
Code is not Natural Language: Unlock the Power of Semantics-Oriented
Graph Representation for Binary Code Similarity Detection

Haojie He1, Xingwei Lin2, Ziang Weng1,
Ruijie Zhao1, Shuitao Gan3, Libo ChenB1, Yuede Ji4, Jiashui Wang2, and Zhi Xue1

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University 2Ant Group
3Laboratory for Advanced Computing and Intelligence Engineering 4University of North Texas

{sgfvamll, ziangweng, ruijiezhao, bob777, zxue}@sjtu.edu.cn,
{linyi.lxw, quhe}@antgroup.com, ganshuitao@gmail.com, yuede.ji@unt.edu

Abstract
Binary code similarity detection (BCSD) has garnered sig-
nificant attention in recent years due to its crucial role in
various binary code-related tasks, such as vulnerability search
and software plagiarism detection. Currently, BCSD systems
are typically based on either instruction streams or control
flow graphs (CFGs). However, these approaches have limita-
tions. Instruction stream-based approaches treat binary code
as natural languages, overlooking well-defined semantic struc-
tures. CFG-based approaches exploit only the control flow
structures, neglecting other essential aspects of code. Our
key insight is that unlike natural languages, binary code has
well-defined semantic structures, including intra-instruction
structures, inter-instruction relations (e.g., def-use, branches),
and implicit conventions (e.g. calling conventions). Motivated
by that, we carefully examine the necessary relations and
structures required to express the full semantics and expose
them directly to the deep neural network through a novel
semantics-oriented graph representation. Furthermore, we
propose a lightweight multi-head softmax aggregator to effec-
tively and efficiently fuse multiple aspects of the binary code.
Extensive experiments show that our method significantly
outperforms the state-of-the-art (e.g., in the x64-XC retrieval
experiment with a pool size of 10000, our method achieves a
recall score of 184%, 220%, and 153% over Trex, GMN, and
jTrans, respectively).

1 Introduction

Binary code similarity detection (BCSD) is a fundamen-
tal task that determines the semantic similarity between
two binary functions. It serves as a crucial component in
addressing various important challenges, including retriev-
ing known vulnerable functions in third-party libraries or
firmware [11, 15, 26, 29, 42], recovering library function sym-
bols in statically linked binaries [9,10,27], detecting software
plagiarism [25], detecting software license violations [17],

BCorresponding author.

(a) Instruction Stream-based (b) CFG-based

Figure 1: Two lines of works on code semantics learning.

and identifying malware code snippets [4]. Nevertheless, it
is very challenging to develop general and efficient detec-
tion methods. On one hand, two semantically identical code
snippets may exhibit entirely different syntax representations,
particularly when a piece of source code is compiled into
different instruction set architectures. On the other hand, two
semantically different snippets can possess similar syntax
representations. Thus, understanding the high-level semantic
features of code is the key to effectively performing BCSD.

Existing works can generally be classified into two direc-
tions, i.e., instruction streams-based and control flow graph
(CFG)-based, as illustrated in Figure 1.

Instruction streams-based methods treat instruction
streams as if they were natural language sentences and
consecutively introduce natural language processing (NLP)
techniques, such as long short-term memory (LSTM) net-
works [45], self-attentive networks [29], large language mod-
els [1], and sophisticated pre-training techniques [33, 40, 43].
The state-of-the-art methods in this direction leverage spe-
cially designed pre-training tasks, such as jump target predic-
tion [40] and block inside graph detection [43], to enable the
deep neural network models to grasp code semantics. How-
ever, the pre-training process is expensive as it relies on large
language models and large-scale datasets. In addition, the
pre-training tasks can usually be solved reliably and fast by
traditional program analysis algorithms. Therefore, instead
of teaching models to solve these tasks based on a low-level
representation, it may be more beneficial to recover these

well-defined semantic structures using traditional methods
and present them to deep neural networks to learn higher-level
semantics. Moreover, existing work focuses on learning only
limited aspects of code, such as control flow structures or
contextualized syntax probabilities.

CFG-based methods mainly leverage the graph neural
networks (GNN) and typically take CFGs as the input, which
are widely recognized as crucial features in analyzing binary
code [2,10,11,14]. Recent works [18,20,26,28,43,44] in this
direction combine NLP-based methods to learn basic block
features with GNNs to capture control flow characteristics.
Some of them have achieved state-of-the-art [26, 44]. How-
ever, the reliance on NLP-based methods makes them suffer
from the same predicament as the previous direction of work.
Other works seek to exploit additional code semantics beyond
the control flow, such as enhancing the CFG with inter-basic-
block data flow edges [15] and incorporating data flow graphs
(DFGs) [16]. These works have taken an involuntary step
towards utilizing full semantic structures of code.

Overall, the stream representation with NLP-based meth-
ods is adopted by state-of-the-art works in both directions.
Although the instruction streams and natural language sen-
tences are similar in syntax, they differ implicitly:

(i) First, natural languages are ambiguous and weakly struc-
tured while the binary code has well-defined structures, se-
mantics, and conventions. For instance, accurately parsing
the syntactic dependency in natural language sentences is
challenging, while it is easy in binary code.

(ii) Second, reordering instructions or moving instructions
between basic blocks is feasible, which suggests that binary
code should be represented in a more flexible representation
rather than sequences. In fact, instructions are often reordered
and moved around basic blocks by the compiler for optimiza-
tion. However, there is no well-defined way to reorder words
in natural languages while preserving the semantics.

(iii) Third, natural languages are designed for effectively
exchanging information while binary code is designed to ease
the machine execution. For instance, most ‘words’ in assem-
ble languages are ‘pronouns’. When instructions use registers
or memory slots, they indeed use the value temporarily cached
inside them. The exact registers or memory slots used to cache
the value are semantics-independent.

These differences suggest that treating code as natural lan-
guage is suboptimal. In light of this, we suggest the devel-
opment of a binary code representation that is capable of (1)
revealing intra-instruction structures that show how operands
are used by operators, (2) revealing inter-instruction relations
such as def-use, control flow, and necessary execution or-
der, (3) excluding semantics-independent elements such as
the registers used to temporarily cache data and unnecessary
execution order restriction, and (4) encoding other implicit
knowledge, e.g., calling conventions. (See §2 for detail.)

In this paper, we propose a novel binary code represen-
tation, named semantics-oriented graph (SOG), which pos-

sesses the aforementioned capabilities. Based on SOG, we
adopt a GNN-based approach for semantics learning. While
replacing the CFG with the SOG in the existing GNN-based
framework offers certain advantages, it fails to unleash the
full potential of the SOG. We further identify a short slab of
the existing GNN-based framework: the graph aggregation
module. SOG encodes multiple aspects of code. Considering
that different aspects of the SOG should be useful to distin-
guish one function from different types of other functions, we
propose a novel multi-head softmax aggregator to fuse them
simultaneously. This aggregator is powerful yet lightweight.

By integrating the SOG and the multi-head softmax aggre-
gator, we build an effective and efficient binary code similarity
detection solution, HermesSim. HermesSim first lifts a binary
function to the SOG representation and then utilizes the graph
neural network to aggregate neighbor information for each
node. After that, the multi-head softmax module is applied to
generate a graph embedding vector. The similarity between
functions is then approximated by the similarity between their
embedding vectors. Besides, HermesSim adopts the margin-
based pairwise loss [21] along with the distance-weighted
negative sampling strategy [41] for training. It is noteworthy
that HermesSim has two orders of magnitude fewer parame-
ters than previous methods based on large language models.

In summary, we make the following contributions:
• We propose a novel binary code representation named

semantics-oriented graph (SOG) for BCSD, and we detail
its construction. This representation not only reveals com-
plete semantic structures of binary code but also discards
semantically independent information. To the best of our
knowledge, this is the first investigation in this direction.

• We design a novel multi-head softmax aggregator to prop-
erly aggregate multiple aspects of SOG. This module sig-
nificantly enhances the performance of our system.

• We design and implement HermesSim, an effective yet effi-
cient solution for binary code similarity detection.

• We perform extensive experiments and demonstrate the ef-
fectiveness of SOG over previous mainstream binary code
representations. Moreover, we conduct both laboratory ex-
periments and real-world 1-day vulnerability searches, es-
tablishing HermesSim’s significantly superior performance
over the state-of-the-art methods.

Open Source. All our artifacts are available at https://
github.com/NSSL-SJTU/HermesSim.

2 Background and Motivation

This section aims to answer two questions: why do we pro-
pose the SOG, and what is it? We first discuss the additional
semantics that the sequence representation imposes on NLP-
based methods to learn (§2.2). Then we elaborate on the
implicit structures of binary code (§2.3). Finally, we present
an intuitive explanation of the SOG (§2.4).

https://github.com/NSSL-SJTU/HermesSim
https://github.com/NSSL-SJTU/HermesSim

(a) Original instructions with positional encodings.

(b) Swapping the first two instructions.

(c) Shifting instructions.

(d) Replacing the uses of the register r0 with r2.

Figure 2: Three semantically equivalent variants of a simple
instruction stream snippet.

To avoid unnecessary complexity, we present ideas on a toy
intermediate representation (IR) (§2.1). The ideas developed
can be easily extended to real-world representations.

2.1 A Toy IR

The toy IR is mostly self-explanatory. As shown in Figure
3a, the toy IR includes four types of tokens, i.e. registers
which are of the form ri (e.g. r1), instruction operators which
appear as the first token of the instruction or the first token on
the right of the equation symbol (e.g. STORE, CALL), integer
literals and labels (e.g. L1). Labels mark the start of basic
blocks and are used by branch instructions.

