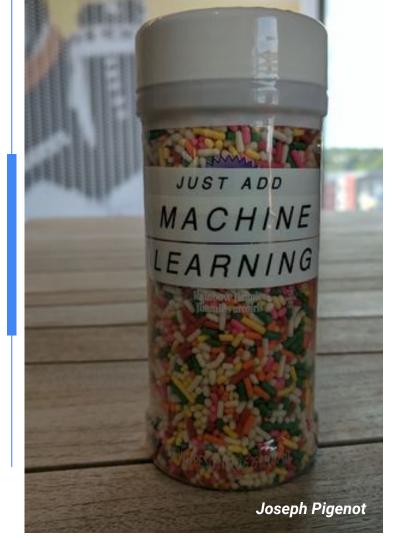
Demystifying ML in Production

Reasoning about a large-scale ML platform

Mary McGlohon (she/her) marymc@google.com

Machine learning is treated as magic



Productionizing ML is not magic

The "magic" part of ML is just another limited-observability system. Most of the same principles apply. What (one) ML production platform looks like

What failure looks like

4 things to do to manage risk

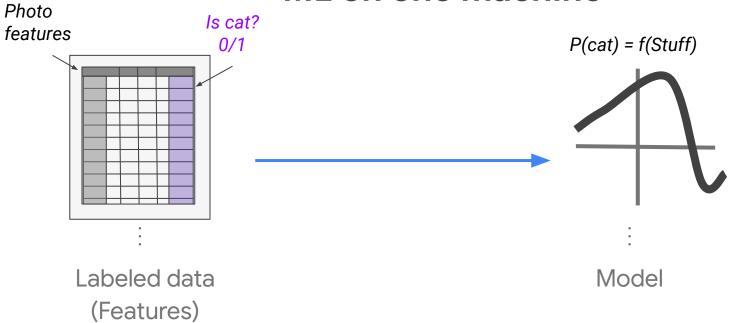
Today's talk

4 things you can do for more reliable ML

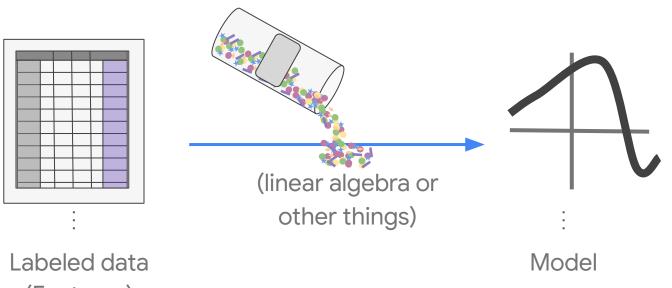
- 1. Make failure obvious
- 2. Validate production changes
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs

