
Cascade: CPU Fuzzing via Intricate Program Generation

Flavien Solt
ETH Zurich

Katharina Ceesay-Seitz
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract
Generating interesting test cases for CPU fuzzing is akin
to generating programs that exercise unusual states inside
the CPU. The performance of CPU fuzzing is heavily influ-
enced by the quality of these programs and by the overhead of
bug detection. Our analysis of existing state-of-the-art CPU
fuzzers shows that they generate programs that are either
overly simple or execute a small fraction of their instruc-
tions due to invalid control flows. Combined with expensive
instruction-granular bug detection mechanisms, this leads to
inefficient fuzzing campaigns. We present Cascade, a new
approach for generating valid RISC-V programs of arbitrary
length with highly randomized and interdependent control
and data flows. Cascade relies on a new technique called
asymmetric ISA pre-simulation for entangling control flows
with data flows when generating programs. This entanglement
results in non-termination when a program triggers a bug in
the target CPU, enabling Cascade to detect a CPU bug at pro-
gram granularity without introducing any runtime overhead.
Our evaluation shows that long Cascade programs are more
effective in exercising the CPU’s internal design. Cascade
achieves 28.2x to 97x more coverage than the state-of-the-art
CPU fuzzers and uncovers 37 new bugs (28 new CVEs) in
5 RISC-V CPUs with varying degrees of complexity. The
programs that trigger these bugs are long and intricate, im-
peding triaging. To address this challenge, Cascade features
an automated pruning method that reduces a program to a
minimal number of instructions that trigger the bug.

1 Introduction

With the increasing popularity of open-source RISC-V CPUs
and the high cost of formal verification, CPU fuzzing is gain-
ing momentum [8, 9, 14, 30, 32, 34, 35]. The effectiveness of
CPU fuzzing strongly depends on the quality of the test cases
and efficient bug detection. State-of-the-art CPU fuzzers fail
at both: they execute only a small fraction of the intended
instructions per test case, and rely on incomplete or expensive
instruction-granular bug detection mechanisms at runtime.

This paper presents Cascade, a new CPU fuzzer that explic-
itly generates valid RISC-V programs of arbitrary length with
highly randomized and interdependent data and control flows.
Executing many instructions per program enables Cascade to
efficiently trigger bugs. When a bug is triggered, the inter-
dependence of the data and control flows results in program
non-termination, enabling Cascade to detect bugs at program
granularity without any runtime overhead. Our evaluation
shows that Cascade achieves significantly more coverage than
the state-of-the-art fuzzers and discovers a large number of
new bugs in RISC-V CPUs of various complexities.

Programs for CPU fuzzing. To investigate properties of
the programs generated by state-of-the-art CPU fuzzers [32,
35, 36], we defined two metrics measuring 1) completion:
the proportion of the instructions in a program that actually
execute, 2) prevalence: the overhead due to non-randomized
initial and final sequences. We find that for each generated pro-
gram, only a small fraction of the instructions gets a chance
to actually execute on the target CPU and that most executed
instructions perform non-randomized initialization. These
findings hint at low instruction throughput in existing state-of-
the-art CPU fuzzers. Furthermore, detecting a bug triggered
by these programs introduces its own set of challenges.

Bug detection. Generally, the most obvious way to check
whether a program triggered a bug is by checking the CPU’s
architectural state (i.e., registers and memory) instruction by
instruction against a golden model [8, 9, 30, 34, 35]. Apart
from performance implications, this approach has practical
limitations; as an example, the registers are not always easy
to identify in a given CPU’s RTL design. In particular, out-
of-order CPUs may keep multiple versions of the registers at
the same time and identifying the correct ones for monitoring
introduces a non-trivial effort when porting a fuzzer to a new
CPU [4]. It is also possible to force termination by handling
uncontrolled exceptions in the programs [32]. While this tech-
nique reduces the problem to only checking the architectural
state at the end, it can miss bugs that happen in the middle
of the program. An ideal solution generates programs that



execute to completion without the need for checking the state
during program execution

Cascade. We rely on the idea that finding a bug-triggering
program in a CPU is equivalent to finding a program for
which the CPU behaves incorrectly. We propose a new fuzzer
called Cascade that constructs complex and random RISC-V
programs that exert the CPU’s architectural and microarchi-
tectural features without requiring time-consuming and error-
prone expert effort specific to each CPU. The programs gener-
ated by Cascade mix a highly randomized data flow with the
control flow, while steering the control flow at all times. To ef-
ficiently predict some necessary register values, we introduce
the novel notion of asymmetric ISA pre-simulation, where in-
stead of using the Instruction Set Architecture (ISA) simulator
to compare the CPU under test with a golden reference model,
we use it to construct programs with valid and predictable
architectural control flows. Constructing valid programs with
highly interdependent control and data flows provides us with
three interesting properties. First, the programs can be long,
which significantly boost fuzzing performance. Second, with
highly randomized data and control flows, we explore unusual
operand values and control flows. Lastly, the highly entangled
data and control flows enables the non-pervasive detection of
bugs amidst long programs by transforming bug expressions
into program non-terminations, enabling Cascade to detect
bugs without any runtime overhead.

The programs generated by Cascade exercise a rich set of
functionalities provided by the RISC-V ISA; they support ex-
ceptions without (necessarily) causing termination, data flow-
dependent privilege transitions, complex FPU (Floating-Point
Unit) operations, and operations under randomized Control
and Status Registers (CSRs) exploring different operational
states of the CPU. We evaluate Cascade on 6 real-world
RISC-V CPUs of different complexities and ISA extensions:
VexRiscv, PicoRV32, Kronos, CVA6, Rocket and BOOM.
Compared to the state-of-the-art fuzzers such as TheHuzz and
DifuzzRTL, Cascade achieves the same coverage 28.2 and
97 times faster, respectively. Cascade discovers 37 new bugs
(29 new CVEs) in 5 of these 6 designs which is more than all
the state-of-the-art CPU fuzzers combined [10, 14, 32, 35, 36].
We additionally found a critical bug in the popular Yosys
synthesizer that results in a wrong netlist.

Automated program reduction. Cascade-generated pro-
grams that trigger these new bugs can be long and highly com-
plex, making the analysis of the non-termination intractable
by humans. To tackle this challenge, Cascade relies on a new
automated program reduction technique that creates minor
in-place modifications to a bug-triggering program. These
modifications iteratively reduce the program to a minimal bug-
triggering form while preserving the sufficient bug-triggering
CPU state. Using this technique, we find that these bugs
result in hangs, wrong values and exceptions, decode issues
and quantifiable performance counter inaccuracies. Further-

more, we find that Cascade’s program reduction is signifi-
cantly helpful when reporting the bugs to the respective CPU
maintainers.

Contributions. Our contributions are as follows:

• We design and implement Cascade for generating valid
RISC-V programs with highly complex and entangled
data and control flows for finding CPU bugs. Cascade
correct-by-construction programs achieve high fuzzing
performance without introducing any overhead for bug
detection.

• We design and implement a new analysis method to effi-
ciently reduce Cascade-generated programs to a minimal
form, while preserving the bug-triggering behavior.

• We evaluate the performance of Cascade in terms of
speed and coverage and compare it with state-of-the-
art CPU fuzzers [32, 35, 36]. We report a total of 37
new bugs found in 5 of the 6 considered RISC-V CPU
designs. We further report a bug in the popular open-
source Yosys synthesizer.

Open sourcing. For the benefit of the research and CPU
design and testing communities, we publish the source code
and experiments of Cascade at this URL:
https://comsec.ethz.ch/cascade.

2 Background

In this section, we provide background on formal verification,
fuzzing software and hardware, and finally on RISC-V.

2.1 Formal verification of hardware
Assertion-based formal verification aims to prove that a
hardware design satisfies certain properties, for all possi-
ble input values that it may receive and for infinite depth
in time. Usually, formal verification engineers manually write
properties that target specific verification goals, often tak-
ing design-specific knowledge into account. Tools for au-
tomated property generation either generate a certain kind
of properties, like information flow properties [19], require
a (semi-)formal model of the specification [21, 38], or use
novel languages [18]. Furthermore, exhaustively verifying
complex properties on real world designs does not always
scale and requires semi-manual abstraction techniques such
as black-boxing or initial value abstraction [20,25]. Given the
high computational and manual cost of formal verification,
alternative fuzzing techniques are starting to gain popularity.

2.2 Software fuzzing
Fuzzing consists in applying random inputs to a unit under
test and observing whether the unit behaves as expected and

https://comsec.ethz.ch/cascade


whether the output is correct. The goal is to find unknown
bugs by covering as much state space as possible by iteratively
mutating the input data. While fuzzing usually does not
provide formal guarantees of correctness, it has been shown
to be a very effective technique to find bugs [23].

Every fuzzer needs a strategy to generate test cases and
to detect bugs when they happen. Software fuzzers may
rely on some form of coverage feedback [15, 26, 29, 58],
static or dynamic taint analysis [16, 27, 40, 42] or gram-
mars [6, 24, 28, 44, 51, 57] to incrementally find test cases
that better exercise the software’s functionality. Software
fuzzers mainly rely on two techniques to detect when bugs
are triggered: crashes [29] and sanitizers [45]. Sanitziers
provide, for example, address related checks like buffer over-
flows [45], checks for undefined behavior such as division by
zero [22] or floating-point numerical issues [17].

2.3 Hardware fuzzing
Due to the high cost of formal verification, CPUs are an inter-
esting target for fuzzing. Hardware fuzzers for CPUs differ
from software fuzzers on both aspects of test-case generation
and bug detection. While software fuzzers often generate
random input data streams with little or no input format con-
siderations, hardware fuzzers need to prioritize generation of
inputs that follow certain protocols, like bus or ISA specifi-
cations, in order to be effective [55]. Inspired by software
fuzzing, state-of-the-art hardware fuzzers generate new test
cases by generating random instruction sequences and mutat-
ing the test case [8–10, 14, 30, 32, 34–36]. Every new CPU
fuzzer finds new bugs, but often fewer [8, 9, 14, 30, 32, 34, 35].

