
NetShaper: A Differentially Private Network Side-Channel Mitigation System

Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer, Mathias Lécuyer, Aastha Mehta
The University of British Columbia

Abstract
The widespread adoption of encryption in network proto-

cols has significantly improved the overall security of many
Internet applications. However, these protocols cannot prevent
network side-channel leaks—leaks of sensitive information
through the sizes and timing of network packets. We present
NetShaper, a system that mitigates such leaks based on the
principle of traffic shaping. NetShaper’s traffic shaping pro-
vides differential privacy guarantees while adapting to the
prevailing workload and congestion condition, and allows
configuring a tradeoff between privacy guarantees, bandwidth
and latency overheads. Furthermore, NetShaper provides a
modular and portable tunnel endpoint design that can support
diverse applications. We present a middlebox-based imple-
mentation of NetShaper and demonstrate its applicability in a
video streaming and a web service application.

1 Introduction

With the proliferation of TLS and VPN, traffic encryption has
become the de facto standard for securing data in transit in In-
ternet applications. Traffic can be encrypted at various layers,
such as HTTPS, QUIC, and IPSec. While these protocols pre-
vent direct data breaches on the Internet, they cannot prevent
leaks through indirect observations of the encrypted traffic.

Indeed, encryption cannot conceal the shape of an applica-
tion’s traffic, i.e., the sizes, timing, and number of packets sent
and received by an application. In many applications, these
parameters strongly correlate with sensitive information. For
instance, traffic shape can reveal video streams [55], website
visits [14, 66], the content of VoIP conversations [69], and
even users’ medical and financial secrets [19].

In such network side-channel leaks, an adversary (e.g., a
malicious or a compromised ISP) observes the shape of an
application’s traffic as it passes through a link under its control
and infers the application’s sensitive data from this shape.

Obfuscation techniques, which add ad hoc noise [44] or
adversarial noise [6, 30, 34, 49, 51, 56] in an application’s net-
work traces, do not provide comprehensive protection against

network side-channel attacks [73]. In fact, recent advances in
machine learning (ML) have greatly improved the ability to
filter out noise due to congestion or path variations and infer
secrets from noisy data [14, 31, 55, 58]. For instance, our own
novel classifier based on Temporal Convolution Networks
(TCN) [9] can infer video streams even from short bursts
of noisy measurements over the Internet (see §2 for details).
Alternatively, a sensitive application could try to improve side-
channel resilience by splitting traffic over multiple network
paths [22, 65] or by using dedicated physical links that are
not controlled by the adversary. However, such solutions are
inadequate against a powerful adversary that can monitor a
large fraction of the Internet [13] and may incur prohibitive
network administration costs for small users on the Internet.

In contrast, a principled and practical approach to mitigat-
ing network side-channel leaks is traffic shaping. It involves
modifying the victim’s packet sizes and timing to make the
resultant shape independent of secrets, so that an adversary
cannot infer the secrets despite observing the (shaped) traffic.

Constant shaping involves sending fixed-sized packets at
a constant rate, which is secure but incurs non-trivial band-
width and/or latency overhead for applications with variable
or bursty workloads [54]. Variable shaping strategies attempt
to adapt traffic shapes to reduce the overhead at the cost
of some privacy. However, the state-of-the-art (SOTA) vari-
able shaping strategies rely on ad hoc heuristics that yield
weak privacy guarantees [50, 66, 67] or unbounded privacy
leaks [16, 17, 29, 36, 43]. Some techniques provide strong
guarantees but require extensive a priori profiling of an appli-
cations’ traffic to compute shapes [45, 73].

In addition to a shaping strategy, network side-channel
mitigation also requires a robust implementation of packet
padding and transmit scheduling. Many solutions attempt to
protect traffic by controlling shaping from only one end of a
communication (i.e., either a client or a server) and provide
only best-effort protection [20,44,59]. Other solutions rely on
trusting third-party mediators (e.g., Tor bridges), which imple-
ment shaping between the clients and mediators and between
the servers and mediators [48,70]. In Pacer [45], both applica-

tion endpoints integrate a shaping system to comprehensively
mitigate network side channels. However, Pacer encumbers
application end hosts with non-trivial changes in the network
stack to implement shaping, thus deterring adoption.

In this work, we address two main questions. First, is there
a variable traffic shaping strategy that provides quantifiable
and tunable privacy guarantees at runtime without requiring
extensive pre-profiling of application traffic? Second, can
traffic shaping be provided as a generic, portable, and efficient
solution that can be integrated in different network settings
and can support diverse applications?

We present NetShaper, a network side-channel mitigation
system that answers both questions in the affirmative. First,
NetShaper relies on a differential privacy (DP) based traffic
shaping strategy, which provides quantifiable and tunable pri-
vacy guarantees. NetShaper specifies the privacy parameters
for a configurable window of transmission. Moreover, it can
configure the parameters independently for each direction
of traffic on a communication link. The DP guarantees can
be composed based on these parameters to achieve bounded
privacy leaks for arbitrary bidirectional traffic. Overall, appli-
cations can tune the shaping based only on the privacy guar-
antees they desire and the overheads they can afford, without
the need for profiling their traffic. While strong privacy guar-
antees require DP parameters that incur large overheads, in
practice, NetShaper can defeat SOTA attacks with even small
amounts of DP noise, thus incurring low overheads.

Secondly, we present a traffic shaping tunnel with a modu-
lar endpoint design that can conceptually be integrated with
any network stack and within any node. The tunnel imple-
ments padding and transmit scheduling of packets while ad-
hering to the DP guarantees by design. By placing the tunnel
endpoint in a middlebox at the edge of the private network,
NetShaper can simultaneously protect the traffic of multiple
applications. Moreover, the middlebox can amortize the shap-
ing overheads among multiple flows without compromising
the privacy for individual flows.

Together, the DP shaping strategy and NetShaper’s tunnel
provide effective network side-channel mitigation for diverse
applications, such as video streaming and web services, with
modest overheads. To the best of our knowledge, NetShaper
is the first system to provide dynamic traffic shaping with
quantifiable and tunable privacy guarantees based on DP.

Contributions. (i) We design a new attack classifier based
on a Temporal Convolution Network (TCN) [9] and demon-
strate its ability to infer videos streams from traffic shapes
under noisy network traffic measurements in the Internet (§2).
(ii) We model network side-channel mitigations as a differ-
ential privacy problem and provide a traffic shaping strategy
that offers (ε,δ)-differential privacy guarantees (§3). (iii) We
design a QUIC-based traffic shaping tunnel and present a
middlebox-based implementation of the tunnel, which sup-
ports traffic shaping while adhering to DP guarantees (§4).
(iv) We demonstrate NetShaper’s efficacy in defeating a SOTA

classifier [55] and our new TCN classifier. We empirically
evaluate the tradeoffs between NetShaper’s privacy guaran-
tees and performance overheads while mitigating network
side-channel leaks in two classes of applications that have
already been used in prior work, namely video streaming
and web service (§5). (vi) We present a formal proof of Net-
Shaper’s differential privacy guarantees (§C).

2 Background, Motivation, and Overview

2.1 Network Side-Channel Attacks
We start by explaining the workings of a network side-channel
attack with an example application. Consider MedFlix, a ficti-
tious medical video service that offers videos on symptoms,
treatment procedures, and post-operative care. The goal of
an adversary is to infer the videos streamed by users visiting
the service. ISPs can aggregate such information to build per-
user profiles and subsequently monetize them. Additionally,
competitors might exploit network side channels to acquire
corporate intelligence without detection.

The adversary performs the attack in two stages. First, the
adversary requests each video from the medical service as a
client and collects traces of the bidirectional network traffic
generated while streaming each video. The adversary may
collect multiple traces for each video stream to account for
network variations in the traffic. The adversary then builds a
classifier over the captured traces to identify the video streams.
Prior work has used several features for classification, such
as packet sizes, inter-packet timing, total bytes transferred in
a burst of packets, the burst duration and inter-burst interval,
and the direction of packets or bursts [55].

We reproduce the Beauty and the Burst (BB) classifier [55],
a state-of-the-art CNN classifier for classifying video streams
from network traces. Furthermore, we present a new TCN
classifier [9], which is an improvement over the BB classifier.
We describe the classifiers in §A. Here, we evaluate the effi-
cacy of the two classifiers for a network side-channel attack.

We set up a video service and a video client as two Ama-
zon AWS VMs placed in Oregon and Montreal, respectively.
The video server hosts a dataset of 100 YouTube videos at
720p resolution with MPEG-DASH encoding [68]. The client
streams the first 5 min of each video over HTTPS and collects
the resulting network packet traces using tcpdump. We stream
each video 100 times, thus collecting a total of 10,000 traces.

The classifiers’ goal is to predict the video from a network
trace. For each classifier, we transform each packet trace into
a sequence of burst sizes transmitted within 1s windows and
normalize the sequence by dividing each burst size by the
total size of all bursts. We evaluate the performance of both
classifiers with three datasets: a small dataset consisting of
20 videos with their 100 traces each (i.e., total 2000 traces),
a medium dataset with 40 videos (4000 traces), and a large
dataset comprising all 100 videos (10000 traces). We train the

classifiers for 1000 epochs with an 80-20 train-test split. BB’s
classification accuracy, recall, and precision with the small
dataset are 0.85, 0.85, and 0.78, respectively, which drop to
0.61, 0.63, and 0.49, respectively, with the medium dataset,
and further drop to 0.01 each for the large dataset. TCN’s accu-
racy, recall, and precision are above 0.99 for all datasets. TCN
performs better than BB because it is a complex model with
residual layers and, hence, is robust to noise in the traces.

Similarly, advanced ML classifiers are capable of identify-
ing web traffic [14,58]. In general, classifiers will continue to
evolve, increasing the adversary’s capabilities to make infer-
ences from noisy measurements. Hence, we need principled
mitigations that address current SOTA attacks and achieve
quantifiable leakage, which can be configured based on pri-
vacy requirements and overhead tolerance.

2.2 Key Ideas

A secure and practical network side-channel mitigation sys-
tem must satisfy the following design goals: G1. Mitigate
leaks through all aspects of the shape of transmitted traffic,
G2. Provide quantifiable and tunable privacy guarantees for
the communication parties, G3. Minimize overheads incurred
while guaranteeing privacy, G4. Support a broad class of ap-
plications, and G5. Require minimal changes to applications.

NetShaper’s shaping prevents leaks of the traffic content
through sizes and timing of packets transmitted along each
direction between application nodes (G1). In addition, Net-
Shaper relies on the following three key ideas.

Differentially private shaping. Unlike constant shaping,
variable shaping can adapt traffic shape, potentially based
on runtime workload patterns, and thus significantly reduce
shaping overheads. Unfortunately, existing variable shaping
techniques either have unbounded privacy leaks, offer only
weak privacy guarantees, or require extensive profiling of an
application’s network traces. NetShaper’s novel differential
privacy (DP) based shaping strategy provides quantifiable and
tunable bounds on privacy leaks, without relying on profiling
of application traffic (G2). NetShaper shapes an application’s
traffic in periodic, fixed-length shaping intervals and provides
DP in the length of the application byte stream (burst) accu-
mulated within each interval. The DP guarantees compose
over a sequence of multiple intervals and, thus, for streams of
arbitrary length (albeit with degraded guarantees).

Shaping in a middlebox. NetShaper uses a tunnel abstrac-
tion to implement traffic shaping. The tunnel shapes applica-
tion traffic such that an adversary observing the tunnel traffic
cannot infer application secrets. In principle, a tunnel end-
point could be integrated with the application host (e.g., in a
VM isolated from the end-host application) or in a separate
node through which the application’s traffic passes. NetShaper
relies on the second approach and implements the tunnel end-
point as a middlebox, which could be integrated with an ex-
isting network element, such as a router, a VPN gateway, or

a firewall. The middlebox implementation enables securing
multiple applications without requiring modifications on indi-
vidual end hosts (G4). Furthermore, it allows pooling multiple
flows with the same privacy requirements in the same tunnel,
which helps to amortize the per-flow overhead (G3).

Minimal modifications to end applications. By default,
NetShaper shapes all traffic through a tunnel with a fixed
differential privacy guarantee. However, an application can
explicitly specify different DP parameters to adapt the privacy
guarantee enforced for its traffic, as well as bandwidth and
latency constraints and any prioritization preferences on a
per-flow basis. This requires only a small modification in the
application; it must transmit a shaping configuration message
to the middlebox. Thus, NetShaper offers a balance between
being fully application-agnostic and optimizing for privacy or
overhead with minimal support from applications (G2, G5).