Design of (one) ML platform

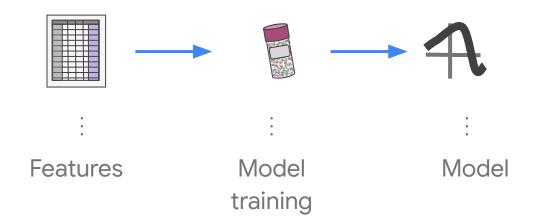
ML on one machine

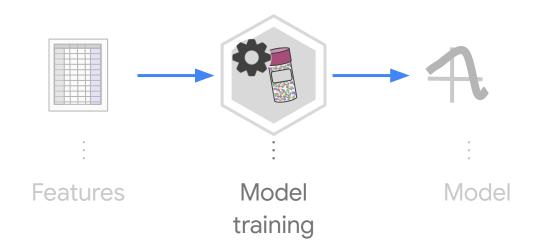


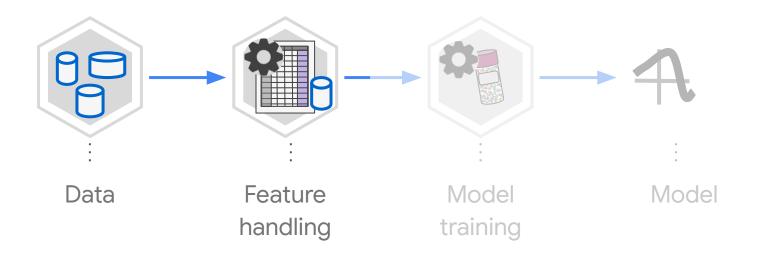
ML on one machine

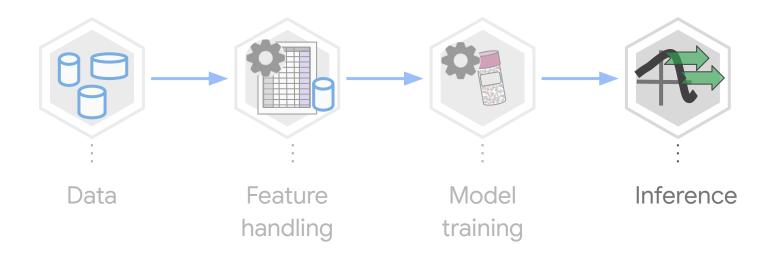


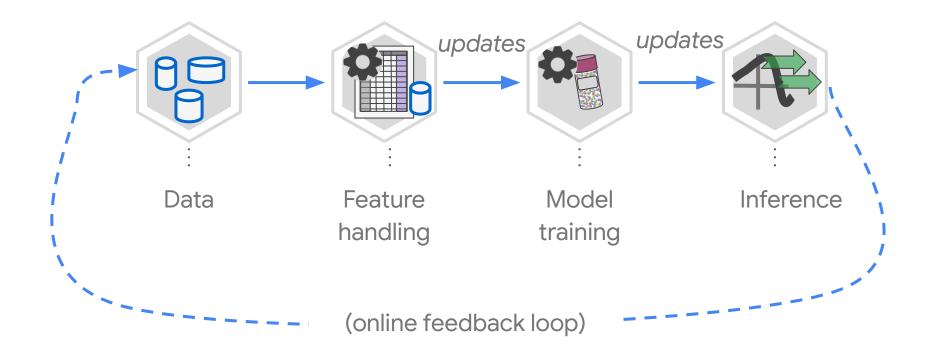
(Features)