The semantics of the code snippet in Figure 3a is ex-
plained below. Labels L1 at line 1, and L2 at line 7 indi-
cate the start of two basic blocks separately. The instruction
r0 = LOAD 0x1000 loads the value of the memory slot at
address 0x1000 and places it into the register r0. Following
that, r1 = ADD r1, 2 stores the value of expression r1 + 2
into the register r1. STORE r0, r1 stores the value of r1
into the memory address indicated by r0. The instruction
r3 = CALL Foo, r0 invokes the subroutine Foo with r0
as the only argument and places the returned value into r3.
BR L2 jumps to the basic block marked by the label L2 di-
rectly. Finally, RET r3 returns the control to the caller with
the return value set as the value stored in r3.

2.2 Semantically Equivalent Variants

NLP-based methods consume a sequence of tokens. Ab-
stractly, each token contains two aspects of information, i.e.,
its token content and its position in the sequence. Take the
most famous Transformer-based [38] models as an example.
For each input token, its content as well as its position in the
sequence are first transformed into two embedding vectors
respectively and then summed, as shown in Figure 2a. And
the resulting embedding set of tokens is fed to the subsequent
networks. Thus, modifying either token content or token posi-
tion results in different inputs of NLP-based models. If such
modification does not change code semantics, these models
need to learn from it.

Figure 2 shows three trivial semantically equivalent trans-
formations that the sequence representation imposes on NLP-
based models to learn. Trans.1, the first two instructions of
this code snippet can be swapped without modifying the code
semantics. However, this transformation results in changes
in the produced embedding sets. For instance, the token em-
bedding of the token LOAD is now added with the position
embedding of the index 5 (as shown in Figure 2b) while it
is originally added with the position embedding of the in-
dex 2. Thus, the model needs to learn that the order of some
instructions can be adjusted without modifying the seman-
tics while others cannot. Trans.2, the entire code snippet is
placed at a different position in the sequence, e.g., due to
the insertion of some dummy instructions at the beginning
of the sequence. In figure 2c, the position embeddings of all
tokens are changed, resulting in a totally different embedding
set. The model needs to learn that the same sub-sequence of
tokens in different positions are semantically equal. Trans.3,
all the uses of the register r0 are substituted by a previously
unused register r2. The model needs to learn that the choice
of exact registers used are semantics-independent. On the
contrary, the data flow passing through registers is an integral
aspect of code semantics.

For these transformation rules to be learned by models and
extended to real-world cases, a lot of related samples need to
be fed. For instance, if only code snippets in Figure 2a and
Figure 2c are given, models may learn that the given code
snippet at position 0 and position k are semantically equiv-
alent, while it is not necessary for them to learn if similar
rules hold when another code snippet is given or the snippet is
placed at another position. In addition, it costs extra network
parameters and layers. Overall, learning these additional se-
mantics makes the NLP-based approaches more expensive
and more difficult to generalize.

2.3 Implicit Structures of Binary Code

The transformation 3, mentioned in Section 2.2, suggests
that the def-use relations between instructions constitute the
entities of the code semantics. Apart from these relations,

(a) Linear Representation in
the toy IR

(b) ISCG: Instruction-based
Semantics-Complete Graph

(c) TSCG: Token-based
Semantics-Complete Graph

(d) SOG: Semantics-Oriented
Graph

Figure 3: A proof-of-concept example of the step-by-step
lifting of code from the linear representation to the Semantics-
Oriented Graph.

binary code contains other semantic structures, which can
be grouped into three categories: intra-instruction structures,
inter-instruction relations, and function-level conventions.

Intra-instruction Structures. Instructions have internal
structures. For instance, the instruction add r1, r2, r3
in MIPS can be interpreted as the add operator uses the
value cached in the register r2 and r3 and stores the pro-
duced value into the register r1. Meanwhile, the instruction
add rax, rdx in x86-64 can be interpreted as the add op-
erator uses the value cached in the register rax and rdx, but
stores its outputs in both rax and eflags registers.

Inter-instruction Relations. Inspired by the ideas devel-
oped in the sea of nodes IR [37], we divide relations between
instructions into three categories: data (def-use relations),
control (branches), and effect (execution order).

Data relations reveal the fact that some instructions use
values defined by others. Control relations define the control
flow on the basic block level. Effect relations, which have
been overlooked by previous work, establish restrictions on
the execution order between instructions. Effect relations are
necessary since data and control relations do not comprise
the full code semantics. For instance, in the code snippet
depicted in Figure 3a, no (explicit) data or control relations
exist between the instructions on line 4 and line 5. If not
introducing additional restrictions, we could swap these two
instructions. However, this is dangerous, as the invocation of

Foo may use or modify the same memory slot as the STORE.
To express the third type of relations, an alternative method

that mimics the traditional control flow graph representation
sequences the instructions in each basic block to restrict the
execution order. However, this representation imposes exces-
sive restrictions. For example, in Figure 3a, the instruction on
line 4 cannot be swapped with any of the preceding two due
to the constraint of the def-use relations (the instruction on
line 4 uses r0 and r1, which are modified by the instructions
on line 2 and line 3 respectively). Meanwhile, the instructions
on line 2 and line 3 can be swapped without affecting the code
semantics, which suggests a more flexible representation.

For the pursuit of both effectiveness and efficiency, our
goal is to incorporate only the necessary execution order
into our final representation. Thus, we adopt the effect model,
which models the additional execution order restriction as
potential data flows. In the example given above, the STORE
instruction modifies a memory slot, while the subroutine Foo
invoked by the CALL instruction may read from or write to the
same memory slot, which composes a potential data flow. To
reveal such relations, inspired by the Click’s IR [5, 6], we use
an abstract temporary to represent each set of memory slots
concerned. Instructions that may read values from or write
values to that set of memory slots are considered to use or
define the corresponding temporary.

It is worth noting that the constructed effect flows are re-
lated to the analysis ability. For instance, in the last example,
if we figure out that the invoked subroutine does not interact
with the memory or that the STORE instruction only modifies
the current stack frame which will not be accessed by any sub-
routines, no effect relations needed to be introduced between
them.
Function Level Conventions. Most real-world binary func-
tions adhere to various conventions, including calling conven-
tions, the layout of stack frames, and other details needed for
a binary function to work properly on a certain system. These
conventions are also indispensable parts of code semantics.
Specifically, calling conventions define which registers are
served as the call arguments and the return values, which aid
in the recovery of the def-use relations of call instructions. Be-
sides, functions store temporary variables in their own stack
frames which will not be accessed by other functions. This
understanding contributes to refining the effect relations.

2.4 Step to the Semantics-Oriented Graph
The semantics-preserving transformations listed in section 2.2
provide hints on properties that an ideal binary code repre-
sentation should possess. First, the representation should not
assign a position identifier to each instruction or token, as
the semantics is independent of position. Therefore, a graph
representation would be more appropriate. Second, the repre-
sentation should not fully adopt the execution order to restrict
instructions since a significant portion of execution order re-

strictions is machine-dependent but semantics-independent.
Thus, we adopt the effect model to restrict only the neces-
sary execution order. Third, some token contents are indepen-
dent of semantics, while the relations between instructions
or tokens carry the semantics. We thus aim to eliminate the
semantics-independent tokens and model semantic relations.

Based on these analyses, we propose a graph-based bi-
nary code representation, named semantics-oriented graph
(SOG). SOG reveals well-defined semantic structures, purges
semantics-independent elements, and is capable of encoding
implicit conventions of binary functions. Intuitively, SOG can
be constructed from a linear representation in three steps:

First, we lift the sequence of instructions into a graph rep-
resentation and reveal the relations between instructions as
edges. Figure 3b shows an example of such a representation
lifted from the code snippet in Figure 3a. This graph can be
obtained by enhancing the data flow graph (DFG) with addi-
tional control flow and effect flow edges. We name this rep-
resentation the instruction-based semantics-complete Graph
(ISCG), as it carries exactly the same semantic information
as the original linear representation and takes instructions as
nodes. One interesting thing is that we do not mark which
basic block an instruction belongs to, because instructions
can actually float over basic blocks without changing the se-
mantics, as long as these three relations are respected.

Second, we reveal intra-instruction structures by splitting
instructions into tokens. This step simplifies the generation
of node embeddings and eases the elimination of semantics-
independent elements. The intra-instruction structures can be
interpreted as another kind of data relations. For example, we
can interpret the instruction r0 = LOAD 0x1000 as the LOAD
token using the 0x1000 token and the r0 token using the pro-
cessed result of the LOAD token. By further refining the inter-
instruction relations on the exact instruction tokens which
introduce them (i.e., control and effect relations are defined
on instruction operators, while data relations are defined on
the register tokens or others that temporarily cache data), and
labeling the positions of the operands on the edges, we obtain
the graph shown in Figure 3c. Edges with omitted labels in
this graph have the default label 1 (i.e., these relations are built
on their first operands). Figure 3c reveals semantically related
inter-instruction relations and intra-instruction structures. We
name this representation the token-based semantics-complete
graph (TSCG).

Third, since the choice of temporary stores (e.g., registers
or stack slots) to cache data between instructions is semanti-
cally independent, we further remove these nodes and connect
their inputs and outputs directly, forming Figure 3d, the final
representation that this study targets. It is worth noting that we
preserve the use of uninitialized stores. Uninitialized stores
mostly carry the value passed from the caller routine. If the
calling convention of the current function is known, the names
of uninitialized stores can be used to infer the position of the
argument among the argument list. Thus, the uninitialized

stores actually carry semantic information and are preserved.
SOG is capable of encoding various function-level con-

ventions. For example, identified calling arguments can be
revealed by simply adding data edges from the calling node to
the argument nodes. To reveal the conventions of stack frames,
we can model the effect using two abstract temporaries. One
stands for the stack frame of current invocation and the other
stands for all other memory regions. Thus, no effect relations
will be built between the instructions that access only the
current stack frame and the instructions that do not access it.