2.3 Threat Model

NetShaper’s goal is to hide the content of an application’s
network traffic. Hiding the type of traffic [57], the communi-
cation protocol [70], or the application identity [21, 27] are
non-goals, although NetShaper can adapt its shaping strategy
to address these goals. The applications are non-malicious
and do not leak their own secrets.

We assume that the application endpoints are inside sepa-
rate trusted private networks (e.g., each node is behind a VPN
gateway node) and the adversary cannot infiltrate the private
network, or the clients and servers within it. (Thus, we exclude
covert attacks [72] and colocation-based attacks [45, 55]).
The adversary controls network links in the public Inter-
net (e.g., ISPs) and can record, measure, and tamper with
the victim application’s traffic as it traverses the links under
the adversary’s control. The adversary can precisely record
the traffic shape – the sizes, timing, and direction of packets
– between the gateway nodes. In particular, it may have access
to observations of arbitrary known streams to train its attack.
It may also have knowledge about NetShaper, including its
shaping strategy and privacy configurations.

We do not consider threats due to observing the IP ad-
dresses of packets [32], although NetShaper can hide IP ad-
dresses of applications behind a shared traffic shaping tunnel.

NetShaper does not address leaks of one application’s sen-
sitive data through the traffic shape of colocated benign appli-
cations. Such leaks can arise, for instance, due to microarchi-
tectural interference among applications colocated on a host
or among their flows if they pass through shared links. End
hosts could implement orthogonal mitigations against colo-
cated applications [15, 39, 45, 63] and combine NetShaper’s
shaping with TDMA scheduling on network links [12, 64].

We present a middlebox-based NetShaper implementation
that can be integrated with an organization’s trusted gateway
router. NetShaper’s trusted computing base (TCB) includes
all components in the organization’s private network and the

middleboxes. Bugs, vulnerabilities or side channels in the
middleboxes that threaten traffic confidentiality could be mit-
igated using orthogonal techniques, such as software fault
isolation [61], resource partitioning [42], and constant-time
implementation techniques [7].

Under these assumptions, NetShaper prevents leaks of ap-
plication secrets through the sizes and timing of packets trans-
mitted in either direction between the application endpoints.

2.4 A Primer on Differential Privacy
Finally, we provide a brief primer on DP, the steps involved
in building a DP mechanism, and the key properties of DP
that are relevant in the context of traffic shaping (§3).

Developed originally for databases, DP is a technique to
provide aggregate results without revealing information about
individual database records. Formally, a randomized algo-
rithm M is (ε,δ)-DP if, for all R ⊆ Range(M) and for all
neighboring databases d,d′ that differ in only one element:

P[M (d) ∈ R]≤ eε P[M (d′) ∈ R]+δ (1)

The parameter ε represents the privacy loss of algorithm M ,
i.e., given a result of M , the information gain for any adver-
sary on learning whether the input database is d or d′ is at
most eε [37]. The δ is the probability with which M fails to
bound the privacy loss to eε.

Building such a randomized DP algorithm M involves
three main steps: (i) defining neighboring database states,
(ii) defining a database query and determining the sensitivity
of the query to changes in neighboring databases, and (iii)
adding noise to the query. Neighboring databases d and d′, as
mentioned above, are characterized by the distance between
the databases, which quantifies the granularity at which the
DP guarantee applies. Traditionally, this distance is defined as
the number of records that differ between d and d′. However,
DP also extends to other neighboring definitions and distance
metrics used in specific settings [18, 41].

Given a database query q, the sensitivity of the query ∆q is
the max difference in the result achieved when the query is
executed on the neighboring databases d and d′. Intuitively, a
larger ∆q implies higher probability of an adversary inferring
from a result the database on which the query was executed,
thus incurring higher privacy loss. To mitigate this privacy
loss, a DP mechanism therefore adds noise to the query result
to hide the true result and the underlying database. Popular
noise mechanisms are Laplace [26, §3.3] and Gaussian [23].

DP provides three properties. As we will show in §3.2,
these are also of relevance to NetShaper’s DP traffic shaping.
First, DP is resilient to post-processing: given the result r of
any (ε,δ)-DP mechanism M , any function f (r) of the result
is also (ε,δ)-DP. As a result, any computation or decision
made on a DP result is still DP with the same guarantees. Sec-
ond, DP is closed under adaptive sequential composition: the
combined result of two DP mechanisms M1 and M2 is also

decapsulate encapsulate
Buffering queue

Pre processing Periodic DP shaping Post processing

dequeueenqueue
PS

t2PS
t1

PO
t1 PO

t2

321

input packets input byte stream DP shaped buffer output packets

Figure 1: Overview of DP shaping

DP, though with higher losses (ε and δ). We use the Rényi-DP
definition [47] to achieve simple but strong composition re-
sults and subsequently convert the results back to the standard
DP definition. Third, DP is robust to auxiliary information:
the guarantee from Equation 1 holds regardless of any side
information known to an attacker. Therefore, the attacker’s
knowledge of the shaping mechanism does not affect its pri-
vacy guarantees. That is, an attacker knowing or controlling
part of the database cannot extract more knowledge from a
DP result than without this side information.

3 Differentially Private Traffic Shaping

The goal of differentially private shaping is to dynamically
adjust packet sizes and timing based on the available data
stream, while ensuring that the DP guarantees hold for any
information that an adversary (§2.3) can observe.

We first formally model an application’s input stream as
a packet sequence S = {PS

1 ,P
S
2 ,P

S
3 , . . .}, where Pi

S = (lS
i , t

S
i)

indicates that the ith input packet in S has length lS
i bytes and

is transmitted at timestamp tS
i . We call the total duration of

a finite stream τS , max tS
i − tS

1 . Without shaping, an adver-
sary can precisely observe S and infer the content, which is
correlated with the stream (§2.1).

Figure 1 provides a high-level overview of the
differentially-private shaping mechanism. Shaping happens
in periodic intervals of fixed length T , called the DP shaping
intervals. 1 As the packets in an application’s stream arrive,
the payload bytes extracted from the packets are placed into
a buffering queue, Q. 2 In each periodic interval, the DP
shaping algorithm performs a DP query: it measures the
length of Q with DP, to determine the number of bytes to
transmit in the next interval. NetShaper then prepares a DP
shaped buffer using the payload bytes from Q, and additional
dummy bytes if required. This shaped buffer is enqueued to
be sent over the network at the end of the DP shaping interval,
right before the next interval starts. 3 Finally, data in the
shaped buffer may be split into one or more packets, as part
of a post-processing step, and transmitted to the network.

The size of each shaped buffer generated in an interval has
(εT ,δT)-DP guarantees. The per-interval guarantees compose
over a sequence of multiple intervals, thus providing DP guar-
antees for traffic streams of arbitrary lengths. The guarantees
degrade as the stream length increases (Prop 2)

We now discuss the steps of building a DP mechanism for
traffic streams in §3.1 and the privacy guarantees in §3.2.

3.1 DP for Traffic Streams

We now discuss the three steps for building a DP mechanism
on traffic streams. Specifically, we present our neighboring
definition for streams, define the DP query on streams that
NetShaper runs and bounds its sensitivity, and show the DP
mechanism that we use to make the query DP.

Step 1: Neighboring Definition. Building a DP mecha-
nism requires a suitable definition of neighboring streams,
which requires a notion of distance between streams. The
neighboring definition has two implications. First, it deter-
mines the sensitivity for a “query” subject to the DP mecha-
nism and, in turn, the amount of noise necessary for ensuring
a given DP guarantee. Second, it defines the granularity of
privacy guarantee: intuitively, neighboring streams are indis-
tinguishable based on only the results of the DP mechanism
applied to them. Hence, we aim for a neighboring definition
for which “streams have many neighbors”, and the sensitivity
of the DP query we want to run is as low as possible.

Defining neighbors over streams has two challenges. First,
the streams can be arbitrarily long and the distance between
streams would typically increase with stream length. Sec-
ondly, if we consider streams with packet timestamps at the
finest granularity, the distance between the streams may be as
large as the sum of sizes of all packets in both streams. Both
these factors imply that a stream would either have few neigh-
bors (enabling weak privacy), or the neighboring definition
would need to specify a large distance threshold, requiring a
lot of noise for strong DP guarantees.

To keep the neighboring distance threshold small, we take
two steps. First, we define the notion of a neighboring window,
which is a time interval of configurable length W over input
streams. For notational convenience, we set W as an integral
multiple of the DP shaping interval T and write W = kT ,
although this is not a strict requirement.

Secondly, to measure the distance between streams over
a neighboring window, we consider the total bytes in each
stream (burst lengths) transmitted within coarse-grained time
intervals and use the difference in the burst lengths in the
intervals within the window. Intuitively, we need an interval
granularity that is coarse enough to generate similar burst
length sequences in more streams, but is also small enough to
bound the accumulation of differences over time (to bound
sensitivity, our next step). As will become clear with Prop 1,
the DP shaping interval T is the coarsest granularity that we
can use. Hence, considering a neighboring window starting
at a timestamp tw, i.e., [tw, tw +W), we define the follow-
ing representation of stream S over the window [tw, tw +W)
at granularity T : Stw,W = {LS

tw ,L
S
tw+T ,L

S
tw+2T , . . . ,L

S
tw+(k−1)T},

where LS
t , ∑(lS

i ,t
S
i)∈S1{t

S
i ∈ [t, t +T)}lS

i is the total applica-
tion bytes accumulated in Q in the interval [t, t +T).

We now present the following neighboring definition:

Definition 1. Two streams S and S′ are neighbors if, for

any neighboring window [tw, tw +W), the L1-norm distance
between their representations Stw,W and S′tw,W is less than ∆W .
Formally, S and S′ are neighbors if:

max
tw
‖Stw,W −S′tw,W‖1 ≤ ∆W . (2)

We utilize the L1-norm (the sum of absolute values) to
quantify the distance between two traffic streams, as it cap-
tures differences in both traffic size and temporal alignment,
at the granularity of T . We will show (in Prop 1) that despite
our restriction of defining neighboring streams at a granularity
of T , and of computing distances over windows of length W ,
we can quantify NetShaper’s DP guarantees for streams at
any granularity and of any length.

The neighboring window length W and neighboring dis-
tance ∆W are both configuration parameters, which are set
before the start of an application’s transmission. In practice,
W would be in the order of milliseconds to seconds. Subse-
quently, one would determine ∆W based on the typical dif-
ference of traffic between application streams over windows
of length W . The practical upper bound for ∆W is the NIC’s
line rate times window length W , but smaller values based on
domain knowledge are often possible.

Step 2: DP query and sensitivity. In NetShaper, a DP
query measures the buffering queue length L with DP at in-
tervals T . This noisy measurement determines the number of
bytes that must be transmitted in the interval. To make the
measurement of L differentially private, we need to bound
the sensitivity ∆T of the queue length variable L. This sensi-
tivity ∆T is the maximum difference in L that can be caused
by changing one application stream to neighboring one. For-
mally, consider two alternative neighboring streams S and S′

passing through the queue. Suppose that when transmitting
S (similarly S′), the queue length at time k is denoted by Lk
(respectively L′k). Then, assuming w.l.o.g. that k ≥ k′:

∆T =
τ

max
k=0

max
S,S′
|Lk−L′k| (3)

Bounding ∆T is still challenging though, as our neighboring
definition only bounds the difference in traffic between two
streams over any window of length upto W . Because of this,
when τ >> W , differences between what S and S′ would
enqueue in Q can accumulate over time, and the difference
betwen Lt and L′t can grow unbounded over time.

To bound ∆T , NetShaper relies on the key assumption that
the tunnel can always transmit all incoming data from appli-
cation streams within any W -sized time window. That is,

Assumption 1. All bytes enqueued prior to or at time t are
transmitted by time t +W.

To enforce this assumption, NetShaper implements a time
to live in the buffering queue, flushing all bytes older than
W from Q (see §4 for more details). Intuitively, this assump-
tion caps the accumulation of traffic differences in Q to the
maximum difference over W , i.e., ∆W . Since the size of Q

cannot differ by more than ∆W when changing a stream by a
neighboring one, the difference between DP query results of
Q under two neighboring streams—which is the sensitivity of
the DP query, ∆T —is upper-bounded by ∆W . Formally:

Proposition 1. NetShaper enforces ∆T ≤ ∆W .

