
Demystifying ML in Production
Reasoning about a large-scale ML platform

Mary McGlohon
(she/her)

marymc@google.com

Machine learning is
treated as magic

Joseph Pigenot

https://memegen.corp.google.com/template/just_add_machine_learning/usage?sort=new

Productionizing ML
is not magic

The “magic” part of ML is just another
limited-observability system. Most of the
same principles apply.

What (one) ML production platform looks like

What failure looks like

4 things to do to manage risk
Today’s

talk

4 things you can do for more reliable ML

1. Make failure obvious
2. Validate production changes
3. Clarify data integrity requirements
4. Handle pipeline backlogs

Design of (one) ML platform

Labeled data
(Features)

ML on one machine

Model

Photo
features Is cat?

0/1 P(cat) = f(Stuff)

Labeled data
(Features)

ML on one machine

Model

(linear algebra or
other things)

Features Model
training

ML in production

Model

Features Model
training

ML in production

Model

Data Feature
handling

Model
training

ML in production

Model

Data Feature
handling

Model
training

Inference

ML in production

Data Feature
handling

Model
training

Inference

ML in production

(online feedback loop)

updates updates

Data Feature
handling

Model
training

Inference

ML in production

Orchestration

Data Feature
handling

Model
training

Inference

ML in production

Orchestration

A lot of data dependencies

That’s, like, the whole point.
But, it’s kind of messy

Pipeline of pipelines

ML pipelines are sometimes
dependent on each other,
may share feature data

Atypical workloads, at scale

Feature processing can be very
I/O heavy; training can be very
compute-heavy. This gets
interesting with many models
and a large amount of data.

What makes ML in prod interesting

When something goes wrong

What goes wrong?
● Usually not ML-specific things:

○ incorrectly validated rollout
○ load balancing / overload issues
○ unexpected / error-prone interactions between systems

● See: Papasian and Underwood, “How ML Breaks: Fifteen years of ML
production pipeline outages and insight”, OpML 2020
○ Root cause analysis of 15 years of ML system postmortems:

■ 30% were “inherent to ML”
■ 40% were “inherent to distributed systems”

https://www.usenix.org/conference/opml20/presentation/papasian

What goes wrong?
● Successful risk mitigation considers both general best practices, and

contextual best practices based on what you know about your systems.

● Our ML platform is a set of distributed, data-intensive, pipeline systems.

4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs

ML outages from the outside

ML outages from the outside
(no safeguards)

something went wrong :-(

No new models (or
bad models) go to
serving, inferences get
worse, eventually user
trust degrades

ML outages from the outside
(human safeguards)

something went wrong :-(

Orchestration

ML outages from the outside
(human safeguards)

something went wrong :-(

Orchestration

Model developer notices
their quality dashboards
aren’t doing great before
too many users see it,
manually adjusts

4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs

Where changes happen: binaries
Feature processing binaries Training pipeline binaries Serving binaries

Where changes happen: configuration
Feature processing binaries
Data schema/configurations

Training pipeline binaries
Training configurationsConfig data schema

Serving binaries
Serving configurations

Validating binary and config changes

staging staging staging

Validating binary and config changes

staging staging staging

Run binary rollouts and
config changes in staging
environments. In particular,
monitor for performance
degradations.

monitoring

Where changes happen: data
Feature processing binaries
Data schema/configurations
Generated feature data updates

Training pipeline binaries
Training configurations
Model representations

Raw data schema
Raw data updates

(Potentially other changes here)

Serving binaries
Serving configurations
Inferences

Validating data updates
Validate model snapshot
on labeled data, check for
quality performance

Validating data updates
Validate model snapshot
on labeled data, check for
quality performance

Add anomaly detection for
feature data (based on
heuristics, etc)

4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs

Where changes happen: other

Here be dragons

Improving data integrity
Ensure data owners
know where and
when you need data.
Clarify escalation
paths.

Improving data integrity

Make models simpler
(fewer dependencies)

Ensure data owners
know where and
when you need data.
Clarify escalation
paths.

Make rollbacks and
recovery easy

4 things for more reliable ML

1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs

Handling pipeline backlogs

Handling pipeline backlogs

enable pushback

Handling pipeline backlogs

enable pushback

prioritize
workloads

Handling pipeline backlogs

enable pushback

prioritize
workloads

provision for
recovery

Conclusion
ML systems are weird, but no more than other systems we deal with

Successful risk management considers general best practices and knowledge
about the specific system’s characteristics

A few things to consider for ML:
1. Make failure obvious
2. Validate production changes (binaries + data)
3. Clarify data integrity requirements
4. Handle pipeline backlogs

Thank you!

Special thanks: Julian Grady, Gráinne Sheerin, Todd Underwood, Darinka Zečević,
SRECon+OpML organizers