3 Details of SOG and its Construction 1

The construction of the SOG can be finished in a similar
procedure that is used to convert linear IRs to the SSA form.
To promote reader understanding, we divide the SOG into
three subgraphs and detail their construction separately.

To construct the control subgraph, dummy BR instructions
are inserted at the end of basic blocks when necessary to
ensure that each basic block ends with a branch instruction.
Branch instructions are then treated as prolocutors for basic
blocks, and are lifted to the nodes of the graph. Control flow
edges are added from branch targets to branches. To avoid
ambiguity, each node is treated as defining only one value for
each type of relation. For each conditional or indirect branch
instruction that has multiple successors, we treat its outputs
as a concatenated value and incorporate a PROJ node for each
successor to project the concatenated value into a unit one for
that particular successor. Figure 4a shows an example of such
a case, where CBR denotes a conditional branch.

The data subgraph can be constructed in the procedure of
def-use analysis. During the analysis of the def-use relations
of each instruction, we first construct a node with the instruc-
tion operator as the node type, and then add directed edges,
one per operand, from this node to some preceding node that
defines the value of that operand. If such a preceding node
cannot be found, that is, the operand is an integer literal or
a register that has not been defined before, a new node that
represents the integer literal or the uninitialized register is
introduced. After that, we mark the corresponding operand
as defined. In this way, all instructions referring to the same
undefined operand connect to the same operand node.

Analyzing the def-use relations at the binary code level
faces the alignment challenge. That is, the value in one
operand may be defined by multiple instructions simulta-
neously. For instance, consider the following code snip-
pet: mov eax, 0xAAA; mov al, 1; mov edx, eax. The
value of the eax register referred by the third instruction is
defined by both the preceding two instructions (in that code
site, eax=0xA01). To address this issue, another type of node,
named PIECE, is introduced to abstractly concatenate multi-

1Inspired by the sea of nodes IR [37] (the PROJ node), the P-code of
Ghidra [31] (the PIECE node), and the Click’s IR [6] (structure of PHIs).

(a) CBR+PROJ (b) PIECE (c) PHI

Figure 4: Examples of special nodes in SOG.

ple values. The lifted graph of the above code snippet can be
found in Figure 4b.

The effect subgraph can be constructed in the same way as
the data subgraph since the effect can be considered as a spe-
cial kind of value that is used and defined by special instruc-
tions. Generally, two effect models can be identified [5,6]: the
memory effect and the I/O effect. Specifically, instructions
that may load value from memory are considered as using the
memory effect. And instructions that may alter the state of the
memory are considered as both using and defining the mem-
ory effect. According to this definition, STORE and CALL are
the only instructions in the toy IR that both use and define the
memory effect and the LOAD instructions also use the memory
effect. The I/O effect can be constructed in a similar manner.

Phi Nodes. It is worth noting that the SOG is naturally of
the static single assignment (SSA) form, as it defines one
node for each instruction. To keep the conciseness, we need
to introduce necessary phi instructions for both data values
and effect values. Since the semantics of the phi instructions
depends on the control flow, the first use of the phi node
is set as the branch node of that basic block where the phi
instruction resides in. Other uses of the phi node are set in
the same order as the order of outgoing edges of the branch
node. Thus, when a branch node receives control flow from its
i-th outgoing edge, the phi node which uses that branch node
can select the i+1-th input as the output. An example of phi
node is shown in Figure 4c. The corresponding code snippet
is r0=0x1; CBR A, L3; L2: r0=0x2; BR L3; L3: XXX.

Refer to Appendix A for the pseudo-code of our graph
construction algorithm.

4 BCSD With SOG

4.1 Framework

Figure 5 illustrates the overall framework of our system. Each
input binary function is first lifted to the proposed semantics-
oriented graph, in which each node is attributed with a token
and each edge has a type label and a position label. After
normalization, we transform each node and edge into learn-
able embeddings. Following the common practice of previous
work [16, 21, 44], we use GGNN [22] to aggregate neigh-
bor structures of each node. Next, we employ the multi-head
softmax aggregator to generate the graph embedding. Finally,

we combine our graph embedding model into a Siamese net-
work [3], enabling it to approximate the similarity score of a
pair of functions by the similarity of their graph embeddings.
Training We adopt margin-based pairwise loss [21] with the
distance-weighted negative sampling strategy [41] for train-
ing. Mini-batches are gathered by first sampling N different
function symbols and then sampling 2 functions with different
compilation settings for each symbol. The negative sampling
process of each function gb

a is formulated below, where a or k
indicates the index of a function symbol in the mini-batch, b
or l indicates the index of a binary function of that symbol,
ω

b,a
l,k denotes the probability of choosing the sample gl

k as the
negative sample for gb

a, and dim denotes the dimension:

MiniBatch :
{

g1
1,g

2
1,g

1
2,g

2
2, ...,g

1
N ,g

2
N
}

(1)

wb,a
l,k =−(dim−2)d(gl

k,g
b
a)−

n−3
2

(1− 1
4

d(gl
k,g

b
a)

2) (2)

[ωb,a
l,k]l∈{1,2}, k ̸=a = softmax([wb,a

l,k]l∈{1,2}, k ̸=a) (3)

We use the negative of cosine similarity as the distance met-
ric (d in Eq. 2). The training loss is calculated as follows:

spos
i, j = 1−m− sim(g j

i ,g
3− j
i) (4)

sneg
i, j = sim(g j

i , neg_sampling(g j
i))−m (5)

L =
N

∑
i=1

2

∑
j=1

(max(spos
i, j ,0)+max(sneg

i, j ,0)) (6)

where m ∈ [0,1] is a margin parameter, j ∈ {1,2}.

4.2 Graph Normalization and Encoding
Before we can harness the power of the graph neural network,
we first need to transform node and edge attributes into em-
bedding vectors. In SOG, each node is attributed with a token.
We can directly map each token to a learnable embedding vec-
tor. Each edge has a type attribute (data, control, or effect) and
a position attribute (the index of the corresponding operand).
We separately transform the type and the position attributes
into two learnable embeddings and add them to form the final
edge embedding. The model needs to learn a vocabulary of
tokens and labels.

However, too many different tokens (e.g. different integer
literals) and position labels exist in binary code so it is nearly
impossible to include all of them in the vocabulary and to
require them to be presented in the training dataset. Thus,
some tokens or labels are actually out of the vocabulary.

To address this problem, we assign each token a token type.
Specifically, we identify three types of tokens: instruction
tokens, integer literals, and register tokens. Since different
architectures have different conventions in register use, we
further divide register tokens into several sub-types accord-
ing to the architectures. For each type of token, we identify
the most common tokens and include them in the vocabulary

Figure 5: The overall framework of HermesSim.

Figure 6: Structure of the proposed multi-head aggregation
module.

of the model, and normalize other tokens. For instance, all
obscure instruction tokens are now normalized as a general
‘instruction token’ and all rarely used integer literals are nor-
malized as an ‘integer literal’. In this way, the model can learn
unified semantics for the less frequent tokens of each type.

4.3 Local Structure Capture

After normalizing and then encoding the SOG into an at-
tributed graph, we use bidirectional GGNN layers [22] to
capture the neighbor structures of each node. Let hl

u denote
the output embedding of node u at the l-th GGNN layer and
ev,u denote the edge embedding of the direct edge (v,u), then

m_inl
u = ∑

v∈In(u)
MLPin(hl

u | hl
v | ev,u) (7)

m_outl
u = ∑

v∈Out(u)
MLPout(hl

v | hl
u | eu,v) (8)

hl+1
u = GRU(hl

u, m_inl
u +m_outl

u) (9)

where In(u) and Out(u) denote sets of incoming and outgoing
neighbors of node u respectively, the | symbol denotes vector
concatenation, MLP denotes the multilayer perceptron, and
GRU denotes the gated recurrent unit.

4.4 Multi-head Softmax Aggregator

The output of r GGNN layers are a set of node embeddings
{hr

u} with each of them encoding r-hops neighbor structures.
The final step of the function embedding module is to aggre-
gate all node embeddings into a graph embedding. We adopt

the proposed multi-head softmax aggregator, which is adapted
from the softmax aggregator [19].

The softmax aggregator can be formulated as:

SoftmaxAggr(H |t) = ∑
hr

u∈H

exp(t⊙hr
u)

∑hr
v∈H exp(t⊙hr

v)
⊙hr

u (10)

where the vector t is the learnable parameters that control the
softness and H is the set of all node embeddings in one graph.
The final graph embedding is an elementwise weighted sum
of node embeddings.

We extend the softmax aggregator by introducing multiple
heads. Each head is allowed to learn a graph embedding in a
different representation space and give attention to different
sets of nodes and features. As shown in Figure 6, the input
node embeddings of each head are first transformed into a
different representation space through a Linear layer. A Relu
layer is then applied to filter features deterministically, which
encourages different heads to learn from a different set of
features. Next, the Layer Normalization is applied to force
each node to select some outstanding feature words while
weakening some others, further encouraging node features
to fuse in a more non-linear fashion. After that, the original
Softmax aggregator is applied. Finally, the output embeddings
of all heads are concatenated and another Linear layer is ap-
plied to generate the final embedding. The computation flow
is formulated below:

xk
u = Relu(Lineark(hr

u)) (11)

gk = SoftmaxAggr(

{
xk

u−E[xk
u]√

Var[xk
u]+ ε

|u ∈ V

}
|tk) (12)

g = Linear(g1|g2| . . . |gh) (13)

where V is the set of all nodes in the graph, k marks the
index of the head, h is the number of total heads, and ε is a
small value added for numerical stability. The computation
of multiple heads can be processed in parallel.