Proof sketch. Consider any two streams S and S′, as in Equa-
tion 3, and any measurements time k. The proof proceeds in
two steps. First, under Assumption 1, streams can accumu-
late queued traffic for at most W , so two different streams
can create a difference |Lk−L′k| of at most ∆W . Second, de-
queuing can only make two different queues closer: Con-
sider query time k, with queue lengths Lk > L′k (the opposite
case is symmetric). For a DP noise draw z, we have L̃k > L̃′k.
Since shaping sends at least as much data under L̃k as un-
der L̃′k, but no more than L̃k− L̃′k, after dequeuing we have
|L′k+1−Lk+1| ≤ |L′k−Lk|. In summary, the queue difference
under two different streams ∆T can grow to at most ∆W due
to data queuing, and dequeuing only decreases that difference,
and hence ∆T ≤ ∆W . The complete proof is in §C.

Step 3: Adding Noise. With sensitivity bounded at ∆W , we
can now query L with DP using an additive noise mechanism,
which entails sampling noise z from a DP distribution and
computing the DP buffer queue length as L̃k , Lk + z. Specif-
ically, NetShaper uses the Gaussian mechanism, in which
the noise z is sampled from a centered normal distribution
z∼N

(
µ, σ2

)
, where the variance is parameterized by εT , δT ,

and ∆W : σ2 = (2∆2
W)/(ε2

T) ln(1.25/δT). Parameters εT , δT
determine the amount of noise added to each DP query result.

3.2 Privacy Analysis
The previous section defines (εT ,δT)-DP guarantees for the
traffic transmitted in an individual shaping interval. We now
discuss (i) the guarantees for longer application streams, (ii)
the guarantees on a packet-level sequence derived from a
shaped buffer sequence, and (iii) the privacy implications for
streams that fall outside of the neighboring definition.

Guarantees for streams. Recall from the previous section
that shaping happens at intervals T ; in each interval we per-
form a DP query on the buffering queue length L and create
a shaped buffer of length L̃, which is subsequently queued
for transmitting over the network at the end of the interval.
Enqueueing data into the shaped buffer at the end of each shap-
ing interval creates a sequence of states for the shaped buffer
{(L̃1,T),(L̃2,2T),(L̃3,3T), . . .}. Although this sequence is
not technically observable by an adversary, this is where we
prove our DP guarantees using DP composition over queries
performed during the stream transmission.

Proposition 2. For any stream S of duration
τS ≤ τ, NetShaper enforces (ε,δ)-DP for the se-
quence {(L̃1,T),(L̃2,2T),(L̃3,3T), . . .}, with ε,δ ,
DP_compose(εT ,δT ,d τ

T e).

Proof. Consider two neighboring streams S and S′. By design,
the times at which shaped buffers are queued are independent
of application data, so {(L̃′1,T ′),(L̃′2,2T ′),(L̃′3,3T ′), . . .} =
{(L̃1,T),(L̃2,2T),(L̃3,3T), . . .}, and we can restrict our
considerations to the sequences {L̃1, L̃2, L̃3, . . .} and
{L̃′1, L̃′2, L̃′3, . . .}. By Prop. 1, the sensitivity of each measure-
ment is at most ∆W . By the Gaussian DP mechanism, the
measured queue size L̃ in each interval is (εT ,δT)-DP. Using
DP composition over the d τ

T e DP queries made during any
duration τ yields the (ε,δ)-DP guarantee.

We use Rényi-DP composition on the Gaussian mechanism
for DP_compose(). NetShaper provides a DP guarantee for
streams of any length t, with the guarantee degrading grace-
fully as DP composition (of order

√
τ as the length grows).

Guarantees for packet sequences. Data from the shaped
buffer is sent over the network, and transmitted as a packet
sequence denoted by O = {PO

1 ,PO
2 ,PO

3 . . .}. These packets
are a post-processing of the DP-shaped buffer. As long as
the packets are generated independently of any secret data,
they preserve the DP guarantees of shaping due to the post-
processing property of DP. This yields the following result,
directly implied by Prop 2 and DP post-processing:

Corollary 1. For any stream S of duration τS ≤ τ, NetShaper
enforces (ε,δ)-DP for its output packet sequence O, with
ε,δ , DP_compose(εT ,δT ,d τ

T e).

Privacy for non-neighboring streams. Finally, if the dis-
tance between two streams is larger than ∆W , e.g., say k∆W
for some factor k, NetShaper still provides a (degraded) DP
guarantee through group privacy [26, Theorem 2.2] applied to
the Gaussian mechanism. Namely, a DP query in each shaping
interval T for the non-neighboring stream provides (kεT ,δT)-
DP, and the guarantees can be extended for the stream duration
τ by applying DP composition to this new value.

Interpretation of the guarantees. NetShaper’s shaping
algorithm provides a (εT ,δT)-DP guarantee on the volume
of application traffic enqueued (in the buffering queue) in a
fixed-length interval (and, by post-processing, the volume of
traffic observable on the network). Under perfect timing for
the DP shaping interval T , the DP guarantee ensures that two
neighboring streams, i.e., their contents, are indistinguishable
with the probability as defined in Equation 1. Smaller εT
and δT implies higher noise in shaping, which increases the
uncertainty about the original stream in the shaped traffic.

Secondly, to enforce the DP guarantees, the DP noise of
the Gaussian mechanism does not depend on the total number
of flows. Intuitively, the DP guarantee is shared among all the
streams multiplexed through the buffering queue simultane-
ously for a fixed amount of noise, and the overhead (i.e., noise
added) gets amortized among the streams.

Privacy vs Performance. NetShaper’s shaping mecha-
nism introduces several parameters which impact privacy and
performance, specifically latency and bandwidth overheads.

To tunnel
(DP shaped packets)

Per-flow
buffering queues

Shaper

QUIC
UDP
IP

Ethernet

App

Socket interface
(Unshaped byte
stream)

Figure 2: Overview of tunnel design (one endpoint)

These parameters include εT , δT , ∆W , W , and T . Larger ∆W
requires lower εT for stronger privacy, which implies noisier
measurements. Noisy measurements imply more overhead—
when the noise is positive, dummy bytes need to be sent,
incurring higher bandwidth overhead; when the noise is nega-
tive, fewer bytes are sent and the unsent bytes accumulated
in the buffering queue incur a latency overhead. This is the
privacy-overhead trade-off we expect from DP.

Additionally, the parameters T and W have a more subtle
impact on the privacy-overhead trade-off. Traffic is shaped in
intervals of T ; thus, T impacts the latency and burstiness of
the traffic. A smaller T provides lower transmission latency
and smaller bursts per interval. However, it also requires more
DP queries and, thus, incurs higher privacy loss when trans-
mitting the complete stream of a given length τ. In practice,
one would set T to the maximum value that can minimize
privacy loss while providing tolerable latency.

A large W for a fixed ∆W implies that neighboring streams
can differ by at most ∆W over a longer window size W , which
weakens the neighboring definition and, hence, the privacy
guarantees. While smaller W is desirable, the lower bound
is T . Recall that, to bound ∆T (Assumption 1), NetShaper
must drop any bytes left in the buffering queue for longer
than W . Since data leaves the buffering queue in each shaping
interval after a DP query, setting W = T would lead to im-
mediate dropping of the bytes from the buffering queue that
aren’t transmitted in response to the DP query. This would
happen in each interval where the DP query samples a nega-
tive noise value. These data drops would degrade NetShaper’s
performance in terms of both throughput and latency. Hence,
we need W >> T to ensure that data has time to leave the
buffering queue before it is too old. Typically, one would
set W based on application domain knowledge, such as the
maximum size of a web request or the fact that videos often
consist of a sequence of segments requested at 5s intervals.

We analyze the impact of different choices for these param-
eters on the privacy guarantees and overheads in §5.

4 Traffic Shaping Tunnel

A tunnel must address three requirements. First, it must sat-
isfy DP guarantees. For this, the tunnel must complete DP
queries and prepare shaped packets within each interval, and
it must be able to transmit all payload bytes generated from
an application within a finite window length (as defined in

the DP strategy). Secondly, the payload and dummy bytes in
the shaped packets must be indistinguishable to an adversary.
For this, the payload and dummy bytes must be transmitted
through a shared transport layer so that they are identically
acknowledged by the receiver and subject to congestion con-
trol and loss recovery mechanisms. Finally, the tunnel must
provide similar levels of reliability, congestion control, and
loss recovery as expected by the application.

Figure 2 shows the design of one endpoint of NetShaper’s
traffic shaping tunnel. A similar endpoint is deployed on the
other end of the tunnel. The shape of the traffic in the tunnel
can be configured independently in each direction. The pri-
vacy loss in bidirectional streams is the DP composition of
the privacy loss in each direction.

A tunnel endpoint consists of a shaping layer (Shaper)
on top of QUIC, which in turn runs on top of a standard
UDP stack. The tunnel endpoints establish a bidirectional
QUIC connection and generate DP-sized transmit buffers in
fixed intervals, which carry payload bytes from one or more
application flows. In the absence of application payload, a
tunnel endpoint transmits dummy bytes, which are discarded
at the other endpoint. QUIC encrypts all outbound packets.

NetShaper adopts a transport-layer proxy architecture: each
application terminates a connection with its local tunnel end-
point. The application byte stream is sent to the remote ap-
plication over three piecewise connections: (i) between the
application and its local tunnel endpoint, (ii) between the tun-
nel endpoints, and (iii) between the remote tunnel endpoint
and the remote application. This ensures only one active con-
gestion control and reliable delivery mechanism in the tunnel
and that all bytes are subject to identical mechanisms1.

The application and the tunnel endpoint shown in Figure 2
could either be colocated on the same host or located on
separate hosts. In each case, the traffic between the application
and the tunnel endpoint is assumed to be unobservable to an
adversary. Our design (§4.1) does not distinguish between the
two configurations. Our implementation (§4.2) assumes that
the tunnel endpoint is located on a separate middlebox. We
discuss security in §4.3 and alternate deployments in §4.4.

4.1 Tunnel Design and Operations

Tunnel setup and teardown. Before applications can com-
municate with each other, a NetShaper tunnel must be set up
between their local tunnel endpoints. The initiator application
sends a configuration message to its local tunnel endpoint with
the source and destination IP addresses and ports, a reliability
flag, and a privacy descriptor. The reliability flag indicates if
the tunnel should provide reliable delivery semantics or not.

1We discard tunneling TCP through TCP as it causes TCP meltdown [4,
33], or TCP through UDP as it is unsafe. (TCP between the application hosts
would retransmit lost payload bytes only, not any dummy bytes injected
between the tunnel endpoints, making the dummy bytes observable.)

The privacy descriptor indicates the DP parameters to be used
for shaping the tunnel traffic.

Upon receiving a configuration message, the Shaper estab-
lishes a QUIC connection with the remote tunnel endpoint
and configures the reliability semantics and privacy parame-
ters for each direction. It also initializes three types of bidirec-
tional streams in the tunnel: control, dummy, and data streams.
One control stream is used to transmit messages related to the
establishment and termination of a connection between the
application endpoints. A dummy stream transmits padding in
QUIC packets in the form of STREAM frames2. The tunnel
pre-configures a finite number of data streams, which carry
payload bytes from one or more application flows.

When the tunnel is inactive for a period of time, one of the
tunnel endpoints initiates a termination sequence and closes
all open QUIC streams and the tunnel connection.

Connection establishment and termination. Once a tun-
nel is ready, applications can establish and terminate con-
nections with each other, which is mediated by the tunnel.
When the initiator application runs a connection establish-
ment handshake with its local tunnel endpoint, the Shaper
maps the application flow to a per-flow buffering queue and
one of the inactive QUIC data streams in the tunnel, and noti-
fies the remote tunnel endpoint. The remote tunnel endpoint
establishes a connection with the receiver application and
maps the receiver application’s flow with the data stream. The
connection termination handshake is handled similarly by the
tunnel endpoints. The messages for connection establishment
and termination are transmitted over the control stream in the
tunnel and shaped according to the tunnel’s parameters.

