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Abstract
Deep Neural Networks (DNNs) have been proven to be vul-
nerable to adversarial attacks. Existing decision-based ad-
versarial attacks require large numbers of queries to find an
effective adversarial example, resulting in a heavy query cost
and also performance degradation under defenses. In this pa-
per, we propose the Dispersed Sampling Attack (DSA), which
is a query-efficient decision-based adversarial attack by ex-
ploiting the transferability of white-box perturbations. DSA
can generate diverse examples with different locations in the
embedding space, which provides more information about the
adversarial region of substitute models and allows us to search
for transferable perturbations. Specifically, DSA samples in a
hypersphere centered on an original image, and progressively
constrains the perturbation. Extensive experiments are con-
ducted on public datasets to evaluate the performance of DSA
in closed-set and open-set scenarios. DSA outperforms the
state-of-the-art attacks in terms of both attack success rate
(ASR) and average number of queries (AvgQ). Specifically,
DSA achieves an ASR of about 90% with an AvgQ of 200 on
4 well-known commercial DNN services.

1 Introduction

Deep neural networks (DNNs) are known to be vulnerable
to adversarial attacks [17, 55], where a subtle perturbation
applied on an image can mislead DNN-based image classifi-
cation models. This vulnerability poses a critical threat to the
security of real-world DNN applications, ranging from face
recognition [49] to traffic detection [47, 50]. When targeting
commercial DNN services, potential attackers can get only
access to the predicted label of a given input, without knowing
the details of the DNN model such as the model structure and
parameters [4]. For instance, the image recognition services
from AWS [1] and Azure [40] only allow users to query and
obtain the corresponding results via an API. It is still challeng-
ing to construct adversarial attacks against commercial DNN
services in the decision-based settings, where the attacker can

only access the Top-1 hard-label predictions (i.e., the label
with the highest confidence [4]), due to a large number of
required queries [27].

Recent years have witnessed a flurry of research and great
progress in generating adversarial examples in the decision-
based scenario. As shown in Table 1, the existing studies
can be categorized into three main categories: transfer-based
attacks, query-based attacks, and hybrid attacks.

Transfer-based attacks utilize white-box attacks against
substitute models to craft adversarial perturbations. These
perturbations are demonstrated to have transferability1 and
can potentially deceive the target model [17,31,60]. However,
practical scenarios often introduce biases between the target
and substitute models, primarily stemming from variations in
model architecture and training data, which can usually result
in a failure to deceive the target model.

Query-based attacks start from an image with another label
(i.e., the target image), and gradually reduce its distance from
the original image, while ensuring that the target model can be
deceived [4, 9, 29]. Although effective, these attacks require a
substantial number of queries to minimize the perturbation,
making them costly for deployment in commercial services.
These attacks are also susceptible to detection and mitigation
by existing defenses [28]. Additionally, query-based attacks
often introduce noise in specific regions, limiting their capac-
ity to discover indistinguishable adversarial examples.

Hybrid attacks combine the strengths of both transfer-based
and query-based attacks, aiming at reducing the number of
queries by leveraging substitute models. For example, previ-
ous studies limit the sampling space using the gradient of sub-
stitute models [27, 56], or exploit substitute models to estab-
lish a favorable starting point for existing query-based attacks
to reduce queries [53]. Attackers can easily obtain pre-trained
models as substitute models from communities such as Hug-
ging Face [21] and PyTorch Hub [43], making hybrid attacks
more appealing. Nevertheless, the state-of-the-art (SOTA) hy-

1Transferability means that the same adversarial perturbation can mislead
different models [55], which arises because different models often learn the
same non-robust features for similar classification tasks [22].



Table 1: Summary of typical decision-based adversarial attacks.

Categories Methods Effective Query Magnitude Indistinguishable

Transfer-based
Gradient Calculation FGSM [17], I-FGSM [26], MI-FGSM [12], NI-FGSM [30] ××× 1 ✓

Gradient Combination DIM [64], TIM [13], SIM [30] ××× 1 ✓

Query-based

Gradient Estimation HSJA [8] ✓ 1.E+5 ×××

Boundary Sampling

BA [4] ✓ 1.E+6 ×××

TA [35] ✓ 1.E+5 ×××

AHA [29], SurFree [37] ✓ 1.E+4 ×××

Hybrid

Mask Sampling
QEBA-I [27] ✓ 1.E+4 ×××

BiasedBA [5], BAODS [56] ✓ 1.E+3 ×××

Boundary Sampling Prism [24], HybridAttack [53] ✓ 1.E+3 ×××

White-box Perturbation DSA (This paper) ✓ 1.E+2 ✓

Three metrics are evaluated on ImageNet. Effectiveness means an ASR of over 90%; Query magnitude is measured by the AvgQ required for generating
successful adversarial examples; Indistinguishability indicates whether an attack is effective under both ℓ2 and ℓ∞ norms. (See more details in Sec. 2.3).

brid attacks heavily rely on query-based attacks [48], resulting
in the same limitations as the query-based attacks in terms of
query efficiency and indistinguishability.

In this paper, we propose the Dispersed Sampling Attack
(DSA), a query-efficient decision-based adversarial attack by
exploiting the transferability of white-box perturbations. We
design a dispersed sampling mechanism to generate diverse
white-box perturbations based on substitute models. These
perturbations have different transferability, allowing us to
search for an effective one to deceive the target model while
achieving indistinguishability.

We design four modules in DSA, utilizing image augmen-
tation, various perturbation constraints, and substitute models
to maximize the diversity of white-box perturbations. First,
we propose an image augmentation strategy to generate a set
of mutations from the original image. These mutated images
serve as inputs for launching white-box attacks on substitute
models to generate white-box perturbations with different
transferability. Second, we investigate the effect of perturba-
tion constraints on the transferability. By choosing an appro-
priate constraint, we can craft indistinguishable white-box
perturbations while ensuring their transferability. Third, we
design a substitute model selection algorithm, which lever-
ages the feedback from the target model and tends to select the
substitute model that is more likely to produce transferable
perturbations. Finally, according to the results of candidate
adversarial examples evaluated by the target model, we up-
date the parameters in DSA to search for adversarial examples
with smaller perturbations.

To comprehensively evaluate the performance of DSA, we
conduct extensive experiments in both closed-set and open-
set scenarios, as well as the 4 well-known commercial DNN
services, including AWS [1], Azure [40], Baidu [2] and Ten-
cent [57]. The experimental results demonstrate that DSA has
higher attack success rates (ASR) while significantly reducing
the average number of queries (AvgQ).

We summarize the main contributions as follows:

• We propose DSA, a query-efficient decision-based ad-
versarial attack by exploiting the transferability of white-
box perturbations. DSA is built on the key observation
that varying the distribution or magnitude of perturba-
tions results in different transferability.

• We conduct closed-set evaluation, where the attacker is
assumed to have the same training dataset as that of the
target model. DSA can achieve a higher ASR than the
SOTA attacks while reducing the AvgQ by at least an
order of magnitude. In particular, DSA also outperforms
the other attacks when 5 typical defenses of adversarial
attacks (e.g., Blacklight [28]) are deployed.

• We evaluate the performance of the attacks in the open-
set scenario, where the attacker has no prior knowledge
about the training dataset of the target model. The results
demonstrate that DSA maintains high effectiveness and
query efficiency in the open-set scenario.

• We conduct real-world evaluations on the attacks against
4 popular commercial DNN services. The results show
that DSA has the ability to achieve about 90% ASR
within 200 queries. Compared with the second-best at-
tack (i.e., HybridAttack [53]), DSA increases the suc-
cess rate by up to 45.0% and reduces the AvgQ by up to
92.8%.

2 Threat Model and Problem Formulation

In this section, we introduce the threat model of the adversar-
ial attacks on commercial DNN services and formulate the
problem with concrete design goals.



2.1 Threat Model
In this paper, we focus on decision-based adversarial attacks
against commercial services, involving two primary parties:
the victim and the attacker.

The victim refers to a commercial institution that deploys
a well-trained model to provide public services. The victim
trains the target model and provides Top-1 hard-label predic-
tions for query examples. In addition, the victim may employ
some defenses such as input processing [23] and adversarial
training [36] to mitigate adversarial attacks.

The attacker is a service subscriber who attempts to find
examples with indistinguishable perturbations to deceive the
victim’s model. The attacker has no knowledge about the
parameters or structure of the target model, but can obtain pre-
dictions from the victim with a limited query budget. The at-
tacker is assumed to have the capability to construct a shadow
dataset and train substitute models using it. We consider two
scenarios based on the knowledge about the shadow dataset:
closed-set and open-set scenarios [14].