Since processors hang only in rare cases, crash detection is
not sufficient for bug detection, and sanitizers are currently
limited to handwritten SystemVerilog assertions [36]. There-
fore, hardware fuzzing needs new methods for bug detection.
Most hardware fuzzers apply differential fuzzing by compar-
ing register values of the CPU under test with the results from
a purely software-based Instruction Set Simulator (ISS) that
serves as a golden model [32]. Comparing the result of every
instruction is expensive in terms of runtime, and only feasible
for simple CPUs where a direct mapping from RTL design
signals to registers is possible. Some CPU fuzzers [32] dump
the register values via storage instructions at the end of a test
case and compare the results with the ones from the ISS. Such
a comparison is only possible if a test case completes and
intermediate deviations between the ISS and the CPU under
test are propagated through time until the end of the test case.

2.4 RISC-V
RISC-V [59] is a free and open ISA, consisting of an un-
privileged and a privileged specification. RISC-V targets a
large diversity of CPUs, and therefore provides a set of op-
tions. First, CPUs may comply with the 32-bit or the 64-bit

0 10 20 30 40 50 60 70 80 90 100
Fuzzing stage completion (%)

0

25

Te
st

 c
as

es
 (%

)

Average completion rate (19.3%)
Median completion rate (1.7%)

Figure 1: Completion rates of DifuzzRTL executions.

specification, which share most features. Second, CPUs may
implement ISA extensions. In addition to the base ISA, com-
mon extensions are F (floating-point), D (double-precision
support), M (integer multiplication and division), A (atomic
operations), and C (compressed instructions). Compared with
other established ISAs, RISC-V ISA features a small number
of instructions. In particular, RISC-V requires two instruc-
tions to load an immediate 32-bit value into a register (lui fol-
lowed addi). Furthermore, the only operations that influence
the program control flow are jal (direct jump), jalr (indi-
rect jump), branches, exceptions and privilege level changes.
Note that in RISC-V, the targets of branches are immediates.
In the case of self-modifying code, the fence.i instruction
must be executed before executing newly-stored instructions.

RISC-V, in its common implementation in open source
CPUs, supports up to three privilege levels which are ma-
chine mode (M), supervisor mode (S) and user mode (U),
in decreasing order of privilege. The M mode is the only
mandatory privilege level. Upward privilege transitions are
done through interrupts or exceptions, and downward transi-
tions happen through specific instructions (mret and sret).
Depending on the target privilege level, the architectural fetch
address following an exception is pre-set in the mtvec or
stvec Control and Status Registers (CSRs). CSRs are further
used to configure how the CPU should operate in certain con-
ditions, such as whether exceptions should be delegated to
another privilege level, or if the floating-point unit is enabled.
Spike [47] is a widely used open-source ISS for RISC-V.

3 Motivation and Challenges

In this section, we first analyze important aspects of the
recently-published CPU fuzzers DifuzzRTL [32] and The-
Huzz [35]. From these observations, we describe challenges
which will guide the design of Cascade.

3.1 Observations

We collected 500 CPU inputs generated by DifuzzRTL [32]
for the Rocket core to understand key aspects of test cases
generated by a state-of-the-art CPU fuzzer. We also analyze
the test cases generated by TheHuzz [35] based on the de-
scription in their paper since TheHuzz is not open source at
the time of this writing.



0 5 10 15 20 25 30 35 40
Prevalence of fuzzing instructions (%)

0

25

Te
st

 c
as

es
 (%

)

Average prevalence (5.8%)
Median prevalence (3.0%)

Figure 2: Prevalence of fuzzing instructions in DifuzzRTL.

Completion. Figure 1 shows the percentage of the fuzzing
instructions that execute at least once in each test case pro-
duced by DifuzzRTL. We measure completion on the ISS,
assumed bug-free. We observe that these programs do not
generally complete the execution of their fuzzing sections,
mostly because of the difficulty to predict intermediate val-
ues that affect the control flow, such as operands of branch
instructions. Similarly, TheHuzz limits its test cases to 20
instructions, (10 of the first being non-control-flow instruc-
tions), again, because it is difficult to control the behavior of
control-flow instructions when fuzzing.

Observation 1. Completion: CPU fuzzers struggle with
fully executing their test cases.

Prevalence. In the programs generated by DifuzzRTL, we
separate the instructions in two categories: overhead and
fuzzing instructions. Overhead instructions are generic, non-
randomized instructions such as setup routines or hard-coded
exception handlers, while fuzzing instructions are the ones
actually randomized. We define prevalence as the proportion
of executed instructions that are fuzzing instructions. Figure 2
shows the prevalence in the programs generated by Difuz-
zRTL. Strikingly, only a small proportion of the executed
instructions are fuzzing instructions. Similarly, the very short
fuzzing sequences of TheHuzz are preceded by an overwhelm-
ing amount of configuration (overhead) instructions [35, 46].

Observation 2. Prevalence: most executed instructions
correspond to overhead and are not fuzzing.

Conclusion. The existing coverage-guided approaches are
insufficient. They produce malformed non-completing pro-
grams dominated by overhead instructions.

3.2 Overview of challenges

Our analysis suggests that we might significantly improve
fuzzing results by constructing programs that address these
limitations. We provide an overview of the challenges based
on our previous observations and how we address them in the
rest of this paper. The first challenge concerns completion
and prevalence of the generated programs.

Challenge 1. How to generate programs that complete
and have a high fuzzing prevalence?

Section 4 discusses a new design for program construc-
tion. Longer programs have a higher prevalence, but only if
they complete. We propose to build valid programs that are
expected to complete, by pre-defining a control flow ahead
of execution. This is in contrast with existing CPU fuzzers
that rely on mutation-based test-case generation strategies.
The result of this step is a set of intermediate programs that
have instructions with complex data flows, but control flows
that are not dependent on the (complex) data flows. Our next
challenge is to make the control flows dependent on the com-
plex data flows while ensuring completion. Entangling data
flows into control flows has two major benefits. First, it helps
finding bugs related to (speculative) control flows. Second,
it enables transforming a data-flow bug symptom into a pro-
gram non-termination, effectively providing a non-pervasive
design-agnostic way of detecting data-flow bugs in arbitrarily
long and complex programs without any runtime overhead.

Challenge 2. How to generate valid programs with a high
degree of dependence between data and control flows?

Section 5 proposes a novel method for efficiently construct-
ing a complex data-dependent control flow for test cases,
called asymmetric ISA pre-simulation. Asymmetric ISA pre-
simulation mixes a highly randomized data flow with the
control flow of the intermediate programs. This method is
based on the new insight that instead of using an ISS for dif-
ferential fuzzing, we can use it for generating a valid program.
Repeated usage of the ISS for the ultimate program genera-
tion, however, would introduce a large performance penalty.
We design a new scheme that allows us to reduce the number
of ISS calls to only one per generated program.

Our prototype fuzzer implementation of the ideas presented
in Sections 4 and 5, called Cascade, generates programs that
trigger a large number of new bugs, more than any CPU
fuzzer so far. The programs leading to these bugs, however,
may be long and complex by construction, to an extent that
makes it inconceivable to interpret them manually from logic
waveforms, like it may have been done so far. This leads us
to our last challenge.

Challenge 3. How to extract and interpret the bug from
a complex program?

Section 6 discusses a new algorithm for iterative program
reduction to find a minimal number of instructions inside
program triggering CPU bugs. We successfully applied it for
all the bugs found by Cascade, which significantly helped us
when reporting the issues to the respective CPU maintainers.



Figure 3: Overview of Cascade.

4 Design

We outline Cascade, before explaining the intermediate pro-
gram construction. In Section 5, we explain how Cascade
uses ISS feedback to entangle data and control flow.

4.1 Cascade overview
Figure 3 provides an overview of the fuzzing process and its
components. Cascade proceeds in four steps: (1) intermediate
program construction, (2) ultimate program construction, (3)
program execution and (4) program reduction. The program
construction (steps 1 and 2) is decoupled from the other steps,
so the same program can be executed on multiple versions of
the same CPU, or on CPUs with compatible extensions.

Intermediate program construction. Cascade takes as an
input the supported ISA extensions, addresses for dumping
registers and stopping the RTL simulation, and descriptions
of known bugs to circumvent, and starts with a brief cali-
bration stage (taking less than a second) to evaluate some
CPU parameters, such as supported CSR bits (a). Generating
programs is then a parallel task. Cascade first generates the
intermediate program as a sequence of basic blocks, where
control flow is isolated from the data flow (b).

Ultimate program construction. An ISS then executes the
whole intermediate program once to collect the data-flow de-
pendent values of registers (c). Cascade uses this information
to entangle the data flow with the control flow, as explained
in Section 5 to produce the ultimate program (d). It is defined
as a triple (ELF file, descriptor, and the expected final register
values (optional)), where the descriptor is a short identifier
that permits re-generating the same program.

Program execution. The program execution is also a par-
allel task. Each ultimate program is executed independently
on a simulated design under test. The output (e) is a pair
(descriptor, success). The descriptor is the same as in (d). The
success flag is raised if the program terminated successfully,
and optionally if the dumped register values match.

Program reduction. The program reduction phase takes
as input a test descriptor that leads to an execution failure
and produces a reduced program that preserves the buggy

Listing 1: Example basic block.
xor x3,x4,x9
csrrwi x9,mcause,15
beq x9,x4,0x8000098e
fld f8,(x3)
feq.s x4,f9, f8
jalr x9,(x7)

behavior while reducing the program complexity as described
in Section 6. The analysis consists in iteratively reducing
the program (f) and re-running it to check if the bug is still
triggered (g), and to produce a minimal program that is easy
to understand (h), as explained in Section 6.

4.2 Intermediate program construction
We first explain the structure of the programs generated by
Cascade. We then show how Cascade selects instructions to
form basic blocks. We finally discuss the memory manage-
ment mechanism for ensuring sound program construction.

4.2.1 High-level program structure

Basic blocks. A program is a sequence of instructions
within basic blocks. Basic blocks are made of zero or more
instructions that do not affect the control flow, followed by a
single instruction that affects the control flow. Accordingly,
Cascade constructs programs as sequences of basic blocks,
where the last instruction of a basic block steers to the next
basic block. Each basic block is placed at a random location
in memory (see Section 4.2.3). The order of basic blocks’
execution is not necessarily identical with their placement in
memory. The memory outside of basic blocks and of their
data is left uninitialized, defaulting to zeros in simulation.