Outbound traffic shaping. The Shaper accumulates the
outbound bytes of an application flow in a buffering queue
before it transmits them in packets whose sizes and tim-
ing follow a distribution that guarantees DP. Within a tun-
nel, the Shaper transmits bytes from all active flows into a
differentially-private packet sequence. At periodic intervals,
called DP shaping intervals, it performs a DP query on the per-
flow queues to determine the number of bytes L̃ to be trans-
mitted according to the tunnel’s DP parameters. It prepares
a shaped buffer consisting of R payload bytes and D dummy
bytes, where R is the minimum of L̃ and the application bytes
available in the buffering queues, and D = L̃−R, which may
lie between 0 and L̃. The Shaper then passes the buffer with
the position and length of the padding to QUIC.

QUIC transforms the shaped buffer into one or more
STREAM frames based on the congestion window, the flow
window of the receiver endpoint, and the MTU (maximum
transmission unit). It places the padding bytes into a dummy
STREAM frame. QUIC packages the frames into packets,
whose length is at most MTU minus the length of the headers
and whose payload is encrypted. QUIC forwards the packets
to the UDP layer, which subsequently transmits the prepared

2We do not use QUIC’s PADDING frames as they do not elicit acknowl-
edgements and hence are distinguishable from STREAM frames [35].

To/from
application
(TCP/UDP)

Per-flow
queues

Shaped bufferUShaper

To/from
tunnel

Prepare

QUIC
UDP
IP
Eth

DShaperFlowMap

Figure 3: NetShaper middlebox design

packets as quickly as it can, given the line rate of the NIC.
To enforce Assumption 1, the Shaper tracks the expiry time

of each byte enqueued in Q based on the arrival time and
the neighboring window length W configuration. The Shaper
drops the untransmitted bytes in the queue upon their expiry.

Inbound traffic processing. A tunnel endpoint receives
shaped packets from the tunnel and applies inverse processing
on each packet. QUIC receives the packet and sends an ACK
to the sender. Subsequently, it decrypts the packet, discards
the dummy frame, and forwards the payload bytes from the
remaining STREAM frames to the application.

4.2 Middlebox Implementation

We present a middlebox-based NetShaper implementation.
For ease of implementation, our prototype requires applica-
tions to explicitly connect to the middleboxes. In principle,
NetShaper can transparently proxy application connections.

In our implementation (see Figure 3), a middlebox consists
of two userspace processes. The UShaper mediates unshaped
traffic between the applications and the middleboxes. The
DShaper handles DP shaped traffic within the tunnel.

UShaper. The UShaper implements a transport server (or
client) for interfacing with each local client (or server, respec-
tively) application. For managing multiple flows, it shares a
FlowMap table with the DShaper, which consists of an entry
for each end-to-end flow. Each entry maps the piecewise con-
nections with a pair of transmit and receive queues to carry the
local application’s byte stream, and shaping configurations
(e.g., privacy descriptor) provided by an application at the
time of flow registration.

The UShaper receives the outbound traffic from a sender
application and enqueues the byte stream into a per-flow
transmit queue shared with the DShaper. It also dequeues
bytes from a per-flow receive queue, repackages them into
transport packets and sends them to the receiver application.

DShaper. The DShaper consists of a Prepare thread and
a QUIC worker thread. The Prepare thread instantiates a
QUIC client/server to establish a tunnel with the remote mid-
dlebox and implements the DP shaping logic. On the transmit
side, Prepare prepares shaped buffers based on DP queries
on the transmit queues and then submits shaped buffers to
the QUIC worker for transmission. On the receive size, the
QUIC worker transmits ACK frames to the sender and then

t
QUIC worker

lock unlockshaped buffer prep enqueue to QUIC

QUIC packet prep UDP send

sleep

Prepare thread

t

T 2T 3T 4T 5T

Tprep Tenq

Figure 4: DShaper schedule

decrypts the QUIC packets, extracts the STREAM frames,
and copies bytes (including dummy bytes) from each frame
into the appropriate per-flow receive queue.

Ensuring secret-independent shaping. To enforce DP
guarantees, DShaper should transmit exactly L̃ bytes in each
DP shaping interval T . This would require ensuring: P1.
Prepare computes L̃, allocates and prepares a buffer of length
L̃, and passes the buffer to the QUIC worker within T , P2.
the QUIC worker prepares encrypted packets from the buffer
and sends them to UDP, such that the total payload size of
the QUIC packets prepared in T is L̃, and P3. the UDP stack
transmits packets totaling to L̃ payload bytes to the NIC in T .
Enforcing all these properties would require a constant-time
implementation for each step, which is non-trivial, or a strict
time-triggered schedule for each step, which would signifi-
cantly reduce link utilization and increase packet latencies.

Thanks to DP post processing, however, it suffices to ensure
the property P1, and P4. that the QUIC worker transforms
the shaped buffer into network packets independently of the
application data. No other constraint on the sizes and timing
of network packets is required to preserve DP.

Satisfying P1 involves one challenge. Although the ap-
plication is physically isolated from the middlebox, its flow
control behavior could be secret-dependent and could affect
the middlebox’s execution. For instance, the presence or ab-
sence of payload traffic from an application can affect the
time DShaper requires to prepare the shaped buffers.

Thus, DShaper satisfies P1 as follows (see Figure 4 for
reference). First, Prepare guarantees that L̃ is computed with
a DP query in each interval. Secondly, Prepare guarantees
that a shaped buffer of length L̃ is prepared within a fixed
time Tprep within each interval. Thirdly, Prepare locks the
shaped buffer for a fixed time, Tenq, during which it enqueues
the buffer for a QUIC worker. This ensures that the buffer is
completely enqueued before QUIC starts transmitting it and
that QUIC receives the buffer only at fixed delays.

We empirically profile the time taken by Prepare for
preparing and enqueueing shaped buffers for various DP
lengths. We set Tprep and Tenq to maximum values determined
from profiling, and T to the sum of these maximum values,
i.e., Tmax. If Prepare takes time less than Tprep (or Tenq, re-
spectively) to prepare (or enqueue) a shaped buffer, it sleeps
until the end of the interval before moving to the next phase.

To satisfy P4, Prepare and QUIC worker threads run on

separate cores sharing only the shaped buffers. UShaper runs
on yet a different core and shares the FlowMap and the per-
flow transmit queues containing unshaped traffic only with
Prepare. It shares the per-flow receive queues with the QUIC
worker, but they contain only shaped frames from the QUIC
worker. Finally, we assume that QUIC encrypts and decrypts
shaped buffers in constant-time. With this, the execution of the
QUIC worker becomes independent from Prepare and secret-
independent overall. Consequently, the QUIC worker and the
UDP stack can packetize the shaped buffers and transmit the
packets at link speed, and any variance in packet transmit
times constitute post-processing noise.

Limitations. Our prototype has two limitations in enforc-
ing secret-independent timing. First, our QUIC implementa-
tion uses standard OpenSSL, which may not provide constant-
time crypto. However, QUIC can be modified to adopt a
constant-time crypto library [1, 2] to overcome this limita-
tion. Secondly, it is difficult to find the true maximum values
of Tprep and Tenq on general-purpose desktops. If Prepare’s
execution exceeds the profiled max values, it violates the the-
oretical DP guarantees. However, we note that it is difficult to
practically exploit these violations for inferring traffic secrets.

4.3 Security Analysis

NetShaper provides the following security property: an adver-
sary cannot infer application secrets from observing tunnel
traffic. This property is ensured by a combination of a secure
shaping strategy, the tunnel design, and implementation.

S1. Secure shaping strategy. The tunnel transmits traffic
in differentially private-sized bursts in fixed intervals. Thus,
the overall shape is DP. The proof of DP is in §C.

S2. Secure tunnel design. (i) The privacy guarantees of a
tunnel are configured before the start of application transmis-
sion and do not change during the tunnel’s lifetime. (ii) The
tunnel mediates control between the end hosts, e.g., by trans-
mitting custom connection establishment and termination
messages. These messages are subject to the same DP shap-
ing as the payload traffic (§4.1). (iii) The payload and dummy
bytes in network packets are indistinguishable because all
payload and dummy bytes are packaged into QUIC packets
and encrypted uniformly. Moreover, QUIC handles acknowl-
edgements, congestion control, and loss recovery for both
payload and dummy bytes uniformly (§4.1).

S3. Secure middlebox implementation. (i) The unshaped
traffic between an end host and its local middlebox is not visi-
ble to an adversary. (ii) DShaper follows the tunnel design in
transmitting payload and dummy bytes. (iii) The time required
for Prepare to prepare and enqueue shaped buffers is masked
to secret-independent times. The packetization of buffers in
QUIC is secret-independent (§4.2) and thus retains DP guar-
antees after post-processing. Any delays in transmitting the
buffers can arise only due to congestion or packet losses in
the tunnel network, which are secret-independent events.

4.4 Deployment and Maintenance

NetShaper’s tunnel endpoint design and implementation are
both very modular and portable. The middlebox compo-
nents are compatible with all application layer protocols
(e.g., HTTPS, QUIC-TLS) and network stacks (e.g., TCP,
UDP, QUIC stacks). The UShaper could also be implemented
as a standard SOCKS5 proxy [3].

A tunnel endpoint could be integrated with any node along
an application’s network path as long as the application traffic
is unobservable until egress from the tunnel. By integrating
with a trusted VPN gateway of an organization, network ad-
ministrators could manage “long-term” tunnels between the
organization’s campuses and support multiple applications
without modifying individual end hosts. For instance, separate
tunnels may be configured per-application according to the or-
ganizational needs, or configurations may be adapted based on
coarse-grained changes in the traffic patterns through the day.

Alternatively, by integrating with end user devices,
e.g., with VPN clients, users could instantiate a new bidi-
rectional tunnel with a service before each network activity,
choose a different configuration for each tunnel instance, and
close the tunnel after completion of the activity. A key re-
quirement would be to secure the tunnel endpoint’s execution
from any internal side channels on the end host, which would
be now more prevalent than in the middlebox setup.

5 Evaluation

Our evaluation answers the following questions. (i) How well
does NetShaper mitigate state-of-the-art network side-channel
attacks? (ii) What are the overheads associated with vary-
ing DP relevant configuration parameters? (iii) What are the
packet latency overheads and the peak line rate and throughput
sustained by our NetShaper middlebox? (iv) What are Net-
Shaper’s overall costs on privacy, bandwidth, client latency,
and server throughput for different classes of applications?
(v) How do NetShaper’s privacy guarantees and performance
overheads compare to prior techniques?

For our experiments, we use four AMD Ryzen 7 7700X
desktops each with eight 4.5 GHz CPUs, 32 GB RAM, 1 TB
storage, and one Marvell AQC113CS-B1-C 10Gbps NIC. We
simulate client and server applications on two of the desktops
and NetShaper’s middleboxes on the other two desktops. The
middleboxes are connected to each other via an additional
Intel X550-T2 10Gbps NIC on each desktop. The client and
server desktops are connected to one of the two middleboxes
each via the Marvell NICs, overall forming a linear topology.

We implemented the UShaper and DShaper processes in
1100 and 1800 lines of C++ code, respectively, and deployed
them on Ubuntu OS 22.04.02 (kernel version 5.19). Net-
Shaper relies on the MSQUIC implementation of QUIC, libm-
squic v2.1.8, which includes OpenSSL for traffic encryption,
contributing an additional 180713 LoC to NetShaper’s TCB.

For rapid evaluation, we built a simulator, which imple-
ments the Prepare thread’s DP logic. The simulator trans-
forms an application’s original packet sequence (from tcp-
dump) into a sequence of burst sizes within fixed-length inter-
vals, and outputs a sequence of transmit sizes corresponding
to DP queries. We confirmed that the bandwidth overheads
from the simulator closely match the overheads observed on
the testbed. Thus, we report privacy and bandwidth overhead
results from the simulator and latency and throughput results
from the testbed, unless specified otherwise.

We use two applications for case studies, a video streaming
service and a medical web service, which we describe below.
Both applications are hosted on an Nginx 1.23.4 web server
and the datasets are stored on the host file system.

Video service. The video streaming service is used to serve
100 YouTube videos in 720p resolution with 5 min to 130.3
min (median 12.6 min) durations and 2.7 MB to 1.4 GB (me-
dian 73.7 MB) sizes. We implement a custom video streaming
client in Python, which uses one TCP connection for a single
stream and requests individual 5s segments from the service
synchronously. Unless specified otherwise, we stream the first
5 min of videos in our experiments. The configuration is in
line with that used in prior work [55] and reasonable, given
the popularity of short videos [60].