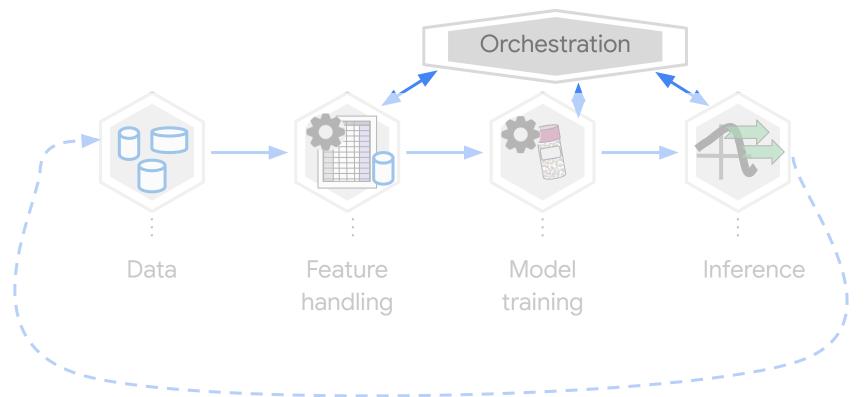


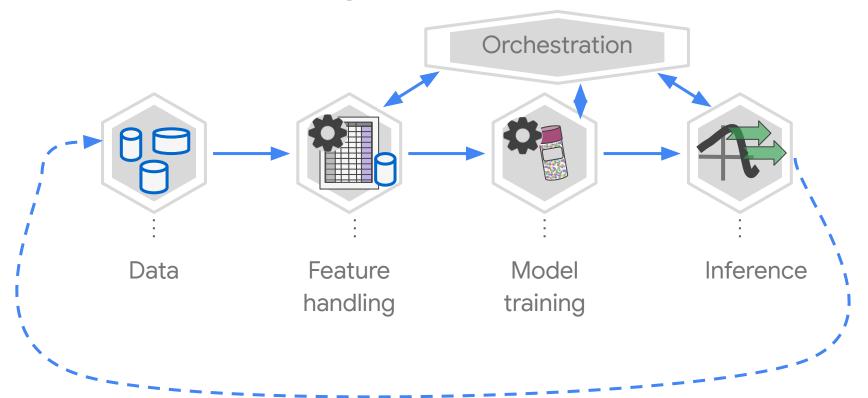












What makes ML in prod interesting

A lot of data dependencies

That's, like, the whole point. But, it's kind of messy Pipeline of pipelines

ML pipelines are sometimes dependent on each other, may share feature data Atypical workloads, at scale

Feature processing can be very I/O heavy; training can be very compute-heavy. This gets interesting with many models and a large amount of data.

When something goes wrong

What goes wrong?

- Usually not ML-specific things:
 - incorrectly validated rollout
 - load balancing / overload issues
 - unexpected / error-prone interactions between systems
- See: Papasian and Underwood, "How ML Breaks: Fifteen years of ML production pipeline outages and insight", <u>OpML 2020</u>
 - Root cause analysis of 15 years of ML system postmortems:
 - 30% were "inherent to ML"
 - 40% were "inherent to distributed systems"

What goes wrong?

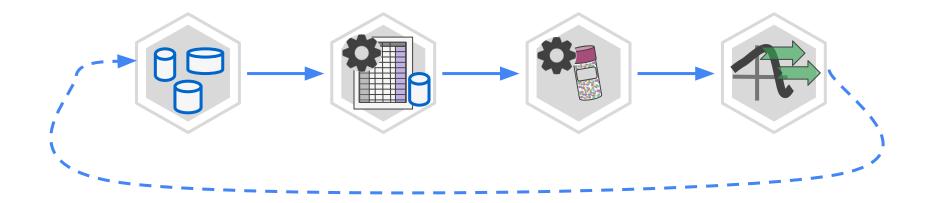
- Successful risk mitigation considers both **general best practices**, and **contextual best practices** based on what you know about your systems.
- Our ML platform is a set of distributed, **data-intensive**, **pipeline** systems.

4 things for more reliable ML

1. Make failure obvious

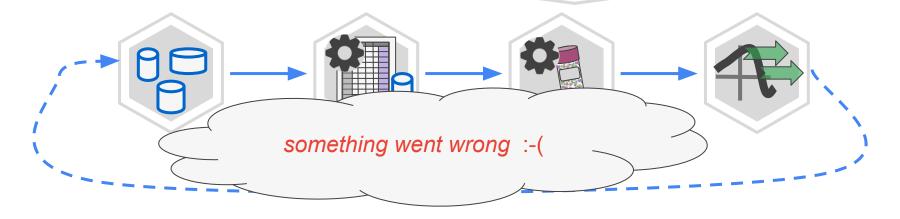
- 2. Validate production changes (binaries + data)
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs

ML outages from the outside



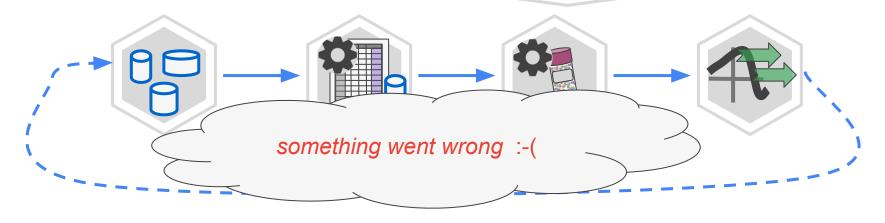
ML outages from the outside No new models (or bad models) go to (no safeguards) serving, inferences get worse, eventually user trust degrades something went wrong :-(