In the closed-set scenario, the attacker is assumed to have
access to the training dataset of the target model, which is
a common assumption in previous literatures [5, 8, 12] and
used to evaluate the performance of the attack algorithm. The
attacker can obtain the training dataset of the target model
using several methods, such as database intrusion.

In the open-set scenario, the attacker is assumed to have
no access to the training dataset of the target model, and have
a shadow dataset that is entirely different from the victim’s
training dataset [14]. This assumption is more realistic, espe-
cially when targeting commercial services.

2.2 Problem Formulation
As stated in the previous subsection, we focus on the decision-
based adversarial attacks on a target DNN model for image
classification. The target model can be defined as f : Rd →
{1, ...,K}, where d is the dimension of the input image and
K is the number of classes. The input for the attacker is a pair
of images with different labels, i.e., an original image xxxo and
a target image xxxt ( f (xxxo) ̸= f (xxxt)). Then, we can define the
corresponding adversarial region O [31] for both untargeted
and targeted attacks in Eq. (1),

O =

{
xxx ∈ Rd : f (xxx) ̸= f (xxxo) (untargeted)
xxx ∈ Rd : f (xxx) = f (xxxt) (targeted)

(1)

For simplicity, we define an indicator function I(xxx) to indicate
whether an image xxx is located in the adversarial region, i.e.,
I(xxx) = 1 if xxx ∈ O, and I(xxx) = 0 otherwise.

The goal of the attacker is to find an adversarial perturbation
δ that is as small as possible, which can be formulated as
minimizing the loss function L(δ)

min
δ

L(δ) =D (δ)+λ · (1− I(xxxo +δ)) (2)

whereD (δ)= ||δ||p, and λ is a large number to make sure that
L(δ) is large enough when xxxo+δ /∈O. The success condition
of the attacker is to find an adversarial perturbation within the
query budget where the loss is not larger than a pre-defined
threshold ε, i.e., L(δ)≤ ε.

2.3 Design Goals
Effectiveness. It means that the attacker can successfully gen-
erate adversarial examples within a query budget to deceive
the target model. It is usually measured by the attack success
rate for a certain number of adversarial examples [34].
Query Efficiency. Querying the API of the target model in
massive numbers can lead to a heavy overhead for the attacker.
For example, typical commercial DNN services may charge
$0.3 to $1.5 per thousand requests and limit 120 to 1800
requests per minute [1, 2, 18, 40, 57]. Therefore, a good attack
algorithm should prioritize high query efficiency.
Indistinguishability. It implies that the modifications on the
original image should be subtle and undetectable [16]. Given
the widespread use of both the ℓ2 and ℓ∞ norms as approxi-
mations of indistinguishability, the perturbations generated
by the attack should be less than the pre-defined thresholds
for these norms.
Robustness. As a number of defenses have been developed to
protect against adversarial attacks, such as ComDefend [23]
and Blacklight [28], the attack should maintain effectiveness
when a certain defense has been deployed on the target model
in the closed-set scenario. In the open-set scenario, the at-
tack should also be effective, where the shadow dataset is
partially or totally different from the training dataset of the
target model.

3 The Proposed DSA

In this section, we first present key observations on the trans-
ferability of white-box perturbations, and then describe the
overview of the proposed method.

3.1 Observation on Transferability of White-
box Perturbations

When launching adversarial attacks on a certain original im-
age, the attacker aims to find a small perturbation to deceive
the target model. We observe that varying the distribution or
magnitude of perturbations enables different transferability.

We provide a detailed explanation of our observations
through an example of altering the distribution of white-box
perturbations by applying image augmentation to the original
image. Given an original image xxxo, we can obtain multiple mu-
tations by performing image augmentation (e.g., adding Gaus-
sian noise on the original image). As illustrated in Fig. 1a,
when these mutations are used as inputs for a white-box at-
tack, we can generate perturbations with varying distributions.
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(b) ASR without and with dispersed sampling

Figure 1: (a) Illustration of dispersed sampling. O and O′ represent the adversarial regions of the target and substitute models,
respectively. Given an original image xxxo, image augmentation can generate several augmented images, e.g., xxx1, xxx2, and xxx3. When
applying white-box attacks on the substitute model using these images as input, diverse white-box perturbations can be generated,
making the corresponding candidate adversarial examples dispersed in O′. Only those located in O′∩O can deceive the target
model. (b) Evaluation of ASR with dispersed sampling on ImageNet. MI-FGSMds means MI-FGSM with dispersed sampling,
which achieves a higher ASR with an average improvement of 9.6%.

These perturbations exhibit different transferability, and the
perturbed images have diverse locations in the embedding
space2. Therefore, we can probe the adversarial region of the
target model with these examples.

The reason for this phenomenon is that the augmented im-
age causes a change in the gradient of the neural network
backpropagation, which changes the direction of perturbation
optimization. The white-box attacks typically perform the
above optimization multiple times, which leads to an accu-
mulation of such changes, resulting in a dispersion of outputs
(i.e., candidate adversarial examples) in the embedding space.

Existing transfer-based methods [56, 62] only use the origi-
nal input xxxo to generate the corresponding adversarial example
xxx0

c , which may be not located in the adversarial region O and
result in a failed attack. However, as illustrated in Fig. 1a, the
candidate adversarial examples generated from augmented
images have different transferability. For instance, xxx1

c and xxx2
c

are located in the intersection area of the adversarial region
of the target and substitute models (i.e., O′∩O). Therefore,
they can mislead the target model.

To justify this observation, we conduct experiments to eval-
uate the ASR of MI-FGSM with dispersed sampling. Specifi-
cally, we validate this observation using various substitute and
target models with the full validation set of CIFAR-10 and
ImageNet. Dispersed sampling generates five candidates for
each image to search for a transferable example. As illustrated
in Fig. 1b, dispersed sampling allows MI-FGSM to achieve a
higher ASR with an average improvement of 9.6%.

2The embedding space refers to a lower dimensional representation of
the input data that is learned by the DNN [3].

3.2 Overview of DSA

Based on the observation, we propose DSA, which is a query-
efficient adversarial attack by exploiting the transferability of
white-box perturbations. The basic idea of DSA is to grad-
ually explore the transferability of white-box perturbations
until obtaining an adversarial example that can deceive the
target model while satisfying the requirement on indistin-
guishability. The overview of DSA is shown in Fig. 2, which
mainly consists of four modules.
Image Augmentation. Based on the observation in Sec. 3.1,
we can sample dispersed in the embedding space by perform-
ing a white-box attack on different augmented images. Thus,
various white-box perturbations with different transferability
can be generated, so that we can search for a transferable
white-box perturbation by dispersed sampling.
Perturbation Constraint Generation. Previous studies [17,
26] generate white-box perturbations with a small and fixed
constraint, which have been shown to be less effective and
lead to a low ASR. To achieve a significant distance reduction
using a few queries, we should set a reasonable perturbation
constraint to balance the magnitude and transferability of
perturbations. We generate the constraint of white-box pertur-
bations according to the truncated Gaussian distribution [6],
which generates a small-size perturbation while maintaining
the transferability of the resulting adversarial example.
Substitute Model Selection. When multiple substitute mod-
els are available, the attacker prefers choosing appropriate
substitute models to generate candidates with more transfer-
ability. Different from the existing studies [12, 31] that search
for transferable candidates in the intersection of substitute
models’ adversarial regions, we generate white-box perturba-
tions in the union of these regions. The reason for this choice
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Figure 2: The overview of DSA. It samples from the embedding space and generates a single candidate example by launching a
white-box attack on a selected substitute model under a certain perturbation constraint. If the adversarial example successfully
deceives the target model, it will be used to update the parameters in substitute model selection and perturbation constraint
generation.

will be explained in Sec. 4.3.
Specifically, we choose one substitute model to generate

the white-box perturbation at each iteration. We then utilize
the query results obtained from the black-box model to adjust
the probability of selecting each substitute model. This ad-
justment increases the probability of selecting the substitute
model that generates more transferable candidate examples.
Querying the Target Model. Based on the above modules,
we can obtain a white-box perturbation and query the target
model. A successful adversarial example is used to update
the upper bound of the perturbation size in Module 2 and
the selection probability of the substitute model in Module 3.
Then, we go back to Module 1 and repeat the entire process,
until the specified number of repetitions.

4 Design Details of DSA

In this section, we present the design details of the four mod-
ules in DSA, as shown in Fig. 2.