Web service. The web service is used to serve a corpus
of 96 static HTML pages of a medical website, whose sizes
range from 54 KB to 147 KB (median: 90 KB). As a client,
we use modified wrk2 [5] that issues concurrent asynchronous
HTTPS GET requests at a specified rate.

For all experiments, we use one baseline setup and one of
three NetShaper configurations. In the baseline setup (Base),
the client is directly connected to the server. In the simulator
setup (NSS), we generated sequences of shaped burst sizes
using DP shaping. With NetShaper, the traffic between the
client and the server passes through two middleboxes, each
implementing UShaper and DShaper. We consider two con-
figurations of the middleboxes: (i) NSM: DShaper does not
implement shaping (i.e., neither DP noise sampling nor the
fixed length loop interval Tmax), allowing us to measure the
system overheads due to the middlebox implementation, and
(ii) NS: DShaper implements the full shaping mechanism. By
default, each middlebox is configured with 128 pairs of per-
flow transmit and receive queues (unless specified otherwise).
We configure the queue sizes for the max data that can be
transmitted at line rate for a given DP shaping interval. We
configure a max cutoff for the shaped buffer length based on
the max burst length of the application and the number of
active flows. This implies that the number of flows is public.

In addition, we compare with two other shaping strategies:
constant-rate shaping (CR), which is the most secure shaping
strategy, and Pacer (Pacer), a SOTA system that shapes traffic
on a per-request basis. For CR, we configure the peak load
corresponding to the largest object sizes in our applications,
which involves transmitting 1.7MB in 5s for videos and 57KB

102 103 104 105

Privacy loss, εW

0.0
0.2
0.4
0.6
0.8
1.0

At
ta

ck
 a

cc
ur

ac
y

TCN (NSS)
BB (NSS)
TCN (Base)
BB (Base)

Figure 5: Classifier accuracy on shaped traces.

in 50ms for web. For Pacer, we pad all web pages to the largest
page size, i.e., 147KB in our dataset. For videos, Pacer pads a
segment at ith index in a video stream to the largest segment
size at that index across all videos in the dataset.

5.1 NetShaper Defeats Attack Classifiers

We start with an empirical evaluation of the privacy offered
by NetShaper’s traffic shaping. Recall that the traffic shaping
depends on several DP parameters: the window length W , the
sensitivity ∆T , the length of the DP interval T , and the privacy
loss ε. We evaluated the classifiers from §2.1 on shaped traffic
generated using various values of these DP relevant param-
eters. We present the classifiers’ performance based on only
one set of values for W , ∆T , and T , while varying ε between
[200, 200000]. Our goal is to provide intuition about what
values of ε are sufficient to thwart a side-channel attack.

We set (i) W = 5s to align with the 5s video segments that
comprise the videos, (ii) ∆T = 2.5MB, which covers 99th %ile
of the distances in our dataset (§B), and (iii) T = 1s, which
leads to composing the privacy loss over N = 5 DP queries on
the buffering queues. The 1s interval provides a reasonable
trade-off between privacy loss, and bandwidth and latency
overheads, which we discuss in the subsequent sections.

We used 40 videos of 5 min duration each. We streamed
each video 100 times through our testbed without shaping and
collected the resulting tcpdump traces. For each value of ε,
we transformed each unshaped trace into a shaped trace using
our simulator to generate a total of 4000 shaped traces. We
also shaped traces for CR and Pacer.

We train and test BB and TCN on shaped traces as in §2.1
and report the average and standard deviation of the accuracy
of each classifier over three runs. Recall from §2.1, the BB
and TCN accuracy on unshaped traffic (Base) is 0.61 and
0.99, respectively. For CR and Pacer, the accuracy of both
BB and TCN classifiers is 0.025. This is expected since both
strategies transform all unshaped traces into a single shape.

Figure 5 shows the classifiers’ performance with NetShaper.
While BB does not perform well for nearly all values of ε,
TCN can be thwarted for ε upto 1000. While even ε≈ 200 is
too large to offer meaningful theoretical privacy guarantees,
it is sufficient to defeat SOTA attacks.

0 1 2 3 4 5 6 7
Noise, σT (MB)

100

101

102

103

104

Pr
iv

ac
y

lo
ss

, ε
W

δW=1e-06, ΔW=2.5 MB
N = 1
N = 4

N = 16
N = 64
N = 16
N = 64

(a)

0 10 20 30 40 50 60 70
of DP queries, N

10−1

101

103

105

Pr
iv

ac
y

lo
ss

, ε
W

δW=1e-06, ΔW=2.5 MB

σT = 0.1 MB
σT = 0.4 MB

σT = 1.6 MB
σT = 6.4 MB
σT = 1.6 MB
σT = 6.4 MB

(b)

Figure 6: Privacy loss vs (a) noise and (b) # of DP queries.

5.2 Impact of Privacy Parameters
We now evaluate how ε varies with ∆T , σT , and N. Due to
space constraints, we present plots for a fixed value of ∆T =
2.5MB and defer other plots to §B. All analyses use δ = 10−6.

Figure 6a shows the tradeoff between ε and σT over four
different values of N. Intuitively, a larger σT implies higher
bandwidth overhead due to DP shaping. To retain a total
privacy loss ε = 1 with at most 4 DP queries, we need to
add noise with σT = 18MB for each DP query. In contrast,
ε = 200 with 4 DP queries (approx. configuration that defeats
the classifiers in §5.1) only requires σT < 0.3MB. Figure 6b
shows that the total privacy loss escalates with an increase
in the number of DP queries. While fewer queries within
a window (thus larger decision intervals) help to lower the
total privacy loss, the tradeoff is the higher latency overhead.
We discuss this tradeoff, as well as reduction in bandwidth
overheads with concurrent flows in §5.4 and §5.5.

Using these plots, an application can choose suitable values
of W and ∆T to determine the tradeoff between ε and σT . For
our web application serving static HTML, we recommend
W = 1s, since web page downloads in our AWS setup (§2.1)
finished within 1s, and ∆T = 60KB, which covers all distances.
§5.1 explained the choices for our video application. Using
ε and T , we can further determine the aggregate privacy loss
over longer traffic streams using Rényi-DP composition. For
instance, with ε = 1, W = 5s, and T = 1s, the total privacy
loss for a 5 min video, which generates 300 DP queries at 1s
intervals, is 8.92; the total loss for a 1 hr video is 38.8. We
emphasize that ∆T and ε should be selected using plots like
Figure 6, independently of the application’s dataset.

5.3 Performance Microbenchmarks
We now turn our attention to experiments to determine the
overheads on per-packet latencies and the peak line rate and
throughput sustainable by a NetShaper middlebox.

Middlebox throughput. We measure the peak through-
put (requests/s) attained by a server application, the response
latency experienced by the clients, and the impact on this
throughput and latency due to the middleboxes. We restrict
Nginx to one worker thread and one core on the server desk-
top. We evaluate using two object sizes: 1.4 KB (one MTU)
and 1.4 MB. We identify the peak request rate that can be han-
dled by a single wrk2 client, then increase the clients until we

20 22 24 26 28 210

Number of clients

102

104

106

Th
ro

ug
hp

ut
 (R

eq
s/

s)

1460.0 KB (NS)
1460.0 KB (Base)

1.46 KB (NS)
1.46 KB (Base)
1.46 KB (NS)
1.46 KB (Base)

(a) # clients vs throughput

20 22 24 26 28 210

Number of clients

10−1
100
101
102
103
104

La
te

nc
y

(m
s)

(b) # clients vs latency

Figure 7: Throughput and latency overhead due to middle-
boxes without shaping.

find the peak throughput the server can provide. We then vary
the number of concurrent clients while generating the peak
request load sustainable by the server to find the maximum
number of concurrent clients that the server can handle and
to measure the impact on the response latency.

We run experiments for 3 min and discard the measure-
ments from the first minute to eliminate startup effects. Fig-
ure 7a shows the average of the peak throughput observed
across 3 runs. The standard deviation is below 1% in all cases.
For 1.4 KB and 1.4 MB objects, the Base server achieves a
peak throughput of 30K req/s (64 clients) and 800 req/s (800
clients), respectively. NSM matches the peak throughput and
the max concurrent clients sustained by Base.

Latency. Figure 7b shows the average and standard devi-
ation of the response latencies over a 2 min run. The ping
latency between each pair of directly connected desktops is
0.56 ± 0.18 ms. This overhead comes from the fact that each
packet traverses four additional network stacks (across two
middleboxes) in each direction. This also involves data copy
operations between the kernel and user space. The data copy
overhead is proportional to the object size; thus NSM’s latency
overhead increases with the larger response sizes.

The kernel data copy overheads are not fundamental to Net-
Shaper’s design. By using kernel bypass techniques or tools
like DPDK [28], NetShaper can reduce the latency overhead.

Shaping interval, preparation, and enqueue times. We
further profile the middlebox execution to measure the max
latencies of the two components in the Prepare loop (§4.2):
the preparation of the shaped buffer and queuing of the buffer
to QUIC worker. These measures determine the maximum
durations for preparing and enqueueing shaped buffers (Tprep
and Tenq, respectively), and the minimum value for the shaping
interval T . We profile the delays with the middlebox config-
ured with 128 queues, thus supporting a maximum of 128
concurrent clients. One can profile the delays for a different
number of queues and concurrent clients.

Based on our measurements, we set Tprep = 6ms and Tenq =
1ms. The smallest value for T that we can configure is 10ms.

Throughput and latency with shaping enabled. We now
re-run the microbenchmarks with NS configuration. We use
three different configurations for T : 10ms, 50ms, and 100ms.
We use 128 concurrent clients. The middlebox can sustain
the peak throughput of 30K req/s with 1.4KB objects and
700 req/s with 1.4MB objects for each configuration of T .

For 1.4KB objects, the average and standard deviation of the
response latency with the three configurations are as follows:
(i) T = 10ms: 30.47± 3.89 ms, (ii) T = 50ms: 51.39± 14.64
ms, (iii) T = 100ms: 77.49 ± 28.96 ms. For 1.4MB objects,
the latencies are as follows: (i) T = 10ms: 41.31 ± 10.84 ms,
(ii) T = 50ms: 76.96 ± 21.12 ms, (iii) T = 100ms: 127.48 ±
45.69 ms. The latency is dominated by the T configuration.
The high variance in the latency is due to shaping. If a request
arrives just after the decision loop has prepared a buffer in
the current iteration, the request will be delayed by at least
one iteration of the loop. Moreover, a negative sampling of
DP noise may lead to a smaller shaped buffer than the avail-
able payload bytes in the buffering queues, thus delaying the
requests by one or more intervals. This effect is particularly
enhanced in a workload close to the line rate. Thus, NetShaper
can perform well within about 12-15% of the line rate.

CPU utilization. The CPU utilization is 3-10% for the
Prepare core and depends on the DP shaping interval; the
utilization is 8-70% for the QUIC worker core, which de-
pends on the network I/O. The UShaper core utilizes 100%
of the CPU as it polls for packets from Prepare. As such, the
Prepare and QUIC worker cores would be able to support
additional tunnel instances by time-sharing their core. By us-
ing a polling interval, we could reduce the CPU utilization
of UShaper to support additional requests at the cost of addi-
tional latency. In general, multiple tunnels can time-share the
same physical cores, as long as each core runs the same type
of thread, to suffice property P4 mentioned in §4.2.

5.4 Case Study: Video Streaming

Next, we examine the effect of different privacy settings on
bandwidth and latency overheads for video streaming clients.

We run experiments with three values of T for the server:
100ms, 500ms, and 1s, and max per-flow DP length cutoff
of 1.21 MB, 1.22MB, and 1.7 MB, respectively. We use
∆T = 2.5MB and ε = 1. For all experiments, we set the DP pa-
rameters for client request traffic as follows: ∆T = 200 bytes,
W = 1s, T = 10ms, ε = 1 and max per-flow DP length cutoff
of 206 bytes. We run experiments with 1, 16, and 128 video
clients; each client requests one video randomly selected from
the dataset. For each set of configurations, we measure the av-
erage response latency for individual video segments with the
testbed as well as the per-flow relative bandwidth overhead
for the video streams in the simulator.

