
Poster: Pushed by Accident – Prevention and
Remediation Strategies Against Secret Leakage

Alexander Krause C Jan H. Klemmer ∗ Nicolas Huaman ∗ Dominik WermkeC

Yasemin Acar †, ‡ Sascha Fahl C

C CISPA Helmholtz Center for Information Security, Germany,
{alexander.krause,dominik.wermke,sascha.fahl}@cispa.de

∗Leibniz University Hannover, Germany, {klemmer,huaman}@sec.uni-hannover.de
†Paderborn University, Germany, yasemin.acar@uni-paderborn.de

‡The George Washington University, USA

1 Introduction

Version control systems (VCSs) are an essential technology
for collaborative software development. Git [1], a fundamen-
tal tool to orchestrate collaborative development, has been
voted as the most common tool in the recent Stack Overflow
Developer Survey [2] with 93.4% of participants specifying
to use this tool in their development workflow. Git-based
code repository platforms (e. g., GitHub [3] and GitLab [4])
aim to ease sharing, reviewing, and contributing to software
projects. In modern development pipelines, software is com-
monly directly built, tested, and deployed within and from
these code repositories. To deploy software on server infras-
tructure, automate interactions with third-party services, or
handle authentication, developers need to provide secrets, e. g.,
credentials, authentication tokens, or secret encryption keys.
However, these secrets must be protected from being leaked
accidentally into the public codebase. Unfortunately, this is no
straightforward task. Recent work by Meli et al. [5] found that
on GitHub, the most popular code sharing platform,1 thou-
sands of automatically detectable secrets are leaked daily.

A leaked secret can have a significant impact depending on
the type of secret and how long it takes for the secret owner
to revoke it after noticing its leak. In the case of Toyota, a
hard-coded credential for accessing a data server was publicly
pushed to GitHub in 2017. It allowed attackers to control
the Toyota T-Connect accounts for 296,019 customers [7].
After more than five years, Toyota invalidated the key. Such a
long time could mean multiple malicious actors have already
gained access. GitHub recently leaked a private SSH host key
of their production Git servers in a public repository. This
incident illustrates the complexity of secret management, even
for large companies experienced with code secrets and public
source code repositories [8].

There is anecdotal knowledge [9, 10, 11, 12] on secret leaks
through source code repositories. However, there has been
little prior research trying to understand better the reasons

1According to the Tranco list [6] generated on January 5, 2022, available
at https://tranco-list.eu/list/Q674.

for and experiences with code secret leakage in source code
repositories. To address this gap, we investigate the following
research questions:
RQ1. How widespread is code secret leakage among develop-
ers? Leaking secrets and access tokens in source code poses
a potentially serious security threat. We asked 109 developers
how often they encountered secret leaks in the past.
RQ2. What are secret leakage prevention approaches, and
what are developers experiences? Depending on the scenario
and context, prevention approaches can differ widely. We
surveyed and interviewed developers to reveal prevention
approaches and the experiences, challenges, and needs that
developers have when using them.
RQ3. What are developers’ experiences with code secret
leakage incidents? Little is known about developers’ experi-
ences when remediating code secret leaks. We interviewed
developers on their latest and most impactful secret leaks to
learn from their experiences, how they recognized a leak, and
their consequences.
RQ4. What are developers’ experiences with code secret re-
mediation techniques and tools? Remediating code secret
leakage can be challenging. We examine deployed reme-
diation approaches, developers’ experiences with these ap-
proaches, and their requirements for approaches.

2 Methodology

In a mixed-methods study, we surveyed 109 developers with
version control system experience. Additionally, we con-
ducted 14 in-depth semi-structured interviews with developers
who experienced secret leakage in the past. Our institution’s
ethical review board (ERB) approved both studies. Further,
we adhered to the strict German privacy laws and the General
Data Protection Regulation (GDPR).2 We report the partici-
pant demographics in Table 1. Overall, the demographics are

2To allow full replication of our research as well as meta-research, we
provide a replication package at https://prismatic-meerkat-6f3fb6.
netlify.app.

1

https://orcid.org/0000-0003-2993-2568
https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0003-2733-5073
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316
mailto:alexander.krause@cispa.de
mailto:dominik.wermke@cispa.de
mailto:sascha.fahl@cispa.de
mailto:klemmer@sec.uni-hannover.de
mailto:stransky@sec.uni-hannover.de
mailto:yasemin.acar@uni-paderborn.de
https://tranco-list.eu/list/Q674
https://prismatic-meerkat-6f3fb6.netlify.app
https://prismatic-meerkat-6f3fb6.netlify.app


comparable to the latest Stack Overflow developer survey [2]
in terms of gender, age, top-3 countries, and education.
Survey. We surveyed a diverse set of developers using an
online questionnaire to answer RQ1 and RQ2. We iteratively
developed the questionnaire and tested it with four usable
security researchers in cognitive walkthroughs. Finally, we pi-
loted the survey with 11 participants and iteratively improved
the questions.