Initial and final basic blocks. All programs start with an
initial basic block that sets up an initial state and random
register values before jumping to the first fuzzing basic block,
which eventually jumps to the next, and so on. The program
ends with a final basic block that optionally dumps register
values, and sends a signal indicating that the program’s end
was reached. No overhead instruction, as defined in Section 3,
is executed between the initial and final basic blocks.

4.2.2 Basic block generation

Control-flow behaviors. We call instructions that do not
change the control flow of a given program still instructions,
and others hopping instructions. For example, a branch can
be taken (still) or non-taken (hopping). Similarly, a memory
load instruction such as lw can succeed (still) or raise an
exception (hopping). We define the instructions that may
be still or hopping depending on register values, or that are
unconditionally hopping but whose destination depends on
register values, as cf-ambiguous. For example, beq and lw



are cf-ambiguous, but add and illegal instructions are not.
Listing 1 shows an example basic block, where cf-ambiguous
instructions are represented in red.

Picking instructions. Instructions are grouped in cate-
gories, which are listed in Appendix A. Some groups of
instructions will behave in the same context-dependent way,
for example all floating-point instructions will be conditioned
by whether an FPU is present and activated. Hence, Cascade
picks instructions hierarchically, by first choosing a category,
and then a specific instruction. Both are chosen randomly
with certain probabilities, which are varied between programs.
When picking a cf-ambiguous instruction, Cascade chooses
immediately whether it must be still or hopping. Cascade
biases the choice of operands by granting higher probabilities
to registers recently used as outputs.

In particular, Cascade supports complex FPU operations
and CSR interactions. It additionally supports exceptions
and privilege switches as simple hopping instructions, which
can only be picked under certain architectural conditions that
are generated by the mechanism explained in Section 5. Ul-
timately, the complex data flow originates from combining
initial static data with a diverse stream of random instructions.

Circumventing known bugs. Ideally, discovered bugs
should be fixed immediately. In reality, however, this may
take time and effort. Due to limited human resources, some
bugs may remain unfixed for a long time, polluting bug re-
ports and potentially restrain test case continuation. Known
bugs may be ignored after triaging the causes of bug reports.
However, known CPU bugs can influence the control flow of
Cascade programs early, shadowing the rest of the program.
Furthermore, triaging is an expensive operation that must
then be repeated many times for the instances of the same bug.
Instead, Cascade allows circumventing known bugs by con-
structing programs that will not trigger them. By increasing
the completion rate, Cascade is able to progress and find more
bugs faster. As an example, in the Rocket core, the retired
instruction performance counter ignores ecall and ebreak
instructions (R1) [1]. The circumvention configures Cascade
to avoid that generated programs read this counter after these
instructions until it has been written again, hence it covers
exactly the bug.

Note that Cascade’s approach of circumventing certain
bugs may result in the under-exploration of the components
in which the bugs exist. Automatically circumventing bugs
via automated RTL patching is an interesting future direction
that can address this issue altogether.

4.2.3 Memory management

To produce sound programs, Cascade imposes some con-
straints on the memory layout of the generated programs. In
particular, Cascade ensures that (a) instructions do not over-
lap, (b) store operations do not overwrite instructions, and

(c) later transformations of the program (discussed in Sec-
tions 5 and 6) do not have unintended effects. Intuitively, the
constraint (b) would prevent from detecting some potential
bugs related to self-modifying code. RISC-V requires self-
modifying code to use fence.i, which means that such bugs
are limited in scope. We leave the exploration of such bugs
as future work and instead focus on non-self-modifying code.

Progressive memory allocation. Cascade allocates mem-
ory on the fly for each new instruction. Whenever a hopping
instruction is generated, space is allocated for the first instruc-
tion in the next basic block, at a reachable random new ad-
dress that offers enough space for a new basic block. Initially,
space is allocated (at random locations) for the initial and final
basic blocks, which have known upper bounds in length. Ad-
ditionally, to anticipate program reduction, Cascade allocates
space for a context setter block used for program reduction
and leaves it empty (details are discussed in Section 6).

Strong memory allocation. The memory allocator can
strongly allocate memory areas, i.e., forbid loads from there.
Reading from a memory location could entangle its data with
the data and control flows. Strong allocations prevent read-
ing from a memory location that stores very specific parts
of the program where some instructions differ between the
intermediate and ultimate programs as described in Section 5.

Memory operations. Memory stores, randomized in num-
ber and size, can only target some specific memory areas, allo-
cated at the start of the program’s creation. Memory loads can
target any address, except for the strong allocations. Heuris-
tically, we bias memory loads to target more often memory
areas that have been recently written, although so far, this
specific heuristic has not been critical in finding bugs.

5 Ultimate Program Construction

The fundamental idea behind asymmetric ISA pre-simulation
is to execute an intermediate program on the ISS to collect
feedback for constructing the ultimate program with a control
flow that is identical but dependent on the data flow.

Steering the control flow. There are three schemes for gen-
erating an arbitrary, but controlled, control flow. The first
scheme is not to control the values used by cf-ambiguous
instructions such as jalr but to place the next basic block ac-
cordingly. This scheme is not viable because most addresses
are inaccessible or already allocated. The second scheme
is not to involve the random data flow and rely on direct
branches or registers loaded with fixed values. This is how
the control flow of the intermediate program is constructed.
The third scheme entangles data and control flow by observ-
ing the data flow and applying an offset to a register used by
a cf-ambiguous instruction. We rely on the third scheme to
construct the control flow of the ultimate program.



Figure 4: Life cycle of registers regarding offset construc-
tion. The instructions can be separated by other (unrelated)
instructions.

5.1 Offset construction and register lifecycle
Some cf-ambiguous instructions such as indirect jumps
(jalr) require a specific operand value val that Cascade
intends to impose. Following the principle of dependency
preservation, we let val depend on a randomly picked depen-
dent register rd . Since we do not want to constrain rd’s value,
rd is generated by the random data flow and its value is un-
known when we pick the cf-ambiguous instruction. Hence, to
calculate val we propose to generate an offset register value
to be eventually combined with rd’s value. The combination
of rd and ro f f is performed by an offset applier instruction, for
instance xor, whose output is defined as the applied register
rapp and holds the intended value val.

Branches. Because applied registers are a somehow pre-
cious resource, Cascade does not use this method for branches.
Instead, it uses the ISS feedback to obtain the operand values
and selects a suitable branch opcode, depending on whether
the branch should be still or hopping.

Registers involved. In total, this construction involves two
registers (rd , whose value is randomized by the program’s data
flow, and ro f f to offset its value). Since there is no reason to
specifically reuse rd or ro f f as an output of the offset applier,
a third register could be used as rapp, in accordance with the
principle of maximizing the degrees of freedom.

Offset state machines. This scheme implies that 1) rapp
must be available for use when the cf-ambiguous instruction is
picked, 2) rapp’s calculation requires that ro f f is ready before
the offset applier instruction, and 3) rd must be available
when the offset applier instruction is executed. To comply
with these requirements, we maintain a simple state machine
for each architectural integer register. The state machine is
composed of five states: free, under generation (gen), ready,
unreliable (unrel) and applied, as illustrated in Figure 4. All
registers initially start in the free state. Cascade can create
instruction (a) to move a free register to state gen, or (b) to
move a register from gen to ready. When there is at least
one register, ro f f , in the ready state, then Cascade can pick
an offset applier instruction. If Cascade chooses to define
rapp = ro f f , then ro f f is moved to the applied state (c). Else,
ro f f is moved to the unrel state (c’) and rapp is moved to
the applied state (c”). Once rapp is used by a cf-ambiguous
instruction (d), it returns to the free state. An unrel register
must not be used as an input to any instruction and may be

overwritten by an instruction to become gen (e’), or by an
ordinary instruction to become free (e).

Pre-simulation. Cascade relies on an ISS to determine
the value of dependent registers when encountering a cf-
ambiguous instruction. So far, the state of the art [8, 9, 14, 30,
32, 34, 35] always submits the same program that is given to
the CPU to the ISS. If we imitated the state of the art, the
ISS should be called every time a cf-ambiguous instruction is
encountered because rapp would be random until the correct
ro f f can be computed from rd . The ISS could not proceed to
the next basic block (or complete a correct memory operation)
without running at least once per cf-ambiguous instruction.

We introduce the asymmetric ISA pre-simulation method
to address this critical performance bottleneck by requiring
a single ISS execution. The fundamental insight is to pro-
vide to the ISS not the ultimate program that the CPU under
test will execute, but an intermediate program such that (a)
the values of all dependent registers (in the constructions of
applied registers) are identical between the two programs
and (b) the programs’ control flows are identical and (c) in
the intermediate program, no applied register depends on the
randomized data flow.

Concretely, the intermediate program differs from the in-
tended ultimate program in three aspects. When generating
the intermediate program: 1) we choose the immediates imm1
and imm2 to set the value of ro f f to val, 2) we substitute of the
offset-applying instruction with a mv instruction, which copies
ro f f into rapp, and 3) we transform non-taken branches into
NOPs, because the value of the operands are not yet known.
Given these transformations, the intermediate program com-
plies with the aforementioned requirements.

Intermediate register states. This scheme for offset con-
struction guarantees by design that at any point in the program,
all free and applied registers have the same value in the inter-
mediate and ultimate program. This invariant does not hold
for registers in the gen, ready and unrel states. Therefore, they
should never be used as the input for any instruction other than
the next instruction in the offset construction cycle, respec-
tively steps (b) and (c) in Figure 4. Note that state machine
transitions are a specific instruction category in Cascade, as
enumerated in Appendix A.

5.2 Privilege transitions
Exceptions are a particular case of hopping instructions. They
require some basic bookkeeping in the fuzzer to maintain the
privilege state and delegation flags, which indicate the target
privilege level active when some exception occurs.

We use one to two offset/dependent/applied register triples
per exception. The first is used to populate the trap vector,
either mtvec or stvec, depending on the current privilege
state and whether the exception will be delegated. The second
is used when an exception depends on a register value, e.g., in



Figure 5: (a) Original, (b) tail-reduced and (c) fully reduced
program. Black rectangles and arrows represent basic blocks
and control flow. Ctx is the context setter block.

a misaligned memory load exception. It is populated similarly
as an indirect jump or a load would be. Note that since basic
blocks are generated on the fly, the value to be inserted into
the trap vector is only known when the exception-triggering
instruction is generated, which may be many basic blocks
later; while this adds some necessary complexity to the fuzzer,
it does not negatively affect the program’s degrees of free-
dom in any way. The implementation of downward privilege
transitions is in all respects comparable with exceptions.