5 Evaluation

In this section, we address the following research questions:

• RQ1: How effective is HermesSim in BCSD tasks com-
pared to baselines? (§5.2)

• RQ2: Can SOG surpass the existing representations and the
straw-man representations proposed in Section 2? (§5.3)

• RQ3: Can the multi-head softmax aggregator outperform
other baseline aggregators? (§5.3)

• RQ4: How efficient is HermesSim in graph construction,
training, inferring, and searching? (§5.4)

• RQ5: Can HermesSim effectively recall 1-day vulnerabili-
ties in real-world scenarios? (§5.5)
We also investigate the effect of function sizes on the per-

formances of HermesSim and other baselines (Appendix C).

5.1 Implementation and Experiment Setup

Our graph construction module is built upon the Ghidra [31],
a powerful open-source decompiler. We utilize Ghidra to dis-
assemble binary functions and lift them to its Pcode IR, based
on which we then construct the SOG. Our graph embedding
module is implemented using Pytorch [32] and PyG [13].
Normalization Parameters. For the instruction tokens, we
select the 55 most frequent tokens from the total of 59 tokens
appearing in the training dataset. As for the integer literals and
register tokens, we include only those tokens that are present
in at least one percent of functions in the training dataset.
Model Hyper-params. The number of GGNN layers is 6
and the message passing networks MLPin and MLPout are
both of 3 layers. The node embedding size is 32 and the
edge embedding size is 8. The graph embedding size of each
aggregation head is 64 and the number of heads is 6.
Training Setup. For the training process, we use the method
described in Section 4.1 to randomly sample each mini-batch.
The batch size (N) is 80, and the margin (m) is 0.1. The Adam
optimizer is used with a learning rate of 0.001. The initial
random seed used to sample mini-batches remains the same
across all training campaigns.
Dataset. We evaluate our method on Dataset-1 released by
the previous study [27]. This dataset consists of 257K, 13K,
and 522K binary functions in its training, validation, and test-
ing set respectively. These functions come from three different
architectures (x86, ARM, and MIPS), two different bitness
modes (32 and 64 bits), 5 optimization levels (O0, O1, O2, O3,
and Os), and are compiled by 2 different compiler families
(GCC and CLANG), each with four different versions.

This dataset relies on IDA Pro 7.3 [35] to recover the con-
trol flow and the boundaries of basic blocks and then uses Cap-
stone [34] to disassemble the raw bytes of each basic block.
To minimize the potential impact of underlying disassembly
capabilities, we use the control flow and the boundaries of the
basic blocks presented in the original dataset, relying only on
Ghidra to disassemble the raw bytes of each basic block.

To enable comparison with the previous work supporting
limited architectures, we filter out a sub-dataset that con-

tains only binary functions of the x64 architecture. These
approaches are both trained and tested on the x64 sub-dataset.
Others that support multiple architectures are trained on the
whole dataset and also tested on the x64 sub-dataset.
Testing. We evaluate our method on the binary function re-
trieval task, i.e. given a query function f and a pool of N
different binary functions, our goal is to retrieve the only
ground truth function that is compiled from the same source
code as the query function. We evaluate four subtasks: cross-
architecture and bitness retrieval (XA), cross-optimization
level retrieval (XO), cross-compiler, compiler version, and op-
timization level retrieval (XC), and cross-architecture, bitness,
compiler, compiler version, and optimization level retrieval
(XM). Additionally, we evaluate these subtasks with various
pool sizes ranging from 2 to 10000. For each setting, we
randomly select 1000 query functions.
Metrics. RECALL@1 and mean reciprocal rank (MRR) are
used as our evaluation metrics. RECALL@1 is the percentage
of queries that successfully recall the ground truth function
as the most similar function. MRR is computed by:

MRR =
1
||Q || ∑

q∈Q

1
rq

(14)

where Q is the set of all queries and rq is the rank of the
ground truth function of the query q.

5.2 Comparative Experiments

Baselines. We select the following baselines2:
• Asm2Vec [9] proposes to model the CFG as multiple execu-

tion traces and then uses a variant of the PV-DM [30] NLP
model to generate function embeddings. This method does
not support cross-architecture tasks.

• SAFE [29] first builds an instruction2vec (i2v) model to
map instructions to embedding vectors and then uses the
self-attentive network proposed in [23] to aggregate instruc-
tion embeddings into a function embedding.

• Graph Matching Network (GMN) [21] is based on a variant
of the GNN network that jointly reasons on a pair of CFGs.
The existing study [27] shows GMN surpasses other GNN
models and is among one of the state-of-the-art methods.

• Trex [33] utilizes the hierarchical Transformer based model
to learn execution semantics from micro traces and transfer
the learned semantic knowledge for BCSD tasks.

• jTrans [40], one of the state-of-art BSCD methods, manages
to embed control-flow information into Transformer and
pre-trains their model on a large-scale dataset consisting of
about 21 million binary functions for training. This baseline
supports only the x86 architecture.
For baselines other than jTrans, we use their original imple-

mentations with patches and settings provided in the previous
2Methods like Vulhawk [26] are not compared because their main contri-

butions do not lie in enhancing the semantics learning.

Table 1: Results of the comparative experiments on the full dataset for XA, XO, XC, and XM subtasks, and on the x64 dataset for
XO and XC subtasks (denoted as x64-XO and x64-XC respectively). XM and x64-XC subtasks are evaluated with two different
pool sizes (i.e., 100 and 10000). Other subtasks are evaluated with a pool size of 100. The scores (%) are RECALL@1/MRR.

XA XO XC XM x64-XO x64-XC N Params
100 100 10000 100 100 10000

SAFE 13.4/26.4 21.1/27.5 20.1/27.6 9.9/18.9 1.4/2.32 18.4/26.2 17.2/24.9 8.1/9.5 8.93M
Asm2Vec - 24.6/30.1 25.8/31.7 - - 31.8/37.7 29.0/35.0 13.5/16.6 -

Trex 31.2/42.1 46.8/53.1 45.4/52.5 24.4/34.4 8.6/11.1 51.5/57.7 45.9/53.2 26.2/30.1 61.8M
GMN 72.6/81.7 50.3/58.1 52.3/59.8 44.7/53.7 10.5/15.9 52.4/60.2 48.0/56.2 21.9/26.7 60.5K
jTrans - - - - - 66.9/76.0 65.0/73.8 31.4/37.4 87.9M

HermesSim 95.5/97.5 81.0/85.3 78.0/83.2 74.5/80.2 43.8/50.8 81.9/86.0 75.6/80.7 48.1/54.6 388K

(a) XA (b) XO (c) XC

(d) XM (e) x64-XO (f) x64-XC

Figure 7: MRR scores on different pool sizes.

study [27]. To compare with jTrans, we finetune the released
pre-trained model on our dataset using the default settings.

Results. As shown in Table 1, HermesSim outperforms all
baselines by a large margin in all settings. Specifically, on
the x64 dataset, HermesSim achieves a recall rate that is
22%, 16%, and 53% higher than the state-of-the-art approach,
jTrans, in XO, XC (poolsize=100), and XC (poolsize=10000)
experiments, respectively. As illustrated in Figure 7e and 7f,
jTrans can only achieve comparative results to HermesSim
when the pool size is extremely small (i.e., 16), which is not
common in real-world applications. On the full dataset, Her-
mesSim improves the recall by 132%, 161%, 149%, 167%,
and 417% over GMN in XA, XO, XC, XM (poolsize=100),
and XM (poolsize=10000) experiments, respectively.

NLP-based methods (SAFE and Trex) perform poorly

in the XA subtask. GMN generally outperforms SAFE,
Asm2Vec, and Trex, especially in the XA subtask. This can
be attributed to the cross-architecture nature of CFGs. How-
ever, GMN performs worse than Trex in XO and XC subtasks
when applying large pool sizes. One reason could be that
CFGs only explicitly encode the control flow aspect, and are
thus likely to collide when searching in large pools.

The last column of Table 1 shows the number of total pa-
rameters of each approach (excluding parameters of optimiz-
ers). NLP-based methods, namely, jTrans, Trex, and SAFE
have at least one order of magnitude more parameters than
graph representation-based methods. Trex and jTrans, which
are based on large language models, have 159 and 226 times
more parameters than our model, respectively.

Figure 7 demonstrates that HermesSim’s performance re-
mains more stable than baseline approaches as the pool size

Table 2: Results of the ablation study on the full dataset for XA, XO, XC, and XM subtasks, and on the x64 dataset for XO and
XC subtasks. The second row lists the pool sizes. The scores (%) are RECALL@1/MRR.