4.1 Image Augmentation

As illustrated in Fig. 1, the basic idea of DSA is to sample in
the embedding space of substitute models and craft multiple
white-box perturbations with different transferability. Then,
it searches for a transferable perturbation to the target model
while smaller than the pre-defined threshold. Following [11],
we formalize the transferability of untargeted attacks. Given
the original image xxxo and its ground-truth label y, the transfer-
ability of the white-box perturbation T (δ) can be formulated

in Eq. (3),

T (δ) = L(y,xxxo +δ)≊ L(y,xxxo)+δ
⊤

∇xoL(y,xo) (3)

where L is the classification loss of the target model. This
equation indicates that we can craft perturbations with differ-
ent transferability by varying the distribution or magnitude
of the perturbations. Specifically, we generate multiple white-
box perturbations by leveraging image augmentation (e.g.,
rotation, color jittering, and noise addition), perturbation con-
straint generation (in Sec. 4.2), and substitute model selection
(in Sec. 4.3). Different from the random start in PGD [36],
the specific goal of dispersed sampling is to launch black-
box attacks by adjusting the distribution and magnitude of
perturbations to enable different transferability. In contrast,
PGD enhances the effectiveness of adversarial training by
introducing noise into images.

For image augmentation, we craft white-box perturbations
from a set of mutations of the original image, and the default
augmentation strategy is to add Gaussian noise to the origi-
nal image. We evaluate the effect of different augmentation
techniques on the performance of DSA in Appendix A.

We denote the white-box attack as F , which can generate
a white-box perturbation δ for the substitute model f ′ with a
perturbation constraint ε′. Then, the corresponding candidate
adversarial example xxxc can be obtained

xxxc = xxxo +δ = F
(
xxxo +n;ε

′, f ′
)

(4)

where n is Gaussian noise and the perturbation satisfies
D (δ) < ε′. Then, the candidate adversarial example xxxc is
used as the input to query the target model.
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4.2 Perturbation Constraint Generation

The perturbation constraint ε′ is defined as the upper limit for
the white-box perturbation to be generated. By modifying the
value of ε′, we can flexibly adjust the magnitude of white-box
perturbations. In this section, we investigate the generation of
perturbation constraints to obtain the transferable white-box
perturbation with a small size.

In the following, we provide an in-depth analysis of the
effect of perturbation constraints on the transferability of can-
didate adversarial examples. For untargeted attacks as shown
in Fig. 3a, the adversarial region lies outside the decision
boundary of the original image label, and larger perturbation
constraints make candidates move beyond the decision bound-
ary and fall into the adversarial region. This observation is
consistent with the previous study [11]. Moreover, we sys-
tematically analyze the transferability of targeted attacks. For
targeted attacks as illustrated in Fig. 3b, only an appropriate
constraint can result in transferable candidates, as the adver-
sary region is delimited by the target image labels. If the
constraint is too small, candidates cannot reach the adversar-
ial region O′∩O, whereas if it is too large, candidates may
also fall outside this region.

To justify the above claim, we evaluate the attack success
rate of MI-FGSM under different perturbation sizes by gen-
erating adversarial examples for 1,000 images in CIFAR-10.
ResNet20 and VGG19 are selected as the substitute and tar-
get models, respectively. As shown in Fig 3c, increasing the
perturbation constraint can improve the ASR of untargeted
attacks, until the perturbation constraint reaches 5.0. This
demonstrates that a large perturbation constraint enables can-
didate examples to fall in the adversarial region. For targeted
attacks, with the increase of perturbation constraint, the ASR
first increases and then decreases, taking a maximum value

when the perturbation constraint reaches around 6.0. This
also demonstrates the observation illustrated in Fig. 3b.

The transferability is significantly impacted by the magni-
tude of perturbations. Thus, it is necessary to constrain the
magnitude of perturbations with an appropriate upper bound.
In order to achieve the goal, we design a mechanism to con-
strain the magnitude of perturbations.

First, we dynamically establish constraints for each white-
box perturbation through a sampling process. It is important to
note that both excessively large and small constraints are detri-
mental to transferability, and particularly large constraints are
also not tolerated in adversarial attacks. To address this is-
sue, we control the sampling probability distribution to avoid
choosing extreme values. In particular, we derive the pertur-
bation constraint ε′ based on a truncated normal distribution
ε′ ∼N[0.5ε,l] (ε,L) [6], which is defined as

N[0.5ε,L] (ε,L) =

{
1

ZL · exp
(
− (ε′−ε)2

2L2

)
, 0.5ε≤ ε′ ≤ L

0, otherwise
(5)

where L represents the upper bound of the sampling and Z
refers to the normalization constant to ensure that the prob-
ability density function integrates to 1, which is the integral
of the probability density function of the normal distribution
over the interval [0.5ε,L] [6]. This distribution ensures a lower
probability of sampling values closer to the upper bound.

Second, the attacker cannot directly determine a suitable
upper bound L to generate a small perturbation that can be
successfully transferred. Therefore, L should be a gradually
decreasing variable to ensure continuous generation of smaller
transferable perturbations. Specifically, we initialize the upper
bound as the distance between the target image and the origi-
nal image. Once a new transferable perturbation δ is found,
we narrow L to L(δ) in Eq. (2).

4.3 Substitute Model Selection

The attacker can easily obtain multiple pre-trained models
as substitute models from the community such as Hugging
Face [21] and PyTorch Hub [43]. It is worth considering im-
proving the performance of attacks using multiple substitute
models. Previous transfer-based studies [12, 30] generate a
candidate adversarial example in the intersection of adver-
sarial regions of all substitute models. Different from these
studies, we claim that the union, rather than the intersection,
of adversarial regions of multiple substitute models should be
used to obtain white-box perturbations.

As illustrated in Fig. 4, an effective candidate adversarial
example can fall in the union of adversarial regions of multiple
substitute models, as it has a large intersection area with the
target model. Given m substitute models { f ′1, f ′2, ..., f ′m}, the
adversarial region of the substitute model f ′i can be denoted
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may not fall in O∗ =O∩O′1∩O′2. In contrast, as long as a
candidate example (e.g., xxx1

c and xxx2
c) is located in O∩ (O′1∪

O′2), it will lead to a successful attack.

as O′i , and the feasible region can be formulated as

O′∩O =
(
O′1∪O′2∪·· ·∪O′m

)
∩O

=
(
O′1∩O

)
∪
(
O′2∩O

)
∪·· ·∪

(
O′m∩O

) (6)

The above equation indicates that we can sample in the
adversarial region of each substitute model, i.e., one substitute
model is selected to generate a candidate adversarial example
by white-box attacks. Nevertheless, it raises a new challenge
that the union of adversarial regions expands the sampling
region, and thus the attacker has to consume more queries.
The basic idea to address this issue is to select the substitute
model f ′k with a larger intersection area in the adversarial
region with the target model (i.e., O′k ∩O).

During the black-box adversarial attack, the attacker usu-
ally generates a series of queries on the target model. We
leverage the knowledge provided by the historical queries to
select a substitute model. Aiming at improving the query effi-
ciency of the attack, we assign substitute models with different
probabilities of being selected to generate more white-box
perturbations on parts of the union region O′. At the start of
the attack, each substitute model has the same probability of
being selected. As the attack progresses and more transferable
candidates are generated from a substitute model, the proba-
bility of selecting this substitute model increases. Specifically,
we apply the roulette wheel algorithm to select the substitute
model and dynamically adjust its probability of being selected
during the attack. The probability of substitute model f ′i being
selected is

P
(

f ′i
)
=

q( f ′i )∑m
j=1 q

(
f ′j
) (7)

where q( f ′i ) denote the fitness of i-th substitute model, which
is defined as the number of transferable examples generated
by the i-th substitute model.

q
(

f ′i
)
=
∑

I
(

xxx′f ′i

)
+b (8)

Transfer Fail

Transfer Success

Loss Descent

...

Figure 5: Geometrical configuration of DSA. DSA disperses
the sampling of candidate adversarial examples. Once a trans-
ferable candidate is obtained, the upper bound of the pertur-
bation constraint and the probability of each substitute model
being selected are updated.

where xxx′f ′i
denotes historical candidate examples generated

from the substitute model f ′i , b is an initial value and is set
to 10 in the implementation, which can be used to adjust the
influence of feedback from the target model. Note that the
fitness is calculated using historical queries; no additional
queries to the target model need to be introduced. The fitness
of each substitute model reflects the intersection of its adver-
sarial region with the target model, which is independent of
the original images, so that the fitness can be shared when
attacking different images.