6 Program Reduction

Cascade generates potentially long test cases, and CPU bugs
are revealed by programs not terminating, thanks to the en-
tanglement of the data and control flows. To understand the
underlying CPU bug, it is necessary to reduce the programs to
a minimal form, while preserving the instructions and states
that trigger the CPU bug. We first show how to find the last
instruction (tail) involved in triggering the bug, then the first
(head). Figure 5 illustrates the program reduction process.

6.1 Identifying the bug’s tail

We propose to reduce the program progressively by trans-
forming some instructions into direct jumps that skip some
of the last basic blocks and observing whether the bug is still
triggered. The result is illustrated in Figure 5 (b).

Identifying the tail basic block and instruction. Cascade
finds via a binary search the last basic block which, when
omitted along with its successors, erases the buggy behavior.
To remove such a final sequence, Cascade replaces its pre-
decessor’s hopping instruction with a direct jump toward the
final block. Cascade then searches the bug’s tail instruction
in the converse way.

Failing control-flow instructions. If the tail instruction is a
hopping instruction, the algorithm above will find a tail basic
block Bn, but no tail instruction. This is because for skipping
the basic block Bn but not Bn−1, a direct jump instruction

toward the final block will replace the (bug-triggering) hop-
ping instruction of Bn−1, hence removing Bn erases the buggy
behavior. The tail instruction being a hopping instruction is
hence the necessary and sufficient condition for failing.

6.2 Identifying the bug’s head
Most often, a single instruction, provided with the correct
architectural context, is sufficient to trigger the bug reliably.
In such cases, finding the tail instruction is enough to under-
stand the bug. However, some bugs required a sequence of
instructions (up to 2), possibly far apart, to be triggered, such
as the bugs V1-V9 and V14 that we describe in Section 7,
because they rely on a specific microarchitectural context.
Hence, for these bugs, identifying the head is necessary. The
result of this step is illustrated in Figure 5 (c).

Maintaining the architectural context. Identifying the
tail instruction can be done by exclusively inserting direct
jump instructions in the right places iteratively, but identifying
the head instruction is more challenging because removing
predecessor instructions ahead may influence the architectural
state. We leverage the following insight to identify the bug’s
head: we find the head by preserving the architectural state but
simplifying the microarchitectural state. Concretely, only for
this step, a context setter basic block is inserted, by replacing
the initial block’s hopping instruction. Once a candidate
head basic block and instruction is chosen, the context setter
uses the ISS to infer the architectural context, including for
instance register values, privilege level and some performance
counter values. It then loads the architectural state of the
CPU, using simple instructions such as wide loads for register
values, and basic instruction sequences for populating CSRs
and setting the proper privilege. The detection of the bug’s
head is then performed similarly to the tail, following the
converse algorithm where the head instruction is the first
instruction that, when omitted, erases the buggy behavior.

Sandwich instructions. For all bugs found by Cascade so
far, identifying the tail and head instructions has always been
sufficient for understanding and reproducing the bugs. How-
ever, Cascade includes facilities to flatten the remaining in-
structions (in black in Figure 5 (c)) and removing them itera-
tively. Such transformations are not guaranteed to work on a
given specific program, for example if the hopping instruction
was an exception and some following instruction checks the
exception cause. In practice, finding another program that
reveals the same bug in case of failure of advanced transfor-
mations is sufficient, notably because finding new programs
that trigger the same bug is fast, as we show in Section 7.6.3.

7 Evaluation

In this section, we evaluate Cascade in terms of performance,
program metrics, coverage, and the discovered bugs. We



use microbenchmarks to quantify the performance of pro-
gram construction and compare it with previous work (Sec-
tion 7.1). We evaluate the impact of program lengths on
fuzzing throughput (Section 7.2). We then evaluate the pro-
gram metrics for Cascade (Section 7.3) as we did for Difuz-
zRTL in Section 3.1. We compare the coverage achieved
by Cascade according to multiple coverage metrics and com-
pare it with the state-of-the-art fuzzers that specifically target
these metrics (Section 7.4). We then show the bug discovery
efficacy of programs of different lengths (Section 7.5). We
also describe the 37 new bugs found in 5 of the 6 evaluated
RISC-V CPUs and in Yosys, evaluate the time to detection
(Section 7.6) and provide a full list in Appendix D. Finally, we
evaluate the performance of program reduction (Section 7.7).

Evaluation setting. The performance results were obtained
on a machine equipped with two AMD EPYC 7H12 pro-
cessors at 2.6 GHz containing 256 logical cores and 1 TB
of DRAM. We use Verilator 5.005 to simulate the CPUs’
RTL. As an ISS, we use spike (version 1.1.1-dev, commit
fcbdbe79). We use a recent version of a widely-used com-
mercial simulator to collect simulator-based coverage similar
to previous work [35]. We use the most recent versions of
each CPU, where bugs are fixed or circumvented by Cascade.
Appendix B provides detailed information about these designs.
Notably, we tested Cascade on a variety of CPU complexities,
from a simple minimal 32-bit integer core (PicoRV32) to an
application-class Linux-capable out-of-order core (BOOM).
We implemented Cascade as 6 k lines of Python code.

Baselines. We compare with the existing open-source
generic CPU fuzzers, which are RFUZZ [36] and Difuz-
zRTL [32]. Despite the claim made in the original paper [35],
TheHuzz is not open source at the time of this writing, and its
authors were reluctant to answer any question or share their
code over a period of a year, hence we rely on the results
reported in their paper [35]. We re-implemented RFUZZ to
support Verilog, and relied on the Docker image provided by
DifuzzRTL [31].

7.1 Program generation performance
To quantify the performance of program construction, we
measure the amount of time spent in intermediate program
construction, asymmetric ISA pre-simulation and RTL sim-
ulation, for each CPU under test, over 24 hours of fuzzing.
Figure 6 shows the results.

Results. While by construction, the duration of the instruc-
tion generation and asymmetric ISA pre-simulation is identi-
cal across designs, the RTL simulation time increases with the
complexity of the design, hence the proportion of time spent
generating programs largely decreases with the complexity
of the designs. When generating the programs in real time,
the program generation takes between 26.5% and 78.9% of
the total fuzzing time.

kronos picorv32 vexriscv rocket cva6 boom
0

20

40

60

80

100

Ti
m

e 
pe

r s
te

p 
(%

)

78.9% 77.8%

55.2% 54.7% 49.8%

26.5%

Interm. program construc.
Asymmetric ISA pre-sim.
Final ELF writing

Figure 6: Performance of program construction. The rest of
the time is spent in the RTL simulation.

1 10 100 1,000 10,000 100,000
Number of fuzzing instructions per program (program length)

101

103

105

Ex
ec

. f
uz

z. 
in

st
rs

/s PicoRV32
Kronos
VexRiscv

Rocket
CVA6
BOOM

Figure 7: CPU-under-test execution throughput given pro-
gram length. Note the logarithmic Y axis.

Input reuse. To make Cascade’s evaluation as pessimistic
as possible, we systematically dynamically generate new in-
puts by default. Note that by construction, Cascade’s inputs
are reusable across designs that share compatible ISA exten-
sions, and across CPU generations. Hence the input genera-
tion is, in fact, a one-time cost that can further be amortized.

Runtime overhead. DifuzzRTL reports a runtime overhead
of 6.1% to 6.9% for control register coverage, and 97% for
multiplexer select coverage. TheHuzz reports a runtime over-
head of 71% These slowdowns do not include input genera-
tion. Cascade incurs no runtime overhead by design.

7.2 Throughput of long programs
To understand the throughput boost provided by long pro-
grams, we measure the number of fuzzing instructions exe-
cuted per second when controlling the number of instructions
per program generated by Cascade, including program gen-
eration time. The experiment was run for 1 core-hour per
bar. Figure 7 shows the throughputs of program execution,
while Figure 8 details the average duration of a single pro-
gram generation. Constructing very long programs requires
managing a wider memory range, resulting in longer program
generation times. Consequently, the overhead of generating
longer programs counteracts the improvements in terms of
fuzzing throughput when programs become too large.

To find the sweet spot for the length of programs, Figure 9
shows that the effective fuzzing throughput when considering
both the raw fuzzing throughput and the overhead of pro-
gram generation at the same time. These results show that
programs of 10 k instructions generally provide the best ef-
fective fuzzing throughput, and that the fuzzing throughput
is improved by three orders of magnitude between single-
instruction and 10 k-instruction programs.



1 10 100 1,000 10,000 100,000
Number of fuzzing instructions per program (program length)

101

102

Av
g.

 g
en

. t
im

e 
(s

)

PicoRV32
Kronos
VexRiscv

Rocket
CVA6
BOOM

Figure 8: Program generation performance given program
length. Note the logarithmic Y axis.

1 10 100 1,000 10,000 100,000
Number of fuzzing instructions per program (program length)

101

103

Fu
zz

. i
ns

trs
/s

PicoRV32
Kronos
VexRiscv

Rocket
CVA6
BOOM

Figure 9: Effective fuzzing throughput given program length.
Note the logarithmic Y axis.

7.3 Program metrics
As part of our initial observations in Section 3, we exposed the
completion and prevalence program properties. We evaluate
these metrics for Cascade. We additionally evaluate the length
of dependency chains between fuzzing instructions, which
matters for non-termination when a bug is triggered.

Prevalence and completion for Cascade. Since Cascade
always completes except when finding a CPU bug, we observe
the expected completion rate of 100%. Figure 10 shows the
prevalence of fuzzing instructions for Cascade. The high
prevalence is because programs are relatively long and fully
randomized except the initial and final basic blocks.

Dependencies. We analyze dependency chains between
fuzzing instructions. On top of entangling the data flow with
the control flow to force non-termination when a bug is trig-
gered, these dependencies can further exercise corner cases
inside a CPU’s design. For this analysis, we calculate the
length of instruction dependency chains. Each register starts
with a dependency number of -1, which gets reset when it is a
destination of a CSR read or of an instruction that only takes
immediates. We calculate an instruction’s dependency num-
ber as the maximum of the dependency numbers of the source
registers, plus one, which also becomes the new dependency
number of the destination register.