ML outages from the outside (human safeguards) Orchestration



ML outages from the outside (human safeguards) Orchestration

Model developer notices their quality dashboards aren't doing great before too many users see it, manually adjusts



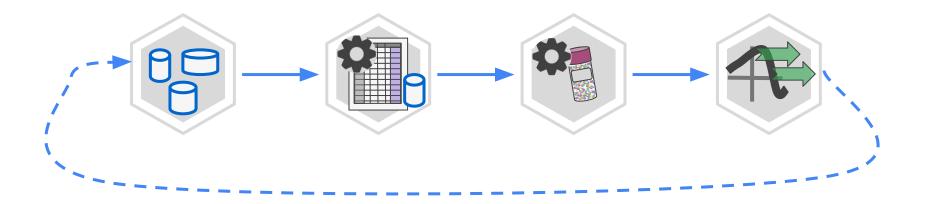
4 things for more reliable ML

- 1. Make failure obvious
- 2. Validate production changes (binaries + data)
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs

Where changes happen: binaries

Feature processing binaries

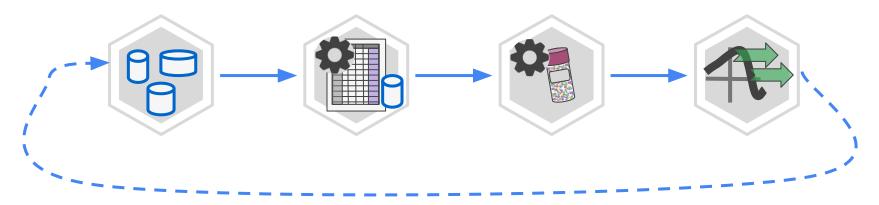
Training pipeline binaries Serving binaries



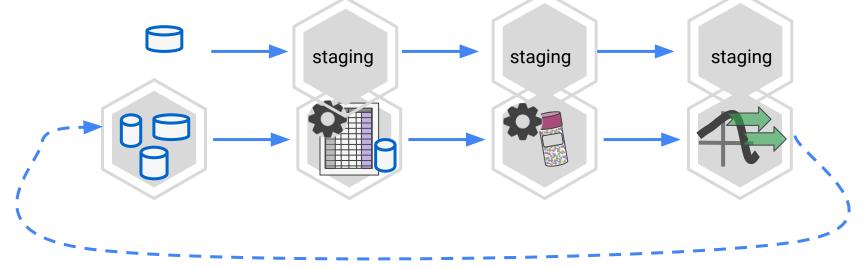
Where changes happen: configuration

Config data schema

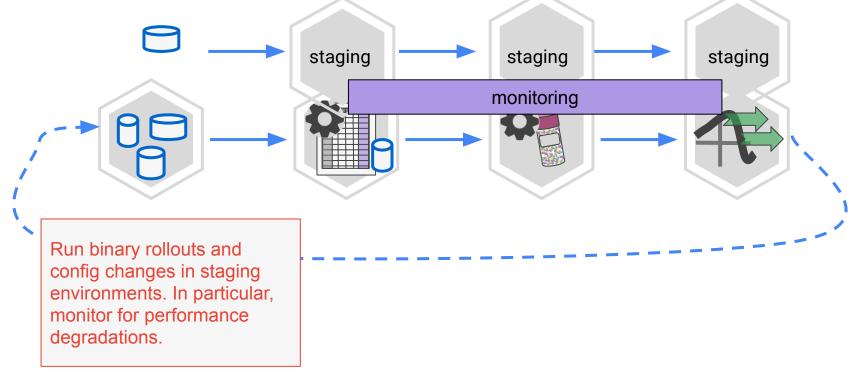
Feature processing binaries Data schema/configurations Training pipeline binaries Training configurations Serving binaries Serving configurations