4.4 Querying the Target Model

The algorithm of DSA is illustrated in Algorithm 1. There are
N epochs in DSA, and for each one, we use the current loss
as the upper bound of truncated Gaussian distribution and
sample the perturbation constraint ε′. One substitute model
f ′i is selected based on the probability distribution P . Then, a
candidate adversarial example xxxc with the perturbation con-
straint is generated by attacking the substitute model. This
candidate is used to query the target model.

DSA updates the parameters based on the query results to
limit the sampling region. As shown in Fig. 5, if the candidate
example can deceive the target model, we use it as the current
adversarial example xxx′, and its perturbation size as the upper
bound of the constraint generation, which results in candi-
date examples being generated with less perturbation. At the
same time, we update the fitness of each substitute model
and the probability of roulette wheel selection, which makes
the currently selected substitute model easier to select in the
following. Eventually, we go to the first module to repeat the
entire process. If the candidate example cannot deceive the
target model, we move into the next epoch directly.

The sampling process of DSA is repeated N epochs. In the
end, we obtain N candidate examples and consume the same
number of queries. The appropriate value of N is related to the
number of substitute models, as more substitute models mean



Algorithm 1: Dispersed Sampling Attack
Input: Original image xxxo, target image xxxt , loss

function L, perturbation threshold ε, white-box
attack function F , probability distribution of
substitute models P , number of epochs N.

Output: Adversarial example xxx′.
1 xxx′← xxxt ;
2 for 1 to N do
3 L←L(xxx′) ;
4 ε′ ∼N[0.5ε,L] (ε,L) ;
5 f ′ ∼P ;
6 n∼N (0,1);
7 xxxc←F (xxxo +n; f ′,ε′) ;
8 if L(xxxc)< L(xxx′) then
9 xxx′← xxxc ;

10 Update P using Eq. (7) ;
11 end
12 end
13 Optimizing xxx′ with existing black-box attack ;
14 return xxx′ ;

a larger area to sample, which requires more queries for explo-
ration. Therefore, we set N = m×n, where m is the number
of substitute models, and n is a specified value. Specifically,
we set n to 100, and evaluate the effects of different n values,
which can be found in Appendix A.

After the last epoch, we obtain an adversarial example,
which is the candidate with minimal perturbation. Then we
refer to existing black-box attacks to search for adversarial
examples with less loss. We argue that dispersed sampling
plays a significant role, while the integrated black-box attack
serves only as a complement. This can be demonstrated in
experiments in Sec. 5.2, where perturbations decrease by over
90% in the dispersed sampling.

5 Performance Evaluation

In this section, we comprehensively evaluate the performance
of DSA by comparing it with the SOTA attacks. We describe
the experimental settings in Sec. 5.1. Then, we conduct ex-
periments in the closed-set scenario in Sec. 5.2, which in-
vestigates the attack performance on both undefended and
defended models. Next, we perform experiments in the open-
set scenario in Sec. 5.3, and evaluate the attack performance
against four commercial DNN services in Sec. 5.4. Finally,
we conduct an ablation study in Sec. 5.5, assessing the contri-
bution of each module and the scalability of DSA.

5.1 Experimental Settings
Datasets and Evaluation Metrics. We conduct the experi-
ments using the CIFAR-10 [25] and ImageNet [46] datasets,

which have been widely used in previous studies [4, 53].
CIFAR-10 consists of 10 classes and each class has 6K im-
ages with a size of 32×32×3. ImageNet has 1,000 classes
of images which are re-scaled to the size of 299× 299× 3.
All image pixel values are normalized in the range of [0,1].
Following the setup in previous studies [5, 8], 1,000 original-
target image pairs are randomly selected from the validation
set of each dataset for evaluation. The selected images are
correctly classified by all models used in the experiments, and
the target image has a different label from the original image.
In the closed-set scenario, the target and substitute models
are trained on the same dataset. In the open-set scenario, we
assemble two mutually exclusive datasets for training the sub-
stitute and target models. Specifically, we randomly select
half of the images for each label and use them as one training
set, while the remaining images constitute the other set.

The success condition for the attacker is to find an adversar-
ial example xxx′ with a loss less than the pre-defined threshold
ε within the query budget. The query budget for each image
pair is set to 4,000. During the attack process, any attack that
exceeds the budget is considered failed and is terminated im-
mediately; if the loss of an adversarial example is less than the
threshold ε within the query budget, we consider the attack
successful and stop querying the target model. We use the
attack success rate (ASR) and the average number of queries
(AvgQ) as evaluation criteria, which are defined as the ratio
of original images that can be successfully attacked and the
average number of queries on the target model consumed on
each image, respectively. An attack is desired to achieve a
high ASR at the cost of a low AvgQ.

We evaluate the performance of the attacks under two per-
turbation distance metrics, ℓ2 and ℓ∞ norm, which are widely
used in previous studies [8, 29], and can fully benchmark the
indistinguishability of the attacks. Follow the setting in previ-
ous study [10], the loss threshold is set at ε=

√
0.001 ·d under

ℓ2 norm, (i.e. 1.75 on CIFAR-10 and 16.38 on ImageNet),
and ε = 16/255 under ℓ∞ norm, which are pretty small values
compared with the existing decision-based attacks [5, 29].
Target and Substitute Models. For each dataset, we select
4 models that are widely used in existing studies [12, 30].
On CIFAR-10, we consider ResNet20 [19], VGG19 [52],
DenseNet100 [20] and WRN28 [65], with the same struc-
ture and weights as the previous work [34]. The top-1 error
rates of these four models are 8.23%, 6.72%, 4.73%, and
4.07%, respectively. On ImageNet, we select VGG16 [52],
DenseNet121 [20], Inception v3 (Inc-v3) [54], Inception
ResNet v2 (IncRes-v2) [59]. The implementation and pre-
trained weights of models are based on GitHub repository3,
and the top-1 error rates of these models are 28.37%, 25.36%,
22.71% and 19.60%, respectively. The four models are used
in turn as the target model unless otherwise specified.

Following the setting in the previous study [14], if the struc-

3https://github.com/Cadene/pretrained-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch


Table 2: The closed-set results (ASR% / AvgQ) of untargeted attacks on ImageNet.

ℓ2 ℓ∞

VGG16 DenseNet121 Inc-v3 IncRes-v2 VGG16 DenseNet121 Inc-v3 IncRes-v2
ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

BiasedBA 99.6 1544.4 98.1 1703.8 96.6 1763.8 95.2 1838.3 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 41.2 2696.6 22.3 3307.7 15.0 3535.2 9.9 3704.3 14.6 3454.3 9.6 3651.8 6.5 3762.0 3.6 3866.1
BAODS 98.9 798.9 97.0 1109.7 94.9 1368.7 95.2 1402.6 7.2 3853.0 4.4 3904.5 2.5 3948.3 1.9 3962.4
Prism 87.3 611.5 58.6 1736.7 54.4 1903.7 47.6 2165.0 74.5 1139.1 45.7 2258.5 41.9 2401.8 32.6 2763.8

HybridAttack 96.5 520.1 91.8 723.5 88.6 837.8 85.2 1041.2 75.6 996.8 72.2 1118.2 70.4 1185.9 64.2 1435.2
DSA 99.9 54.2 99.3 86.3 99.3 67.2 99.1 91.0 96.9 136.7 93.8 263.7 93.8 267.0 91.0 386.0
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Figure 6: The ASR curves of untargeted attacks on ImageNet as the number of queries increases.

ture of the target model is the same as one of the four models,
we select the rest three as substitute models; otherwise, all
four models are used as substitute models. To fully demon-
strate the superiority of DSA, we also evaluate the attacks
with a single substitute model in Sec. 5.3.1.
Methods to Compare. Five SOTA hybrid attacks serve as
baselines, including BiasedBA [5], QEBA-I [27], BAODS
[56], Prism [24], HybridAttack [53]. They have shown a
wide range of superiority [56]. All attacks are implemented
based on the Foolbox library [45], which allows attacks to
be well adapted to both ℓ2 and ℓ∞ norms. As DSA and Hy-
bridAttack integrate existing white- and black-box attacks,
MI-FGSM [12] and SurFree [37] are selected as representative
methods. For fair comparisons, DSA and other methods have
the same attacker capabilities, with the same target model and
substitute model settings in all scenarios.

