KNOCK KNOCK, WHO'S THERE?

On the Security of LG's Knock Codes

Raina Samuel**

Philipp Markert

Adam J. Aviv

Iulian Neamtiu

New Jersey Institute of Technology

Ruhr University Bochum The George Washington University

New Jersey Institute of Technology

RUHR UNIVERSITÄT BOCHUM

THE GEORGE
WASHINGTON
UNIVERSITY
WASHINGTON, DC

LG KNOCK CODES: A DIFFERENT WAY TO UNLOCK

- Users select/recall a series of 6 to 10 "knocks" on a 2x2 grid
- Used with the screen off or on
- We estimate 700,000-2,500,000 users in the US alone

How secure and usable are Knock Codes?

APPROACH

Two online user studies using **Amazon Mechanical Turk**

Desktop browser study

Mobile only with three treatments:

- control
- blocklist
- larger grid size

1,138 Knock Codes were analyzed

Preliminary Study

Main Study

Security Analysis

Usability Analysis

<u>n=218</u>

n=351

Each participant created two Knock Codes

SECURITY ANALYSIS:

PERFECT KNOWLEDGE ATTACKER

Has complete knowledge of the frequency order Knock Codes, from most to least frequent

β-Success Rate (%)

	3 guesses	10 guesses	30 guesses	
Control	14.2%	28.0%	51.3%	
Blocklist	6.9%	16.0%	35.4%	
Large	12.9%	31.5%	53.4%	

Partial Guessing Entropy (bits)

	a=0.1	a=0.2	a=0.5
Control	4.20	4.79	5.69
Blocklist	5.79	6.03	6.72
Large	4.53	4.70	5.54

SECURITY ANALYSIS: SIMULATED ATTACKER

Knows a subset of the Knock Codes and constructs a model based on that observed distribution

USABILITY ANALYSIS:

Entry Time

	Entry Time (seconds)
Knock Code (Control)	7.1
PIN*	4.2
Android Pattern*	3.0

Using a blocklist does not affect general entry time

Recall Rates

	Recall Rate (%)
Control	88.8%
Blocklist	80.6%
Large	92.9%

However, other methods such as PINs and patterns have a recall rate of 95%*or higher

^{*}Markert et al. "This PIN can be easily guessed" IEEE Symposium on Security and Privacy 2020

USABILITY ANALYSIS: User Responses

"EASY" "DISCREET"

"HARD TO GUESS"

"DIFFERENT"

"QUICK"

"INSECURE"

"NOT AN IMPROVEMENT"

"HARD TO TYPE"

CONCLUSION

First user study and security analysis of Knock Codes

- Knock Codes <u>offer less security</u> relative to other mobile authentication
- Participants find Knock Codes mostly unusable and insecure
- Using a blocklist with Knock Codes improves security
- Participants are <u>open to new methods</u> of mobile authentication

Thank you! Feel Free to Contact us!

Raina Samuel

res9@njit.edu

New Jersey Institute of Technology

Philipp Markert

philipp.markert@rub.de

RUHR UNIVERSITÄT BOCHUM

Adam J. Aviv

aaviv@gwu.edu

Iulian Neamtiu

ineamtiu@njit.edu

