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Abstract
AMD SEV is a trusted-execution environment (TEE), provid-
ing confidentiality and integrity for virtual machines (VMs).
With AMD SEV, it is possible to securely run VMs on an
untrusted hypervisor. While previous attacks demonstrated
architectural shortcomings of earlier SEV versions, AMD
claims that SEV-SNP prevents all attacks on the integrity.

In this paper, we introduce CacheWarp, a new software-
based fault attack on AMD SEV-ES and SEV-SNP, exploiting
the possibility to architecturally revert modified cache lines
of guest VMs to their previous (stale) state. Unlike previous
attacks on the integrity, CacheWarp is not mitigated on the
newest SEV-SNP implementation, and it does not rely on
specifics of the guest VM. CacheWarp only has to interrupt
the VM at an attacker-chosen point to invalidate modified
cache lines without them being written back to memory. Con-
sequently, the VM continues with architecturally stale data.
In 3 case studies, we demonstrate an attack on RSA in the
Intel IPP crypto library, recovering the entire private key, log-
ging into an OpenSSH server without authentication, and
escalating privileges to root via the sudo binary. While we
implement a software-based mitigation proof-of-concept, we
argue that mitigations are difficult, as the root cause is in the
hardware.

1 Introduction

In recent years, trusted execution environments (TEEs) have
become available on many x86 desktop and server CPUs.
While Intel SGX was the first widely-available TEE, it is
limited to smaller microservice workloads and requires sig-
nificant changes to the code running inside the TEE. The next
generation of TEEs, specifically AMD SEV and Intel TDX,
secure entire virtual machines (VMs). In this threat model,
trusted VMs can run on an untrusted hypervisor. The hyper-
visor can ideally neither read (confidentiality) nor modify
(integrity) any content of the VM. Cloud providers, such as
Microsoft Azure, Google Cloud, and Amazon Web Services

already support AMD SEV [4, 21, 40]. With AMD SEV-SNP,
AMD extended SEV to support full integrity protection [6],
mitigating previous attacks on the integrity of SEV and SEV-
ES VMs [15,35,42,47,57]. AMD also acknowledges that well-
known software-based side-channel attacks, such as Prime+
Probe are possible against all versions of AMD SEV [6].

In this paper, we present CacheWarp, a new software-based
microarchitectural fault attack on AMD SEV-ES and SEV-
SNP, targeting memory writes. We show that creating an
incoherent view of the memory is possible, causing inconsis-
tencies between the cache and the memory. Specifically, we
commit a subset of data writes to memory while dropping
changes to other memory locations using the invd instruction.
Consequently, the VM memory state is only partially updated
and the VM uses stale memory. CacheWarp is fully deter-
ministic and allows fine-grained dropping of memory writes
from the hypervisor. In contrast to previous attacks [34, 36],
CacheWarp is independent of the weaknesses of the AES-
XEX encryption used in AMD SEV. Moreover, the hypervi-
sor does not need read or write access to any encrypted VM
page. In addition to dropping arbitrary writes, we introduce 2
generic techniques to exploit such dropped writes in a generic
fashion. With Dropforge, dropping implicit and explicit writes
of functions can change function parameters and behavior.
With Timewarp, the implicit push of the return address caused
by a function call can be dropped to divert the control flow to
the call site of an earlier function call with the return value
of the current function.

CacheWarp has several advantages over previous attacks
that violated the integrity of the guest VM. Most importantly,
CacheWarp can be mounted against SEV-SNP. It is, therefore,
to the best of our knowledge, the only software-based attack
violating the integrity of SEV-SNP. Moreover, even for SEV-
ES, CacheWarp has advantages over previous attacks. It does
not have to change any memory mappings [35, 42, 47] add
malicious I/O devices [47], or build encryption oracles [57].
CacheWarp only needs to evict modified data from the cache
that should not be dropped. This can either be done in parallel
to the execution of the VM using targeted eviction sets, or



by interrupting the VM at two attacker-chosen points. On the
first interrupt, the attacker commits all outstanding memory
writes to memory, e.g., using the wbnoinvd instruction. On
the second interrupt, the attacker reverts a subset of the out-
standing memory writes to old, now stale, values using the
invd instruction.

While CacheWarp can be mounted “blindly”, precise con-
trol over the time when it is mounted improves the reliabil-
ity. In contrast to SGX [52] where single-stepping an SGX
enclave has been well explored, AMD SEV runs an entire
operating system beneath the victim code, making it diffi-
cult to precisely target a specific instruction at which the VM
should be interrupted. Interrupting an AMD SEV VM re-
quires storing and loading an entire VM state, resulting in
many unrelated instructions with unpredictable timings, mak-
ing triggering interruptions after a specific instruction difficult.
Hence, we introduce a robust execution-control framework for
VMs running on AMD SEV that is based on page faults and
timer interrupts. Conceptually, it is similar to SGX-Step [52]
and SEV-Step [56], i.e., using the APIC timer to generate
interrupts constantly. However, we introduce additional tech-
niques for reliable stepping to account for the unpredictable
runtimes of saving and restoring the VM state. We rely on
uncacheable memory for the VM save area and the wbinvd
instruction for bringing the cache into a known state, result-
ing in highly-predictable runtimes for stopping and resuming
VMs, significantly improving stepping. Additionally, for SEV-
ES, we introduce a new technique using register-state feature
arrays to reliably detect progress in the VM despite the en-
crypted register state and to synchronize our attack with the
victim. For SEV-SNP, we rely on the progress detection of
SEV-Step [56].

We demonstrate CacheWarp and our stepping framework
in 3 case studies. In the first case study, we mount a Bell-
core attack [10, 12] on the RSA-CRT implementation of the
Intel IPP crypto library. Our attack recovers the full private
RSA key from an AMD SEV-protected VM within 6 s. Even
without single stepping, we achieve a success rate of 90 %.
In the second case study, we show that CacheWarp diverts
the control flow to the call site of a previous function with
the return value of a previously called function. We use this
capability to break the authentication of an OpenSSH server
running inside a guest VM, allowing an attacker to log into the
VM. In the final case study, we demonstrate that an attacker
with unprivileged code execution in the VM, i.e., after exploit-
ing the OpenSSH server, can perform privilege escalation
by using CacheWarp on the sudo binary. Although SEV-ES
is already known to provide incomplete protection, we rely
on SEV-ES as a “prototyping platform” for the attacks, as
reliable stepping is simpler due to the visibility of the register
state. Hence, the exploit-development time, including debug-
ging, is significantly reduced. However, as the underlying
vulnerability is the same for SEV-SNP, the resulting exploits

can be mounted on SEV-SNP as well, as we demonstrate for
the Bellcore attack.

Mitigating CacheWarp purely in software is difficult as it
exploits a memory-coherence problem that a malicious hyper-
visor can create. AMD could update the microcode, disabling
the invd instruction if AMD SEV is active, or change its
behavior to first write back any modified data to the memory,
similar to the wbinvd instruction. Such behavior is in line
with the behavior on Intel CPUs, which disable invd if SGX
is active. Additionally, we propose a software-only compiler-
based mitigation that prevents exploiting CacheWarp. Pro-
grams compiled with this mitigation ensure that every write
is committed to the memory, making it impossible for the
attacker to drop writes without being detected.

CacheWarp demonstrates an efficient software-based
method of violating the integrity and, consequently, the con-
fidentiality guarantees of AMD SEV. As the root cause is in
hardware, fixing CacheWarp requires firmware or hardware
changes. Moreover, further research is required for effective
and efficient software mitigations.

Contributions. The main contributions of this paper are:
1. We present CacheWarp, a software-based fault attack on

AMD SEV-ES and SEV-SNP that allows dropping arbi-
trary writes, reverting selected cache lines to a previous
(stale) value.

2. We introduce two new attack techniques to change the
behavior of function calls and to return to a previous call
site with a different return value.

3. We demonstrate CacheWarp in 3 case studies: Extract-
ing the private key from the IPP RSA implementation,
logging into an OpenSSH server without credentials, and
escalating privileges to root using the sudo tool.

4. We propose a compiler-based software-only mitigation
that reliably prevents exploitation of CacheWarp.

Outline The remainder of this paper is organized as fol-
lows. We provide the required background information in
Section 2. Section 3 analyzes the behavior of cache invalida-
tion instructions on Intel and AMD. Section 4 introduces our
software-based fault injection attack and the techniques used.
Section 5 presents the building blocks used in our case studies
in Section 6. Section 7 discusses countermeasures. Section 8
discusses limitations and related work. Section 9 concludes.

Responsible Disclosure We responsibly disclosed our find-
ings to AMD on April 25th, 2023. AMD acknowledged
our findings on June 27th, 2023 and assigned CVE-2023-
20592. AMD confirmed that they will mitigate CacheWarp
for SEV-SNP via a microcode patch and an SEV firmware
update for Zen 3 EPYC Milan CPUs. The source code of
the framework and the proof-of-concepts are open-sourced at
https://github.com/cispa/CacheWarp

https://github.com/cispa/CacheWarp


2 Background

This section provides the background information to comple-
ment the rest of the paper.