Latency and bandwidth overhead. Figures 8a and 8b re-
spectively show the average segment download latency and
the average per-flow relative bandwidth overhead as a func-
tion of different intervals and for varying number of clients.
The Base segment download latency is 2.86 ± 1.41ms. The
latency variance is due to variances in the segment sizes.
The relative bandwidth overhead of a video is the number
of dummy bytes transmitted normalized to the size of the
unshaped video stream. The error bars show the standard

0 200 400 600 800 1000
DP interval, T (ms)

0

1000

2000

3000

La
te

nc
y

(m
s)

εW=1, δW=1e-6, ΔW=2.5 MB
1 clients
16 clients
128 clients

(a) Latency vs DP interval

0 200 400 600 800 1000
DP interval, T (ms)

0
20
40
60
80

Pe
r-f

lo
w

ov
er

he
ad

εW=1, δW=1e-6, ΔW=2.5 MB
1 clients
16 clients
128 clients

(b) BW overhead vs DP interval

0 20 40 60 80 100
DP interval, T (ms)

0
20
40
60
80

100

La
te

nc
y

(m
s)

εW=1, δW=1e-6, ΔW=60 KB
1 clients
16 clients
128 clients

(c) Latency vs DP interval

0 20 40 60 80 100
DP interval, T (ms)

0
5

10
15
20
25

Pe
r-f

lo
w

ov
er

he
ad

εW=1, δW=1e-6, ΔW=60 KB
1 clients
16 clients

128 clients

(d) BW overhead vs DP interval

Figure 8: Latency and bandwidth overhead for different values
of DP interval for video streaming (a, b) and for web (c, d).

100 101 102 103

Number of concurrent flows

10−4
10−2
100
102
104

Pe
r-f

lo
w

ov
er

he
ad

δW=1e-6, ΔW=2.5 MB, T=1 s

NS, εW=1
NS, εW=4
NS, εW=16

Pacer
CR
Pacer
CR

(a) Video streaming.

100 101 102 103

Number of concurrent flows

10−4

10−2

100

102

104

Pe
r-f

lo
w

ov
er

he
ad

δW=1e-6, ΔW=60 KB, T=50 ms

NS, εW=1
NS, εW=4
NS, εW=16

Pacer
CR
Pacer
CR

(b) Web service.

Figure 9: Comparison of NetShaper, constant shaping, Pacer.

deviation in latency and bandwidth overhead.
First, Figure 8a shows that, for all values of T , the video

segments can be downloaded well within 5s, which is the time
to play each segment and request the next segment from the
server. The high variance is due to negative DP noise, which
delays payload transmission. Secondly, the results show the
trade-off between latency and bandwidth. A larger DP inter-
val implies higher download latency but fewer queries, thus
yielding a lower bandwidth overhead. Thirdly, with multi-
ple concurrent clients, the bandwidth overhead is amortized,
while the average download latency only depends on T . Over-
all, NetShaper can secure video streams with low bandwidth
overheads and no impact on the streaming experience.

5.5 Case Study: Web Service
We perform similar experiments as §5.4 with our web service.
For the server responses, we use ∆T = 60KB, W = 1s, and
ε = 1. We use T of 10ms, 50ms, and 100ms, and per-flow DP
length cutoffs of 60.8KB, 60.8KB, and 110.9KB, respectively.
For the client requests, we use the same configs as in §5.4.
We run 3 min experiments with 1, 16, and 128 wrk2 clients
with a total load of 1600 req/s; each client requests random
web pages from the dataset. We discard the numbers of the
first minute.

Latency and bandwidth overhead. Figures 8c and 8d re-
spectively show the average response latency and the average
per-web page relative bandwidth overhead, across all web

page requests. The Base latency is 0.225 ± 0.3 ms. (The high
variance is due to the time precision in wrk2 being restricted to
1ms.) The web workload is more sporadic than video stream-
ing, thus web page download latencies have higher variance
than video segment download latency. The absolute latency
overhead for NS depends on the choice of T . The relative
overhead depends on the underlying network latency, which
unlike our testbed, is in the order of 10s to 100s of millisec-
onds in the Internet. Interestingly, the bandwidth overhead
for web traffic first reduces with increasing DP shaping in-
terval from 10ms to 50ms, but then increases again with an
interval of 100ms. This is because, for small web pages, the
DP interval of 100ms is larger than the total time required
to download web pages. As a result, additional overhead is
incurred due to the padding of traffic in the 100ms intervals.

5.6 Comparison with other techniques
Figures 9a and 9b show the per-flow relative bandwidth over-
head of NS, CR, and Pacer for video and web applications,
respectively, for varying number of concurrent flows.

For both video and web traffic, NS incurs three orders of
magnitude lower overhead than CR, which requires continu-
ously transmitting traffic at the peak server load (configured
for 1000 clients). For video and web traffic, NS requires 11
flows and more than 40 flows, respectively to achieve lower
overhead Pacer. Pacer shapes server traffic only upon receiv-
ing a client request and does not shape client traffic. Thus,
it leaks the timing and shape of client requests, which could
potentially reveal information about the server responses [19].
NetShaper shapes traffic in both directions, which incurs
higher overhead at the cost of stronger privacy than Pacer.

Evaluation summary. Our evaluation provides four insights.
(i) There is a huge gap between the theoretical DP guarantees
and the privacy configurations required to defeat SOTA at-
tacks. (ii) The latency overhead is dominated by the choice of
DP shaping interval, (iii) NetShaper’s middlebox can match
about 88% of the 10Gbps NIC line rate; a single core of
UShaper can match the peak throughput of a single core
server, (iv) NetShaper’s cost is in the two additional cores for
Prepare and QUIC worker, which helps to avoid any secret-
dependent interference in shaping and keep low DP shaping
loop lengths. By optimising the implementation, we could
use a single middlebox to support larger workloads.

6 Related Work

Traffic shaping for web. Prior work used traffic shaping for
defending against website fingerprinting attacks. Walkie-
Talkie [67], Supersequence [66], and Glove [50] use clustering
techniques to group objects of a corpus and then shape the
traffic of all objects within each cluster to conform to a similar
pattern. Traffic morphing [71] makes the traffic of one page
look like that of another. These techniques compute traffic

shapes that envelope or resemble the network traces of indi-
vidual objects. Hence, they require a large number of traces to
account for network variations. NetShaper dynamically adapts
traffic shapes based on the prevailing network conditions.

Cs-BuFLO [16], Tamaraw [17], and DynaFlow [43], deter-
mine traffic shape directly at runtime. They pad object sizes
to values that are correlated with the original object sizes,
such as the next multiple or power of a configurable constant.
These defenses provide privacy akin to k-anonymity, but have
no control on the the size of the anonymous cluster. Tama-
raw [17] formalizes the privacy guarantees. NetShaper’s DP
guarantees are strictly stronger than Tamaraw’s (proof in §D).

Differential privacy over streams. Dwork et al. [24] study
DP on streams, in which neighboring streams differ in at most
one element and the query counts over the stream prefix (with-
out forgetting old information) under a fixed DP budget for
the entire stream. NetShaper requires a stronger neighboring
definition to model application data streams (Def. 1), but is
able to forget the past by dropping stale data from our queue
(Assumption 1) and compose privacy loss over time.

NetShaper’s neighboring definition is closer to that of user-
level DP over streams in [25]. Instead of counting discrete
change, however, we use the L1 distance which enables coars-
ening. Pan-privacy considers an adversary that can compro-
mise the internals of the algorithms (e.g., our buffering queue).
This makes the design of algorithms challenging and costly.
Instead, we consider the buffering queue private and focus on
practical algorithms to study the privacy/overheads trade-off.

Kellaris et al. [38] introduce a notion of DP, called w-event
privacy, for streams of length w. Neighboring stream pairs are
those whose individual events are pairwise neighbors within
a window of upto w. NetShaper’s neighboring definition ac-
counts for the maximum stream distance over any window of
length W , which is a better match for the streams we consider.

Zhang et al. [73] generate differentially private shapes for
video streams using Fourier Perturbation Algorithm (FPA)
[52]. FPA transforms a finite time series of bursts, into a se-
ries of DP shaped bursts of the same length. FPA requires
the entire stream’s profile upfront, and cannot guarantee com-
plete transmission of an input stream within the shaped trace.
NetShaper’s DP guarantees simply compose over burst inter-
val sequences, thus allowing shaping of streams of arbitrary
lengths with quantifiable privacy and overheads.

Adversarial defenses. Adversarial defenses [6, 30, 34, 49,
51, 56] generate targeted and low-overhead noise to defeat
specific classifiers. NetShaper provides provable and config-
urable privacy against both SOTA as well as future classifiers.

Network side-channel mitigation systems. NetShaper’s
shaping tunnel is conceptually similar to Pacer’s [45] cloaked
tunnel. However, Pacer mitigates leaks of a Cloud tenant’s se-
crets to a colocated adversary through contention at shared net-
work links. Pacer’s cloaked tunnel controls the transmit time
of TCP packets in accordance with the shaping schedule and
congestion control signals. Thus, Pacer requires non-trivial

changes to the network stack on the end hosts. NetShaper
protects applications that are behind private networks but
communicate using the public Internet. NetShaper’s tunnel
endpoints can be placed at the interface of the private-public
networks, e.g., in a middlebox, thus supporting multiple appli-
cations without modifying end hosts. Moreover, by shaping
above the transport layer, NetShaper needs to control only the
precise timing for generation of bursts of DP length and not
the subsequent transmission to the network.

Ditto [46] and NetShaper propose shaping traffic at net-
work nodes separate from end hosts. NetShaper proposes
a hardware-independent, modular and portable middlebox
architecture that can be integrated with end hosts, routers,
gateways, or even programmable switches as in Ditto.

Systems with other goals. Censorship circumvention sys-
tems [10,11,48,53,70] rely on traffic obfuscation, scrambling,
and transformations of a sensitive application’s shape to that
of a non-sensitive application. These techniques prevent iden-
tification of original protocols by deep packet inspection, but
do not prevent inference of secrets from traffic shapes.

Karaoke [40] and Vuvuzela [62] are anonymous messaging
systems that use DP to hide participants in a conversation, but
use constant-rate traffic among the participants. AnoA [8] is
a framework to analyze anonymity properties of anonymous
communication protocols. AnoA supports DP based quantifi-
cation for various properties, such as sender anonymity and
sender unlinkability. NetShaper’s differentially-private traf-
fic shaping hides the traffic content. In principle, NetShaper
could be combined with an anonymous communication sys-
tem to provide both content privacy and anonymity with DP.

7 Conclusion

NetShaper is a provably secure network side-channel miti-
gation system that provides quantifiable and tunable privacy
guarantees in traffic shaping. We believe that NetShaper can
eliminate the arms race in network side-channel attacks and
defenses and can provide a portable and configurable frame-
work for deploying mitigations for applications with diverse
traffic characteristics and in different settings. NetShaper’s
DP based traffic shaping strategy as well as its modular and
portable tunnel design can be extended to mitigate leaks in
multi-node systems, but we leave the details to future work.

8 Acknowledgments

We thank the reviewers and our shepherd for their construc-
tive feedback. This work was supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
[RGPIN-2021-02961, DGDND-2021-02961], the Innovation
for Defence Excellence and Security (IDEaS) Program of
the Department of National Defense [MN3-011], a Google
Research Scholar award, the Digital Research Alliance of
Canada, and AWS (through UBC Cloud Innovation Center).

References
[1] A Highw Assurance Cryptographic Library. https://hacl-star.

github.io/. Accessed on Sep 20, 2023.

[2] libsecp256k1. https://github.com/bitcoin-core/secp256k1.
Accessed on Sep 20, 2023.

[3] Pluggable Transports. https://obfuscation.github.io/. Ac-
cessed on Jun 6, 2023.

[4] What is TCP Meltdown? https://openvpn.net/faq/
what-is-tcp-meltdown/. Accessed on Apr 30, 2023.

[5] wrk2: A constant throughput, correct latency recording variant of wrk.
https://github.com/giltene/wrk2.

[6] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen. DFD:
Adversarial Learning-based Approach to Defend Against Website Fin-
gerprinting. IEEE INFOCOMM, 2020.

[7] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi.
Verifying Constant-Time Implementations. USENIX Security, 2016.

[8] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi.
AnoA: A Framework for Analyzing Anonymous Communication Pro-
tocols. IEEE CSF, 2013.

[9] S. Bai, J. Z. Kolter, and V. Koltun. An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv:1803.01271, 2018.