For the survey, we recruited 50 freelance developers on
Upwork and 59 developers on GitHub.
Interviews. To answer RQ3 and RQ4, we decided to only
interview developers who experienced secret leakage and
therefore can report on remediation and past incidents from
GitHub. This was the only eligibility criteria to participate in
an interview.
Analysis and Coding. We used an iterative open-coding
approach to analyze all interview transcripts and survey re-
sponses [13, 14, 15]. First, two researchers developed an ini-
tial codebook. Afterward, the two researchers developing the
codebook coded the responses in multiple rounds. After each
iteration, they resolved conflicts by consensus discussion or
by introducing new sub-codes. We continued iterative coding
until no new codes and themes emerged [16, 17].

3 Findings

In the following, we highlight selected results.
Widespread of Code Secret Leakage. We found that 30.3%
of our respondents experienced code secret leakage them-
selves in the past. Further, 38.5% know others who experi-
enced secret leakage in the past, as depicted in Figure 1.
Code Secret Management Approaches. In total, we discov-
ered 18 distinct approaches developers used to prevent and
remediate code secret leakage. The attached poster illustrates
the approaches in a table, with additional information on the
prevalence of the approaches in the survey, including tools
our survey respondents reported on.
Code Secret Leakage Incidents. Our interview participants
experienced code secret leaks in various places. Most par-
ticipants reported a secret leak through public source code
repositories, including GitHub and GitLab.

The type and frequency of secret leaks vastly varied be-
tween participants. All participants reported secret leaks
through hard-coded information in source code or config-
uration files of a project. Some interviewees experienced
leaks through accidental commits of configuration files that
included API keys, tokens, or login credentials.

The impact of code secret leaks highly depends on their
detection. In particular, the time span until leaks are detected
is important. Most of our participants reported that GitHub
notified them in case of a secret leak so that they could respond
quickly. In two cases, GitHub even triggered the revocation
of the leaked secrets.

We observed two different types of consequences caused
by code secret leakage. Consequences may directly affect
the company or software team that is responsible for the leak.
However, we also saw consequences for external stakeholders,
such as clients of the developed software or the customers of
that client. Most of our participants reported, that the secret
leak caused additional workload for the team. This included
the investigation of the leak, as well as the remediation pro-
cess.

4 Recommendations for Developers

Finally, we present recommendations based on our findings.
Prevention. We suggest using a combination of different
approaches to decrease the likelihood of code secret leakage.
First, developers should externalize secrets, e. g., using envi-
ronment variables or tools like vaults and secret managers,
and block secrets from being added to repositories using e. g.,
.gitignore files. These approaches can both prevent an acci-
dental commit and push of a code secret to publicly available
source code repositories. In addition, security can be strength-
ened by also applying monitoring, e. g., using secret scanners,
especially as a pre-commit approach, so that potential code
secrets can be detected before pushing a commit to a server.
Sometimes, developers need to share code secrets through
the repository with others. In that case, developers should use
encrypted secrets, so unauthorized third parties cannot access
them. This can be automated through encryption workflows
using tools like git-secret, SOPS and GPP.
Remediation. Typical steps that should always be taken to ef-
fectively remediate code secret leakage are to renew or revoke
secrets that leaked to prevent further misuse of affected ser-
vices, analyze leaks to identify the root causes of the leak, and
revise the access management using those results, e. g., apply
more restrictive access management if needed. We also con-
sider it essential to notify the concerned roles (e. g., manage-
ment, security team, customers) for legal and ethical reasons,
if not to get the appropriate help from security and privacy
experts. Overall, we consider the above steps necessary be-
cause these steps will handle all consequences of a secret leak.
The other approaches (cf. table in the poster) can be used to
compliment the essential ones, and should be considered as a
second step depending on the situation. Removal from source
code and cleaning up VCS history are such additional steps.
However, these alone are not sufficient, as the risk of archiv-
ing of public websites emphasizes the need to renew or revoke
secrets that have leaked in public spaces. Server Operations
and systemic consequences (e. g., introducing new processes)
depend heavily on company policies, the type of leak and how
well leakage damage can be prevented when developers can
just renew or revoke secrets that have leaked. If developers or
companies have remediation approaches prepared, we suggest
verifying their approaches will work in case of a leak.

2



References

[1] Git Project. Git. https://git-scm.com/ (visited on
02/02/2023).