2.1 Virtual Memory

CPUs support virtual memory to isolate processes and trans-
late virtual addresses to physical addresses, i.e., locations in
DRAM. The prevalent implementation of virtual memory
uses multi-level page tables. The translation unit of page ta-
bles is a page and is usually 4 kB in size. While the CPU
handles address translation, the operating system configures
multi-level page tables to define each process’s virtual mem-
ory mapping. Alongside the mapping, the operating system
stores access permissions and additional meta information for
each page mapping in the page table. To extend virtual mem-
ory to VMs, AMD-V (AMD Virtualization) supports nested
page tables [2]. With nested page tables, the guest VM con-
figures a page table translating from Guest Virtual Address
(gVA) to Guest Physical Address (gPA). Furthermore, the
hypervisor provides an additional page table mapping from
gPA to Host Physical Address (hPA). On each memory access,
the composition of those page tables is used to translate from
gVA to hPA. Nested paging allows running multiple VMs and
isolating their memory without requiring any modifications
to the operating systems used by the VMs.

2.2 AMD Cache Hierarchy

Most modern CPUs use a cache hierarchy to reduce the la-
tency of memory accesses. AMD and Intel CPUs have a
per-core L1 and L2 cache and a shared last-level cache (LLC),
partitioned into slices and Core Complexes on AMD. Usually,
the L1 is split into data- and instruction-caches [2, 25]. If a
data load can be served from any level of the cache, it has
a lower latency. Otherwise, it is fetched from DRAM and
usually stored in the cache hierarchy for subsequent accesses.
Data may not be written to DRAM directly on write accesses,
but an existing cache line may be modified and marked as
dirty in the metadata.

Eviction. As caches are limited in size, loading a cache
line may require evicting another line based on the eviction
strategy. Dirty cache lines must be written back to DRAM if
evicted to keep a coherent memory view.

Core Complex (CCX). Starting with the Zen microar-
chitecture, AMD relies on a modular chiplet design for their
multi-core CPUs [7] that are divided into one or more Core
Complexes (CCXs) [14]. A CCX consists of up to 8 CPU
cores alongside private caches and an LLC cache shared
amongst cores in the same CCX [3]. Additionally, AMD
relies on non-inclusive cache hierarchies [28]. The CCXs are
interconnected with AMD’s proprietary infinity fabric and in-

terface with a shared I/O die, responsible for handling DRAM
accesses, PCIe communication, and other I/O operations [3,5].

2.3 Software-based Fault Attacks
A fault attack involves intentionally introducing errors or
faults into a system to observe its behavior and extract sensi-
tive information. While fault attacks have been well studied in
the context of a physical attacker [11, 20], two prominent ex-
amples of software-based fault attacks are Rowhammer [30]
and software-based undervolting [29,43,46]. Both of these at-
tacks rely on the physical properties of the underlying system.
Rowhammer exploits disturbances in DRAM memory created
by specific access patterns to induce bit flips. Undervolting
brings the CPU into an unstable state where specific compu-
tations (most prominently multiplications) lead to incorrect
results. These attack primitives lead to powerful attacks under-
mining the security guarantees of the victim system. However,
as they both depend on the hardware and environmental prop-
erties of the system under attack, the extent to which they
can be exploited is highly dependent on the specific DRAM
module (Rowhammer) or CPU (undervolting) of the victim.

2.4 Secure Encrypted Virtualization
AMD Secure Encrypted Virtualization (AMD SEV) protects
VMs running under an untrusted hypervisor [2]. All versions
of AMD SEV support encrypting guest memory using AES-
XEX [49], an AES mode of operation tailored towards full
disk encryption. The per-guest AES keys are generated and
stored on a secure co-processor and are not accessible. The
CPU handles encryption and decryption when a guest ac-
cesses encrypted memory. Building on AMD-V [2], SEV also
uses nested paging.

With AMD SEV-ES (Encrypted State) [9], AMD intro-
duced protection for the saved VM state on transitions to the
hypervisor. The VM State Save Area (VMSA), which con-
tains the guest’s state, is no longer part of the Virtual Machine
Control Block (VMCB) but rather stored in encrypted mem-
ory, guaranteeing confidentiality. Additionally, a checksum
over the VMSA is stored in a protected memory area, so mali-
cious hypervisors cannot modify information such as register
contents. Whenever the CPU transitions from hypervisor to
guest, the checksum is verified, and if the checksum is invalid,
an exception is raised, ensuring the integrity of the VM state.

Finally, AMD SEV-SNP (Secure Nested Paging) [6] adds
a Reverse Map Table (RMP) to track the ownership of each
guest page. The RMP verifies the gPA to hPA mapping on
each memory access, blocks hypervisor writes to guest pages
and ensures that each page is mapped to only one gPA. Thus,
AMD SEV-SNP mitigates memory-mapping attacks by a ma-
licious hypervisor [57]. For instance, an attacker can no longer
revert a page to a previous version, as is possible with AMD
SEV-ES, by reading the encrypted page content and writing



it back later. Although AMD SEV-SNP protects integrity and
confidentiality, a malicious hypervisor can still read the en-
crypted memory and distinguish unique ciphertexts, except for
the VMSA, which is protected with freshness [34]. Therefore,
Wichelmann et al. [55] propose a software-based mitigation
to include freshness in each memory encryption block.

3 Cache Invalidation

In this section, we analyze the behavior of the root mech-
anism in CacheWarp on Intel and AMD CPUs, the cache-
invalidation instructions invd and wbinvd. We show that
these privileged instructions have undesirable effects when
used by an attacker, which is possible in the threat model
of TEEs (Section 3.1). We demonstrate previously undoc-
umented behavior that allows violating the consistency of
the memory view, leading to architectural data changes in-
side TEEs (Section 3.2). Finally, we show that non-coherent
memory types are allowed on some AMD client CPUs (Sec-
tion 3.3).

Setup. For our evaluation, we test on different mi-
croarchitectures, namely AMD Rome (AMD EPYC 7252,
microcode 0x8301055), Zen (AMD Ryzen 5 2500U, mi-
crocode 0x810100b), Zen+ (AMD Ryzen 5 3550H, mi-
crocode 0x8108102), and Zen 3 (AMD Ryzen 9 5900HX,
microcode 0xa50000c). For the analysis of the instructions
independent of the TEE, we rely on Ubuntu 20.04 with kernel
5.15.0. For the experiments on AMD SEV, we use Ubuntu
22.04 with kernel 6.1.0 on the hypervisor, and Ubuntu 20.04
with kernel 5.15.0 inside the VM.

3.1 Availability
Both Intel and AMD CPUs [2, 25] support the invd instruc-
tion to invalidate all levels of the internal cache, including the
data and instruction cache. Crucially, invalidating the cache
containing modified data irreversibly destroys these changes,
essentially reverting data modifications to the previous stale
state. In contrast, the wbinvd instruction writes back any mod-
ified cached content to memory before invalidating the cache.
In addition, there is the wbnoinvd instruction that only writes
back modified cache contents to the main memory but does
not invalidate the cache. Unlike wbinvd and wbnoinvd, invd
has a very limited use case and should only be used if memory
consistency is not required and caches are not shared between
threads or cores [1]. However, in the threat model of TEEs,
the invd instruction can be abused by a privileged attacker.

On AMD, invd is, by default, converted to wbinvd.
This behavior can be changed by clearing bit 4 of
MSR (0xc0010015) [1]. We additionally check the availabil-
ity of invd instructions inside VMs with QEMU v7.2.0. KVM
intercepts all invalidation instructions. Hence, CacheWarp can
only be mounted via the hypervisor but not from within other
VMs.
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Figure 1: Access time for reloading data from different do-
mains after executing wbinvd/invd.

Intel explicitly documents that the invd instruction is un-
available if Intel SGX is enabled [27, §3.6.5]. More precisely,
this instruction raises a general protection fault if processor-
reserved memory protection is activated. Consequently, this
is also the case for Intel TDX, as TDX crucially relies on the
Intel SGX-based quoting enclave as the root of trust [26]. We
experimentally verify that the behavior of the invd instruction
matches the documentation. Thus, CacheWarp is not possible
on Intel CPUs.

3.2 Scope

In addition to the availability of the instructions, we analyze
their scope, i.e., which cache lines are affected, to understand
the impact of these instructions on AMD. For the private
caches, i.e., L1 and L2, the invd and wbinvd instructions are
limited to a physical core. Hence, they only invalidate data
of the current logical and sibling logical core. Although not
documented, our experiments show that the LLC part within
a CCX is invalidated by the invd and wbinvd instructions.

Private Caches To measure the effect of the invd instruc-
tion on different cache levels, we rely on eviction to control
the cache state. We rely on eviction sets for the L1 cache to re-
liably bring data into a specific cache set of the L2. To ensure
that data resides in the L2 but not in the L1, we rely on an L1
eviction set that evicts the data from the L1 but not from the
L2. Accessing the eviction set is fast as long as the eviction
set stays in the respective cache. Hence, if data is invalidated,
we observe an increased eviction time. For each cache level,
we measure the average access time while executing the invd
instruction versus executing no instruction on the sibling core.
As a second experiment, we measure the eviction timing after
executing the invd instruction on a different physical core
within the CCX. To get precise timing measurements, we rely
on the rdpru instruction [37]. As shown in Figure 1, execut-
ing wbinvd or invd on another physical core does not affect
data within the private caches. However, data in the shared
cache is invalidated to memory, exhibiting a red peak on the
right side. To conclude the first analysis, invd invalidates the
private caches on the physical core.
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Figure 2: The scope of wbinvd and invd within a CCX that
consists of 2 physical CPUs with 4 CPU cores. The boxes
stand for different cache domains. The orange-shaded areas
represent the scope of the invd instruction.