XA XO XC XM x64-XO x64-XC

100 100 10000 100 100 10000

MSoft
CFG-OPC200 92.8/95.6 67.7/73.9 67.1/73.2 62.9/69.3 32.0/38.7 69.9/75.7 64.2/70.3 36.8/42.9
CFG-PalmTree - - - - - 70.8/76.4 66.1/72.3 36.3/43.0

CFG-HBMP 94.3/96.6 69.5/75.8 68.9/74.9 65.3/71.9 33.7/40.6 72.0/77.4 67.2/73.0 39.0/45.5

MSoft

P-DFG 93.4/96.2 76.4/81.6 74.1/79.8 69.7/76.0 37.4/44.7 76.3/81.6 69.9/75.7 42.8/49.3
P-CDFG 94.6/96.9 77.2/82.5 75.3/80.8 71.1/77.3 38.6/45.9 77.2/82.4 72.4/77.8 43.6/50.5
P-ISCG 95.1/97.2 78.0/82.9 74.8/80.3 71.3/77.2 40.1/47.2 78.1/82.6 71.9/77.1 44.2/50.9
P-TSCG 95.5/97.4 79.2/83.6 76.2/81.7 73.2/78.9 41.3/48.8 79.1/83.7 73.5/78.7 46.4/52.9

Set2Set
P-SOG

89.5/93.0 67.2/72.2 64.5/69.9 61.2/66.9 29.8/36.6 69.2/73.7 60.7/66.1 37.3/43.1
Softmax 90.9/94.3 72.9/78.1 71.0/76.6 64.3/71.2 32.6/39.4 74.0/78.7 66.9/72.6 41.2/47.2

Gated 93.5/96.1 75.6/80.3 72.5/77.6 68.3/74.2 38.4/44.9 76.3/80.7 69.0/74.3 43.9/49.9

MSoft P-SOG 95.5/97.5 81.0/85.3 78.0/83.2 74.5/80.2 43.8/50.8 81.9/86.0 75.6/80.7 48.1/54.6

increases from 2 to 8192. The relative performance of Hermes-
Sim becomes even better than the state-of-the-art baselines
(i.e., jTrans and GMN) as the pool size increases (e.g., from
4.5 to 35.0 in XM subtask compared to the GMN as the pool
size increases from 2 to 8192).

5.3 Ablation Study

Baselines. To demonstrate the efficiency of the SOG repre-
sentation for BCSD, we select several promising representa-
tions from previous work that are not surpassed by others:
• CFG-opc200 is a CFG based binary function representation

using the opc200 manually crafted features as basic block
attributes. This representation is proposed by Marcelli et
al. [27] and shows advantages over previous Word2vec [30]
based methods [28].

• CFG-PalmTree aggregates unsupervised instruction embed-
dings generated by the PalmTree model [20] as the basic
block embedding. PalmTree is the state-of-the-art unsu-
pervised instruction embedding network. We follow the
practice of the original paper to use mean pooling as the
aggregator to obtain basic block embedding. This baseline
only supports the X86 architecture.

• CFG-HBMP use HBMP model [36] to compute the block
embedding end-to-end. This method is proposed by Yu
et al. [44] and performs better than previous pre-training
methods [28, 43] using Bert [7] or Word2vec [30].
In addition, we compare the SOG representation with straw-

man representations mentioned in Section 2.4:
• P-DFG3 takes instructions as nodes and def-use relations

between instructions as edges. We build the DFG based
on Ghidra’s Pcode IR and generate instruction embeddings

3The ‘P-’ prefix refers to ‘Pcode-based’.

through a bidirectional GRU layer end-to-end.
• P-CDFG is similar to the P-DFG representation except that

it integrates the control flow relations as additional edges.
• P-ISCG is the first semantics-complete graph proposed in

Section 2.4. The difference between ISCG and CDFG lies
in the introduction of effect flow edges. An example of
ISCG can be found in Figure 2b.

• P-TSCG is the second semantics-complete graph pro-
posed. Compared to the ISCG, it additionally reveals intra-
instruction structures. Figure 2c is an example of TSCG.
Our multi-head softmax aggregator is compared with:

• Softmax Aggregator [19] is the base model of our proposed
aggregator. It is a generalized version of both the Mean
Aggregator and the Max Aggregator.

• Gated Aggregator is proposed along with the GGNN by Li
et al. [22] and is used by several previous studies [21, 27].

• Set2set Aggregator is proposed by Vinyals et al. [39] and is
used by the related work [44]. This aggregator is based on
the iterative attention mechanism.
To compare with those baselines, we keep other parts of

HermesSim, tune only the hyper-parameters tightly related to
these methods, and report the best results found. For repre-
sentations, we tune the hyper-parameters of graph encoders
and the batch sizes within the constraint of GPU memory.
For aggregators, we tune the hyper-parameters inside these
modules, the final graph embedding size, and the batch sizes.

Observing that the result scores of some baselines are close,
we repeat the experiments in this subsection 10 times to miti-
gate the effect of randomness. Mean values are reported.
Results. Table 2 shows the results of the ablation study. The
first section of the table contains the results of baseline repre-
sentations, in which the CFG-HBMP method stably outper-
forms the other two methods. The second section shows the
results of the straw-man representations mentioned in Sec-

tion 2.4. The third section tests the effectiveness of baseline
aggregators on the proposed SOG representation. The last
section shows the results of our proposed method.

Compared to the baseline representation in the first section
of Table 2, the proposed SOG representation improves the
recall by around 10 percent in all subtasks except XA. XA is
the easiest subtask for the GNN and the graph representation-
based methods, in which even the CFG-opc200 method can
achieve a recall rate as high as 92.8%. And we observe that
the relative performance of the SOG over the CFG-HBMP
becomes better as the pool size increases from 100 to 10000
in both the XM subtask (from 9.2% to 10.1% in RECALL@1)
and the x64-XC subtask (from 8.4% to 9.1% in RECALL@1).

In the second section, the RECALL@1 and MRR scores of
P-DFG, P-CDFG, P-ISCG, and P-TSCG generally increase
successively, demonstrating that the reveal of control flow
relations, effect flow relations, and intra-instruction structures
can indeed improve the efficacy. The introduction of effect
flow edges slightly hurt the performance in the XC subtask
on both datasets when setting the pool size as 100. This may
be attributed to the dirty effect problem which we will discuss
later in Section 6. The performance in all subtasks benefits
from the introduction of control flow edges and the reveal of
the intra-instruction structures.

The P-DFG method outperforms the CFG-HBMP method
in nearly all subtasks except XA, which demonstrates the
superiority of CFGs in the cross architectures scenario and
the superiority of DFGs in the cross-optimization and the
cross-compiler subtasks. In addition, the superiority of the
SOG over the TSCG supports the hypothesis that keeping the
semantics-independent elements in the representation hurts
the generalization ability of the model.

The multi-head softmax aggregator achieves the RE-
CALL@1 and MRR scores by 134% and 129% respectively
over the original softmax aggregator on the XM subtask with
a pool size of 10000. Additionally, the multi-head softmax ag-
gregator significantly outperforms other baseline aggregators.

Figure 8 illustrates how the MRR scores of different repre-
sentations in the validation dataset increase during the training
campaigns. The SOG representation achieves the best MRR
score throughout the training campaigns. The ISCG achieves
better scores than TSCG in the early stages but fails to retain
its advantage later. The CFG-HBMP method, which utilizes
the HBMP NLP model to learn basic block attributes, achieves
comparable validation scores as the P-CDFG method but fails
to generalize as well to the larger testing dataset.

5.4 Runtime Efficiency

Table 3 shows the runtime cost of HermesSim. The lifting
time is the time cost to lift a binary function from the lin-
ear representation to the SOG. The inferring time consists
of encoding the SOG to a numeric embedding vector. The
searching time is the cost of comparing a function embedding

Figure 8: Validation MRR scores of different representations
on the XM task.

Table 3: Efficiency of HermesSim in terms of average time
cost per 103 functions in our testing dataset. Lifting and
searching time is evaluated on Intel(R) Xeon(R) Silver 4214
@2.20GHz CPU but in a single process. Training and infer-
ring time are evaluated on one NVIDIA RTX3080 GPU.

Training Lifting Inferring Searching

62mins (20 epochs) 3.20s 0.35s 1.50ms

Table 4: Average number of nodes and edges in different
graph representations and the inferring time cost.

Num. Nodes Num. Edges Inferring

CFG(-HBMP) 30.6 40.8 0.14s

P-DFG
427.7

442.7 0.20s
P-CDFG 551.7 0.25s
P-ISCG 688.9 0.27s

P-TSCG 803.2 1310.7 0.54s
P-SOG 542.7 1010.7 0.35s

against a pool of other embeddings.

In addition, we show the sizes of different graph represen-
tations as well as their inferring time cost in Table 4. CFGs
and ISCGs are smaller than SOGs on average, which implies
both lower memory and time costs during the local structure
capture stage, but at the cost of complicating the node at-
tributes extraction. SOGs have 32% fewer nodes and 23%
fewer edges than TSCGs and are 35% faster in terms of the
inferring time, showing the purge of semantics-independent
elements meaningfully improves the efficiency as well.

5.5 Real-world Vulnerability Search

In this experiment, we collect 12 RTOS firmware images from
three vendors (TP-Link, Mercury, and Fast) and perform the
1-day vulnerability search task. We first build a repository that
consists of all functions in these images and manually identify
5 CVEs and 10 related vulnerable functions in the TP-Link
WDR7620 firmware. Then we use these vulnerable functions
as queries to search for similar functions in the repository.
Our repository contains 62605 functions in total, which are
of two different architectures, i.e., ARM32 and MIPS32.

For each query function, we categorize the functions in the
repository into three groups: c1: functions built from exactly
the same source code as the query function. These functions
are previously unknown vulnerable functions that need to be
retrieved. c2: functions built from a slightly different source
code (e.g., from different versions) but are of the same symbol
as the query function (when the function symbol is available).
Functions in this categorization are potentially vulnerable
functions that need manual identification. c3: other functions
(i.e., functions that are compiled from different source code).
We identify the ground truth by performing similarity searches
using HermesSim and other compared baselines and manually
examine the top 20 results of all methods.

We evaluate the results using RECALL@1 and MRR as
well. Our goal is to retrieve all functions in c1 and c2. Ideally,
the BCSD system should rank functions in c1 before functions
in c2 and c3, and rank functions in c2 before those in c3.
Thus, we calculate the rank of each ground truth function
by adding the number of more dissimilar functions that have
higher similarity scores by 1. For example, for a ground truth
function in c1, its rank is the number of functions that have
higher similarity scores but are categorized in c2 and c3 plus
one. The ideal rank of each ground truth function is 1.