[2] Stack Overflow. Stack Overflow Developer Survey
2022. https://survey.stackoverflow.co/2022/
(visited on 08/08/2022). 2022.

[3] GitHub Inc. GitHub. https://github.com/.

[4] GitLab Inc. GitLab. https://gitlab.com/.

[5] Michael Meli, Matthew R McNiece, and Bradley
Reaves. “How Bad Can It Git? Characterizing Secret
Leakage in Public GitHub Repositories.” In: NDSS.
2019.

[6] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
“Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation”. In: Proc. 26th Net-
work and Distributed System Security Symposium
(NDSS’19). 2019.

[7] Dwayne McDaniel. Toyota Suffered a Data Breach
by Accidentally Exposing A Secret Key Publicly On
GitHub. https : / / blog . gitguardian . com /
toyota- accidently- exposed- a- secret- key-
publicly-on-github-for-five-years/ (visited
on 02/02/2023).

[8] Mike Hanley. We updated our RSA SSH host key.
https://github.blog/2023-03-23-we-updated-
our-rsa-ssh-host-key/ (visited on 05/16/2023).

[9] Eyal Katz. 8 Proven Strategies To Protect Your Code
From Data Leaks. https://spectralops.io/blog/
8-proven-strategies-to-protect-your-code-
from-data-leaks/ (visited on 02/01/2023).

[10] Beata Berecki. Best Practices for Source Code Se-
curity. https://www.endpointprotector.com/
blog/your-ultimate-guide-to-source-code-
protection/ (visited on 02/06/2023).

[11] CheatSheets Series Team. Secrets Management Cheat
Sheet. https://cheatsheetseries.owasp.org/
cheatsheets / Secrets _ Management _ Cheat _
Sheet.html (visited on 02/06/2023).

[12] Mackenzie Jackson. Best practices for managing and
storing secrets including API keys and other creden-
tials. https://blog.gitguardian.com/secrets-
api-management/ (visited on 02/06/2023).

[13] Kathy Charmaz. Constructing Grounded Theory.
SAGE Publications, 2014.

[14] Anselm Strauss and Juliet M Corbin. Grounded theory
in practice. SAGE Publications, 1997.

[15] Juliet Corbin and Anselm Strauss. “Grounded theory
research: Procedures, canons and evaluative criteria”.
In: Zeitschrift für Soziologie 19.6 (1990), pp. 418–427.

[16] Melanie Birks and Jane Mills. Grounded Theory: A
Practical Guide. Jan. 2015.

[17] Cathy Urquhart. Grounded Theory for Qualitative Re-
search: A Practical Guide. Jan. 2013.

Tables and Figures

0 10 20 30 40 50
Count (n = 109)

Not experienced 57
Know people 42
Experienced 33

Figure 1: Developers reported experience on code secret leak-
age in the past or know people who did. We allowed multiple
answers.

Table 1: Selected participant demographics from both the
survey and interviews. We omit “Other” and “Prefer not to
disclose” answers for space reasons.

Survey Interviews
Upwork GitHub Combined

Participants:
Started 52 101 153 n/a
Finished 51 59 110 n/a
Valid/Total (n =) 50 59 109 14

Gender:
Male 86.0% 88.1% 87.2% 92.9%
Female 10.0% 1.7% 5.5% 0.0%
Non-Binary 0.0% 6.8% 3.7% 7.1%

Age [years]:
Median 29.0 33.0 30.0 28.0
Mean 31.3 34.9 33.2 32.1

Country of Residence:
U.S. 2.0% 32.2% 18.3% 21.4%
India 20.0% 3.4% 11.0% 21.4%
Germany 0.0% 18.6% 10.1% 0.0%
Pakistan 14.0% 3.4% 8.3% 14.3%
Other 60.0% 40.7% 49.5% 42.9%

Development/Programming Education:1

Self-taught 92.0% 94.9% 93.6% 85.7%
College/University 54.0% 62.7% 58.7% 71.4%
On-the-job training 72.0% 42.4% 56.0% 57.1%
Online class 60.0% 28.8% 43.1% 35.7%
Coding camp 18.0% 8.5% 12.8% 0.0%

1 Multiple answers allowed; may not sum to 100%.

3

https://git-scm.com/
https://survey.stackoverflow.co/2022/
https://github.com/
https://gitlab.com/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/ 
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/ 
https://spectralops.io/blog/8-proven-strategies-to-protect-your-code-from-data-leaks/ 
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://www.endpointprotector.com/blog/your-ultimate-guide-to-source-code-protection/
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://blog.gitguardian.com/secrets-api-management/
https://blog.gitguardian.com/secrets-api-management/

	Introduction
	Methodology
	Findings
	Recommendations for Developers