Shared Cache To understand the scope of the invd instruc-
tion on the shared non-inclusive LLC, we rely on L2 eviction.
The LLC eviction is independent of the L2 eviction, as the
LLC is non-inclusive. However, the addresses in the LLC
eviction set share their cache set index with those in the L2
eviction set. We can extend an eviction set only for the LLC
into one that additionally works for the L2 by accessing 8
more addresses mapping to the same set, as an L2 cache set
has 8 ways. As bits 6-8 of the physical address determine
the slice [18], a minimum of 28 physical addresses with the
same bits 6 to 19 is required to achieve effective LLC evic-
tion. Additionally, Figure 1 shows that the data in the LLC is
invalidated, independent of the core within the CCX where
the invd instruction is executed. Hence, this shows that the
invd instruction invalidates the entire LLC shared within a
CCX but does not affect other CCXs. Figure 2 summarizes
our results.

Cache-line State The execution time of the invd and
wbinvd depends on the number of modified, i.e., dirty, cache
lines of the affected cache. We experimentally evaluate that
by varying the number of dirty cache lines from 0 to 512 and
measuring the average execution time over 10 000 repetitions.
We observe a clear linear relationship between the number of
dirty cache lines and the timing of the instruction.

3.3 Non-coherent Memory
In addition to manually triggering inconsistencies using the
invd instruction, memory type range registers (MTRRs) on
AMD can also violate memory consistency. Both on Intel and
AMD, each physical core has its own MTRRs to configure
the memory type of physical address ranges. The main idea
is to have different memory types on different CPU cores for
the same physical address. While Intel does not have non-
coherent memory types due to the self-snoop feature, the
uncacheable (UC) and write-combining (WC) memory types
are documented as non-coherent on AMD [2].

Experimental Setup We map two virtual addresses to the
same physical address on two different cores. As the default
memory type is write-back (WB), we mark the memory range
as UC on one of the cores by using MTRRs. We experimen-
tally confirm that writing to uncacheable memory does not

trigger cache updates or invalidations. If two cores write to
the same memory and both writes occur on the WB mem-
ory type prior to writes on the UC memory type, the writes
stored in the cache may later overwrite the writes to the UC
memory if a write-back of the cache line is triggered. Our
experiments show that this coherency violation also applies
to virtualization on AMD client CPUs, ranging from Zen to
Zen 3 microarchitectures. In this context, if the guest VM
writes to the memory, the hypervisor can discard or “drop”
those writes. However, when performing this experiment on
an AMD server CPU that supports AMD SEV, the hardware
enforces the use of coherent memory types. As a result, the
non-coherent memory type, i.e., UC, is converted to the forced
coherent memory type, cache disable (CD). If the cache line
is in a modified state, writes on CD memory cause the cache
line to be written back before being invalidated. Moreover,
accesses to a dirty cache line are performed after the invalida-
tion is finished. Hence, a simple attack using a non-coherent
memory type for guest access is impossible for AMD SEV.

4 CacheWarp

In this section, we introduce CacheWarp, a software-based
fault-injection attack on AMD SEV-ES and SEV-SNP.
CacheWarp is based on our analysis of the invd instruction,
which shows that invalidating dirty cache lines without trig-
gering a write-back is feasible on AMD CPUs, even if AMD
SEV is enabled. Specifically, a malicious hypervisor can se-
lectively drop any writes of an AMD SEV-ES and SEV-SNP
guest that occurred at an attacker-chosen point. The conse-
quence of such a drop is that the VM architecturally uses stale
data.

4.1 Threat Model
In line with previous work [35,42,47,57] and AMD’s whitepa-
per [6], we assume a privileged attacker, i.e., a malicious hy-
pervisor for AMD SEV. Such an attacker executes privileged
code outside the VM. The attacker has full control of the
scheduling and can pin the virtual CPUs to a logical CPU
and offline other cores within the same CCX. Moreover, the
attacker can influence the allocation of memory. Lastly, as the
attacker can execute privileged code, the attacker can modify
model-specific registers (MSRs) and write to APIC registers.
However, the attacker has no control over the code or data
inside the VM. These capabilities are all in the threat model
of AMD SEV and we do not assume knowledge of the guest
physical address (gPA) of the target function in the AMD
SEV VM [36].

We evaluate the attack on an 8-core AMD EPYC 7252 CPU
for SEV-ES and AMD EPYC 7313P and 7443 CPUs for SEV-
SNP. As suggested by AMD [8], on AMD EPYC 7252, the
host OS, QEMU, and OVMF are built with the master branch
(Linux kernel 6.1.0, QEMU v7.2.0-2-g5204b499a6, OVMF
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commit cda98df, firmware 0.24.15). For AMD SEV-SNP,
we use the snp-latest branch (commit ad91624, firmware
1.54.01). The victim VMs are configured with a single virtual
CPU and 4 GB of main memory. The victim system is running
Ubuntu 20.04 LTS (Linux kernel 5.15.0).

4.2 Attack Overview
In this section, we present a high-level overview of
CacheWarp. The goal of an attacker is to drop a guest write at
a precise attacker-chosen point so that the guest architecturally
uses stale data in the subsequent execution. Such writes can
be explicit, e.g., local variables on the stack, but also implicit,
e.g., return addresses of a call instruction. We show that both
cases lead to powerful attacks. With Dropforge (Section 4.3),
we change the behavior of functions. With Timewarp, (Sec-
tion 4.4) we redirect return values to an earlier point in the
program’s control flow.

To locate a potential target, we introduce our framework
for execution control. We rely on page faults and timer inter-
rupts to interrupt guests at a specific state, dropping all writes
not committed to the memory. Additionally, on AMD SEV-
ES, we achieve reliable single-stepping using an uncacheable
VMSA and register-state tracking (Section 5.1). To maintain
the memory consistency of unrelated dirty cache lines, the
hypervisor can selectively evict them into the memory (Sec-
tion 5.2). This step guarantees that CacheWarp does not lead
to a failed integrity check for an SEV guest. Figure 3 outlines
each step of CacheWarp.

4.3 Dropforge
The main idea of Dropforge is to selectively drop writes dur-
ing a function call to modify the behavior or result of a target

int victim(int a, int b) {
int ret = 0;
ret += a * 10 + b;
return ret;

}

int main() {
...
do {

ret = victim(1, 1);
reset = victim(2, 5);

}
while(ret == 11);
...

}

1 victim:
2 push %rbp
3 mov %rsp,%rbp
4 mov %edi,-0x14(%rbp) ; param
5 mov %esi,-0x18(%rbp) ; param
6 movl $0x0,-0x4(%rbp) ; var
7 mov -0x14(%rbp),%edx
8 mov %edx,%eax
9 shl $0x2,%eax

10 add %edx,%eax
11 add %eax,%eax
12 mov %eax,%edx
13 mov -0x18(%rbp),%eax
14 add %edx,%eax
15 add %eax,-0x4(%rbp) ; var
16 mov -0x4(%rbp),%eax ; ret
17 pop %rbp
18 retq

Figure 4: The toy example for dropping implicit writes intro-
duced by the compiler. Depending on which write we drop,
i.e., passed parameters, the initialization of local variables, or
the assignment of local variables, we observe different return
values for the program.

function. If an attacker drops a write from a function, the
value is effectively reverted to the previous state, and the func-
tion works with a stale value. Writes that can be dropped
are not only explicit writes but also writes introduced by the
compiler. Compilers commonly introduce writes to the stack
for exchanging register contents, i.e., the register content is
written to the stack and then read into another register.

To illustrate the power of this attack primitive, Figure 4
shows a toy example containing both explicit and compiler-
introduced writes. In this toy example, we show that passing
parameters, the initialization of local variables, and the as-
signment of local variables can all be dropped. The guest
VM keeps calling the function victim in a loop as long as
the return value is correct. The second invocation of victim
resets the stack frame with different values. Hence, once a



int ret1{
return 1;

}
int ret0{

return 0;
}
int main() {

while(1){
if (ret1() == 0){

puts("WIN");
}
ret0(); // <- Victim

}
}

1 main:
2 push %rbp
3 mov %rsp,%rbp
4 mov $0x0,%eax
5 call 1149 <ret1> ; <- push rip
6 test %eax,%eax ; <- old

retaddr
7 jne 118c <main+0x25>
8 lea 0xe80(%rip),%rax
9 mov %rax,%rdi

10 call 1050 <puts@plt>
11 mov $0x0,%eax
12 call 1158 <ret0> ; <- victim
13 jmp 116f <main+0x8>

...

...
main:6 return address for ret1

frame
ret1/ret0

... Stack pointer

...
frame
main

...