Figure 11 and Figure 12 show the distribution of the length
of the dependency chains for DifuzzRTL and Cascade, re-
spectively. The fuzzing instructions with zero dependencies
here are instructions in the form of xor rd, rd, rd. The
programs generated by DifuzzRTL have very few interdepen-
dencies. Similarly, TheHuzz does not explicitly generate or
favor programs with dependencies [35], hence we expect even
lower numbers. In contrast, Cascade generates programs with
longer dependency chains, which could further be improved if
needed by lowering the probabilities of picking dependency-
resetting instructions such as CSR reads.

0 10 20 30 40 50 60 70 80 90
Prevalence of fuzzing instructions (%)

0
10

Te
st

 c
as

es
 (%

)

Average prevalence (90.3%)
Median prevalence (92.5%)

Figure 10: Prevalence of fuzzing instructions for Cascade.

0 1 2 3 4 5 6
Length of the dependency chain

0
25

Te
st

 c
as

es
 (%

) Average #deps (2.1)
Median #deps (2.0)

Figure 11: Length of the dependency chains for DifuzzRTL.
Control-flow instructions are represented in orange.

7.4 Coverage evaluation
We show that Cascade is faster in increasing coverage com-
pared to the state-of-the-art fuzzers with their own coverage
metrics. We consider the open-source coverage metrics used
for fuzzing (i.e., multiplexer select and control register cover-
age). To compare with the results reported by TheHuzz [35],
we additionally consider the coverage metrics provided by
the commercial simulator (branches, conditions, expressions,
FSM states and transitions, statements, and toggles).

7.4.1 Control register coverage (DifuzzRTL)

We first compare the control register coverage of Cascade
with the one achieved by DifuzzRTL, which explicitly aims
at maximizing this coverage. DifuzzRTL supports legacy
versions of Rocket and BOOM. Running Cascade on this
BOOM version leads to quasi-systematic timeouts, revealing
old bugs in the obsolete BOOM RTL. Hence, we executed all
test cases on the legacy Rocket core provided in the Docker
image [31], which was already exempt of unexpected bugs.

Results. Figure 13 shows the control register coverage
achieved by Cascade and DifuzzRTL. Cascade achieves more
coverage than DifuzzRTL, in a shorter time. In particular,
Cascade achieves the same coverage in 30 minutes (15 min-
utes when using a pre-generated corpus) as DifuzzRTL in 48
hours, which is a speedup of 97x (respectively 186x).

7.4.2 Multiplexer select coverage (RFUZZ)

We now compare the multiplexer select coverage achieved
by Cascade with the one achieved by RFUZZ. We adapted
RFUZZ as a sequence of Yosys [60] passes to support Ver-
ilog, more general than FIRRTL [33], and ensured that the
results match with the original open-source implementation.
We will open-source the instrumentation code to foster further
research. We execute Cascade on the RFUZZ-instrumented
versions of the designs as well. We execute the RFUZZ exper-
iments until completion, i.e., as implemented in the original
RFUZZ fuzzer, when all input sequences in the adherence



0 50 100
Length of the dependency chain

0

20

Te
st

 c
as

es
 (%

)

Average dependencies (9.5)
Median dependencies (4.0)

Figure 12: Length of the dependency chains for Cascade.
Control-flow instructions are represented in orange. Fuzzing
instructions depended on up to 270 other fuzzing instructions.

0 10 20 30 40 48
Time (h)

0

500,000

1,000,000

Co
ve

ra
ge

 p
ts

Cascade (with corpus)
Cascade (live generation)
DifuzzRTL

Figure 13: Achieved control register coverage.

to the corpus cease to increase coverage. We had to exclude
CVA6 because of the Yosys bug found by Cascade.

Results. Figure 14 shows the multiplexer select coverage
achieved by Cascade and RFUZZ. First, in terms of cover-
age, for the two simpler designs, RFUZZ is a bit slower than
Cascade (note that in this experiment, Cascade also suffers
from the runtime overhead due to the instrumentation), but
eventually achieves a superior coverage. Since RFUZZ is a
lower-level fuzzer, it is expected to be able to toggle some
more multiplexer signals eventually, for example by fuzzing
the bus protocol, whereas an ISA-level fuzzer like Cascade
and many others [8,9,14,30,32,34,35] will not explore these
state machines. However, as soon as CPUs become more
complex, RFUZZ is unable to make any progress.

Second, regarding delay, the order of magnitude to saturate
coverage for Cascade is approximately 100 seconds, which
corresponds to its order of magnitude for finding bugs as
we show later. This suggests that, although a naive RFUZZ
implementation seems inadequate to finding bugs in CPUs,
especially when they are complex, its coverage metric seems
relevant to evaluating the quality of a fuzzing campaign.

7.4.3 Simulator-based coverage (TheHuzz)

We compare the simulator-based coverage achieved by Cas-
cade with the one reported by TheHuzz. We reproduce the
experiment from TheHuzz that led to their Figure 5 [35]. We
compare the simulator coverages of Cascade and DifuzzRTL,
and use DifuzzRTL as a pivot to compare with TheHuzz. Note
that to fit the methodology of TheHuzz, both DifuzzRTL and
Cascade rely on pre-generated corpuses in this experiment.

Results. Figure 15 shows a per-instruction speedup of Cas-
cade over DifuzzRTL of 27x for the simulator-collected cov-
erage, while TheHuzz reports a speedup of 3.33x. Since The-
Huzz reports a runtime slowdown of 71%, Cascade is 28.2x
faster than TheHuzz on TheHuzz’s target coverage metric.

0
50

100

 

PicoRV32 (172 coverage points)
Cascade
RFUZZ

0
50

100

 

Kronos (178 coverage points)
Cascade
RFUZZ

0
50

100

 

VexRiscv (634 coverage points)
Cascade
RFUZZ

0
50

100

 

Rocket (2265 coverage points)
Cascade
RFUZZ

0 20 40 60 80 100
Time (seconds)

0
50

100

 

BOOM (7752 coverage points)
Cascade
RFUZZ

Co
ve

ra
ge

 p
oi

nt
s (

%
)

Figure 14: Multiplexer select coverage achieved by Cascade.

0 200k 400k 600k 800k 1,000k
Number of instructions

400k

425k

450k

Si
m

ul
at

or
 c

ov
er

ag
e

Cascade
DifuzzRTL

Intersection: 37k instrs

Figure 15: Simulator-collected coverage per instruction of
Cascade and DifuzzRTL. Note that the y-axis starts at 400k.

7.5 Efficacy of long programs

To better understand the influence of program length on the
efficacy of finding bugs, we enforce the number of fuzzing
instructions per program, fuzz on 64 cores and report the
bug discovery times in Figure 16. Even limited to a single
fuzzing instruction, Cascade discovers C8-C9 in a core-hour,
undetected by TheHuzz [35] and HypFuzz [14]. Yet clearly,
longer programs are more efficient at finding bugs. Also note
that some bugs are hard to separate for this measurement, in
particular C2-C7 and C10, and may overlap. The bug found
only by the longest programs in 24 core-hours is K3.

7.6 Bug discoveries

Cascade discovered 37 new bugs in 5 CPUs and 1 bug in
the Yosys synthesizer. Figure 17 classifies the new bugs in
six categories, and Appendix D provides more information
in terms of description, CWEs and CVEs. We first analyze
the discovered bugs and their security implications, and then
evaluate the bug detection performance of Cascade.

7.6.1 Bug descriptions

Exceptions. Cascade discovered 11 exception-related bugs
in 4 designs, which we define as missing or spurious excep-
tions. For example, in VexRiscv, interactions with a disabled



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Median time to discovery (core-hours)

0

10

20

30
38

Ne
w 

bu
gs

 fo
un

d

1 fuzz. instr.
10 fuzz. instr.
100 fuzz. instr.

1,000 fuzz. instr.
10,000 fuzz. instr.

Figure 16: Time to reveal each bug when fuzzing with fixed
numbers of instructions on 64 cores.

Uarchvals Exceptions Archvals Archflags Hangs Perfcnt

5

10

Ne
w 

bu
gs

12 11

4 4 3 3

PicoRV32
Kronos
VexRiscv

CVA6
BOOM

Figure 17: Discovered CPU bugs. Exceptions: missing or
spurious exceptions. Uarchvals: wrong computations under
microarchitectural conditions. Archvals: systematic wrong
computations. Archflags: wrong status flags. Hangs: CPU
hangs. Perfcnt: wrong performance counter values

FPU are wrongly permitted (V10, V11). In Kronos, writes
to a non-existent CSR fail to trigger an exception (K3). In
PicoRV32, Kronos and CVA6, spurious exceptions may be
triggered by some CSR accesses (P2-P5, C8-C9) or incor-
rectly decoded valid instructions (P6, K5).

Microarchitectural-state-dependent wrong computations.
Cascade discovered 12 bugs that produce wrong computa-
tions under certain microarchitectural conditions (Uarchvals)
in Kronos and VexRiscv. In Kronos, a bug in the hazard detec-
tion unit (K1) causes, under some conditions, wrong register
forwarding in a read-after-write-after-write double-hazard,
where it forwards the first written value instead of the sec-
ond. In VexRiscv and CVA6, wrong calculations occur under
some microarchitectural FPU conditions (V1-V9, V14, C10).
Such bugs are often hard to fix. Indeed, the VexRiscv main-
tainers proposed a fix, which solved most of the occurrences,
but Cascade discovered a way to tamper with the FPU’s mi-
croarchitectural state again with a different approach (V8, V9,
V14), which has ultimately been fixed by the maintainers.

Systematic wrong computations. Cascade discovered 4
bugs in BOOM and CVA6 that produce wrong output val-
ues regardless of the microarchitectural state (Archvals). In
BOOM, double-precision divisions and square roots ignore
the (immediate) static rounding mode (B1). In CVA6, we
found two wrong output sign bugs (C1, C6), and one unex-
pected infinity bug (C7).

Systematic wrong flags. Cascade discovered 4 incorrect
flag bugs in CVA6 (Archflags) (C2-C5). Since flags are typi-
cally used to guide a control flow, emitting FPU operations
that will set flags incorrectly may provide an illegitimate con-
trol flow influence. Such bugs are difficult to fix. The CVA6

maintainers contacted us to test a fix, which we found to fix
some bug (C2), but preserving another (C3).