5.2 Experiments in Closed-set Attack Scenario
In this section, we conduct closed-set experiments to eval-
uate the performance of adversarial attacks. The attacker is
assumed to have the same training dataset as the target model
for training substitute models, which is consistent with the

experimental settings of most previous literatures [5, 12, 53].
Given that the victim may deploy defenses to mitigate ad-
versarial attacks, we evaluate the attack performance in both
undefended and defended scenarios.

5.2.1 Evaluation in Undefended Scenario

We conduct untargeted attacks on ImageNet4, and we use the
other three models as substitute models when evaluating one
target model.

As summarized in Table 2, DSA achieves a significant im-
provement in attack effectiveness with different target models
and distance metrics. Under the ℓ2 norm, DSA achieves an
ASR of more than 99% within an AvgQ of 100, reducing
AvgQ by up to 92% over the second-best values. Under ℓ∞

norm, DSA still achieves an ASR of over 90% using only a
couple of hundred queries, with an improvement of ASR by
21.3% and an AvgQ reduction of more than 73.1% over the
existing methods against all target models.

To further demonstrate the superiority of DSA, we plot
the change curve of mean distance as the number of queries

4Targeted attacks are still a tough task for existing attacks due to the large
number of classes in ImageNet. We leave it for future work.



Table 3: The closed-set results (ASR% / AvgQ) of untargeted attacks on defended models on CIFAR-10.

Undefended Blacklight RND-GF PCL ComDefend MagNet AdvTrain AdvTrain♢

ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

ℓ2

BiasedBA 100.0 1461.9 0.0 4000.0 93.9 1968.2 99.9 1518.2 56.2 3037.0 42.2 3431.8 33.4 3528.3 36.6 3465.4
QEBA-I 100.0 585.2 10.6 3695.0 98.7 1102.5 99.9 610.4 19.3 3427.9 96.3 947.7 28.0 3364.0 60.0 2847.9
BAODS 100.0 350.4 0.0 4000.0 92.6 1899.9 99.6 613.8 9.4 3713.8 94.5 1152.5 7.2 3848.4 27.8 3359.4
Prism 99.6 121.1 0.0 4000.0 37.2 2667.0 80.1 888.6 22.8 3139.3 52.9 1955.4 3.4 3867.8 4.1 3841.8

HybridAttack 100.0 60.1 89.7 419.9 99.9 234.1 100.0 108.3 89.4 746.5 99.3 201.7 57.6 2527.4 62.3 2096.6
DSA 100.0 3.7 100.0 3.6 100.0 31.0 100.0 6.5 93.8 499.6 99.6 29.6 61.2 2521.1 83.4 953.7

ℓ∞

BiasedBA 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 66.0 2075.7 39.4 2740.7 22.3 3433.6 64.6 2123.8 28.8 3151.1 30.5 3261.8 5.8 3806.7 12.7 3544.2
BAODS 14.8 3682.8 0.0 4000.0 2.4 3950.3 18.2 3622.0 2.1 3925.8 5.6 3879.9 2.3 3925.4 8.0 3742.6
Prism 94.3 373.9 10.4 3599.2 47.7 2180.7 77.3 1056.8 19.2 3320.4 0.0 4000.0 2.3 3913.6 3.3 3876.4

HybridAttack 98.6 65.2 90.8 369.5 91.8 344.8 94.6 255.2 59.4 1771.4 93.1 298.6 9.2 3686.0 38.8 2449.5
DSA 100.0 4.5 100.0 4.6 99.2 41.6 100.0 7.1 72.8 1136.0 98.6 69.6 9.0 3647.4 56.3 1759.3

♢ represents that the attacker has a substitute model obtained by adversarial training.

increases in Fig. 6. As the query increases, the distance of each
method decreases to different degrees. Compared with other
methods, DSA always achieves the lowest distance under all
test cases when consuming the same number of queries.

We find that the perturbation distance metric ℓ∞ has a nega-
tive impact on attack performance compared with the results
under ℓ2 norm. In particular, the distance of BiasedBA is
consistently around 1 under the ℓ∞ norm. This is because
BiasedBA tends to add larger noise to local pixels on current
adversarial examples and cannot generate examples with a
smaller distance under the ℓ∞ norm, resulting in optimization
stagnation.

5.2.2 Evaluation in Defended Scenario

Here, we focus on the evaluation of attacks in the de-
fended scenario. Following the settings in previous litera-
ture [34], we conduct untargeted attacks on CIFAR-10, using
ResNet50 [19] integrated with several defenses as target mod-
els. The defenses are listed as follows.

• Blacklight [28]. It detects adversarial examples with
an efficient similarity engine that detects similarities
between queries on the input space.

• RND-GF [44]. It attempts to add large Gaussian noise
on the queried image to disrupt the subtle structure of the
adversarial perturbation, allowing the model to output
the correct result.

• PCL [41]. It forces the features of each class to lie within
a convex polygon that is maximally separated from the
polygons of the other classes.

• ComDefend [23]. It consists of a compressed convolu-
tional neural network and a reconstructed convolutional
neural network, which can convert adversarial images
into their clean version.

• MagNet [39]. It includes a detector network and a re-
former network. The detector network aims to identify

adversarial examples, while the reformer network moves
adversarial examples toward normal examples for cor-
rect classification.

• AdvTrain [36]. It trains the model on a mixture of images
with adversarial perturbations to make the model robust
to adversarial attacks.

• AdvTrain♢. It is used to evaluate the effect of AdvTrain
against a sophisticated attacker [12]. Under this setting,
the attacker has access to an additional substitute model
obtained through adversarial training. Specifically, we
utilize ResNet20 as the additional substitute model and
use PGD [36] to generate adversarial examples. These
adversarial examples are then used to train ResNet20,
enhancing its classification accuracy under adversarial
examples. Note that the hyperparameters of the training
process (i.e., learning rate and number of epochs) differ
from those used in the target model. All attacks are con-
ducted under the same assumption for a fair comparison.

The performance of untargeted attacks on CIFAR-10 in the
defended scenario is exhibited in Table 3. DSA is robust in
attacking the defended target models and achieves the highest
ASR with the least AvgQ in most tests.

We classify existing defenses into four categories. The first
category, including RND-GF and ComDefend, tries to defend
against adversarial perturbations by disrupting their subtle
structures so that the target model can still achieve correct
classifications. For example, ComDefend reduces the ASR of
BAODS from 100% to 9.4% under ℓ2 norm. However, DSA
can directly generate candidate adversarial examples deep in
the adversarial region and achieves a 93.8% ASR with 499.6
AvgQ under ℓ2 norm under ComDefend.

The second category, consisting of PCL, AdvTrain, and
AdvTrain♢, increases the margin between normal images and
adversarial examples for correct classifications. For instance,
AdvTrain trains the target model with adversarial examples,
making it difficult to generate transferable perturbations. The
results of AdvTrain♢ reveal that different models trained



Table 4: The open-set results (ASR% / AvgQ) of untargeted attacks (U) and targeted attacks (T) on CIFAR-10. (* denotes the
target and substitute models use the same DNN structure)

ℓ2 ℓ∞

ResNet20* VGG19 DenseNet WRN ResNet20* VGG19 DenseNet WRN
ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

FIA 75.1 1.0 62.1 1.0 74.5 1.0 47.8 1.0 92.6 1.0 87.9 1.0 91.9 1.0 73.1 1.0

U

DaST 6.8 4000.0 2.7 4000.0 7.3 4000.0 5.3 4000.0 30.8 4000.0 12.6 4000.0 23.8 4000.0 19.2 4000.0
DST 11.3 4000.0 4.8 4000.0 8.1 4000.0 3.7 4000.0 29.4 4000.0 15.8 4000.0 25.1 4000.0 12.5 4000.0

BiasedBA 99.9 1577.9 99.1 1698.2 99.9 1575.8 91.8 2065.3 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 100.0 547.1 99.6 926.8 99.9 583.9 98.2 987.7 63.1 2189.1 33.6 3023.1 56.9 2342.3 32.2 3115.2
BAODS 94.7 1166.5 86.2 1841.0 93.9 1171.5 78.5 2020.2 15.0 3664.5 8.2 3841.2 19.4 3564.5 8.7 3807.8
Prism 69.8 1299.3 52.4 1982.1 71.9 1220.2 39.0 2494.3 67.4 1429.0 48.7 2152.0 67.8 1420.8 34.3 2691.8

HybridAttack 100.0 106.1 100.0 244.7 100.0 143.8 99.9 334.3 91.5 438.9 85.5 676.1 94.1 336.1 76.1 1119.6
DSA 100.0 22.3 100.0 65.8 100.0 30.3 99.9 154.4 97.9 92.9 94.9 214.6 97.7 99.9 97.5 514.7