[10] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes. Poking a Hole in
the Wall: Efficient Censorship-Resistant Internet Communications by
Parasitizing on WebRTC. ACM CCS, 2020.

[11] D. Barradas, N. Santos, and L. E. Rodrigues. DeltaShaper: Enabling
Unobservable Censorship-resistant TCP Tunneling over Videoconfer-
encing Streams. PETS, 2017.

[12] A. Beams, S. Kannan, and S. Angel. Packet Scheduling with Optional
Client Privacy. ACM CCS, 2021.

[13] M. Beckerle, J. Magnusson, and T. Pulls. Splitting Hairs and Net-
work Traces: Improved Attacks Against Traffic Splitting as a Website
Fingerprinting Defense. WPES, 2022.

[14] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A Data-Efficient
Website Fingerprinting Attack Based on Deep Learning. PETS, 2019.

[15] B. A. Braun, S. Jana, and D. Boneh. Robust and Efficient Elimination
of Cache and Timing Side Channels. arXiv:1506.00189, 2015.

[16] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. WPES, 2014.

[17] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A Sys-
tematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. ACM CCS, 2014.

[18] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi.
Broadening the Scope of Differential Privacy Using Metrics. PETS,
2013.

[19] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel Leaks in
Web Applications: A Reality Today, a Challenge Tomorrow. IEEE
S&P, 2010.

[20] G. Cherubin, J. Hayes, and M. Juarez. Website Fingerprinting Defenses
at the Application Layer. PETS, 2017.

[21] G. Danezis. Traffic Analysis of the HTTP Protocol over
TLS. http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/
TLSanon.pdf, 2009.

[22] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko. TrafficSliver: Fighting Website
Fingerprinting Attacks with Traffic Splitting. ACM CCS, 2020.

[23] J. Dong, A. Roth, and W. J. Su. Gaussian Differential Privacy. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 2022.

[24] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential Privacy
under Continual Observation. ACM STOC, 2010.

[25] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-
Private Streaming Algorithms. ACM ICS, 2010.

[26] C. Dwork, A. Roth, et al. The Algorithmic Foundations of Differential
Privacy. Foundations and Trends® in Theoretical Computer Science,
9(3–4), 2014.

[27] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
IEEE S&P, 2012.

[28] L. Foundation. Data plane development kit (DPDK), 2015.

[29] J. Gong and T. Wang. Zero-delay Lightweight Defenses against Website
Fingerprinting. USENIX Security, 2020.

[30] J. Gong, W. Zhang, C. Zhang, and T. Wang. Surakav: Generating
Realistic Traces for a Strong Website Fingerprinting Defense. IEEE
S&P, 2022.

[31] J. Hayes and G. Danezis. k-fingerprinting: A Robust Scalable Website
Fingerprinting Technique. USENIX Security, 2016.

[32] N. P. Hoang, A. A. Niaki, P. Gill, and M. Polychronakis. Domain Name
Encryption is Not Enough: Privacy Leakage via IP-based Website
Fingerprinting. PETS, 2021.

[33] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama. Un-
derstanding TCP over TCP: effects of TCP tunneling on end-to-end
throughput and latency. Performance, Quality of Service, and Control
of Next-Generation Communication and Sensor Networks III, 2005.

[34] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong. WF-GAN: Fighting Back
Against Website Fingerprinting Attack Using Adversarial Learning.
IEEE ISCC, 2020.

[35] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000, May 2021.

[36] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. Toward an
Efficient Website Fingerprinting Defense. ESORICS, 2016.

[37] S. P. Kasiviswanathan and A. Smith. On the ’Semantics’ of Differential
Privacy: A Bayesian Formulation. Journal of Privacy and Confiden-
tiality, 2014.

[38] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Differentially
Private Event Sequences over Infinite Streams. VLDB Endowment,
7(12), 2014.

[39] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: System-
Level Protection Against Cache-Based Side Channel Attacks in the
Cloud. USENIX Security, 2012.

[40] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Distributed Private
Messaging Immune to Passive Traffic Analysis. USENIX OSDI, 2018.

[41] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified
Robustness to Adversarial Examples with Differential Privacy. IEEE
S&P, 2019.

[42] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud
Computing. IEEE HPCA, 2016.

[43] D. Lu, S. Bhat, A. Kwon, and S. Devadas. DynaFlow: An Efficient Web-
site Fingerprinting Defense Based on Dynamically-Adjusting Flows.
WPES, 2018.

[44] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and R. Perdisci.
HTTPOS: Sealing Information Leaks with Browser-side Obfuscation
of Encrypted Flows. NDSS, 2011.

[45] A. Mehta, M. Alzayat, R. De Viti, B. B. Brandenburg, P. Druschel, and
D. Garg. Pacer: Comprehensive Network Side-Channel Mitigation in
the Cloud. USENIX Security, 2022.

[46] R. Meier, V. Lenders, and L. Vanbever. ditto: WAN Traffic Obfuscation
at Line Rate. NDSS, 2022.

https://hacl-star.github.io/
https://hacl-star.github.io/
https://github.com/bitcoin-core/secp256k1
https://obfuscation.github.io/
https://openvpn.net/faq/what-is-tcp-meltdown/
https://openvpn.net/faq/what-is-tcp-meltdown/
https://github.com/giltene/wrk2
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf

[47] I. Mironov. Rényi Differential Privacy. IEEE CSF, 2017.

[48] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg.
Skypemorph: Protocol Obfuscation for Tor Bridges. ACM CCS, 2012.

[49] M. Nasr, A. Bahramali, and A. Houmansadr. Defeating DNN-Based
Traffic Analysis Systems in Real-Time With Blind Adversarial Pertur-
bations. USENIX Security, 2021.

[50] R. Nithyanand, X. Cai, and R. Johnson. Glove: A Bespoke Website
Fingerprinting Defense. WPES, 2014.

[51] M. S. Rahman, M. Imani, N. Mathews, and M. Wright. Mockingbird:
Defending Against Deep-Learning-Based Website Fingerprinting At-
tacks with Adversarial Traces. IEEE Trans. on Information Forensics
and Security, 16, 2020.

[52] V. Rastogi and S. Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. ACM Intl. Conf. on
Management of Data, 2010.

[53] M. B. Rosen, J. Parker, and A. J. Malozemoff. Balboa: Bobbing and
Weaving around Network Censorship. USENIX Security, 2021.

[54] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, T. Kohno, et al. De-
vices That Tell on You: Privacy Trends in Consumer Ubiquitous Com-
puting. USENIX Security, 2007.

[55] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. USENIX Security,
2017.

[56] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao. Patch-based De-
fenses against Web Fingerprinting Attacks. AISec, 2021.

[57] T. Shapira and Y. Shavitt. Flowpic: Encrypted Internet Traffic Classifi-
cation is as Easy as Image Recognition. IEEE INFOCOMM Workshops,
2019.

[58] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep Fingerprinting:
Undermining Website Fingerprinting Defenses with Deep Learning.
ACM CCS, 2018.

[59] J.-P. Smith, L. Dolfi, P. Mittal, and A. Perrig. QCSD: A QUIC Client-
Side Website-Fingerprinting Defence Framework. USENIX Security,
2022.

[60] Statista. Length of online videos watched on social media platforms
worldwide in August 2021, by age group. https://tinyurl.com/
9u4ystpe, 2023. Accessed on Sep 20, 2023.

[61] G. Tan. Principles and Implementation Techniques of Software-Based
Fault Isolation. Foundations and Trends® in Privacy and Security,
1(3), 2017.

[62] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. ACM SOSP,
2015.

[63] V. Varadarajan, T. Ristenpart, and M. M. Swift. Scheduler-based De-
fenses against Cross-VM Side-channels. USENIX Security, 2014.

[64] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. Practical
TDMA for Datacenter Ethernet. ACM EuroSys, 2012.

[65] M. Wang, A. Kulshrestha, L. Wang, and P. Mittal. Leveraging Strategic
Connection Migration-powered Traffic Splitting for Privacy. Privacy
Enhancing Technologies (PETS), 2022.

[66] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective
Attacks and Provable Defenses for Website Fingerprinting. USENIX
Security, 2014.

[67] T. Wang and I. Goldberg. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. USENIX Security, 2017.

[68] C. Westphal, S. Lederer, C. Mueller, A. Detti, D. Corujo, J. Wang,
M.-J. Montpetit, N. Murray, C. Timmerer, D. Posch, A. Azgin, and
W. Liu. RFC 7933: Adaptive Video Streaming over Information-Centric
Networking (ICN). https://datatracker.ietf.org/doc/html/
rfc3168. Accessed on Apr 30, 2023.

Figure 10: TCN classifier

[69] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose. Phonotactic
Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-iks.
IEEE S&P, 2011.

[70] P. Winter, T. Pulls, and J. Fuss. ScrambleSuit: A Polymorphic Network
Protocol to Circumvent Censorship. WPES, 2013.

[71] C. V. Wright, S. E. Coull, and F. Monrose. Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis. NDSS, 2009.

[72] D. Zhang, A. Askarov, and A. C. Myers. Predictive Mitigation of
Timing Channels in Interactive Systems. ACM CCS, 2011.

[73] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang. Statistical Privacy for
Streaming Traffic. NDSS, 2019.

A Attack classifiers

Beauty and Burst. The Beauty and the Burst classifier (BB) [55]
is a CNN (convolutional neural network) consisting of three convo-
lution layers, a max pooling layer, and two dense layers. We use a
dropout of 0.5, 0.7, and 0.5 between the hidden layers of the net-
work. We train the classifier with an Adam optimizer, a categorical
cross-entropy function, a learning rate of 0.01, with a batch size of
64, and for 1000 epochs.

Temporal Convolution Network. While CNNs are generally
effective in sequence modelling, they look at future samples in a
sequence and a very limited history of past samples to decide the
output of the current sample. Consequently, they require a large
number of traces and long traces for effective training and prediction.

Temporal Convolutional Networks (TCNs) [9] overcome
these problems of CNNs by utilizing a one-dimensional fully-
convolutional network equipped with causal dilated convolutions,
which allows them to examine deep into the past to produce an
output for the sequence at any given moment.

Figure 10 shows the architecture of our TCN classifier, which
follows the architecture proposed by Bai et al. [9]. It consists of two
dilated causal convolutional layers, followed by weight normaliza-
tion and dropout layers with a dropout probability of 0.05. We train
the classifier for 1000 epochs.

B Extended evaluation of privacy vs overheads

Distribution of queue length differences. Figure 11 shows the
distribution of the buffering queue length differences generated for
each pair of an application’s streams. We use W of 5s for video
streams and 1s for web pages. The dashed lines show the median,
which is 1.63 MB and 6 KB for videos and web pages, respectively.

Privacy loss vs overheads for other ∆T . Figure 12 shows similar
results as Figure 6 for ∆T of 0.1 MB and 10 MB.

https://tinyurl.com/9u4ystpe
https://tinyurl.com/9u4ystpe
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

0.5 1.0 1.5 2.0 2.5 3.0
Max L1-Norm Difference (MB)

Vi
de

o

0 15 30 45 60
Max L1-Norm Difference (KB)

W
eb

Figure 11: Distribution of the difference in buffering queue
lengths for application stream pairs.

0 1 2 3 4 5 6 7
Noise, σT (MB)

10−1

100

101

102

Pr
iv

ac
y

lo
ss

, ε
W

δW=1e-06, ΔW=0.1 MB
N = 1
N = 4

N = 16
N = 64
N = 16
N = 64

(a) Noise vs privacy loss

0 1 2 3 4 5 6 7
Noise, σT (MB)

101

102

103

104

105
Pr

iv
ac

y
lo

ss
, ε

W
δW=1e-06, ΔW=10.0 MB

N = 1
N = 4

N = 16
N = 64
N = 16
N = 64

(b) Noise vs privacy loss

0 10 20 30 40 50 60 70
of DP queries, N

10−2

10−1

100

101

102

Pr
iv

ac
y

lo
ss

, ε
W

δW=1e-06, ΔW=0.1 MB

σT = 0.1 MB
σT = 0.4 MB

σT = 1.6 MB
σT = 6.4 MB
σT = 1.6 MB
σT = 6.4 MB

(c) # DP queries vs privacy loss

0 10 20 30 40 50 60 70
of DP queries, N

100

102

104

106

Pr
iv

ac
y

lo
ss

, ε
W

δW=1e-06, ΔW=10.0 MB

σT = 0.1 MB
σT = 0.4 MB

σT = 1.6 MB
σT = 6.4 MB
σT = 1.6 MB
σT = 6.4 MB

(d) # DP queries vs privacy loss

Figure 12: Privacy loss vs noise and # queries for different ∆T .