Table 5 shows the results of HermesSim and other base-
lines that support the cross-architecture task. HermesSim
outperforms other baselines in terms of the number of fail-
ures, RECALL@1, and MRR by a large margin. HermesSim
can handle most cases except that it ranks a slightly modified
version of the function 7 before three functions in c1.

In the SA scenario, SAFE, Trex, and GMN perform poorer
on recalling functions in c2. For instance, GMN can recall
29 out of 31 functions in c1, but can only recall 6 out of 11
functions that have slight modifications at the source code
level. This indicates that baseline methods are ineffective in
ranking functions according to the semantics similarity. In
contrast, HermesSim can recall all of them.

Furthermore, NLP methods, i.e., SAFE and Trex, are unable
to recall any of the 43 ground truth functions that are of an
architecture different from the query function (i.e., ineffective
in the XA scenarios). Even GMN can only recall 2 of these
functions due to the large pool size. In contrast, our proposed
method can recall on average 38.3 such functions.

See Appendix B for details about the vulnerabilities.

Table 5: Results of real-world vulnerability searching exper-
iments. The Tot. columns show the number of ground truth
functions in two categories respectively for each query func-
tion. The SAFE, Trex, GMN, and Our columns represent the
number of ground truth functions that fail to be recalled by
each respective method.

Tot. SAFE Trex GMN Oura

c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

0 7 1 3 1 3 0 3 0 0.0 0.0
1 1 8 0 8 0 4 0 5 0.0 0.0
2 9 0 5 0 4 0 4 0 0.0 0.0
3 3 2 2 2 1 2 1 2 0.0 0.0
4 4 7 2 7 1 5 2 7 0.5 0.1
5 4 7 2 7 1 7 2 7 0.4 0.5
6 6 4 2 4 2 4 1 4 0.2 0.0
7 7 5 4 4 3 4 3 3 3.0 0.0
8 2 3 0 3 0 3 0 3 0.0 0.1
9 3 2 1 2 1 2 1 0 0.0 0.0

XAb 15 28 15 28 15 28 15 26 4.1 0.7
SAb 31 11 6 10 1 3 2 5 0.0 0.0
Tot. 46 39 21 38 16 31 17 31 4.1 0.7

R1c 54 3 65 21 63 21 91 98
MRR 55 3 67 22 73 21 94 99

aAs with previous experiments in Section 5.3, the results of our method
is derived from averaging the results of 10 independent runs.

b XA: Cross-architecture. SA: Single Architecture.
cRECALL@1 (%)

6 Discussion

The semantics-oriented graph is a concise and semantics-
complete graph representation for binary code. Although we
only focus on utilizing this representation for BCSD in this
paper, it should also be applied to other binary code-related
tasks that require understanding the code semantics. Besides,
this representation is very suitable for encoding multiple extra
analysis abilities. We discuss potential improvements to this
representation in more detail below.
Dirty Effect Problem. The effect flow in the source code is
mostly kept as is during compilation and optimization because
the compiler does not know what will happen if the execution
order of the effect-related instructions is changed. Thus, due
to its cross-optimization and cross-architecture nature, such
effect flow should be useful for BCSD.

However, some effect-related instructions are introduced
during compilation, such as the use of the stack frame, which
is transparent to the compiler and can be manipulated. Mean-
while, the number of stack temporary variables is architecture
and optimization level dependent. Thus, including stack mem-
ory accesses in the effect flow may not be beneficial. An
additional pass of the load-store elimination analysis can be

applied to clean up this pollution, which is left as future work.
I/O Effect Model. We only investigate the memory effect
model in this paper. The I/O effect model pertains to instruc-
tions that interact with input/output (I/O) devices, such as the
LOAD instructions that read from the memory-mapped I/O
regions. Different from the memory effect model, receiving
data from I/O devices can change the states of these devices
as well. The I/O effect model should be useful when the tested
functions directly communicate with I/O devices.
Extra Information and Encoding Ability. References to
strings, integers, external function symbols, and other related
entities are not handled by this study. They can be integrated
by properly developing modules that encode these features
into a unified embedding space as other node tokens. NLP-
based techniques should be suitable for encoding these ele-
ments, as demonstrated in previous studies [18, 44].
Addressing Analysis Failures. Currently, traditional pro-
gram analysis algorithms may fail to recover the full control
flow relations of the indirect branches, which is still an open
problem. This limitation affects not only our SOG represen-
tation but also the linear representation used by NLP-based
methods and the CFG representation. In one scenario, due
to control flow recovery failures, basic blocks at the poten-
tial indirect branch targets are not included in the scope of
the function. This causes all representations to be equally
incomplete. In the other scenario, only the control flow rela-
tions are lost while the affected basic blocks are detected (e.g.
because other paths lead to them). The linear representation
is insensible to such failures because it does not exploit the
control flow relations, while the CFG and the SOG primarily
miss some edges. Nevertheless, this does not imply that the
linear representation is superior because it offers no more
information than graph representations to neural networks for
inferring the missed control flow.

We argue that it is impossible to understand the code seman-
tics without first figuring out the control flow. And therefore,
it may be worthwhile to explore how to provide the necessary
information (e.g., referred data) to deep neural networks to
enable them to deduce the control flow of indirect branches.

7 Related Work

This section surveys the learning-based BCSD approaches.
We divide the development in this direction into three lines.
Deep learning (DL) for BCSD. With the development of
artificial intelligence techniques, DL algorithms with more
powerful feature extraction capabilities are applied to BCSD.
For example, GNN is widely used due to its ability to effec-
tively capture structural information [15, 21, 24, 42, 44]. Xu et
al. [42] introduce the Structure2vec model to learn features
from control flow structures and achieve significantly better
results than previous methods. Li et al. [21] propose the use of
more advanced GNN models, i.e., the GGNN and the GMN.

Recently, some researchers leverage more advanced NLP
techniques and pre-trained models to automatically extract
latent representations of binary code at either the basic block
level or function level. Zuo et al. [45] model the basic
blocks as natural sentences and design a cross-assemble-
lingual basic block embedding model based on word embed-
ding and LSTM. Perdisci et al. [29] combine the skip-gram
method [30] and the self-attentive network [23] to generate
function embeddings. Yu et al. [43], Guo et al. [16] and Luo
et al. [26] specially design several pre-training tasks for bi-
nary code and train a BERT-based [8] large language model
to generate basic block embeddings. Pei et al. [33], Ahn et
al. [1], and Wang et al. [40] use a Transformer-based model to
generate function-level embeddings directly. However, these
methods treat the disassembled binary code as natural lan-
guages and fail to exploit the well-defined code semantics.
Besides, the use of increasingly large models results in signif-
icantly higher training and inference costs.

Binary Code Representation for BCSD. The raw repre-
sentation of a binary function is a stream of bytes, which is
featureless. Thus, it is crucial to design an effective repre-
sentation for BCSD. In the early stage, CFG is widely used
for binary code representation due to its cross-architecture
nature [2, 10, 14]. Later, Gao et al. [15] enhance the CFG
with inter-basic-block data flow edges. Guo et al. [16] man-
age to learn an embedding from DFG along with CFG and
make use of the def-use relations of code. Wang et al. [40]
embed control flow information into Transformer through pa-
rameter sharing and get promising results. Previous work has
taken an involuntary step toward exploiting full code struc-
tures. Our work examines full code semantics and reveals
it through a novel graph representation. Similar representa-
tions [5, 6, 12, 37] exist in compiler research to ease the op-
timization, but they are built from the source code and thus
cannot be directly employed in binary code related tasks.

BCSD beyond the Code. Other studies attempt to integrate
related information beyond the code semantics. For instance,
Yu et al. [44] embed string and integer references separately
and concatenate them into the final function embedding. Kim
et al. [18] introduce the binary disassembly graph to include
external function references and string literal references as
features. Luo et al. [26] first predict the compiler and the op-
timization level using an entropy-based technique, and then
transfer function embeddings from different compilation set-
tings into a unified embedding space. While our work focuses
on exploiting the code semantics, techniques developed in
this line can be integrated into our system as well (see §6).

8 Conclusion

In this paper, we propose a semantics-complete binary
code representation, the semantics-oriented graph (SOG), for
BCSD. This representation not only exploits the well-defined

code structures, semantics, and conventions but also purges
the semantics-independent elements embedded in the low-
level machine code. We detail the construction of the SOG
and discuss potential improvements to this representation.

To unleash the potential of the SOG for BCSD, we pro-
pose a novel multi-head softmax aggregator, which allows
for the effective fusion of multiple aspects of the graph. By
integrating the proposed techniques, we build an effective
and efficient BCSD solution, HermesSim, which relies on the
GNN model to capture structural information of the SOG and
adopts advanced training strategies.

Extensive experiments demonstrate that HermesSim signif-
icantly outperforms state-of-the-art approaches in both lab-
oratory experiments and real-world vulnerability searches.
In addition, our evaluation proves the value of revealing full
semantic structures of binary code and cleaning up semantics-
independent elements. We also demonstrate the effectiveness
of the proposed aggregator and the efficiency of HermesSim.

Acknowledgments

We thank the anonymous reviewers of this work for their
helpful feedback. We thank Marcelli et al. [27] for their valu-
able work in reviewing and reproducing the previous work.
This research was supported, in part, by National Natural Sci-
ence Foundation of China under Grant No. 62372297, Ant
Group Research Fund, Science and Technology Commission
of Shanghai Municipality Research Program under Grant No.
20511102002, National Radio and Television Administration
Laboratory Program (TXX20220001ZSB002). Yuede Ji was
supported by the University of North Texas faculty startup
funding.