T

FIA 16.4 1.0 13.2 1.0 16.3 1.0 12.5 1.0 25.8 1.0 25.1 1.0 22.5 1.0 21.8 1.0
DaST 0.9 4000.0 0.1 4000.0 1.0 4000.0 0.6 4000.0 4.5 4000.0 1.6 4000.0 4.6 4000.0 1.7 4000.0
DST 1.8 4000.0 0.7 4000.0 1.0 4000.0 0.5 4000.0 4.1 4000.0 2.2 4000.0 3.1 4000.0 1.2 4000.0

BiasedBA 85.6 2944.1 71.7 3165.5 75.5 3142.2 58.0 3327.8 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 96.0 1583.0 73.9 2424.0 93.6 1756.5 80.2 2258.6 14.2 3648.0 5.1 3865.4 8.4 3812.8 4.5 3875.0
BAODS 59.8 2570.2 45.4 3087.5 59.3 2564.4 36.7 3284.4 3.3 3934.5 1.4 3976.6 3.0 3929.6 1.3 3967.3
Prism 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.1 3996.2 0.1 3996.3 0.1 3996.1 0.2 3992.3

HybridAttack 100.0 749.8 97.6 1138.9 99.9 774.7 97.6 1186.6 39.1 2637.7 28.2 3043.9 40.8 2629.3 24.1 3162.1
DSA 100.0 495.1 97.6 877.1 99.9 633.6 97.7 1042.2 54.4 1877.0 41.4 2409.1 48.7 2189.5 31.3 2781.9

Table 5: The open-set results (ASR% / AvgQ) of untargeted attacks on ImageNet

ℓ2 ℓ∞

VGG16 DenseNet121 Inc-v3 IncRes-v2 VGG16 DenseNet121 Inc-v3 IncRes-v2
ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

BiasedBA 88.4 1931.0 65.7 2632.3 88.9 1940.3 88.0 1960.1 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 51.8 2304.9 29.1 3067.9 44.8 2534.7 36.8 2864.9 15.2 3443.3 12.4 3547.0 10.6 3611.3 9.8 3639.6
BAODS 96.5 1248.9 86.0 1957.3 98.0 1094.5 97.5 1150.8 3.9 3930.2 2.4 3935.1 3.8 3919.4 2.6 3942.6
Prism 65.1 1486.8 42.8 2353.7 64.5 1506.7 71.9 1215.2 57.3 1815.1 41.1 2432.3 54.7 1913.3 54.7 1903.9

HybridAttack 96.1 584.8 89.9 999.4 95.2 646.2 93.3 673.5 68.7 1260.2 61.1 1555.1 71.4 1146.1 76.0 958.7
DSA 98.7 152.0 96.1 355.5 99.2 90.1 99.1 94.2 89.3 447.5 81.6 760.9 93.1 294.4 95.1 212.7

through adversarial training could share similar vulnerabili-
ties against adversarial attacks, allowing evading AdvTrain.
Compared with AdvTrain, DSA achieves superior results in
terms of both ASR and AvgQ, with a maximum 47.3% im-
provement in ASR and a 62.2% decrease in AvgQ.

The third category is stateful. The defenses like Blacklight
record historical queries and detect their similarity to sup-
press attacks that query around current examples. BiasedBA,
BAODS, and Prism can only achieve an ASR of less than
10.4%. Nevertheless, DSA generates diverse adversarial ex-
amples in the embedding space. These examples have differ-
ent distributions and magnitudes of perturbations, which are
not similar and cannot be captured by Blacklight.

Finally, the fourth category, including MagNet, aims to de-
tect out-of-distribution samples, which can effectively detect
images with obvious perturbations. Under MagNet, the ASR
of BiasedBA decreases from 100.0% to 33.4% and the AvgQ
increases from 1461.9 to 3431.8. Candidate adversarial ex-
amples generated by DSA may be located near the decision
boundary and appear similar to normal images. Consequently,
DSA achieves 99.6% ASR with 29.6 AvgQ under ℓ2 norm
and 98.6% ASR with 69.6 AvgQ under ℓ∞ norm.

5.3 Experiments in Open-set Attack Scenario

In this section, we evaluate the robustness of attacks in open-
set scenarios, where the attacker does not have access to the
training dataset of the target model, as described in Sec. 2.1.

5.3.1 Evaluation with Single Substitute Models

In this subsection, we perform untargeted and targeted attacks
on CIFAR10 in the open-set scenario with ResNet20 as the
single substitute model. The training of the substitute model
does not rely on the knowledge of the target model training
dataset. Additionally, we also include the comparison with
FIA [63], DST [61], and DaST [67]. Note that FIA is a so-
phisticated transfer-based attack (see Sec. 6), which requires
only one query to generate an adversarial example and cannot
adjust the settings based on feedback from the target model.
As shown in the Table. 4, DSA can achieve the highest ASR
of more than 97.6% with a relatively low AvgQ under ℓ2 norm
compared with the other attacks.

Prism relies on the gradient of substitute models to optimize
the perturbation. However, the ASR is notably low when the
gradient of substitute models deviates significantly from that



Table 6: Experimental results (ASR% / AvgQ) in four commercial APIs, i.e. AWS, Azure, Baidu, and Tencent.

ℓ2 ℓ∞

AWS Azure Baidu Tencent AWS Azure Baidu Tencent
ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

BiasedBA 0.0 1000.0 0.0 1000.0 0.0 1000.0 0.0 1000.0 0.0 1000.0 0.0 1000.0 0.0 1000.0 0.0 1000.0
QEBA-I 30.0 791.3 70.0 500.4 60.0 542.7 55.0 602.1 15.0 880.2 45.0 674.4 35.0 764.3 50.0 610.0
BAODS 20.0 855.3 10.0 934.1 40.0 735.9 60.0 660.3 5.0 983.7 0.0 1000.0 10.0 940.7 10.0 934.9
Prism 30.0 733.4 65.0 426.4 60.0 482.6 80.0 229.4 25.0 788.7 30.0 749.9 50.0 577.6 70.0 425.1

HybridAttack 45.0 564.4 60.0 441.4 65.0 387.4 60.0 415.2 50.0 519.1 70.0 308.5 65.0 362.0 60.0 403.0
DSA 90.0 171.3 90.0 133.0 90.0 139.3 100.0 29.6 70.0 334.6 90.0 132.8 85.0 167.6 90.0 108.1

HybridAttack

AWS

Azure

Baidu

Tencent

PrismBAODSQEBA-IBiasedBATarget Image Original Image DSA HybridAttackPrismBAODSQEBA-IBiasedBA DSA
Input Images

Figure 7: Adversarial examples of each attack. The adversarial examples generated by all existing methods consume the full
1,000 query budget, while those generated by DSA only consume an AvgQ of 546.

of the target model. For instance, Prism achieves an ASR of
no more than 0.2% in targeted attacks.

Both DaST and DST show poor performance across all test
cases, achieving an ASR of less than 30.8% and 29.4%, re-
spectively. The reason is that the query budget is not sufficient
for DaST and DST, which are considered extraction-based
attacks, to train the substitute model.

FIA shows high transferability with one query. However,
the ASR of FIA decreases when there is a greater disparity
between the substitute and target models. For instance, FIA
attains an ASR of 75.1% against ResNet20 but only 47.8%
against WRN under the ℓ2 norm for untargeted attacks.

5.3.2 Evaluation on ImageNet

In this subsection, we conduct the open-set evaluation on Im-
ageNet, keeping the same experimental setting in Sec. 5.2.1.

The results are shown in Table 5, DSA can achieve the high-
est ASR and lowest AvgQ in all tests. Specifically, compared
to the second-best value, DSA shows a maximum ASR im-
provement of 21.7%, from 71.4% to 93.1%, while the AvgQ
drops by a maximum of 86.1%, from 646.2 to 90.1.

Compared with the closed-set evaluation on ImageNet
(i.e., Table 2), we can observe that the difference in training
datasets increases the challenge of obtaining effective adver-
sarial examples, but some attacks still achieve comparable

results in the open-set scenario. For example, QEBA-I is able
to achieve a higher ASR under the open-set ℓ2 norm, which
increases from 9.9% to 36.8% when evaluated on IncRes-v2.
This is because the training dataset of the current target model
is only a subset of the closed-set scenario, and the reduction
of training data makes the target model easier to attack.