Figure 5: A toy example illustrating the Timewarp primitive.
By dropping the implicit write of the call ret0 instruction,
we jump back to the call site of ret1. This effectively looks
like ret1 returned ‘0’ and the program outputs “WIN”.

drop occurs in the first invocation of victim, some different
stale values are used. This reset also ensures that the observed
return value is not a result of multiple dropped writes across
multiple function invocations. In this toy example, most writes
fall into the same cache line. Hence, when “blindly” dropping
writes, it is highly likely that all writes are dropped. However,
an attacker can use single-stepping to target individual writes,
even if they fall into the same cache line.

In our example (compiled with GCC 9.4.0), an attacker
can drop the writes from the compiler-generated prologue of
the function, and the explicit write to the variable, which is
used as the return value. We confirm that each instruction that
performs a write operation (marked with a comment) can be
skipped. Depending on the exact write that is dropped, we
observe different return values in the calling function. While
we can also drop the value that is pushed onto the stack by
the push %rbp instruction, the next invocation of victim has
the same stack frame. Hence, using the old value of rbp does
not make a functional difference.

4.4 Timewarp

The main idea of Timewarp is to reuse a stale return address
of a previous function to redirect control flow. Timewarp es-
sentially jumps back to the call site of this previous function
with the return value of the current function. Timewarp ex-
ploits that on x86, the return address is implicitly written to
the stack on a function call and that stack frames are reused
across function calls.

To illustrate Timewarp, Figure 5 shows a toy example. The
main function calls two functions, ret0 and ret1. Their ex-
pected return values are ‘0’ and ‘1’, respectively. Note that
the loop is not strictly necessary. It only enables an attacker
to repeat the attack arbitrarily often without having to restart

the application and without requiring single stepping. For a
realistic attack (cf. Section 6.2), we do not rely on such a
loop. In Line 5, ret1 is called (call ret1), which pushes
the return address main:6, i.e., the address of the instruction
following the call, onto the stack. When returning from ret1,
the ret instruction at the end of the function reads the saved
return address from the stack. The CPU jumps to this location
by setting the instruction pointer to the address.

To modify the return value of ret1, we target the call to
ret0 (call ret0 instruction) at Line 12. A call instruction
consists of an implicit push and a jmp instruction. The push
instruction writes the return address, i.e., the address of the
instruction following the call, onto the stack. In this exam-
ple, the return address is main:13. After the call, and before
the function returns, the attacker can invalidate the write of
the return address. Thus, as the stack frame is reused from
the previous call to ret0, the old return address main:6 is
still on the stack. As a result, ret0 returns to main:6 instead
of main:13, effectively resetting the instruction pointer to
an earlier state. However, the return value stored in rax is
defined by the function ret1. Consequently, the call site of
the previously-invoked function ret1 is re-executed, but this
time with the return value of ret0 instead of ret1. For the
program, it looks like ret1 returned the value ‘0’ and it con-
tinues execution from there. As the stack-related registers rbp
and rsp are callee-saved [39], this re-use of the stale return
address does not have any side effects on the stack layout.

5 CacheWarp Building Blocks

In this section, we introduce two building blocks to provide
precise control over which writes to drop (cf. Section 4.2).
First, we present our page-fault and interrupt-based frame-
work for execution control. For AMD SEV-ES guest VMs,
the framework additionally allows single-stepping the VM
reliably. Unlike prior work [36], we rely on MTRRs to as-
sign uncacheable memory for VMSA and wbinvd to clean the
cache before interrupts, resulting in a stable cache state during
a context switch. As a result, the runtime of resuming guest
VM demonstrates negligible fluctuations, allowing reliable
single stepping. Second, based on the result of constructing
eviction sets (cf. Section 3.2), the irrelevant dirty data that
resides in other cache sets can be evicted proactively. These
two building blocks ensure the reliability of CacheWarp.

5.1 Stepping
CacheWarp needs precise control over guest execution, as
dropping irrelevant data can have disastrous side effects for
the attacker, such as freezing the entire system. Hence, the
main challenge of our framework is to minimize the noise of
stepping, achieving reliable single-stepping. Previous work
did not have to deal with this problem, as attacks were often
repeatable without the potential to crash the system. For Intel



SGX, SGX-Step [52] configures the APIC timer such that a
malicious OS can single-step the execution of victim enclaves
to leak secret information [38, 41, 45, 48, 50, 53]. Compared
to SEV, the context switch to and from SGX is relatively
fast and nearly constant time, leading to reliable stepping.
For AMD SEV, a malicious hypervisor can also hijack the
APIC timer, forcing the guest VM to interrupt its execution.
While Li et al. [36] show that they can achieve the execution
control of AMD SEV-ES VM on a near instruction level, the
internal call flow of each stepping is still unclear. Moreover,
the malicious hypervisor needs to dynamically calibrate the
interval of APIC interrupts, as the context switch from guest
to host is not constant-time, resulting in imprecise control.
As a result, multi-stepping may occur frequently instead of
single-stepping. While a multi-step is endurable in ciphertext
side-channel attacks by repeating measurement, this is not the
case for CacheWarp.

Overview The framework is implemented as a modified
hypervisor that is controlled by user-space controller in the
host. The user-space controller communicates the fixed APIC
interval, the number of steps to be performed, and a flag to
signal the initiation of stepping. After this flag is set, the hy-
pervisor clears the present bit of all guest pages. As a result,
any attempt to fetch code from the guest triggers a nested page
fault (NPF) due to the missing present bit of the code page.
By reading the exit_info in the unencrypted VMCB, the hy-
pervisor gets the faulting gPA. The hypervisor’s NPF handler
then iterates over the nested page table and resets the present
bit in the page-table entry for this faulted page. Before resum-
ing guest execution, the hypervisor sets an APIC interval to
determine how much progress the guest can make during this
stepping. Since the hardware disables interrupts during the
context switch [2], an interval lower than a threshold always
results in zero-steppings, i.e., the APIC timer interrupt arrives
before the guest commits the first instruction. Conversely,
an interval exceeding the threshold ensures that the guest re-
tires one or more instructions, known as single-stepping and
multi-stepping [52]. To ensure consistent conditions for every
stepping, the hypervisor always clears the present bit of the
last fault page when handling the APIC timer interrupt, i.e.,
an NPF is always triggered before the next APIC interrupt.

Similar to the NPF handler, the hardware takes over the
context switch when the local APIC timer interrupt arrives.
Since AMD SEV-ES, the CPU encrypts the sensitive guest
register values before storing them in the VMSA. In addition,
guest-state consistency checks are performed before resum-
ing guest execution. While the guest registers are encrypted,
the hypervisor can observe the ciphertext of the guest’s RIP
register to differentiate between zero-step and non-zero-step,
i.e., the hypervisor can determine if the guest made progress.
Besides, observing the change of other registers helps to infer
whether a non-zero-step is single-step or multi-step. Section 8
discusses alternatives to the RIP register as AMD SEV-SNP

0.4 0.6 0.8 1 1.2

·104

0

500

Time [cycles]

O
bs

er
va

tio
ns

UC / wbinvd UC / wbnoinvd UC / nop UC / no VMSA
WB / wbinvd WB / wbnoinvd WB / nop WB / no VMSA

Figure 6: Timing of context switch (zero-step) with differ-
ent strategies. ‘UC’ means the hypervisor marks VMSA as
uncacheable, and ‘WB’ marks VMSA as write-back. ‘no
VMSA’ means the hypervisor does not observe the guest
RIP in VMSA but only sets a tiny APIC interval to guarantee
zero-step.

Table 1: The threshold of APIC interval to get single-step.

Uncachable Write Back
nop wbinvd wbnoinvd nop wbinvd wbnoinvd

74 cycles 146 cycles 78 cycles 114 cycles 146 cycles 114 cycles

obfuscates the register ciphertexts preventing localization over
the VMSA.

Reliability Improvements As shown by Li et al. [36],
single stepping is not reliable on AMD SEV-ES due to the
non-constant time context switch. The main reason for the
observed timing variations are cache effects when loading
and storing values to the VMSA memory. Hence, to eliminate
the effect of the cache state, we mark the VMSA memory
as uncacheable using MTRRs. While we expect a longer
time window for a context switch, the consistency check and
guest state loading are actually faster, around 900 cycles. Be-
sides, the hypervisor always observes the same VMSA en-
crypted state even with a large APIC interval that is more
than 100 000 cycles. This behavior strongly resembles the
observed memory inconsistencies on AMD client CPUs, as
shown in Section 3.3.

According to the AMD manual [2], the hypervisor should
flush the guest data from all CPU caches before it reads the ci-
phertext. We hypothesize that when the VMSA page is write-
back, reads from the hypervisor force the cached guest data
to be encrypted and written back to the memory. However,
when the VMSA page is uncacheable, memory coherency is
not enforced between the hardware and the hypervisor for
this page. The secure processor always saves the plaintext
of guest registers into the cache, while the hypervisor reads
the stale encrypted VMSA value from memory and no longer
flushes the dirty cache lines. The hypervisor always observes
the same VMSA value, which leads to a “zero-step”.