Validating binary and config changes



Validating binary and config changes

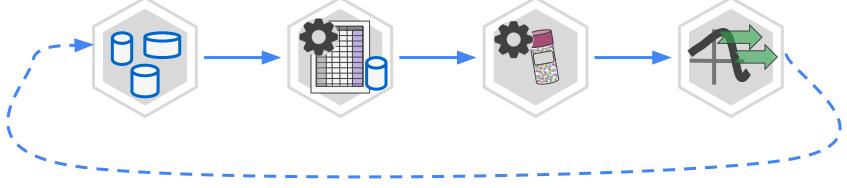


Where changes happen: data

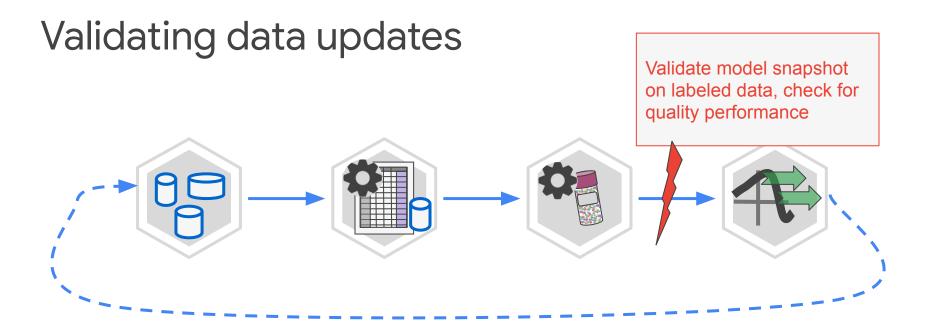
Raw data schema Raw data updates

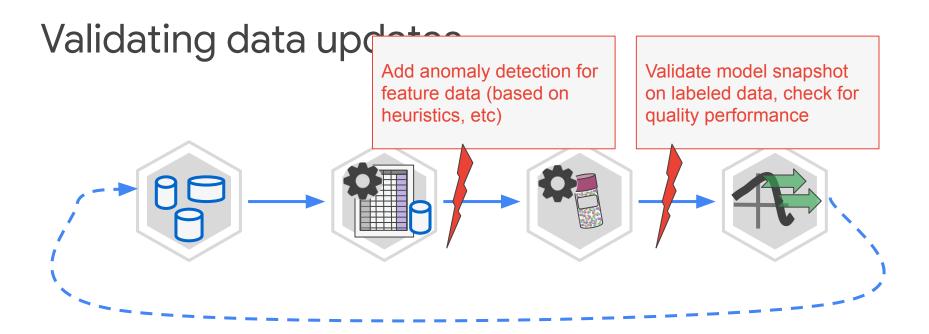
Feature processing binariesTraining pipData schema/configurationsTraining conGenerated feature data updatesModel representation

Training pipeline binaries Training configurations Model representations Serving binaries Serving configurations Inferences



(Potentially other changes here)