Hangs. Cascade discovered 3 bugs that cause hangs in Kro-
nos, PicoRV32 and VexRiscv (V12, P1, K2). In PicoRV32,
the hang is systematic for accessing some CSR addresses. The
hang in Kronos, also related to CSR access, depends on the
microarchitectural state. The hang in VexRiscv is achievable
when speculatively executing an illegal compressed floating-
point instruction and later executing a legitimate floating-
point instruction: microarchitectural resources are reserved
but are never released, which results in a deadlock. The latter
bug is similar to the recently-discovered Zenbleed bug [39],
where an architectural bug leaves traces after speculation.

Performance counter inaccuracies. Cascade discovered
3 inaccurate performance counter bugs (Perfcnts) in Kronos,
VexRiscv and BOOM (K4, V13, B2). They incur an offset in
the retired instruction counters when written by software.

Yosys logic synthesizer bug. Yosys [60] is a popular open-
source logic synthesizer, which is typically used for instru-
menting a CPU [32, 36, 48, 54]. It may also be used to part of
an emulation or ASIC flow. Cascade found a bug (Y1) that
leads to incorrect logic synthesis of CVA6’s FPU.

Other findings. Besides discovering new bugs in CPUs
and in Yosys, Cascade found known bugs in CVA6, and the
performance counter inaccuracy in Rocket discovered by Di-
fuzzRTL and reported by TheHuzz and HypFuzz [14, 32, 35].

Additionally, Cascade found two issues related to X over-
propagation in VexRiscv (shadowing of RTL logical signals
by undefined values [33, 56]), which may happen under some
conditions. First, some uninitialized instruction cache lines
can enter the pipeline and pollute signals. Second, in case
of FPU underflow, a hardware table is accessed with a too
large index. HypFuzz [14] discusses the implications of such
vulnerabilities when describing their third vulnerability [14].

7.6.2 Security implications

We classify the security implications of the discovered bugs
into six categories, as presented in Figure 19. The same bug
may belong to more than one category.

Data-flow integrity. We define data-flow integrity bugs
as allowing a malicious time-shared user to cause a victim
entity to execute computations with a wrong result. Cascade
found 12 such bugs, where preparing the (micro)architectural
state can cause wrong computations (V1-V9, V14, K1, B1).
For example, exploiting the BOOM dynamic rounding bug
(B1), an attacker process can force a victim process to take a
different floating-point rounding mode than expected.



V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 P1 P2 P3 P4 P5 P6 K1 K2 K3 K4 K5 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 B1 B2 Y1 R1

1

10

100

1000

Ti
m

e 
to

 d
isc

ov
er

y 
(s

)

Figure 18: Time to reveal each bug when fuzzing on 64 processes. R1 is the known instruction counting bug in Rocket. Note the
logarithmic scale. Bugs are labeled as follows: B (BOOM), C (CVA6), K (Kronos), P (PicoRV32), V (VexRiscv), and Y (Yosys).

Info leakage
DF violations

CF hijack
Spur. except.

No check DoS
Logic hiding

0

10

20

Ne
w 

bu
gs

18
12

9 8
4 3 1

PicoRV32
Kronos

VexRiscv
CVA6

BOOM
Yosys

Figure 19: Security implications of discovered bugs. Note
that some bugs belong to more than one category.

Information leakage. Sources of information leakage are
many. For example, data-flow integrity bugs may also en-
able information leakage in the opposite direction, from the
victim to an attacker running on the same core. So do bugs
that illegally set some flags (C2-C5), and some unauthorized
accesses (V10, V11), creating core-local side channels.

Control-flow hijack. Cascade found 9 bugs that let an at-
tacker process influence the control flow of a victim process
(C1-C7, V5, V6). For example, CVA6 sets wrong flags in di-
verse situations (C2-C5) and produces wrong finitude or sign
results (C1, C6, C7), which typically influence the control
flow. Concretely, we found that the inexact flag is not set in
some cases of underflow or overflow (C4), preventing some
potential security checks. On VexRiscv, the microarchitecture
can be prepared to corrupt comparisons, for example making
two equal registers be considered distinct (V5, V6). This
preparation must be done by a process on the same core.

Spurious exceptions. Cascade found 8 spurious exception
bugs (P2-P6, K5, C8, C9), which break isolation boundaries
from higher privilege levels, for example, in the context of
trusted execution environments. For example, in PicoRV32,
reading some mandatory CSRs causes exceptions (P2), hence,
a malicious machine could give the illusion that they are
accessible, but actually the machine solely emulates the inter-
actions, providing arbitrary values.

Missing checks. Cascade found 4 missing checks, with
several implications. First, they may permit to bypass security
checks (V10, V11), problematic, for example, if the FPU is
time-shared with other cores. Second, they can deceive a
victim to believe that a feature is supported (K3, P5). They
can additionally be exploited to escape program analysis,
where supposedly dead code is shadowed by an exception.

PicoRV32 Kronos VexRiscv Rocket CVA6 BOOM
10
20
30

Se
co

nd
s /

 k
 in

st
r

Figure 20: Program reduction performance.

Denial of service. All the hangs that we found (V12, P1,
K2) can happen at any privilege level, leading to DoS attacks.

Logic hiding. Using the discovered Yosys bug (Y1), a ma-
licious contributor can inject bugs into a design while submit-
ting an apparently innocuous RTL design, by transforming the
RTL into an equivalent one that will trigger Y1 accordingly.

7.6.3 Bug detection performance

We fuzz on 64 processes for 24 hours and summarize the
time to discover each bug in Figure 18, where we repeated
the discovery 10 times with different seeds. Note that some
bugs are hard to separate for this experiment, in particular
C2-C7 and C10, and may overlap. In most runs, bugs are
discovered in less than 18 core-hours (17 minutes). Design
and bug complexities influence the discovery time.

7.7 Program reduction performance
We evaluate the performance of Cascade’s program reduction.
Since all designs still have at least one non-fixed bug (V14,
P6, K4, C9, B2 and R1), we focus on them for this analysis.
We run the fuzzer to collect 100 programs that trigger the bug
in each design. Then, we perform the program reduction on
these programs, and measure the time required to reduce each
program and normalize it by the number of instructions in the
program, including the initial and final blocks.

Results. Some program reductions could fail, e.g., because
a load instruction would target the hopping instruction of a
basic block preceding a candidate tail block during the re-
duction phase and its result would propagate to the control
flow. Experimentally, we did not observe such failures. Fig-
ure 20 shows the time to reduce each program, normalized by
the length of the program. program lengths varied between
193 and 62,870 instructions. The timeout upper bound, con-
servatively set to 30× ninstructions + 1000 cycles, influences
program reduction performance. In this specific experiment,
all programs were reduced to a single instruction.



8 Discussion

We discuss porting Cascade to other ISAs and limitations of
coverage metrics used by the state-of-the-art CPU fuzzers.

Adaptations to other ISAs. While the fundamentals of
Cascade’s approach comply with most widespread ISAs, its
current implementation is RISC-V-specific. Adaptation to
RISC ISAs such as ARM and MIPS requires ISS and instruc-
tion generator adaptations. We expect porting Cascade to
CISC ISAs to be more challenging due to more instructions.

Coverage metrics. The coverage metrics used by the state-
of-the-art CPU fuzzers such as TheHuzz [35] and Difuz-
zRTL [32] are dominated by ineffective terms while intro-
ducing runtime overhead. For TheHuzz, toggle coverage
represents around a million points and 89% of the achievable
points on Rocket. Given that TheHuzz considers the sum
of all coverage points of all types, any mutation that would
produce such a single new toggle would be considered as dis-
covering new coverage. Limitations of such simple metrics
are well-known [53], yet the more powerful alternative, func-
tional coverage, requires significantly more effort [7]. This
explains why HypFuzz, building on the same metric as The-
Huzz, found a single new bug (see Appendix C). DifuzzRTL
defines control registers as registers which control a multi-
plexer inside the same HDL module. This coverage metric
continues to increase when exploring registers whose fanout
multiplexers already took all values. Ultimately, DifuzzRTL
optimizes for exploring an immense number of combinations
of values for registers that are mainly arbitrarily selected [12].

9 Related Work

In the recent years, hardware fuzzing has flourished. We first
cover generic hardware fuzzers, then CPU fuzzers.

Generic hardware fuzzers. RFUZZ [36] is a generic hard-
ware fuzzer that relies on multiplexer control signals to gener-
ate inputs based on AFL [29]. DirectFuzz [10] targets RFUZZ
toward specific modules. Trippel et al. [55] proposed to fuzz
the hardware simulation binary itself, using software fuzzing
methods. Ruep et al. [43] proposed a fuzzer for SpinalHDL
designs. Li et al. [37] proposed a new coverage metric for
fuzzing. Ragab et al. [41] proposed a distance-to-target feed-
back metric to direct fuzzers towards specific targets. None
of these publications reported the discovery of any bugs.

CPU fuzzers. Many active open-source repositories rely
on testing tools, such as the RISC-V compliance suite [46],
which generates basic unit tests, and RISCV-DV, a UVM-
based testing framework based on commercial simulators [2].
To address their insufficiencies, several projects proposed
fuzzing CPUs. DifuzzRTL [32] generates instructions and
collects control register coverage to guide the fuzzing process
and discovered 16 new bugs. Its source code, while relying on
obsolete languages, is available for fuzzing legacy versions

of Rocket and BOOM [31]. ProcessorFuzz [12] is a concur-
rent work that generates instructions and collects coverage
of control and status registers on the ISS and reported the
discovery of 9 new bugs (see Appendix C), including 7 on
BlackParrot, maintained by certain authors of ProcessorFuzz.
Kabylkas et al. present Dromajo and Logic Fuzzer [34] and
report the discovery of 13 new bugs, including 4 with the
help of Logic Fuzzer. Bruns et al. [8] exploited ISS coverage
to find new VexRiscv bugs. Similarly, Herdt et al. [30] ex-
ploited ISS coverage to find 10 new bugs in their own core. N.
Bruns et al. [9] generate an infinite instruction stream on the
memory channel to find a bug in their own core. Such an infi-
nite instruction stream is known to cause compatibility issues
due to strong microarchitectural assumptions [8]. Kande et
al. [35] proposed TheHuzz, based on commercial RTL simula-
tor coverage feedback, and fond 7 new bugs. Chen et al. [14]
proposed a technique to speed up the coverage obtained by
TheHuzz and found one new bug (see Appendix C). Cascade
is the first fuzzer to take a constructive approach to tackle the
observations and challenges exposed in Section 3.