Bandwidth overheads with a fixed cutoff. In §5, we explained
that NetShaper applies a cutoff to the DP shaped buffer length (if the
sampled noise is very large) that depends on the number of active
flows. This reveals the number of active flows at any given time.
To hide the number of flows, we can set the cutoff to a fixed value
(e.g., based on the maximum flows that the system must support).

Figure 13a presents results similar to those of Figure 8b, but with
the cutoff for the shaped buffer length set to a fixed value of 1.21 GB,
1.22 GB, and 1.7 GB. Figure 13b presents results similar to those
of Figure 8d but with cutoffs of 60.8 MB, 60.8 MB, and 110.9 MB.
Figures 13c and 13d show the results similar to those of Figures 9a
and 9b. The fixed cutoffs correspond to 1000 flows, which lead
to a significant increase in NetShaper’s overheads. However, the
overheads quickly amortize with several concurrent flows.

C Proof of NetShaper’s DP based Shaping

Proposition 1. NetShaper enforces ∆T ≤ ∆W .

To prove Prop 1, we show that at any DP query time k, any neigh-
boring streams S,S′ can only create a queue size difference such that
|Lk−L′k| ≤ ∆W . This is formalized in the following Lemma:

Lemma 1. Assume two neighboring traffic streams S and S′ (‖S−
S′‖1 ≤ ∆W), are transmitted through NetShaper and get the same
randomness draws zk (they are parallel worlds with an identical
NetShaper, but the streams differ). Then, at any DP query time k, the
length of the buffering queue for S and S′ are ∆W -close. Formally:

∀k ≥ 0 : |Lk−L′k| ≤ ∆W (4)

0 200 400 600 800 1000
DP interval, T (ms)

100
101
102
103
104
105

Pe
r-f

lo
w

ov
er

he
ad

εW=1, δW=1e-6, ΔW=2.5 MB
1 clients
16 clients

128 clients

(a) Video streaming

0 20 40 60 80 100
DP interval, T (ms)

100
101
102
103
104
105

Pe
r-f

lo
w

ov
er

he
ad

εW=1, δW=1e-6, ΔW=60 KB
1 clients
16 clients

128 clients

(b) Web service

100 101 102 103

Number of concurrent flows

10−4
10−2
100
102
104

Pe
r-f

lo
w

ov
er

he
ad

δW=1e-6, ΔW=2.5 MB, T=1 s

NS, εW=1
NS, εW=4
NS, εW=16

Pacer
CR
Pacer
CR

(c) Video streaming

100 101 102 103

Number of concurrent flows

10−4

10−2

100

102

104

Pe
r-f

lo
w

ov
er

he
ad

δW=1e-6, ΔW=60 KB, T=50 ms

NS, εW=1
NS, εW=4
NS, εW=16

Pacer
CR
Pacer
CR

(d) Web service

Figure 13: Bandwidth overheads with a fixed cutoff.

Proof. NetShaper performs a DP query for the size of the buffering
queue at intervals of length T . While transmitting S, the queue length
at the end of the kth interval Tk is a function of three variables: (i)
The buffering queue length Lk−1 at the end of Tk−1. (ii) The total
number of payload bytes that have been dequeued from the buffering
queue in the kth interval, Rk. (iii) The number of new payload bytes
from the application stream added to the buffering queue since the
previous interval, which is the sum of sizes of all packets arriving
between (k−1)th and kth interval, i.e., ∑Tk−1≤t<Tk

PS
t . Therefore, the

buffering queue length after dequeue in Tk is:

Lk = Lk−1 + ∑
Tk−1≤t<Tk

PS
t −Rk (5)

The difference between the queue lengths of S,S′ at Tk is:

Lk−L′k = (Lk−1−L′k−1) +(∑
Tk−1≤t<Tk

PS
t − ∑

Tk−1≤t<Tk

PS′
t)− (Rk−R′k) (6)

We divide the proof into two steps. First, we show that the dequeue
stage of the shaping mechanism does not increase the difference
in queue lengths. Secondly, we show that under Assumption 1, the
enqueue stage of incoming streams does not increase the difference
in queue lengths beyond ∆W .

To show that the dequeue stage never increases the difference
between queue lengths, we show that in any period k, we always
dequeue more (or equal) data from the larger queue at the time of
the DP query. Formally:

(Lk−1−L′k−1) · (Rk−R′k)≥ 0, (7)

where the indexes are because removal amount in period k depends
on the query result for the queue at k−1. Assume without loss of
generality that Lk−1 ≥ L′k−1. Since each DP query receives the same
noise, we get L̃k−1 ≥ L̃′k−1, and thus:

Rk = min
{

0, L̃k−1,Lk−1
}
≥min

{
0, L̃′k−1,L

′
k−1

}
= R′k.

The case for Lk−1≤ L′k−1 is symmetric, and we have sign(Lk−L′k)=
sign(Rk−R′k), which implies Equation 7. Moreover, we show:

|Rk−R′k| ≤ |Lk−L′k|, (8)

using two cases and assuming that Lk ≥ L′k (again the opposite case
is symmetric). Either the DP noise is ≥−L′k, and Lk−L′k = Rk−R′k.

Or the DP noise is <−L′k, in which case R′k = 0 but Rk ≤ Lk−L′k.
Either way, Equation 8 holds. We can now study the queue length
difference over time:

|Lk−L′k|= |(Lk−1−L′k−1)+(∑
Tk−1≤t<Tk

PS
t −PS′

t)− (Rk−R′k)|

≤ |(Lk−1−L′k−1)− (Rk−R′k)|+ ∑
Tk−1≤t<Tk

|PS
t −PS′

t |

≤ |Lk−1−L′k−1|+ ∑
Tk−1≤t<Tk

|PS
t −PS′

t |

where the first equality uses Equation 6 and the last inequality uses
Equation 7 and Equation 8. Intuitively, the dequeue stage never
increases the difference between queue lengths.

Finally, we are ready to bound the difference in queue length due
to enqueues. Let dk = |Lk−L′k|, and d0 = 0:

dk ≤ dk−1 + ∑
Tk−1≤t<Tk

|PS
t −PS′

t | = 0+
k

∑
i=0

(
∑

Ti−1≤t<Ti

|PS
t −PS′

t |
)

= ∑
0≤t<Tk

|PS
t −PS′

t |= ∑
0≤t<Tk−W

|PS
t −PS′

t |+ ∑
Tk−W≤t<Tk

|PS
t −PS′

t |

≤ ∆W

since ∑0≤t<Tk−W |PS
t − PS′

t | = 0 by Assumption 1, and
∑Tk−W≤t<Tk

|PS
t −PS′

t | ≤ ∆W by Def 1.

Lemma 1 =⇒ Prop 1, since ∆T =maxk maxS,S′ |Lk−L′k| ≤∆W .

D Comparison of NetShaper and Tamaraw

Tamaraw [17] provides a mathematical notion of privacy guarantee
of a shaping strategy, called ε-security. To disambiguate with Net-
Shaper’s notion of (ε,δ)-DP, we rename Tamaraw’s ε variable with
γ. We show that NetShaper’s (ε,δ)-DP definition is strictly stronger
than Tamaraw’s γ-security definition.

First, we explain Tamaraw’s γ-security definition. In Tamaraw, W
is a random variable representing the label of a traffic trace. For a
trace w, the random variables Tw and T D

w respectively represent the
packet trace of w before and after shaping with a defense D. The
distribution of T D

w captures all variations in the observed shape of w
resulting from both the defense mechanism and the network, while
the distribution of Tw only contains variations due to the network.
The attacker can measure the distribution of W and T D

w independently.
Upon observing a network trace t, an optimal attack A, selects the
label of the trace with maximum likelihood of observation:

A(t) = argmax
w

Pr[W = w]Pr[T D
w = t]

The probability that an attack A outputs label wi is PrA[wi].

Definition (Tamaraw γ-privacy). A fingerprinting defense D is said
to be uniformly γ-private if for the attack A if we have:

max
w

[
Pr[A(T D

w) = w]
]
≤ γ

Proposition 3. Tamaraw γ-privacy is strictly weaker than the notion
of ε-differential privacy.

To prove Prop 3, we prove the following two lemmas.
Lemma 2. There exists a Tamaraw γ-private defense mechanism
that fails to satisfy ε-DP for any given value of ε.

Proof. Consider a web service with a dataset of n web pages. We
propose a defense D, which shapes pages to a constant-rate pattern
Oc with probabilities α or β. D reshapes page w j to Oc with proba-
bility β and all other pages wi 6= w j with probability α. If a page is
not shaped, it is revealed.

The probability that any attack can correctly identify the label for
w j is upper-bounded by: Pr[A(T D

wi= j
) = w j]

= Pr[A(T D
wi= j

) = w j|T D
wi= j

= Twi= j]Pr[T D
wi= j

= Twi= j]+

Pr[A(T D
wi= j

) = w j|T D
wi= j

= Oc]Pr[T D
wi= j

= Oc]

≤ 1.(1−β)+
1
n

β = p j
c

For (1− nγ−1
n−1)< β we have: p j

c ≤ γ. Similarly, the probability that
any attack can correctly classify wi 6= j is upper-bounded by pi

c =

1−α+ α

n , and for (1− nγ−1
n−1)< α we have: p j

c ≤ γ. Therefore, for

all values of α and β such that (1− nγ−1
n−1)< β < α, the probability

that any attack can successfully guess a page is less than γ, and the
defense is uniformly γ-private.

When the output of the algorithm is Oc, the probability of the

page being w j is β and any other page is α. Thus, log(
Pr[T D

wi6= j
=Oc]

Pr[T D
wi= j

=Oc]
) =

log(α

β
). By setting α > eεβ, we get a mechanism that is γ-private for

Tamaraw but not ε-DP for NetShaper.

Lemma 3. A ε-DP shaping algorithm is Tamaraw γ-private for
ε≤ log(nγ).

Proof. For a trace w, the random variable T DP
w represents the packet

trace of w after a differentially private shaping mechanism is ap-
plied. The classification attack on shaped traffic can be considered
a post-processing of the results of a differentially private shaping
mechanism (i.e. defense) and, hence, is differentially private. There-
fore, we have:

Pr[A(T DP
wi

) = wi]

Pr[A(T DP
w j

) = wi]
≤ eε⇒ Pr[A(T DP

wi
) = wi]≤ eε.Pr[A(T DP

w j
) = wi]

Intuitively, this implies that the likelihood of the attacker correctly
classifying the trace with label i compared to incorrectly classifying
it with label j is bounded by eε. The above inequality is correct for
all w j : j ∈ {1,2, . . . ,n}, and we can extend the above equation to
calculate the summation over j:

n×Pr[A(T DP
wi

) = wi]≤ eε
n

∑
j=1

Pr[A(T DP
w j

) = wi] = eε PrA[wi].

Thus, for any given trace wi, the probability that any attack A, clas-
sifies it correctly is bounded by: Pr[A(T DP

wi
) = wi]≤ eε PrA[wi]

n . The
probability that an attacker can guess the victim’s trace is bounded
by: maxwi Pr[A(T DP

wi
) = wi]≤ eε

n maxwi PrA[wi]≤ eε

n ≤ γ.

	Introduction
	Background, Motivation, and Overview
	Network Side-Channel Attacks
	Key Ideas
	Threat Model
	A Primer on Differential Privacy

	Differentially Private Traffic Shaping
	DP for Traffic Streams
	Privacy Analysis

	Traffic Shaping Tunnel
	Tunnel Design and Operations
	Middlebox Implementation
	Security Analysis
	Deployment and Maintenance

	Evaluation
	NetShaper Defeats Attack Classifiers
	Impact of Privacy Parameters
	Performance Microbenchmarks
	Case Study: Video Streaming
	Case Study: Web Service
	Comparison with other techniques

	Related Work
	Conclusion
	Acknowledgments
	Attack classifiers
	Extended evaluation of privacy vs overheads
	Proof of NetShaper's DP based Shaping
	Comparison of NetShaper and Tamaraw