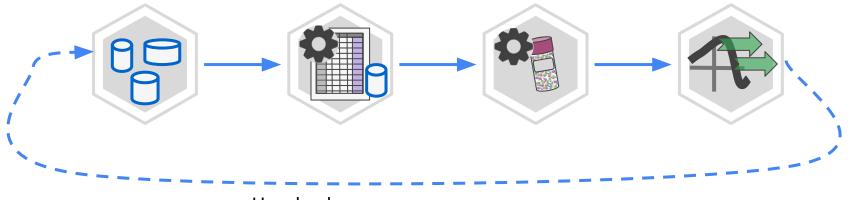




4 things for more reliable ML

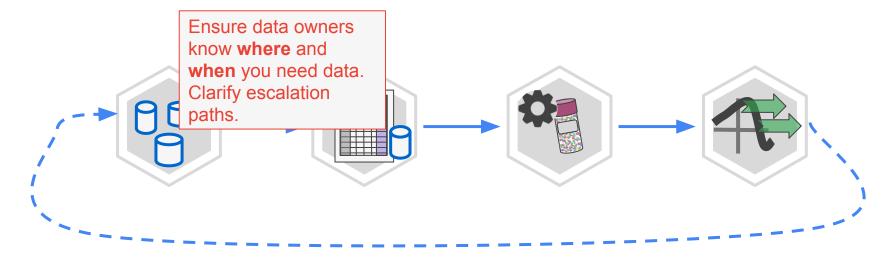
- 1. Make failure obvious
- 2. Validate production changes (binaries + data)
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs

Where changes happen: other

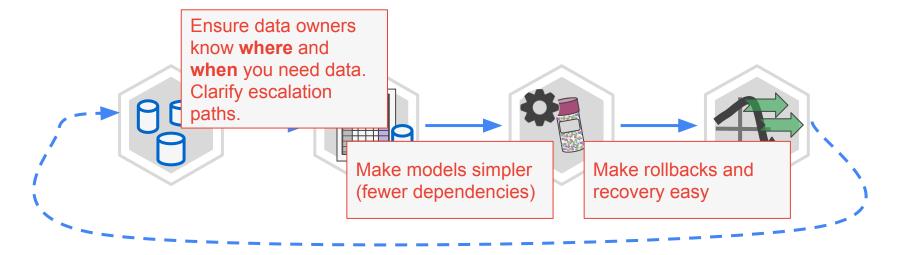


Here be dragons

Improving data integrity



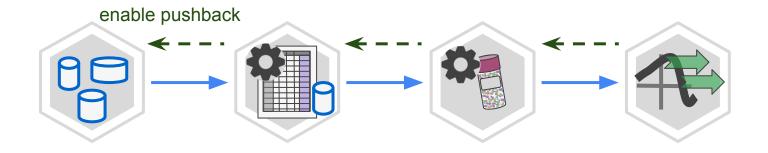
Improving data integrity

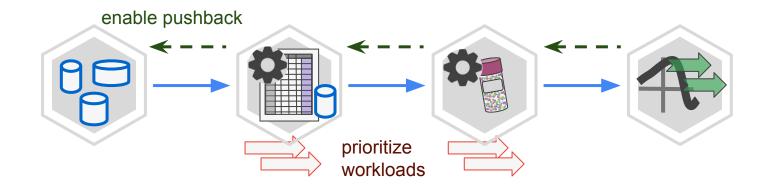


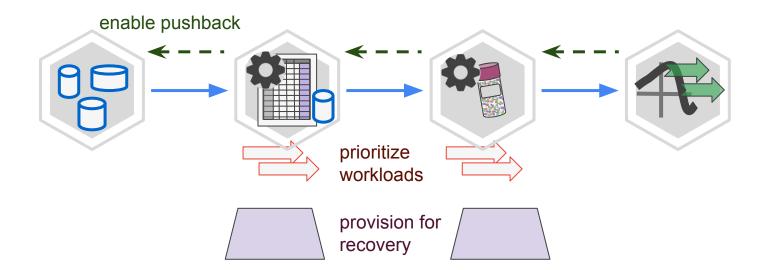
4 things for more reliable ML

- 1. Make failure obvious
- 2. Validate production changes (binaries + data)
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs









Conclusion

ML systems are weird, but no more than other systems we deal with

Successful risk management considers general best practices and knowledge about the specific system's characteristics

A few things to consider for ML:

- 1. Make failure obvious
- 2. Validate production changes (binaries + data)
- 3. Clarify data integrity requirements
- 4. Handle pipeline backlogs

Thank you!

Special thanks: Julian Grady, Gráinne Sheerin, Todd Underwood, Darinka Zečević, SRECon+OpML organizers