To experimentally verify this, the hypervisor performs the
wbnoinvd instruction before reading the encrypted guest-
register state to obtain the latest view of the VMSA. We
successfully demonstrate the capability of the hypervisor to



observe the variations in the ciphertext of the VMSA. To
further investigate the effect of cache state on the stepping,
we separately perform nop, wbinvd, and wbnoinvd before re-
suming VMs while marking the VMSA page as uncacheable
or write-back. For each stepping, the hypervisor reads the
guest RIP in VMSA after timing the context switch (zero-
step). Figure 6 shows the timing of the context switch with
different strategies. The threshold of APIC interval to get a
single-step is shown in Table 1. When the VMSA is write-
back, the timing of the context switch is short only if there is
no access from the hypervisor. Moreover, if the hypervisor
ensures a clean cache state by executing wbinvd before the
context switch, the stepping takes longer with an uncacheable
VMSA. Thus, by relying on uncacheable memory, we can
avoid additional flushes caused by reads from the hypervi-
sor before the context switch. As a result, the runtimes of
VMRUN, i.e., loading guest state and checksum calculation, is
highly-predictable, resulting in a significant improvement in
stepping. Additionally, the window of APIC intervals that ex-
clusively results in zero- and single-step is extended to dozens
of cycles.

Note that before resuming the execution of the guest, a field
in VMCB indicates whether the host has passed an interrupt
to the guest. Specifically, the guest OS can handle some spe-
cific virtual interrupts, e.g., the APIC timer interrupt, before
executing the first instruction. However, to ensure that the
attacker always zero/single-steps on the target instruction, the
malicious hypervisor can choose not to inject such events.

Evaluation. To evaluate the reliability of single-stepping,
Figure 8a in Appendix A shows a benchmark program that
modifies a different register for each instruction. The nop
instruction is also used to demonstrate the performance of
the precise control of our framework, as it does not have any
dependency. For each stepping, we use a bit vector of changes
to guest registers as a fingerprint of the current progress of the
victim. According to the layout of VMSA, certain registers
are grouped in pairs and coexist within a single 16 byte block,
which is the encryption unit. Figure 8b illustrates a subset of
the registers we include. Each bit represents a modification
of this block in the current stepping. Depending on the value
of the vector, we can confirm that a multi-step occurs when
the changing pattern does not match the expected sequence
and ideally recover how many instructions are executed in the
multi-step as well. Note that in realistic scenarios, we cannot
directly recognize a multi-step as the guest instruction se-
quence is unknown to the attacker. While fingerprinting could
work, here we just use the benchmark program to evaluate
the reliability of single-steps. We observe 10 000 single-steps
with 1951 zero-steps and 0 multi-steps, using a fixed interval
of 220 cycles as the APIC interval. Concurrent work [58] uses
performance counters to distinguish zero-, single-, and multi-
steps on SEV-SNP, guaranteeing reliable single-stepping as
well. This technique could also be added to our framework.

5.2 Selective State Drop

As the second building block, we show how the hypervisor
can selectively drop dirty cache lines, i.e., partially writing
back the cache before its invalidation. This step is indispens-
able, ensuring the passing of the integrity check of the VMSA.
Our experiments show that the checksum calculation is al-
ways finished before the hypervisor takes over the execution.
When the hypervisor executes the invd instruction after zero-
stepping, the AMD SEV VM can still resume its execution
afterward. However, if the chosen interval leads to a single-
step or multi-step, the register state of the guest within the
VMSA (at least the block containing the guest RIP) changes
and is in the modified cache state. Thus, the hypervisor cannot
simply execute the invd instruction after single/multi-steps,
as it immediately leads to a crash of the guest VM.

To achieve a selective state drop, the attacker must keep
the dirty cache lines that the attacker intends to discard in the
cache but evict all other cached data back to memory. Hence,
the attacker first allocates the eviction buffer for all cache
sets. Note that this step only needs to be performed once, e.g.,
before the VM creation. If the write the attacker wants to drop
resides in the private cache, i.e., L1 or L2 cache, an eviction on
the L2 cache must first be performed due to the non-inclusive
shared LLC. To ensure all irrelevant dirty cached data within
the scope of invd is written back to memory in advance, the
attacker performs an L2 eviction for all L2 sets except for the
target set. Next, as the unrelated data is now evicted into the
LLC cache, the attacker performs an LLC eviction to write
back these modified values to the memory.

While the exact target address is unknown to the hypervisor,
the hypervisor can track it on a page level. Similar to how the
page address for a code fetch is recorded, the hypervisor can
retrieve the gPA of an NPF triggered by a write operation. By
iterating over the nested page table, the hPA for the fault page,
which determines the cache index, can be read to refine the
potential cache indexes of the target address.

Finally, to avoid a race condition between writes from other
physical cores and cache invalidation, the attacker can offline
the other physical cores within the CCX. To ensure there is
no other dirty data in the internal cache of the logical sibling
core, the attacker can disable hyperthreading. Moreover, the
attacker can also disable hardware prefetchers and interrupts
as well as fix the CPU frequency during eviction to obtain
a denoised environment. After evicting all the dirty cached
values the attacker wants to keep, the attacker executes the
invd instruction to drop the remaining writes.

Evaluation. We evaluate the accuracy of selectively drop-
ping writes on a single L2 cache set both on AMD SEV-ES
and SEV-SNP. The test program in the VM first allocates a
2MB huge page to ensure that it occupies memory belonging
to all L2 sets. We randomly choose an address within the
range and pass it to the for-loop code as listed in Figure 7.
The code executes a read-add-write pair for the given address



1 for (int i = 0; i < 10000000; i++) {
2 asm volatile (
3 ".rept 4000\n"
4 "movq (%0), %%r11\n"
5 "addq $1, %%r11\n"
6 "movq %%r11, (%0)\n"
7 ".endr\n"
8 :: "r"(addr) : "memory");
9 }
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Figure 7: Evaluation for selectively dropping memory writes.
For each L2 set, 1000 steppings are repeated separately, fol-
lowed by invalidation on the entire L2 set per step. The L2
set index of the target address is 225. Only when the correct
L2 set remains in the cache, the writes are dropped.

in each iteration, iterating a total of 4000 times. We use the
O2 optimization flag, such that the loop counter resides in a
register instead of utilizing stack memory. Hence, the only
point where we can drop the modified cache state is movq
%%r11, (%0) (Line 6).

We choose the APIC interval that leads to multi-stepping.
For each stepping, the guest can approximately complete one
iteration of memory read and write before the context switch
caused by the interrupt. For example, on AMD EPYC 7252,
the L2 cache entry of the target can potentially be stored in
one of the 16 LLC sets following L2-prime. Hence, to drop
the dirty cached data in a different L2 cache set each time, the
hypervisor performs a complete LLC eviction for all LLC sets
except for 16 specific LLC sets in each measurement. Note
that the LLC eviction needs to contain the step of L2 eviction,
due to the non-inclusive LLC cache. The hypervisor only
requires more LLC eviction addresses as they have the same
bits with L2 eviction addresses for the L2 cache index. As
there are 1024 L2 cache sets, we assume that the hypervisor
can observe the value offset only in one measurement when
the target data resides in that L2 cache set that is dropped.
Figure 7 shows that only when the correct L2 set remains
in the cache, the writes are dropped. Otherwise, the data is
written back and updated in the memory before the cache
invalidation.

6 Case Studies

In this section, we present 3 end-to-end attacks using
CacheWarp as our case studies. In Section 6.1, we demon-
strate an attack on the RSA-CRT implementation of the
Intel IPP cryptographic library, extracting the full private
key within 10 s on average. In Section 6.2, we show that
CacheWarp can break the password authentication of the

OpenSSH server, resulting in full (unprivileged) access to
the guest VM. In Section 6.3, we show that the sudo binary
can further be exploited using CacheWarp to escalate the
privileges of the attacker.

6.1 Breaking RSA-CRT via Bellcore Attack
In the first case study, we show that CacheWarp can perform
a Bellcore attack [10, 12] on RSA-CRT, fully recovering the
private key given a single faulty signature.

RSA and Bellcore Attack In an RSA signing scheme,
the signature S is computed via the modular exponentiation
S = xd (mod N), with x the message, d the secret signing
exponent, and N the public modulus. As the involved num-
bers typically have multiple thousand bits, this exponentiation
is computationally expensive. To improve performance, the
computation can be split into two parts S1 = xd (mod p) and
S2 = xd (mod q), with p and q the secret prime factors of
N = p×q. The final signature S can then be constructed from
S1 and S2 via the Chinese Remainder Theorem (CRT) [44].

While more efficient than a standard RSA implementation,
RSA-CRT is especially vulnerable to fault attacks [10, 12].
A single fault that occurred during the computation of S1
but not during the computation of S2 is sufficient to recover
the private key (p,q). Given two signatures, one such faulty
signature Ŝ and one correctly-computed signature S over the
same message, an attacker can compute the private-key part q
as gcd(S− Ŝ,N) = q and subsequently p = N

q . This equation
holds as S = Ŝ (mod q) but S ̸= Ŝ (mod p). Hence, such
a fault allows an attacker to forge arbitrary signatures.

Threat Model In line with the AMD SEV threat model,
our victim is a VM guest protected by AMD SEV running
on an attacker-controlled hypervisor. The victim provides
an interface to get the signature of data. We do not make
any assumptions on the signed data; we only require that
the same data can be signed twice. The attacker does not
have to choose the data or know the data that is signed. For
our attack, the victim uses the RSA-CRT implementation of
the Intel IPP cryptography library, as also shown in previous
microarchitectural attacks [38,43,54]. The goal of the attacker
is to extract the private signing key of the victim.

