes happen: data
Feature processing binaries
Data schema/configurations
Generated feature data updates

Training pipeline binaries
Training configurations
Model representations

Raw data schema
Raw data updates

(Potentially other changes here)

Serving binaries
Serving configurations
Inferences



Validating data updates
Validate model snapshot 
on labeled data, check for 
quality performance



Validating data updates
Validate model snapshot 
on labeled data, check for 
quality performance

Add anomaly detection for 
feature data (based on 
heuristics, etc)



4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs



Where changes happen: other

Here be dragons



Improving data integrity
Ensure data owners 
know where and 
when you need data. 
Clarify escalation 
paths. 



Improving data integrity

Make models simpler 
(fewer dependencies)

Ensure data owners 
know where and 
when you need data. 
Clarify escalation 
paths. 

Make rollbacks and 
recovery easy



4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs



Handling pipeline backlogs



Handling pipeline backlogs

enable pushback



Handling pipeline backlogs

enable pushback

prioritize 
workloads



Handling pipeline backlogs

enable pushback

prioritize 
workloads

provision for 
recovery



Conclusion
ML systems are weird, but no more than other systems we deal with

Successful risk management considers general best practices and knowledge 
about the specific system’s characteristics

A few things to consider for ML:
1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs



Thank you!

Special thanks: Julian Grady, Gráinne Sheerin, Todd Underwood, Darinka Zečević, 
SRECon+OpML organizers