10 Conclusion

We presented Cascade, a CPU fuzzer based on the explicit
construction of intricate RISC-V programs. Cascade is effec-
tive: it finds 37 new bugs on 5 RISC-V CPUs with varying
degrees of complexity and vastly outperforms the state-of-the-
art coverage-guided CPU fuzzers. What sets Cascade apart
from the state of the art is its ability to efficiently construct
long complex programs that enable high-throughput CPU
fuzzing while terminating by design. Any non-termination
signifies the discovery of a bug in the target CPU. We de-
scribed how Cascade generates its programs using a new
technique, asymmetric ISA pre-simulation, which enables
Cascade to efficiently entangle an arbitrarily-complex con-
trol flow with an arbitrarily-complex data flow. Since the
bug-triggering programs generated by Cascade may be long
and complex, we introduced a new technique for program
reduction transforming a program to the only few instructions
that trigger the CPU bug.

Ethical considerations. We reported all bugs to their re-
spective maintainers, and proposed fixes when our understand-
ing of the language and design was sufficient.

Acknowledgements

The authors would like to thank the anonymous reviewers for
their valuable feedback, Tobias Kovats for his contribution
to RFUZZ re-implementation, and the maintainers of the de-
signs we tested for their support in understanding and fixing
some of the bugs. This work was supported in part by a Mi-
crosoft Swiss JRC grant and by the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).



References

[1] Chips Alliance. Ebreak instruction retires. h t t p s :
//github.com/chipsalliance/rocket-chip/issu
es/2672. [Online; accessed 4-June-2023].

[2] Chips Alliance. Risc-v dv. https://github.com
/chipsalliance/riscv-dv. [Online; accessed
4-June-2023].

[3] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer,
D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, et al. The rocket chip generator. UC
Berkeley, 2016.

[4] K. Asanovic, D. A. Patterson, and C. Celio. The
berkeley out-of-order machine (boom): An industry-
competitive, synthesizable, parameterized risc-v proces-
sor. Technical report, UC Berkeley, 2015.

[5] K. Asanovic, D. A. Patterson, and C. Celio. The
berkeley out-of-order machine (boom): An industry-
competitive, synthesizable, parameterized risc-v proces-
sor. UC Berkeley, 2015.

[6] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi,
S. Schumilo, S. Wörner, and T. Holz. Grimoire: Syn-
thesizing structure while fuzzing. In USENIX SEC,
2019.

[7] T. Bojan, M. A. Arreola, E. Shlomo, and T. Shachar.
Functional coverage measurements and results in post-
silicon validation of core™ 2 duo family. In 2007 IEEE
HLDVT, 2007.

[8] N. Bruns, V. Herdt, D. Große, and R. Drechsler. Effi-
cient cross-level processor verification using coverage-
guided fuzzing. In VLSI, pages 97–103, 2022.

[9] N. Bruns, V. Herdt, E. Jentzsch, and R. Drechsler. Cross-
level processor verification via endless randomized in-
struction stream generation with coverage-guided aging.
In DATE, 2022.

[10] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor,
M. Egele, and A. Joshi. Directfuzz: Automated test
generation for rtl designs using directed graybox fuzzing.
In DAC, 2021.

[11] S. Canakci, C. Rajapaksha, L. Delshadtehrani,
A. Nataraja, M. B. Taylor, M. Egele, and A. Joshi.
Processorfuzz: Guiding processor fuzzing using control
and status registers. arXiv:2209.01789, 2022.

[12] S. Canakci, C. Rajapaksha, L. Delshadtehrani,
A. Nataraja, M. B. Taylor, M. Egele, and A. Joshi. Pro-
cessorfuzz: Processor fuzzing with control and status
registers guidance. In HOST, 2023.

[13] C. Chen. Miss illegal instruction exception when rd of
mulhu is the same as rs1 or rs2. https://github.com
/openhwgroup/cva6/issues/885#issuecomment-1
469547149. [Online; accessed 4-June-2023].

[14] C. Chen, R. Kande, N. Nyugen, F. Andersen, A. Tyagi,
A. R. Sadeghi, and J. Rajendran. Hypfuzz: Formal-
assisted processor fuzzing. arXiv:2304.02485, 2023.

[15] H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu. Fot: A
versatile, configurable, extensible fuzzing framework.
In ACM FSE, 2018.

[16] P. Chen and H. Chen. Angora: Efficient fuzzing by
principled search. In IEEE SP, 2018.

[17] C. Courbet. Nsan: a floating-point numerical sanitizer.
In ACM SIGPLAN CC, 2021.

[18] S. Deng, D. Gümüşoğlu, W. Xiong, S. Sari, Y. S. Gener,
C. Lu, O. Demir, and J. Szefer. Secchisel framework for
security verification of secure processor architectures.
In HASP, 2019.

[19] C. Deutschbein, A. Meza, F. Restuccia, R. Kastner, and
C. Sturton. Isadora: Automated information flow prop-
erty generation for hardware designs. In ASHES, 2021.

[20] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. Barrett,
S. Mitra, W. Ecker, D. Stoffel, and W. Kunz. Gap-free
processor verification by s2qed and property generation.
In DATE, 2020.

[21] K. Devarajegowda, E. Kaja, S. Prebeck, and W. Ecker.
Isa modeling with trace notation for context free prop-
erty generation. In DAC, 2021.

[22] LLVM Developers. Undefinedbehaviorsanitizer. http
s://clang.llvm.org/docs/UndefinedBehaviorS
anitizer.html. [Online; accessed 4-June-2023].

[23] Z. Y. Ding and C. Le Goues. An empirical study of
oss-fuzz bugs. In MSR, 2021.

[24] Martin Eberlein, Yannic Noller, Thomas Vogel, and
Lars Grunske. Evolutionary grammar-based fuzzing. In
SSBSE, 2020.

[25] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra,
D. Stoffel, and W. Kunz. A formal approach for de-
tecting vulnerabilities to transient execution attacks in
out-of-order processors. In DAC, 2020.

[26] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. Afl++
combining incremental steps of fuzzing research. In
WOOT, pages 10–10, 2020.

[27] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed
whitebox fuzzing. In ICSE, 2009.

https://github.com/chipsalliance/rocket-chip/issues/2672
https://github.com/chipsalliance/rocket-chip/issues/2672
https://github.com/chipsalliance/rocket-chip/issues/2672
https://github.com/chipsalliance/riscv-dv
https://github.com/chipsalliance/riscv-dv
https://github.com/openhwgroup/cva6/issues/885#issuecomment-1469547149
https://github.com/openhwgroup/cva6/issues/885#issuecomment-1469547149
https://github.com/openhwgroup/cva6/issues/885#issuecomment-1469547149
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


[28] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-
based whitebox fuzzing. In ASPLOS, 2008.

[29] Google. American fuzzy lop. https://github.com
/google/AFL. [Online; accessed 4-June-2023].

[30] V. Herdt, D. Große, E. Jentzsch, and R. Drechsler. Ef-
ficient cross-level testing for processor verification: A
risc-v case-study. In FDL, 2020.

[31] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee.
Difuzzrtl: Differential fuzz testing to find cpu bugs.
https://github.com/compsec-snu/difuzz-rtl.
[Online; accessed 4-June-2023].

[32] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee.
Difuzzrtl: Differential fuzz testing to find cpu bugs. In
IEEE SP, 2021.

[33] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Mag-
yar, D. Kim, C. Schmidt, C. Markley, J. Lawson, et al.
Reusability is firrtl ground: Hardware construction lan-
guages, compiler frameworks, and transformations. In
ICCAD, 2017.

[34] N. Kabylkas, T. Thorn, S. Srinath, P. Xekalakis, and
J. Renau. Effective processor verification with logic
fuzzer enhanced co-simulation. In MICRO, 2021.

[35] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. R.
Sadeghi, A. Tyagi, and J. Rajendran. {TheHuzz}:
Instruction fuzzing of processors using {Golden-
Reference} models for finding {Software-Exploitable}
vulnerabilities. In USENIX SEC, 2022.

[36] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen.
Rfuzz: Coverage-directed fuzz testing of rtl on fpgas.
In ICCAD, 2018.

[37] T. Li, H. Zou, D. Luo, and W. Qu. Symbolic simulation
enhanced coverage-directed fuzz testing of rtl design.
In ISCAS, 2021.

[38] T. Ludwig, J. Urdahl, D. Stoffel, and W. Kunz. Proper-
ties first—correct-by-construction rtl design in system-
level design flows. In IEEE TCAD, 2020.

[39] T. Ormandy. Zenbleed. https://lock.cmpxc
hg8b.com/zenbleed.html. [Online; accessed
2-September-2023].

[40] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida.
Parmesan: Sanitizer-guided greybox fuzzing. In
USENIX SEC, 2020.

[41] H. Ragab, K. Koning, H. Bos, and C. Giuffrida. Bugs-
bunny: Hopping to rtl targets with a directed hardware-
design fuzzer. In SILM, 2022.

[42] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, volume 17, pages 1–14, 2017.

[43] K. Ruep and D. Große. Spinalfuzz: Coverage-guided
fuzzing for spinalhdl designs. In IEEE ETS, 2022.

[44] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan,
M. Mishechkin, T. Ghukasyan, and S. Asryan.
Grammar-based fuzzing. In IVMEM, 2018.

[45] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address sanity
checker. https://clang.llvm.org/docs/Addres
sSanitizer.html. [Online; accessed 4-June-2023].

[46] RISC-V Software. Risc-v unit tests. https://github
.com/riscv-software-src/riscv-tests. [Online;
accessed 4-June-2023].

[47] RISC-V Software. Spike risc-v isa simulator. https:
//github.com/riscv-software-src/riscv-isa
-sim. [Online; accessed 4-June-2023].

[48] F. Solt, B. Gras, and K. Razavi. Cellift: Leveraging
cells for scalable and precise dynamic information flow
tracking in rtl. In USENIX SEC, 2022.

[49] SonalPinto. Kronos risc-v. https://github.c
o m / S o n a l P i n t o / k r o n os. [Online; accessed
2-September-2023].