References

[1] Sunwoo Ahn, Seonggwan Ahn, Hyungjoon Koo, and
Yunheung Paek. Practical Binary Code Similarity Detec-
tion with BERT-based Transferable Similarity Learning.
In Proceedings of the 38th Annual Computer Security
Applications Conference, pages 361–374, Austin TX
USA, December 2022. ACM.

[2] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad
Debbabi. SIGMA: A Semantic Integrated Graph Match-
ing Approach for identifying reused functions in binary
code. Digital Investigation, 12:S61–S71, March 2015.

[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. Signature Verification
using a "Siamese" Time Delay Neural Network. In
Advances in Neural Information Processing Systems,
volume 6. Morgan-Kaufmann, 1993.

[4] Silvio Cesare, Yang Xiang, and Wanlei Zhou. Control
flow-based malware variantdetection. IEEE Transac-
tions on Dependable and Secure Computing, 11(4):307–
317, 2014.

[5] Cliff Click. From Quads to Graphs: An Intermedi-
ate Representation’s Journey. Technical Report CRPC-
TR93366-S, Center for Resesearch on Parallel Compu-
tation, Rice University, 1993.

[6] Cliff Click and Michael Paleczny. A simple graph-
based intermediate representation. ACM Sigplan No-
tices, 30(3):35–49, 1995.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[9] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe
Charland. Asm2Vec: Boosting Static Representation
Robustness for Binary Clone Search against Code Ob-
fuscation and Compiler Optimization. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 472–
489, San Francisco, CA, USA, May 2019. IEEE.

[10] Thomas Dullien and Rolf Rolles. Graph-based compari-
son of executable objects. Sstic, 5(1):3, 2005.

[11] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable Graph-based Bug
Search for Firmware Images. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 480–491, Vienna Austria,
October 2016. ACM.

[12] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.
The program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, July 1987.

[13] Matthias Fey and Jan E. Lenssen. Fast graph repre-
sentation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[14] Debin Gao, Michael K. Reiter, and Dawn Song. Bin-
Hunt: Automatically Finding Semantic Differences in
Binary Programs. In Liqun Chen, Mark D. Ryan, and
Guilin Wang, editors, Information and Communications
Security, volume 5308, pages 238–255. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. Series Title: Lec-
ture Notes in Computer Science.

[15] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang
Sun. VulSeeker: a semantic learning based vulnerabil-
ity seeker for cross-platform binary. In Proceedings of
the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 896–899, Montpel-
lier France, September 2018. ACM.

[16] Yixin Guo, Pengcheng Li, Yingwei Luo, Xiaolin Wang,
and Zhenlin Wang. Exploring GNN based program
embedding technologies for binary related tasks. In
Proceedings of the 30th IEEE/ACM International Con-
ference on Program Comprehension, pages 366–377,
Virtual Event, May 2022. ACM.

[17] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas,
and Eelco Dolstra. Finding software license violations
through binary code clone detection. In Proceedings of
the 8th Working Conference on Mining Software Repos-
itories, MSR ’11, page 63–72, New York, NY, USA,
2011. Association for Computing Machinery.

[18] Geunwoo Kim, Sanghyun Hong, Michael Franz, and
Dokyung Song. Improving cross-platform binary anal-
ysis using representation learning via graph alignment.
In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
151–163, Virtual South Korea, July 2022. ACM.

[19] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard
Ghanem. Deepergcn: All you need to train deeper gcns.
arXiv preprint arXiv:2006.07739, 2020.

[20] Xuezixiang Li, Yu Qu, and Heng Yin. PalmTree: Learn-
ing an Assembly Language Model for Instruction Em-
bedding. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 3236–3251, Virtual Event Republic of Korea,
November 2021. ACM.

[21] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals,
and Pushmeet Kohli. Graph Matching Networks for
Learning the Similarity of Graph Structured Objects.
In Proceedings of the 36th International Conference
on Machine Learning, pages 3835–3845. PMLR, May
2019. ISSN: 2640-3498.

[22] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[23] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. A STRUCTURED SELF-ATTENTIVE SEN-
TENCE EMBEDDING. In International Conference
on Learning Representations, 2017.

[24] Shangqing Liu. A unified framework to learn program
semantics with graph neural networks. In Proceedings of
the 35th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 1364–1366, Virtual
Event Australia, December 2020. ACM.

[25] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. Semantics-based obfuscation-resilient bi-
nary code similarity comparison with applications to
software and algorithm plagiarism detection. IEEE
Transactions on Software Engineering, 43(12):1157–
1177, 2017.

[26] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong
Tang, Wei Xie, Xu Zhou, Danjun Liu, and Kai Lu. Vul-
Hawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search. In Proceedings
2023 Network and Distributed System Security Sympo-
sium, San Diego, CA, USA, 2023. Internet Society.

[27] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-
Pedrero, Yanick Fratantonio, Mohamad Mansouri, and
Davide Balzarotti. How machine learning is solving
the binary function similarity problem. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2099–
2116, Boston, MA, August 2022. USENIX Association.

[28] Luca Massarelli, Giuseppe A. Di Luna, Fabio Petroni,
Leonardo Querzoni, and Roberto Baldoni. Investigating
Graph Embedding Neural Networks with Unsupervised
Features Extraction for Binary Analysis. In Proceedings
2019 Workshop on Binary Analysis Research, San Diego,
CA, 2019. Internet Society.

[29] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Roberto Baldoni, and Leonardo Querzoni.
SAFE: Self-Attentive Function Embeddings for Binary
Similarity. In Roberto Perdisci, Clémentine Maurice,
Giorgio Giacinto, and Magnus Almgren, editors, De-
tection of Intrusions and Malware, and Vulnerability
Assessment, volume 11543, pages 309–329. Springer
International Publishing, Cham, 2019. Series Title: Lec-
ture Notes in Computer Science.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed Representations of
Words and Phrases and their Compositionality. In Ad-
vances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.

[31] NSA. Ghidra. https://ghidra-sre.org/.

https://ghidra-sre.org/

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[33] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana,
and Baishakhi Ray. Learning Approximate Execu-
tion Semantics From Traces for Binary Function Sim-
ilarity. IEEE Transactions on Software Engineering,
49(4):2776–2790, April 2023. Conference Name: IEEE
Transactions on Software Engineering.

[34] Nguyen Anh Quynh. Capstone - the ultimate disas-
sembly framework. https://www.capstone-engine.
org/.

[35] Hex Rays. Ida pro. https://hex-rays.com/
ida-pro/.

[36] Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann. Sen-
tence Embeddings in NLI with Iterative Refinement En-
coders. Natural Language Engineering, 25(4):467–482,
July 2019.

[37] Google V8 Team. Turbofan. https://v8.dev/docs/
turbofan.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[39] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391, 2015.

[40] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu
Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang. jTrans:
jump-aware transformer for binary code similarity de-
tection. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis,
pages 1–13, Virtual South Korea, July 2022. ACM.

[41] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and
Philipp Krahenbuhl. Sampling Matters in Deep Embed-
ding Learning. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2859–2867, Venice,
October 2017. IEEE.

[42] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural Network-based Graph Embed-
ding for Cross-Platform Binary Code Similarity Detec-
tion. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
363–376, Dallas Texas USA, October 2017. ACM.

[43] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou
Huang, and Shi Wu. Order Matters: Semantic-Aware
Neural Networks for Binary Code Similarity Detection.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 34(01):1145–1152, April 2020.

[44] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang,
Sen Nie, and Shi Wu. CodeCMR: Cross-Modal Re-
trieval For Function-Level Binary Source Code Match-
ing. NeurIPS, page 12, 2020.

[45] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo,
Qiang Zeng, and Zhexin Zhang. Neural Machine Trans-
lation Inspired Binary Code Similarity Comparison be-
yond Function Pairs. In Proceedings 2019 Network and
Distributed System Security Symposium, San Diego, CA,
2019. Internet Society.

A Algorithm for the Construction of SOG

Listing 1 shows the overview structure of our graph construc-
tion algorithm, where the de f State is an elaborate interface
that provides all the control, data, and effect definition states
at the current code point. The de f State supports putting vari-
ables with partial overlap, in which case it divides the vari-
ables into smaller units that either do not overlap or are exactly
the same. And it is able to piece multiple defined variables to
form a larger requested variable. For each defined variable,
the de f State maintains a stack to record recent definitions
on that variable. Meanwhile, it logs all definition operations
to support commit and revert. The MayWrapWithProj proce-
dure wraps the use of conditional or indirect branches that
have multiple successors, as discussed in Section 3.

B Details about the Vulnerability Searching

Table 6 details the vulnerable functions found and examined
in the real-world vulnerability search experiment (§5.5). The
results show that even models from different vendors share a
significant amount of closed-source code bases. These find-
ings highlight the pressing need for reliable binary code simi-
larity detection techniques.