5.4 Experiments on Commercial DNN Services

In this subsection, we carry out attacks on four well-known
commercial DNN services, namely AWS [1], Azure [40],
Baidu [2] and Tencent [57]. Query results returned by the
APIs consist of major and minor categories. We use the ma-
jor category as the final decision due to the large semantic
differences, which raises the difficulty of adversarial attacks.
Referring to the setting of the previous literature [14], we
randomly select 20 image pairs from the validation set of
ImageNet for evaluation and set the query budget as 1,000
for each image pair. Four models on ImageNet are selected
as substitute models, as described in Sec. 5.1.

As shown in Table 6, DSA obtains more than 90% ASR
using about 100 AvgQ under ℓ2 norm. Compared with second-
best value under both ℓ2 and ℓ∞ norms, DSA increases the
ASR more than 20.0%, and decreases the AvgQ by at least
35.5%, which indicates that DSA can achieve effective and



Table 7: Results (ASR%/AvgQ) of the ablation study.

Variations of DSA ASR AvgQ

Dispersed Sampling

DSA w/o Image Augmentation 98.9 97.8
DSA w/o Perturbation Constraint Generation 97.3 150.2

DSA w/o Substitute Model Selection 98.9 105.7
DSA w/o Querying the Target Model 78.6 1491.7

DSA w/ Proportion Fitness 98.6 110.5

Query-based Attack DSA w/o Dispersed Sampling 78.0 2059.0

Default DSA 99.1 91.0

query-efficient decision-based attacks against commercial
DNN services.

We present real adversarial examples of each attack against
the commercial DNNs, as shown in Fig. 7. We can intuitively
observe that the adversarial examples generated by DSA are
mostly approximate to the original image. In contrast, the ad-
versarial examples generated by BiasedBA, BAODS, Prism,
and HybridAttack have noticeable features of the target im-
ages, while those generated by QEBA-I also have noises that
are easily perceived by human eyes. In addition, DSA requires
the least number of queries on the target model.

5.5 Ablation Study
In this section, we conduct a comprehensive ablation study to
investigate the key components of DSA, i.e., image augmen-
tation, perturbation constraint generation, substitute model
selection, and querying the target model, as well as their corre-
sponding contributions. Furthermore, we measure the scalabil-
ity of DSA by integrating various white-box attacks. We use
IncRes-v2 as the target model and VGG16, DenseNet121, and
Inc-v3 serving as substitute models, and construct untargeted
adversarial attacks on the ImageNet dataset.
Contribution of Each Module. We generate different vari-
ants by changing the settings of each module. Specifically,
for each module removal, we perform the following: 1) gen-
erating white-box perturbations based on the original image;
2) crafting perturbations under the pre-defined threshold ε;
3) launching a white-box attack against a random substitute
model; and 4) generating only a single candidate adversarial
example as a starting point for subsequent query-based at-
tacks. Additionally, we devise a variant (DSA w/ Proportional
Fitness), which uses the proportion of transferable examples
rather than the number of examples, to calculate fitness (de-
fined in Eq. (8)). As an extreme case, we also removed all four
modules, simplifying DSA as a query-based attack. We find
that each component contributes to the attack performance of
DSA, i.e., increasing the ASR and reducing the AvgQ. The
detailed results are illustrated in Table. 7.

First, we find that removing any of the three modules of
DSA (i.e., image augmentation, perturbation constraint gener-
ation, or substitute model selection) limits the sampling range,
resulting in a decrease in ASR and an increase in AvgQ. For
instance, DSA without Perturbation Constraint Generation

Table 8: Results (ASR%/AvgQ) of the scalability of DSA

Method ASR AvgQ

FGSM [17] 53.4 1.0
DSA (FGSM) 98.7 166.4

I-FGSM [26] 58.3 1.0
DSA (I-FGSM) 98.3 142.7

MI-FGSM [12] 76.6 1.0
DSA (MI-FGSM, Default) 99.1 91.0

FIA [63] 67.3 1.0
DSA (FIA) 99.3 63.5

NAA [66] 74.4 1.0
DSA (NNA) 99.5 81.6

can only generate perturbations within the pre-defined upper
bound ε, achieving lower ASR and increasing AvgQ by 65.1%
compared with DSA.

Second, dispersed sampling plays a critical role in DSA.
DSA variants experience a significant decrease in ASR when
the dispersed sampling is insufficient (DSA w/o Querying the
Target Model) or completely removed (DSA w/o Dispersed
Sampling). The ASR is reduced by at least 20.5%, while
AvgQ increases over 16 times. This highlights the critical role
of dispersed sampling.

Third, the number of transferable examples is more suit-
able than the proportion of the samples to compute fitness.
DSA with Proportional Fitness achieves a lower ASR while
increasing the AvgQ by 21.4%. The reason is that the sub-
stitute model selection in this setting devalues successfully
transferred samples.
Scalability with White-box Attacks. We evaluate the scala-
bility of DSA by integrating with different white-box attacks.
By default, DSA leverages MI-FGSM [12] as the white-box
attack. However, the SOTA white-box attacks can be incorpo-
rated into DSA, which allows constructing black-box attacks
with a higher ASR and a lower AvgQ, as illustrated in Ta-
ble. 8. For example, as FIA [63] and NAA [66] are the latest
transfer-based attacks, DSA achieves an ASR of 99.5% with
NAA, and an AvgQ of 63.5 with FIA, which outperforms the
default DSA.

5.6 Summary

Recalling the design goals in Sec. 2.3, DSA can achieve a
higher ASR than the SOTA attacks while reducing the AvgQ
by at least an order of magnitude in closed-set, which demon-
strates DSA has high effectiveness and query efficiency. DSA
can generate adversarial examples under both ℓ2 and ℓ∞ norms,
which illustrates the indistinguishability of DSA. DSA can
outperform other attacks in defended and open-set scenarios,
which demonstrates the robustness of DSA.



6 Related Work

In this section, we review three main categories of black-box
adversarial attacks in decision-based scenarios.
Transfer-based Attack. Transfer-based attacks are based
on the simple fact that adversarial examples exhibit transfer-
ability across model structures, which can be used to launch
attacks on the target model [60]. The attacker seeks to gen-
erate an adversarial example by applying a white-box attack
on substitute models and then uses it to directly attack the
target model [17, 42]. The first approach is gradient-based
methods where the calculation of gradients is optimized, such
as using momentum information (MI-FGSM [12]), Nesterov
accelerated gradient (NI-FGSM [30]) and feature maps from
intermediate layers (FIA [63], NAA [66]) in the iterative
attacks. The second approach, namely input augmentation
methods, is to integrate gradients of various augmented im-
ages as the final direction of optimization to enhance the
attack transferability (e.g., DIM [64] and TIM [13]). Note
that these two approaches can be naturally integrated by com-
bining the gradients of the augmented images computed by a
gradient-based method.
Query-based Attack. Query-based attacks start with images
having different labels (i.e., target images), walk around the
decision boundary of the target model, and search for images
with smaller perturbations while keeping the images with
different labels [4]. The walking process can be roughly di-
vided into three components [15]: 1) generating a potential
adversarial example according to a well-designed algorithm,
2) leveraging the potential adversarial example to query the
target model, and 3) updating the algorithm based on the
query results. Depending on the walking strategies, exist-
ing attacks can be divided into two types, namely randomly
walking around the boundary (e.g., BA [4], AHA [29] and
SurFree [37]) and estimating the gradient by sampling on the
decision boundary (e.g., HSJA [8] and TA [35]).
Hybrid Attack. Hybrid attacks attempt to combine the ad-
vantages of the two preceding methods. The attacker tries
to generate adversarial examples with minimal queries by
exploiting the prior substitute models. Existing methods aim
to enhance query-based attacks with the prior of substitute
models. On the basis of BA, Brunner et al. [5] propose Bi-
asedBA, where adversarial gradients from substitute models
are projected orthogonally to the source direction and bias
the perturbations toward the projected gradient. Based on
HSJA, QEBA-I [27] attempts to sample in a representative
subspace, such as the subspace constructed from the princi-
pal components of the gradient matrix of substitute models.
Tashiro et al. [56] design a sampling strategy to maximize the
diversity in the output space of substitute models, and inte-
grate with BA to propose BAODS to reduce the overhead of
queries. AMEBA [7] formulates substitute model training and
adversarial attacks as an optimization problem to incorporate.
Juuti et al. [24] leverage the gradient of ensemble substitute

models to search for adversarial examples with progressively
smaller perturbations. Differing from the previous studies,
which tune the sampling strategy of query-based attacks us-
ing the prior substitute models, HybridAttack [53] exploits
the candidate example generated by a transfer-based attack as
the starting point for query-based attacks to save large queries
in the earlier stage of the attack.
Extraction-based Attack. Extraction-based attacks aim to
generate an effective substitute model to increase the success
rate of transfer-based attacks. They train the substitute model
using the query results of the target model to mimic the be-
haviors. DaST [67] constructs a generative model to produce
training examples for the substitute model. Based on DaST,
DST [61] utilizes the correlation between training examples
to improve the effectiveness of training substitute models.