Attack Flow The attacker queries a non-faulty signature S
for an arbitrary message, which is used later to recover the
private key. For the attack, the attacker uses CacheWarp to
drop the write to a cache line containing the RSA private
key during the RSA-CRT computation. This dropped write
has the effect that the computation uses stale data instead of
the private key. Note that for the Bellcore attack, it does not
matter how the computation is faulted. Hence, any stale data
is sufficient for getting a faulty signature. Still, the attacker



has to ensure that only one of the partial signatures S1 and
S2 contains a fault. An attacker has 2 options to achieve that.
The clean way is to rely on our single-stepping framework
(cf. Section 5.1). With single-stepping, the attacker has fine-
grained control over which write is dropped. As a result, an
attacker can reliably induce the desired fault. However, in
practice, it is sufficient to “blindly” drop (multiple) cache
lines. Due to the robustness of the Bellcore attack, such a
non-synchronized attack is possible. As the attacker only has
to induce a single fault and can retry the attack arbitrarily
often, only limited precision is needed. Therefore, targeted
eviction strategies for unrelated data are unnecessary.

Results and Implications We successfully mount the Bell-
core attack on an SEV-ES machine and an up-to-date SEV-
SNP machine (AMD EPYC 7313P), both running Ubuntu
22.04 with Linux kernel 6.1.0. Note that no extra steps are
needed to adapt the Bellcore attack to SEV-SNP, as it does
not rely on single-stepping. The victim VM runs Ubuntu
20.04 and the newest Intel IPP library 2021.8 from July 27,
2023 (commit 36e76e2). For SEV-ES, we mount the attack 10
times and check whether the resulting signature has changed.1

In 9 tries, we drop a write that leads to a faulty signature.
100 % of these faulty signatures allow us to correctly recover
the private key using the Bellcore attack. Hence, the average
overall success rate is 90 %. As one try takes on average 6 s,
we get an expected success rate of 99 % after 12 s. The recov-
ery time using the Bellcore attack is negligible, with on aver-
age below 0.1 s. For SEV-SNP, we perform 100 “blind” drops,
i.e., we do not use single-stepping but mount CacheWarp at
randomes times. Of these tries, 28 result in an exploitable
faulty signature and only one causes a system crash. The re-
maining 71 tries have no effect. Given that each attempt takes
less than 2 s, an attacker can easily replicate this attack.

In contrast to other software-based fault attacks, such as
Rowhammer [30] and undervolting [29, 43, 46], CacheWarp
does not rely on manufacturing differences of hardware. More-
over, CacheWarp can accurately choose the time of the fault
as well as the location of the fault. Thus, CacheWarp deter-
ministically works on all vulnerable host machines. Similarly
to this attack on RSA-CRT, all cryptographic schemes vulner-
able to a fault injection during memory load can be attacked
using our primitive. As related work indicates, fault attacks
can be a powerful primitive against symmetric [20] and asym-
metric [11,12] cryptographic implementations. Therefore, we
highly encourage exploring the impact of our primitive in the
context of fault attacks, especially as faulting to stale data is
typically not a fault model that is considered [17, 23, 31].

1The attacker randomly chooses one or multiple cache lines to drop after
a 500 cycles multi-step.

6.2 Bypassing OpenSSH Authentication
In this second case study, we use CacheWarp to log into a
password-protected OpenSSH server in a VM guest protected
by AMD SEV without knowing the password.

Threat Model In line with the AMD SEV threat model,
our victim is a VM guest protected by AMD SEV running
on an attacker-controlled hypervisor. The attacker does not
have code execution in the victim VM. We assume that an
OpenSSH server runs in the victim VM. We assume that the
SSH server allows authentication via a password, although we
strongly suspect public-key authentication to be vulnerable
as well. The attacker runs as the VM host with hypervisor
privileges and can request an SSH connection to the victim,
either directly from the hypervisor or from a different machine.
The goal of the attacker is to connect to the VM without
possessing valid SSH credentials.

Attack Flow To bypass the SSH authentication, the attacker
mounts CacheWarp on the sys_auth_passwd function in
OpenSSH. If this function returns ‘1’, the user is authenti-
cated, and the SSH connection is established. More precisely,
the attacker uses the Timewarp primitive from Section 4.4 to
force a password comparison to always succeed. Appendix D
shows the relevant parts of the code. By invoking a Time-
warp at the xcrypt call (Line 9), the control flow is trans-
ferred to the return point of the last function call, which is the
shadow_pw call (Line 5). The xcrypt call returns a pointer to
the hashed user input on success, and the attacker can provide
an arbitrary nonempty input to xcrypt by using a password
of their choice. Using the Timewarp primitive, the attacker
jumps to the return of the shadow_pw call overwriting the
pw_password variable with the return value from the previ-
ous xcrypt call. Therefore, from this point on, it holds that
pw_password = encrypted_password as only the first two
characters of the salt are relevant which are always the same.
At this point, an attacker is authenticated with a wrong pass-
word and can execute arbitrary code in the VM.

Challenges While the basic flow of the attack is simple to
understand, its execution remains challenging. Most impor-
tantly, the Timewarp primitive must be invoked precisely at
the call instruction responsible for calling the xcrypt func-
tion. To single-step to this exact location, we utilize a combi-
nation of a page-fault attack and register-usage detection (cf.
Section 5.1) to find the correct trigger point. By performing
a page-fault attack, we can identify when the control flow
reaches the code page containing sys_auth_passwd. As this
code page can also contain other code, we utilize register-
usage detection to identify a register usage pattern that only
occurs before the xcrypt call. This combination of page-
fault attack and register-usage detection allows us to precisely
identify the point at which the xcrypt function is called.



Results We perform the end-to-end attack on an AMD
EPYC 7252, running Ubuntu 22.04. The victim VM runs
Ubuntu 20.04 and the OpenSSH server version 8.2p1 which
is currently the default version. Our attack succeeds in 10 of
10 test runs. A theoretical failed attack means locating the
target instruction fails due to potential multi-steps occurring
in the locating period. Thus, the cache is not invalidated, re-
sulting in no crash and the possibility for the attacker to retry
the attack. In addition, the entire attack takes less than 10 s,
making it highly practical. As VM guests typically expose an
SSH connection to allow users to connect to them, this attack
presents a high-risk factor for AMD SEV-enabled VMs and
completely breaks their security guarantees.

6.3 Bypassing Sudo Authentication

In this third case study, we demonstrate how CacheWarp can
be exploited to escalate unprivileged code execution in a guest
VM to privileged code execution. Such a scenario is realistic
after exploiting, e.g., an OpenSSH server using CacheWarp
(cf. Section 6.2) or any other attack. In this scenario, a typ-
ical next step for an attacker is to escalate privileges on the
machine, thus gaining full control over the system. We demon-
strate that an attacker can reliably exploit setuid binaries
using CacheWarp, and, by that, elevate privileges to the supe-
ruser. We demonstrate such an exploit on sudo version 1.8.31
as found on Ubuntu 20.04.

Threat Model We assume that the attacker has unprivileged
native code execution in the AMD SEV VM. Additionally, in
line with the AMD SEV threat model, the attacker controls the
hypervisor. We assume that the sudo Linux utility is installed
in the VM, which is common for Linux distribution.

Attack Flow The general idea is to trick the user check in
the sudo utility, such that the executing user seems to be the
root user, skipping any other checks. On a high level, the sudo
utility works as follows: The program first queries information
about the currently executing user, e.g., their EUID, RUID,
and GUID. The sudo program uses the stored information
to look up the user’s permission in the sudoers file. If the
permission checks based on the retrieved information pass,
sudo executes the command specified by the user as root.

For the exploit, we target the code that retrieves the infor-
mation about the currently executing user. Listing 1 in Ap-
pendix B shows the assembly code responsible for retrieving
and storing this information. After each query of a user-related
ID, the information is stored in a zero-initialized C struct. This
struct is accessed by a single write to the corresponding offset
for each entry. In our exploit, we drop the write for the real
user ID (RUID). As the memory is zero-initialized, this results
in an RUID of zero, which reflects the RUID of the root user.
The sudo program does not require additional checks if it is

already running as the root user. Thus, sudo allows the user
to execute arbitrary commands with the highest privileges.

Challenges Compared to the other case studies (cf. Sec-
tion 6.1 and Section 6.2), the primitive required for this ex-
ploit, including the setup, is much simpler. The main chal-
lenge is finding the exact point in time to drop the write. For
this, we inspect the register usage of the glibc implementa-
tion of getuid and search for exactly this pattern using our
single-stepping framework. Once we identify the pattern, we
can count the remaining few instructions before the desired
write instruction to drop it.

Results We evaluate our exploit on an AMD EPYC 7252
with Ubuntu 20.04 running Linux kernel 5.15.0 in AMD SEV.
We observe a success rate of 99 % for 100 executions. If the
exploit fails, the attacker can just mount the exploit again
by restarting the sudo binary. We observe that our exploit
finishes within 20 seconds. Compared to the Rowhammer-
based sudo exploit from Gruss et al. [22], which takes more
than 44.4 h, our attack is practical and achieves a speedup of
4 orders of magnitude.