Furthermore, we find the function symbols in the TL-
WDR7620 firmware. While other firmware images such as
TL-SG2206 and FAST-FAC1200RQ do not contain these sym-
bols. With the help of the BCSD techniques, we can transfer
the function symbols found in one firmware image to others,
making reverse engineering much easier.

https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://v8.dev/docs/turbofan
https://v8.dev/docs/turbofan

Algorithm 1 SOG Construction Algorithm
1: procedure CONSTRUCTSOG(f)
2: ▷ f : A binary function in assembly languages or linear IRs.
3: de f State← new DefState();
4: g← new SOGConstructor();
5: e f f ectNodes← GetAbstractEffectNodes();
6: dt← GetDominatorTree(f .c f g);
7: f ← InsertPhiNodes(f ,dt);
8: f ← PrepareControl(f);
9: ProcessBlock(g, de f State, f .start, e f f ectNodes);

10: return g;
11:
12: procedure PREPARECONTROL(f , de f State)
13: for bb in f do
14: if not bb ends with a BRANCH instruction then
15: bb.append(new DummyBranch());
16: node← SOGNodeFromInst(bb.getLastInst());
17: de f State.put(bb, node);
18:
19: procedure PROCESSBLOCK(g, de f State, bb, e f f ectNodes)
20: de f State.commit(); ▷ Commit current definition state.
21: BuildInBlock(g, de f State, bb, e f f ectNodes);
22: for child in dt.getChildren(bb) do
23: ProcessBlock(child);
24: de f State.revert(); ▷ Revert to the last commit point.
25: return ;
26:
27: procedure BUILDINBLOCK(g, de f State, bb, e f f ectNodes)
28: for inst in bb do
29: node← SOGNodeFromInst(inst);
30: g.add(node);
31: ▷ Recover data flow relations.
32: for input in inst.inputs do
33: inpNode← de f State.peekOrNew(input);
34: node.addDataUse(inpNode);
35: for out put in inst.out puts do
36: de f State.put(out put, node);
37: ▷ Recover effect flow relations.
38: for e f f ect in e f f ectNodes do
39: if UseEffect(node,e f f ect) then
40: node.addEffectUse(de f State.peek(e f f ect));
41: if DefineEffect(node,e f f ect) then
42: de f State.put(e f f ect, node);
43: ▷ Handle control flow relations.
44: if IsControlNode(node) then
45: for pred in bb.predecessors do
46: prenode← de f State.peek(pred);
47: prenode←MayWrapWithProj(prenode,bb);
48: node.addControlUse(prenode);
49: for succ in bb.successors do
50: inOrder← succ.getPrecedingIndex(bb);
51: for phi in succ.phiNodes do
52: phi.setPhiUse(inOrder, state.peekOrNew(phi.store);
53: return ;

/ / O r i g i n a l V u l n e r a b i l e F u n c t i o n .
i n t sub_404D34C4 (i n t a1 , i n t a2 ,

unsigned _ _ i n t 1 6 a3)
{

i f (! a1 | | ! a2 | | ! a3)
re turn 1 ;

.
}
/ / The s l i g h t l y d i f f e r e n t v e r s i o n .
i n t sub_40477EB0 (i n t a1 , i n t a2 ,

unsigned _ _ i n t 1 6 a3 ,
i n t a4 , i n t a5)

{
i f (! a1 | | ! a2 | | ! a3 | | ! a4 | | ! a5)

re turn 1 ;
.

}

Figure 9: False Positive Samples.

Figure 10: Kernel density estimation of the number of SOG
nodes in the training and testing sets respectively.

False Positive Case Figure 9 shows the only example that
consistently appears as a false positive in 10 independent
runs of HermesSim. The slightly modified version function
is ranked above the function of the same source code but of
a different architecture. All compared baselines, i.e., SAFE,
TREX, and GMN fail as well in this case. This problem should
be mitigated by additionally introducing slightly modified
function pairs in the training dataset (e.g., by mutating the
source code).

Table 6: Details of 1-day vulnerability search.

CVE ID Function symbol Confirmed # Affected firmware

0 CVE-2022-26987 MmtAtePrase 8 TL-AP1908GI, TL-WDR7620, MERCURY-D196G, TL-AP1902GP, TL-WDR5650, FAST-
FAC1200RQ, MERCURY-M6G, TL-AP1903GPa

1 CVE-2022-26988 tWlanTask 9 TL-WDR7620, TL-AP1908GIa, TL-AP1903GPa, TL-AP1207GIa, TL-AP1902GPa, TL-
WDR5650a, MERCURY-M6Ga, MERCURY-D196Ga, FAST-FAC1200RQa

2 CVE-2022-26988 MmtAte 9 TL-WDR7620, TL-AP1902GP, MERCURY-D196G, TL-AP1908GI, TL-AP1903GP, TL-
WDR5650, TL-AP1207GI, MERCURY-M6G, FAST-FAC1200RQ, a

3 CVE-2021-33373 uninstallPluginReqHandle 5 TL-WDR7620, MERCURY-D196G, TL-WR886N, TL-WDR5650a, FAST-FAC1200RQa

4 CVE-2020-28877 protocol_handler 11 TL-WDR7620, MERCURY-D196G, TL-AP1908GI, TL-WR886N, FAST-FAC1200RQa,
TL-WDR5650a, TL-SG2206Ra, TL-WA933REa, TL-AP1903GPa, TL-AP1902GPa, TL-
AP1207GIa

5 CVE-2020-28877 ms_idle_handler 11 TL-WDR7620, MERCURY-D196G, TL-WR886N, TL-AP1908GI, TL-SG2206Ra, TL-
WDR5650a, FAST-FAC1200RQa, TL-WA933REa, TL-AP1902GPa, TL-AP1903GPa, TL-
AP1207GIa

6 CVE-2020-28877 parse_advertisement_frame 10 TL-WDR7620, MERCURY-D196G, TL-AP1908GI, TL-AP1902GP, TL-AP1903GP, TL-
WR886N, FAST-FAC1200RQa, TL-SG2206Ra, TL-AP1207GIa, TL-WDR5650a

7 CVE-2020-28877 parse_discovery_frame 12 TL-WDR7620, MERCURY-D196G, TL-AP1903GP, TL-AP1908GI, TL-SG2206R,
TL-AP1207GI, TL-WR886N, TL-AP1903GPa, TL-AP1902GPa, TL-AP1207GIa, FAST-
FAC1200RQa, TL-WDR5650a

8 CVE-2021-33374 phCenterXmlHandle 5 TL-WDR7620, MERCURY-D196G, TL-WDR5650a, FAST-FAC1200RQa, TL-WA933REa

9 CVE-2021-33374 isHttpDataValid 5 TL-WDR7620, MERCURY-D196G, TL-WA933RE, TL-WDR5650a, FAST-FAC1200RQa

a Identified functions in these firmware images are in category c2, i.e., they are from slightly different versions of source code.

C Impact of Function Sizes

Distribution of function sizes. Figure 10 exhibits the dis-
tribution of function sizes in the training and testing sets in
terms of the number of SOG nodes. The peaks of the two
KDEs are both around the 25% thresholds, with values of 148
and 168 for the training and testing sets, respectively. Since
the functions of the training and testing sets come from dif-
ferent projects, these curves should resemble the real-world
distribution of functions.

Performance on sets with extremely large and extremely
small functions. Another two sub-datasets are created for
testing: x64-XC-Small, and x64-XC-Large, which include
only the top 1% small functions (have less than 71 nodes) and
only the top 1% large functions (have more than 3676 nodes)
in the testing set. Due to the limited number of functions in
these sub-datasets, we sample only 200 functions as queries
for each task and use a pool size of 100.

As demonstrated in Table 7, a significant performance im-
provement can be observed for all approaches when limiting
the queries to be extremely small or large functions. This
seems intuitive since distinguishing those outlier functions
from others is easy. When further applying this restriction
to functions in pools, the performance suffers due to the in-
creased similarity between negative functions and the queries.

SAFE, Trex, and GMN all demonstrate inadequacies in
handling large functions. Asm2Vec shows improved perfor-
mance in recalling large functions compared to small func-

Table 7: Results of the study on the impact of function sizes.
Queries and pools are separately sampled from three test-
ing sub-datasets: x64-XC, x64-XC-Small, and x64-XC-Large.
The scores (%) are MRR.

Quries sampled from xXC a xXC-S b xXC-L xXC-S xXC-L
Pools sampled from xXC xXC xXC xXC-S xXC-L

SAFE 24.9 45.4 37.4 27.8 24.4
Asm2Vec 35.0 69.0 76.8 60.7 56.2

Trex 53.2 91.9 72.6 81.9 67.0
GMN 56.2 89.9 86.3 65.0 58.4
jTrans 73.8 93.4 87.8 79.9 82.4

HermesSim 80.7 97.8 96.2 85.2 92.6

axXC stands for ‘x64-XC’ in this table, we omit x64 for conciseness.
bS and L are abbreviations for ‘Small’ and ‘Large’.

tions in general pools but struggles to do so in pools with
similarly sized functions. jTrans exhibits the opposite behav-
ior of Asm2Vec. HermesSim behaves similarly to jTrans, but
with better scalability in handling large functions. We believe
the improved ability of HermesSim to handle large functions
(relative to GMN) should be owed to the abundant semantics
of SOG and the powerful aggregator.

The insufficiency of NLP-based methods (e.g., Trex and
jTrans) in handling large functions may stem from their trun-
cation mechanism (they receive only fixed-length input and
discard any portion of the sequence that exceeds this limit).

	Introduction
	Background and Motivation
	A Toy IR
	Semantically Equivalent Variants
	Implicit Structures of Binary Code
	Step to the Semantics-Oriented Graph

	Details of SOG and its Construction Inspired by the sea of nodes IR googleturbofan2023 (the PROJ node), the P-code of Ghidra noauthorghidranodate (the PIECE node), and the Click’s IR clicksimple1995 (structure of PHIs).
	BCSD With SOG
	Framework
	Graph Normalization and Encoding
	Local Structure Capture
	Multi-head Softmax Aggregator

	Evaluation
	Implementation and Experiment Setup
	Comparative Experiments
	Ablation Study
	Runtime Efficiency
	Real-world Vulnerability Search

	Discussion
	Related Work
	Conclusion
	Algorithm for the Construction of SOG
	Details about the Vulnerability Searching
	Impact of Function Sizes