7 Discussion

In this section, we discuss the limitations of DSA and possible
future extensions.
Indistinguishability. The experiments we conducted are
based on the common distance metrics, i.e., the ℓ2 and ℓ∞

norms. Although DSA achieves better results than other at-
tacks in both metrics, we observe that it still has limited per-
formance in reducing distance under ℓ∞ norm, which suggests
that we need to work on improving the effectiveness of the
attack under ℓ∞ norm in future work.
Potential Countermeasures. DSA can be detected by recog-
nizing adversarial examples with small perturbations, which
may be disrupted by image manipulations, leading to signifi-
cant changes in the output vectors. We provide a more detailed
analysis of potential countermeasures in Appendix B.

8 Conclusion

In this paper, we proposed DSA, which can leverage the abil-
ity of white-box attacks to achieve query-efficient adversarial
attacks in the black-box decision-based scenario. Based on
the observation that varying the distribution or magnitude of
perturbations enables different transferability, DSA resorted
to sampling different perturbations and finding a small pertur-
bation that can transfer successfully. In multiple scenarios and
datasets, DSA significantly outperformed the SOTA methods
with the same threat model, and achieved the best attack per-
formance on commercial DNN services. In future work, we
will investigate techniques to extend the application scenarios
of DSA, and explore efficient and lightweight defenses.
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A Parameter Tuning

In this section, we evaluate the attack performance of DSA
under different parameters on ImageNet, using VGG16 as the
substitute model and IncRes-v2 as the target model.

A.1 Number of Attack Epochs
We evaluate how the ASR changes with the number of epochs
of dispersed sampling. As illustrated in Fig. 8, the three curves
under different query budgets all show a parabolic-like nature.
A limited number of epochs restricts the effective utilization
of substitute model transferability. In this case, the attacker
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Figure 8: ASR versus number of attack epochs.

0 20 40 60 80 100
Number of Queries

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Di
st

an
ce

Noise
Scale
Translation
Resize
Rotate
Erase
Color Jitter

Figure 9: Mean distance versus number of queries under dif-
ferent input augmentations.

cannot fully explore the adversarial region and obtain a trans-
ferable example with a small perturbation, leading to a lower
ASR. On the contrary, although a larger number of epochs can
fully leverage substitute models, it also consumes excessive
and unnecessary queries, causing a declining trend in ASR as
the number of epochs increases.

A.2 Different Input Augmentations

In this subsection, we evaluate the impact of different in-
put augmentations. Specifically, we test the following input
augmentations: adding Gaussian noise, scale transformation,
translation, resizing, rotation, random erasing, and color jitter.
As illustrated in Fig. 9, we observe that under the same query
conditions, the distance gap between different input augmen-
tations is within 5. Rotation and resizing consistently achieve
the lowest distances, while scaling exhibits the highest dis-
tance. For example, the distance of rotation and resizing is
approximately 20, whereas scaling reaches as high as 22.5
with 100 queries. Due to varied sample regions for different
augmentations, images that undergo rotation and resizing ex-
hibit greater ℓ2 norm distances than images subjected to scal-
ing. Thus, candidate adversarial examples from rotation and
resizing are more dispersed in the embedding space, which
allows DSA to discover smaller transferable perturbations.

B Insights for Potential Countermeasures

It is possible to detect DSA by recognizing adversarial ex-
amples with small perturbations. These adversarial examples
closely resemble the original images and are located near the
decision boundary. Consequently, even minor image manipu-
lations can disrupt the structure of the perturbation, causing
significant variations in the output vector. In contrast, normal
images exhibit higher confidence and trigger minimal varia-
tion during image manipulation, due to their robust features
and the spatial invariance of deep neural networks (DNNs).



Table 9: The results (ASR% / AvgQ) of untargeted attacks on ImageNet21k

ℓ2 ℓ∞

ConvNext MobileVitv2 Deit3 Swinv2 ConvNext MobileVitv2 Deit3 Swinv2
ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

BiasedBA 86.7 2175.2 93.7 1840.1 67.5 2763.4 48.4 3308.7 0.0 4000.0 0.0 4000.0 0.0 4000.0 0.0 4000.0
QEBA-I 6.5 3808.0 14.9 3578.2 19.6 3410.4 3.0 3936.9 1.9 3929.6 2.2 3921.6 2.8 3894.8 0.7 4000.0
BAODS 92.8 1536.2 96.8 1174.1 78.2 2286.9 29.4 3415.7 1.1 3987.7 0.7 3984.9 0.9 3977.0 0.0 4000.0
Prism 32.0 2784.9 62.8 1572.5 14.4 3446.7 3.4 3874.0 18.3 3317.8 35.1 2662.5 13.6 3483.5 0.6 3978.6

HybridAttack 82.2 1265.6 89.3 890.6 85.9 1533.0 43.3 2712.2 56.6 1742.8 70.2 1194.4 33.3 2685.7 22.3 3115.6
DSA 98.5 218.5 99.6 107.7 94.6 694.3 81.0 1307.8 85.4 617.0 90.8 393.0 57.7 1733.0 35.6 2611.1
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Figure 10: Mean and variance of the confidence for the pre-
dicted labels.

We conduct experiments to validate our previous claims.
We randomly select 100 original images from ImageNet and
collect 100 adversarial examples generated by DSA. For each
query, we create several variants of the query image using
image manipulations such as rotation, adding noises, and
Gaussian blur. We calculate the mean and variance of the
confidence for the predicted labels of the query variants, as
shown in Fig. 10. We observe that the query variants of nor-
mal images have a higher mean confidence score and lower
variance than adversarial examples. Therefore, we can utilize
the difference in mean and variance of confidence scores to
detect the perturbations generated by DSA.

C Experiments on ImageNet-21k.

Due to the applications of large models and advanced model
architectures [51], we evaluate the performance of existing
attacks on ImageNet-21k [46].

ImageNet-21k is a superset of ImageNet, with about 15
million images. We select ConvNext [33], MobileVitv2 [38],
Deit3 [58], Swinv2 [32] as the target model, respectively.
These models are able to achieve excellent performance on
multiple vision tasks and have been widely used in applica-
tions such as mobile devices [38]. All of them are trained
on ImageNet-21k with the same classification categories as

Table 10: Average time consumption on attacking IncRes-v2

Methods Time Consumption(s)

QEBA-I 117.7
BAODS 106.3

BiasedBA 64.1
Prism 44.3

HybridAttack 26.1
DSA 13.5

ImageNet-1k, and can be accessed in the repository5.
The results are summarized in Table 9, and it can be seen

that DSA is able to achieve the highest ASR and the lowest
AvgQ in all tests. Under ℓ2 norm, compared to the second
best values, we see a maximum increase of 37.7% in ASR
(i.e., from 43.3% to 81.0%) and a maximum decrease of 7
times in AvgQ (i.e., from 890.6 to 107.7).

In addition, we observe a large difference in the effec-
tiveness of the attack when using the model with different
structures from the target model. For example, for the evalua-
tion of the ℓ∞ norm, DSA can achieve an ASR of 85.4% on
ConvNext, while only an ASR of 35.6% on Swinv2.

D Time Consumption

To comprehensively evaluate the attack performance, we
record the average time consumption of each attack under
the experimental setting in Sec. 5.2 with IncRes-v2 as the
target model on ImageNet. The results are shown in Table 10.
Compared with the second-best value, DSA takes almost half
of the time to complete the attack. We believe that the advan-
tage of DSA lies in two aspects. First, only a white-box attack
against one substitute model is needed to generate a candidate,
which results in little preparation for each query, requiring
neither additional training of auxiliary models [14, 27, 34]
nor the calculation of the sampling direction based on query
results [27, 56]. Second, benefiting from the high query effi-
ciency of DSA, we can find an adversarial sample with a few
queries, allowing the attack to be stopped in a short time.

5https://github.com/huggingface/pytorch-image-models

https://github.com/huggingface/pytorch-image-models
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