7 Countermeasures

In this section, we discuss potential mitigations for
CacheWarp on the hardware, firmware, and software layer.

Hardware Ultimately, CacheWarp has to be fixed on the
hardware level. One solution is to prevent the invd instruction
from being used if AMD SEV is enabled. CacheWarp requires
this specific privileged instruction that is only necessary for
a few very specific scenarios [25]. However, none of these
scenarios should occur under the regular use of AMD SEV,
and we did not find any use of this instruction in the Linux
kernel or Xen hypervisor. Hence, making the use of invd and
AMD SEV mutually exclusive would prevent CacheWarp.
On Intel CPUs, the invd instruction is mutually exclusive
with Intel SGX, i.e., if SGX is enabled, invd simply raises
an exception. Such a hardware change also ensures backward
compatibility, as invd is still available to legacy systems that
do not support SGX.

Alternatively, if the invd instruction should still be avail-
able with AMD SEV, the CPU could automatically write back
the cache state on VM interrupt. Similar to TLB flushes, the
AMD SEV VM could set a bit in VMSA to indicate the hard-
ware needs to write all modified cache lines back to the main
memory. While the writes to the VMSA could still be dropped,
there is an integrity check over the whole VMSA during the
vmrun instruction, already preventing this case.

Firmware In contrast to hardware fixes, firmware
workarounds can act as short-term mitigations against



CacheWarp. Such firmware updates can be done using
microcode updates via the BIOS or the operating system.
Microcode updates can hook instructions to change their
behavior [13, 33]. Such a hook can be used to prevent the
invd function from invalidating the cache if AMD SEV
is active. While such a hook leads to a slight performance
penalty for the instruction, we expect this to not be a problem,
as this instruction is nearly never used.

Alternatively, a microcode update could hook the access
to bit 4 of MSR (0xc0010015). This bit controls whether the
invd actually invalidates cache content or acts the same as
the not-exploitable wbinvd instruction (cf. Section 3.1). As
microcode can introduce new MSRs [32], we expect such
a change to be possible. Hence, a microcode update could
prevent changing the invd behavior if AMD SEV is used.

Software We implement a proof-of-concept software-only
mitigation for guest VMs in LLVM’s clang. Appendix C de-
tails the compiler’s implementation and security analysis. The
main idea is to ensure that writes end up in the main memory
before they are used again. This can be ensured by forcing
a write-back of a modified value using the unprivileged and
untrapable clwb instruction. In contrast to clflush, this in-
struction writes back the modified cache line without flushing
it from the cache. However, there is still a race condition if the
hypervisor interrupts the guest VM between the write and the
clwb instruction. Hence, the compiler must add a read-back
of the value after the clwb to ensure that the write was not
dropped before the clwb instruction. If the read value is not
the same as the written value, the VM can abort, as this is not
possible under normal bug-free execution.

Our mitigation is inspired by Intel’s compiler-based LVI
mitigation for SGX [31, 51] that had to solve a similar prob-
lem. While the LVI mitigation has to prevent speculative
execution after any load, our mitigation has to write back and
verify every write. Still, with this strong attacker model of
AMD SEV, we do not see any other software-only mitigation
that is effective in the presence of a malicious hypervisor. We
evaluate the overhead of our proof-of-concept mitigation on
nbench [16, 19, 31] compiled with the O0 optimization flag so
that most writes are explicit. An average overhead of factor
193.51 over the benchmarks is introduced by protecting ex-
plicit writes and push instructions in the prolog. We leave it
to future work to implement a feature-complete version of the
compiler (Appendix C), as this engineering effort is out of the
scope of this paper. We experimentally verify our compiler
mitigation against selective write dropping (Section 5.2) and
no longer observe write drops. Finally, the presence of the
clwb instruction is already drastically reducing the probability
of injecting a fault.

8 Discussion

Limitation AMD addressed the Cipherleaks side chan-
nel [36] in AMD SEV-SNP by adding freshness to the VMSA
when storing the register context in memory, obfuscating the
ciphertext. Thus, we can no longer rely on register changing
patterns (Section 5.1) to evaluate steppings and identify tar-
get instructions as they are no longer constant based on the
registers. However, the performance counters are accessible
to track the runtime information for each stepping [58]. Other
patterns with some chosen events can be used to identify tar-
get instructions, which only requires engineering effort as
reliable single-step was demonstrated on SEV-SNP [58].

Differences between SEV-ES and SEV-SNP for
CacheWarp The underlying vulnerability of CacheWarp
is the same for SEV-ES and SEV-SNP. While SEV-SNP
introduces new hardware-based security features, most side
channels, including page faults and Prime+Probe [6], are
not mitigated. As a result, on SEV-SNP, an attacker can
still selectively drop dirty cache lines for each stepping
(Section 5.2) using eviction. Similarly, since the wbinvd
instruction and MTRRs are available on SEV-SNP, an
attacker can adopt the same strategy as used on SEV-ES to
improve stepping. The only difference between CacheWarp
on SEV-ES and SEV-SNP is the method for precisely locating
the drop target, i.e., the technique for single-stepping.

Related Work Before the introduction of AMD SEV-SNP,
several attacks have been proposed. Hetzelt and Buhren [24]
showed the first flaws in the design of AMD SEV already
before it was widely available in CPUs. They demonstrated
control-flow modifications via the back-then unencrypted VM
control block (VMCB). Morbitzer et al. [42] exploit the fact
that before the introduction of SEV-SNP, a malicious hyper-
visor could control page mappings in the VM. They tricked
the VM into decrypting sensitive memory and returning it
to the attacker as the content of a legitimate request posted
to a web or SSH server in the victim VM. As the under-
lying victim operating system relies on the correctness of
the provided address mapping, the content of the sent mem-
ory pages is not further checked before transmitting them to
the attacker. Radev and Morbitzer [47] manipulate external
hypervisor-controlled interfaces to an AMD SEV VM degrad-
ing hardware randomness in the victim machine, injecting and
exfiltrating data, and finally gaining code execution in the vic-
tim VM. Wilke et al. [57] show that using an encryption oracle
attacker-controlled data can be injected into the victim VM,
again leading to code execution for the attacker. Li et al. [35]
abuse the information leakage on address translation faults to
leak pages from inside of the AMD SEV-protected VM to an
attacker. In contrast to our work, these discussed attacks either
break with the introduction of AMD SEV-SNP [24, 42, 57] or
only theoretically discuss applications on SEV-SNP [35, 47].



Li et al. [36] showed that even with confidentiality and
integrity guarantees, the confidentiality of VMs can be vio-
lated using side-channel attacks on the ciphertext. While their
work violated the confidentiality of the AMD SEV-SNP VMs,
our attack additionally breaks the integrity of the VMs as we
achieve arbitrary code execution. With hardware access to the
hypervisor, Buhren et al. [15] showed that the endorsement
keys can be extracted, allowing an attacker to fake remote
attestation reports. In contrast to them, we target the software
in the VM directly and do not require hardware access.

9 Conclusion

In this paper, we presented CacheWarp, a new software-based
fault attack on AMD SEV-ES and SEV-SNP that enables ar-
chitectural rollbacks to previous (stale) states. Unlike previous
attacks, CacheWarp is not mitigated on the newest SEV-SNP
implementation, and it does not rely on the specifics of the
guest VM. We introduced a robust single- and zero-stepping
framework for synchronizing attacker and victim, which we
use in 3 case studies. We demonstrated a full key recovery
of RSA-CRT in the Intel IPP crypto library, authentication-
less login to an OpenSSH server, and privilege escalation
via the sudo binary. Although we devised a proof-of-concept
compiler-based software mitigation, we argue that only hard-
ware, and possibly firmware, mitigation can efficiently miti-
gate CacheWarp.

Acknowledgment

We want to thank our shepherd and the anonymous reviewers
for their guidance, comments and valuable suggestions, as
well as Leon Trampert and Moritz Lipp for helpful feedback
on this work. Ruiyi Zhang thanks Xinyue Shen for fruitful
discussions and suggestions that helped improving the paper.
This work was supported in part by Semiconductor Research
Corporation (SRC) Hardware Security Program (HWS).

References

[1] Open-Source Register Reference For AMD Family 17h
Processors Models 00h-2Fh, 3rd ed., Advanced Micro
Devices Inc., 7 2018.

[2] “AMD64 Architecture Programmer’s Manual,” Ad-
vanced Micro Devices Inc., 2023.

[3] Processor Programming Reference (PPR) for AMD
Family 19h Model 11h, Revision B1 Processors, 0th ed.,
Advanced Micro Devices Inc., 5 2023.