[50] SpinalHDL. Vexriscv. h t t p s : / / g i t h u b . c o m
/ S p i n a l H D L / V e x R i s c v. [Online; accessed
2-September-2023].

[51] P. Srivastava and M. Payer. Gramatron: Effective
grammar-aware fuzzing. In ISSTA, 2021.

[52] S. Sutherland. I’m still in love with my x! In Design
and Verification Conference (DVCon), 2013.

[53] S. Tasiran and K. Keutzer. Coverage metrics for func-
tional validation of hardware designs. In IEEE Design
& Test of Computers, 2001.

[54] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore,
F. T. Chong, and T. Sherwood. Complete information
flow tracking from the gates up. In ASPLOS, 2009.

[55] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly,
D. Rizzo, and M. Hicks. Fuzzing hardware like software.
In USENIX SEC, 2022.

[56] M. Turpin and P. V. Engineer. The dangers of living
with an x (bugs hidden in your verilog). In Synopsys
Users Group Meeting, 2003.

[57] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion:
Grammar-aware greybox fuzzing. In ICSE, 2019.

https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/compsec-snu/difuzz-rtl
https://lock.cmpxchg8b.com/zenbleed.html
https://lock.cmpxchg8b.com/zenbleed.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/SonalPinto/kronos
https://github.com/SonalPinto/kronos
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv


[58] P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu. Sok:
The progress, challenges, and perspectives of directed
greybox fuzzing. arXiv:2005.11907, 2020.

[59] A. Waterman and K. Asanovic. The risc-v instruction
set manual. https://github.com/riscv/riscv-i
sa-manual. [Online; accessed 4-June-2023].

[60] C. Wolf, J. Glaser, and J. Kepler. Yosys-a free verilog
synthesis suite. In Austrochip, 2013.

[61] YosysHQ. Picorv32 - a size-optimized risc-v cpu. ht
tps://github.com/YosysHQ/picorv32. [Online;
accessed 2-September-2023].

[62] F. Zaruba and L. Benini. The cost of application-class
processing: Energy and performance analysis of a linux-
ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technol-
ogy. In VLSI, 2019.

A Instruction Categories

The instruction categories used in Cascade are the following:
REGFSM (Register lifecycle), FPUFSM (Update the FPU
state), ALU (rv32 ALU operations), ALU64 (rv64 ALU oper-
ations), MULDIV (rv32 multiplications and divisions), MUL-
DIV64 (rv64 multiplications and divisions), AMO (rv32 atom-
ics), AMO64 (rv64 atomics), JAL (Direct jumps), JALR (Indi-
rect jumps), BRANCH (Branches), MEM (rv32 integer mem-
ory operations), MEM64 (rv64 integer memory operations),
MEMFPU (rv32 floating memory operations), FPU (rv32
floating-point operations), FPU64 (rv64 floating-point opera-
tions), MEMFPUD (rv32 double memory operations), FPUD
(rv32 double operations), FPUD64 (rv64 double operations),
TVECFSM (Update trap vector), PPFSM (Update previous
privileges), EPCFSM (Update trap previous PC), MEDELEG
(Update exception delegation), EXCEPTION (Trigger an ex-
ception), RDWRCSR (Read/write some CSRs), DWNPRV
(Transition privileges downward), FENCES (Fences or wfi).

B CPUs under Test

Our testbench consists of 6 RISC-V CPUs of varying com-
plexities and ISA extensions. VexRiscv [50] (e142e12, Linux,
AHB-L, FPU, rv32imfd) is a highly parametrable CPU
written in SpinalHDL, supporting Linux. PicoRV32 [61]
(f00a88c, Default, rv32im) is a size-optimized CPU written
in Verilog (IEEE 1364-2005). Kronos [49] (13678d4, Default,
rv32i) is a CPU optimized for FPGA applications, written in
SystemVerilog (IEEE 1800-2017). CVA6 [62] (109f9e9, 4-
way 8 kB caches, rv64imafd) is an application-class CPU with
Linux support supported by the OpenHW Group organization,
and written in SystemVerilog (IEEE 1800-2017). Rocket [3]

(004297b, BigCore, rv64imafd) is a reference application-
class CPU with Linux support, maintained by the Chips Al-
liance, written in Chisel. BOOM [5] (004297b, Medium-
Boom, rv64imafd) is an out-of-order application-class CPU
with Linux support, maintained by the Chips Alliance, written
in Chisel.

C Considerations of Previous Fuzzing Claims

In this appendix, we correct some claims from previous work
and underline that an ISS-CPU mismatch is not always a bug.
In TheHuzz [35], it is considered as a bug (B4) that CVA6
does not throw an exception when executing self-modifying
code without fence.i. RISC-V does not specify any be-
havior in this case, hence this is a feature request and not a
bug. In HyPFuzz [14], their vulnerability V2 was later de-
nied by the CVA6 maintainers [13], and V3 is not a bug [52].
Since V3 is not a bug, we naturally did not count similar
occurrences as bugs in the evaluation of Cascade (see Sec-
tion 7.6.1). Conclusively, HypFuzz only describes a single
new bug. In the archived version of ProcessorFuzz [11], Bug
10 is not a bug but a feature request, because the described
behavior is explicitly permitted by the RISC-V specification.

D Enumeration of Discovered Bugs

Table 1 shows the bugs we found in the three designs, the
corresponding CWEs and CVEs.

Concurrent findings. After a first bug report campaign, we
submitted some new bug reports that were, in the meanwhile,
concurrently found by the VexRiscv maintainer. These bugs
are V10 and V11. From existing github issues, it cannot be
excluded that symptoms of C1 had been noticed in the past.
However, the root cause was clearly not understood, until
Cascade and its analysis facilities allowed us to propose a fix,
that has been approved and merged by the maintainers.

https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32


Table 1: Bug Report Table.
Design Id Bug Description CWE CVE Sev.

VexRiscv

V1 Non-deterministic conversion from single-precision float to int 681 2023-34885 4.9
V2 fmin with one NaN does not always return the other operand 193 2023-34885 4.9
V3 Conversion from double to float may pollute the mantissa 681 2023-34885 4.9
V4 Dependent arithmetic/muldiv FPU operations may yield incorrect results 193 2023-34885 4.9
V5 Equal registers may be considered distinct by fle.s and feq.s 697 2023-34885 4.9
V6 flt.s may return 1 when operands are equal 697 2023-34885 4.9
V7 Under some microarchitectural conditions, square root may be imprecise 1339 2023-34885 4.9
V8 Single-precision muldiv followed by conversion may pollute the mantissa 681 2023-34891 4.9
V9 Dependent arithmetic/muldiv operations may cause largely wrong output 682 2023-34891 4.9
V10 Operations on floating-point registers are authorized when FPU is disabled 1189 2023-34885 4.9
V11 Wrong access control to the FPU flags leaks information 1189 2023-34892 4.9
V12 Hang on speculatively executed compressed FPU instructions 1342 2023-34896 7.7
V13 Inaccurate instruction count when minstret is written by software 684 2023-40063 3.6
V14 Some register comparisons are still incorrect despite a partial fix 697 2023-34885 4.9

PicoRV32

P1 Accessing a non-implemented CSR causes the CPU to hang 1281 2023-34898 4.6
P2 Spurious exceptions when reading mandatory CSRs 1281 2023-34897 2.6
P3 Performance counters are not writable 284 2023-34900 2.6
P4 Performance counters can only be read using some opcodes 284 2023-34914 2.6
P5 Performance counter addresses are incorrect 684 2023-34913 2.6
P6 Spurious exception when decoding fence instructions 705 2023-34899 5.0

Kronos

K1 RaWaW double-hazard may cause a wrong register value to be forwarded 226 2023-34902 6.6
K2 Reading existing CSRs causes the CPU to hang in some uarch conditions 1281 2023-34901 7.1
K3 In some uarch conditions, no exception when writing inexistent CSRs 1281 2023-42310 2.6
K4 Inaccurate instruction count when minstret is written by software 684 2023-40066 3.6
K5 Incorrect decode logic for fence and fence.i 684 2023-34903 5.0

2023-40064 5.0

CVA6

C1 Double-precision multiplications yield wrong sign when rounding down 682 2023-34904 4.4
C2 Single-precision floating-point operations may treat NaNs as zeros 684 2023-34906 5.1
C3 Division by NAN incorrectly sets NX and NV fflags 684 2023-34905 5.1
C4 The inexact (NX) flag not set in case of overflow or underflow 684 2023-34907 5.1
C5 Division of zero by zero incorrectly sets the DZ flag 684 2023-34909 5.1
C6 Plus and Minus infinity microarchitectural structures are inverted 1221 2023-34910 4.4
C7 Infinities are not rounded properly and stick to infinity 1339 2023-34911 4.4
C8 Spurious exceptions when reading some performance counters 684 2023-34911 5.0
C9 Wrong supervisor performance counter access control 684 2023-42311 5.0
C10 Under some microarchitectural circumstances, wrong NAN conversion 682 2023-34908 5.1

BOOM B1 Static rounding is ignored for fdiv.s and fsqrt.s 1339 2023-34882 6.5
B2 Inaccurate instruction count when minstret is written by software 684 2023-40065 3.6

Yosys Y1 Logic synthesis of CVA6 inserts a logic bug into the FPU 682 2023-34884 6.8


	Introduction
	Background
	Formal verification of hardware
	Software fuzzing
	Hardware fuzzing
	RISC-V

	Motivation and Challenges
	Observations
	Overview of challenges

	Design
	Cascade overview
	Intermediate program construction
	High-level program structure
	Basic block generation
	Memory management


	Ultimate Program Construction
	Offset construction and register lifecycle
	Privilege transitions

	Program Reduction
	Identifying the bug's tail
	Identifying the bug's head

	Evaluation
	Program generation performance
	Throughput of long programs
	Program metrics
	Coverage evaluation
	Control register coverage (DifuzzRTL)
	Multiplexer select coverage (RFUZZ)
	Simulator-based coverage (TheHuzz)

	Efficacy of long programs
	Bug discoveries
	Bug descriptions
	Security implications
	Bug detection performance

	Program reduction performance

	Discussion
	Related Work
	Conclusion
	Instruction Categories
	CPUs under Test
	Considerations of Previous Fuzzing Claims
	Enumeration of Discovered Bugs