[4] “AMD SEV-SNP,” Amazon Web Services, 2023.
[Online]. Available: https://docs.aws.amazon.com/AW
SEC2/latest/UserGuide/sev-snp.html

[5] “AMD Infinity Architecture Technology,” AMD, 2023.
[Online]. Available: https://www.amd.com/en/technol
ogies/infinity-architecture

[6] “AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More,” AMD, 2023. [Online].
Available: https://www.amd.com/system/files/TechD
ocs/SEV-SNP-strengthening-vm-isolation-with-integ
rity-protection-and-more.pdf

[7] “AMD "ZEN" Core Architecture,” AMD, 2023.
[Online]. Available: https://www.amd.com/en/technol
ogies/zen-core

[8] AMD, “AMDSEV - Software for SEV on GitHub,”
2023. [Online]. Available: https://github.com/AMDES
E/AMDSEV

[9] “Protecting VM Register State With SEV-
ES,” AMD, 2023. [Online]. Available: https:
//www.amd.com/system/files/TechDocs/Protecting%2
0VM%20Register%20State%20with%20SEV-ES.pdf

[10] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-
P. Seifert, “Fault attacks on RSA with CRT: Concrete
results and practical countermeasures,” in CHES, 2002.

[11] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The sorcerer’s apprentice guide to fault
attacks,” Proceedings of the IEEE, 2006.

[12] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the
importance of eliminating errors in cryptographic com-
putations,” 2001.

[13] P. Borrello, C. Easdon, M. Schwarzl, R. Czerny, and
M. Schwarz, “CustomProcessingUnit: Reverse Engi-
neering and Customization of Intel Microcode,” in
WOOT, 2023.

[14] N. Brookwood, “EPYC: A Study in Energy Efficient
CPU Design,” Insight 64, 2018. [Online]. Avail-
able: https://www.amd.com/system/files/documents/T
he-Energy-Efficient-AMD-EPYC-Design.pdf

[15] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert,
“One glitch to rule them all: Fault injection attacks
against amd’s secure encrypted virtualization,” in CCS,
2021.

[16] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “Sgx-lapd:
Thwarting controlled side channel attacks via enclave
verifiable page faults,” in International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer,
2017.

[17] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault
attacks on aes with faulty ciphertexts only,” in FDTC.
IEEE, 2013.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://www.amd.com/en/technologies/infinity-architecture
https://www.amd.com/en/technologies/infinity-architecture
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/technologies/zen-core
https://www.amd.com/en/technologies/zen-core
https://github.com/AMDESE/AMDSEV
https://github.com/AMDESE/AMDSEV
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf
https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf


[18] L. Gerlach, S. Schwarz, N. Faroß, and M. Schwarz, “Ef-
ficient and Generic Microarchitectural Hash-Function
Recovery,” in S&P, 2024.

[19] L. Giner, A. Kogler, C. A. Canella, M. Schwarz, and
D. Gruss, “Repurposing segmentation as a practical lvi-
null mitigation in sgx,” in USENIX Security Symposium,
2022.

[20] C. Giraud and H. Thiebeauld, “A survey on fault attacks,”
in CARDIS, 2004.

[21] “Confidential VM documentation,” Google Cloud, 2023.
[Online]. Available: https://cloud.google.com/compute
/confidential-vm/docs

[22] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another Flip
in the Wall of Rowhammer Defenses,” in S&P, 2018.

[23] L. Hemme, “A differential fault attack against early
rounds of (triple-) des,” in CHES, 2004.

[24] F. Hetzelt and R. Buhren, “Security analysis of en-
crypted virtual machines,” ACM SIGPLAN Notices,
2017.

[25] Intel, “Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide,” 2023.

[26] Intel, “Intel Trust Domain Extensions,” 2023. [Online].
Available: https://cdrdv2-public.intel.com/690419/TDX
-Whitepaper-February2022.pdf

[27] Intel Corporation, “Software Guard Extensions Program-
ming Reference, Rev. 2.” 2014.

[28] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross proces-
sor cache attacks,” in AsiaCCS, 2016.

[29] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and
A. Sadeghi, “V0LTpwn: Attacking x86 Processor In-
tegrity from Software,” in USENIX Security Symposium,
2020.

[30] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in
Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[31] A. Kogler, D. Gruss, and M. Schwarz, “Minefield: A
Software-only Protection for SGX Enclaves against
DVFS Attacks,” in USENIX Security, 2022.

[32] A. Kogler, D. Weber, M. Haubenwallner, M. Lipp,
D. Gruss, and M. Schwarz, “Finding and Exploiting
CPU Features using MSR Templating,” in S&P, 2022.

[33] P. Koppe, B. Kollenda, M. Fyrbiak, C. Kison, R. Gawlik,
C. Paar, and T. Holz, “Reverse engineering x86 proces-
sor microcode.” in USENIX Security Symposium, 2017.

[34] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth,
R. Teodorescu, and Y. Zhang, “A systematic look at ci-
phertext side channels on amd sev-snp,” in S&P, 2022.

[35] M. Li, Y. Zhang, and Z. Lin, “CrossLine: Breaking
“Security-by-Crash” based Memory Isolation in AMD
SEV,” in SIGSAC, 2021.

[36] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “Ci-
pherleaks: Breaking constant-time cryptography on amd
sev via the ciphertext side channel,” in USENIX Security
Symposium, 2021.
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A Register-changing Observation

Figure 8a shows a benchmark program that modifies a dif-
ferent register for each instruction. Figure 8b illustrates a
subset of the registers we included. We evaluate the reliabil-
ity of single-stepping on SEV-ES by observing the register-
changing pattern of the benchmark program.

300f: nop ; 0x0
3010: push %r11 ; 0x1
3012: add $0x1,%r11 ; 0x80
3016: add $0x1,%r9 ; 0x40
301a: add $0x1,%rdx ; 0x10
301e: add $0x1,%rcx ; 0x8
3022: add $0x1,%rax ; 0x4
3026: sub $0x1,%rax ; 0x4
302a: sub $0x1,%rcx ; 0x8
302e: sub $0x1,%rdx ; 0x10
3032: sub $0x1,%r9 ; 0x40
3036: sub $0x1,%r11 ; 0x80
303a: pop %r11 ; 0x1
303c: jmp 300f ; 0x0

(a) Register-changing pattern used in the benchmark program
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Figure 8: Register-changing observation

B Sudo Gadget

Listing 1 shows the exploited assembly code in the sudo case
study Section 6.3.

1 [...]
2 xor %edi, %edi
3 call getsid
4 mov %eax, (user_details_struct.sid)
5 call getuid
6 mov %eax, (user_details_struct.ruid) ; <-- drop
7 call geteuid
8 mov %eax, (user_details_struct.euid)
9 call getgid

10 mov %eax, (user_details_struct.rgid)
11 [...]

Listing 1: Assembly code responsible for retrieving informa-
tion about the currently executing user in the sudo program.

C Compiler Mitigation

In this section, we detail the proof-of-concept compiler to mit-
igate CacheWarp. We implement the compiler in the LLVM
framework as a machine function pass and iterate over all
assembly instructions to check if the instruction is an explicit
store or push. Figure 9a shows the emitted instructions to
protect a store instruction. First, the compiler inserts a clwb
instruction to write back the dirty cache line. Second, we emit
a comparison instruction between the memory operand and
the original register. Finally, if the values are not equal, we
are under attack and abort further execution. We focus only
on the store instructions in the proof-of-concept. However,

https://github.com/sev-step/sev-step


the compiler can be extended to additional instructions like
call but this engineering effort is out-of-scope for this work.

We assume an attacker with single-stepping capabilities
can inject the invd instruction after each instruction in the
victim. Figure 9b shows the first case when the invd arrives
after the store and drops the dirty cache line. However, the
comparison detects this due to the mismatch of the memory
and the desired register value and aborts further execution.
Figure 9c shows the second case when the invd arrives after
the clwb instruction. Here the invd has no effect as the cache
line’s content is already written back. In this case, the victim
cannot detect that the attacker tried to fault attack the program
since no fault was injected. We experimentally verify these
two cases and confirm that the first is detected by the compare
instruction and the second is ineffective.

1 mov %rcx,(%rdi)
2 clwb (%rdi)
3 cmp %rcx,(%rdi)
4 jne _abort
5

(a) The compiler protects the store in Line 1 by inserting instruction
in Lines 2 to 4.

1 mov %rcx,(%rdi)
2 invd // HV injected
3 clwb (%rdi)
4 cmp %rcx,(%rdi)
5 jne _abort
6

(b) The injected invd in Line 2 effectively drops the current dirty
cache line. However, the comparison with the original register value
detects the fault attack.

1 mov %rcx,(%rdi)
2 clwb (%rdi)
3 invd // HV injected
4 cmp %rcx,(%rdi)
5 jne _abort
6

(c) The injected invd in Line 3 is ineffective as the content is already
written back to the main memory.

Figure 9: The compiler-generated code to protect a store
instruction and the possible attack scenarios a malicious hy-
pervisor could exploit in the AMD SEV threat model.

D OpenSSH Gadget

Listing 2 shows the exploited source code in the OpenSSH
case study Section 6.2.

1 // Returns 1 if user authenticated 0 else
2 int sys_auth_passwd(struct ssh *ssh, const char *password) {
3 [...]
4 char *encrypted_password, *salt = NULL;
5 char *pw_password = shadow_pw(pw);
6 [...]
7 if (authctxt->valid && pw_password[0] && pw_password[1])
8 salt = pw_password;
9 encrypted_password = xcrypt(password, salt);

10 return encrypted_password != NULL &&
11 strcmp(encrypted_password, pw_password) == 0;
12 }

Listing 2: Simplified source code of the sys_auth_passwd
function from OpenSSH.
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