
Formalizing Soundness Proofs of Linear PCP SNARKs

Bolton Bailey

University of Illinois at Urbana-Champaign

Andrew Miller

University of Illinois at Urbana-Champaign

Abstract

Succinct Non-interactive Arguments of Knowledge

(SNARKs) have seen interest and development from the

cryptographic community over recent years, and there are

now constructions with very small proof size designed to

work well in practice. A SNARK protocol can only be widely

accepted as secure, however, if a rigorous proof of its security

properties has been vetted by the community. Even then, it is

sometimes the case that these security proofs are flawed, and

it is then necessary for further research to identify these flaws

and correct the record [39, 58].

To increase the rigor of these proofs, we create a formal

framework in the Lean theorem prover for representing a

widespread subclass of SNARKs based on linear PCPs. We

then describe a decision procedure for checking the soundness

of SNARKs in this class. We program this procedure and

use it to formalize the soundness proof of several different

SNARK constructions, including the well-known Groth ’16.

1 Introduction

Over the past decade, cryptographic research has pro-

duced Succinct Non-interactive Arguments of Knowledge

(SNARKs), which allow a prover to demonstrate knowledge

of a witness corresponding to a statement in some NP relation.

There exist schemes for instantiating SNARKs [42,43,59] that

produce proofs consisting of a O(1)-sized message. SNARKs

promise to have many applications in verifiable computa-

tion [16], blockchains [19,61], and identity management [50].

Since practitioners are applying this new technology to

tasks where security is a main concern, it is important for

them to have confidence in the cryptographic properties of the

protocols they implement. To this end, the academic review

process ensures that SNARKs published in the literature come

with mathematical proofs of security properties. But in prac-

tice, errors arise. Research from Parno [58] and Gabizon [39]

has identified flaws in the soundness property of SNARKs

in the libsnark library originating from [17], which was a

modification of the Pinocchio SNARK [59]. Soundness refers

to the property of a SNARK protocol that makes it infeasible

for a malicious prover to construct proofs of false statements.

This type of problem is potentially very serious – Compro-

mising the soundness can lead to a total breakdown of the

security assumptions of whatever system uses the SNARK,

potentially without an outward sign that anything is wrong.

To prevent errors like this from happening in the future,

we look to apply formal methods to guarantee soundness.

We focus on the class of “pairing-based” SNARKs which

achieve the fully-succinct O(1) proof-message size previously

mentioned. In particular, we deal with linear PCP SNARKs

that work in the structured reference string (SRS) model: All

parties are assumed to have access to a collection of elements

of a pairing-friendly cryptographic group, generated by some

trusted third party.

1.1 Our Contribution

Our main contribution consists of formalized proofs about the

soundness aspect of several SNARK protocols. This formal-

ization effort can be broken down into three parts:

1. We observe that linear PCP SNARK protocols from

the literature have a few regularities that make them

amenable to formal analysis. We call SNARKs with

these properties "Straightforward linear PCP SNARK

schemes". Formally, this is a restriction of the class of lin-

ear PCP SNARKs, but every linear PCP SNARK scheme

that we are aware of belongs to this class.

2. We develop a mathematical structure to represent instan-

tiations of linear PCP SNARKs, and we formalize this

structure in the Lean Theorem Prover [31]. This structure

is capable of representing any linear PCP SNARK, but is

particularly well-suited to instantiations derived from

Straightforward schemes. We formalize six SNARK

schemes from the literature in Lean with this structure.

3. We automate a procedure to decide the soundness of

straightforward linear PCPs SNARK schemes. That is,

our procedure is given a straightforward linear PCP

SNARK scheme, and either produces a proof that ev-

ery instantiation of a SNARK from that scheme will be

sound, or fails to do so, in which case it is possible to

attack the soundness of some instance. We run this de-

cision procedure on the six SNARK schemes to verify

their soundness.

The six protocols we formalize are of some of the most

well-cited and widely-deployed in practice. They are:

• GGPR [42]: The first SNARK to encode computations

using Quadratic Arithmetic Programs (QAPs), which is

the main NP-Complete language to which SNARKs are

reduced in this line of work.

• Pinocchio [59]: A modification of GGPR which im-

proved efficiency.

• Groth ’16 [43]: A widely-cited SNARK which reduced

the proof size to only three group elements.

• Baghery et al. [6]: A paper which presented a version

of Groth ’16 for Type-III pairings.

• Lipmaa [47]: Another version of Groth ’16, redesigned

with an eye to a simulation-extractability property.

• Baby SNARK [55]: A simplified version of Groth ’16

constructed for educational purposes, designed to have

an easy-to-follow soundness proof.

Our work puts the soundness of these SNARKs beyond

doubt. Additionally, we identified and formalized a variety of

techniques for manipulating constructions such as these, in

order to make our work more extensible.

1.2 The Lean Theorem Prover

We carry out our formalization in the Lean 4 Theorem

Prover [31]. Lean allows a user to write code that encodes

mathematical theorems and proofs in the language of depen-

dent type theory. All proofs that the programmer writes in this

language are converted into a machine-readable form which

is then checked by the Lean kernel.

The soundness proofs we complete involve reasoning about

equalities of multivariate polynomials over finite fields. We

base our work on mathlib [51], the open-source Lean math-

ematical library that implements structures and lemmas from

much of undergraduate-level mathematics, including finite

fields and multivariate polynomials.

Lean is built with a metaprogramming facility which allows

the user to write “tactic” code which automatically constructs

proofs. We use this to implement a recursive tactic to resolve

subgoals consisting of systems of equations over a integral

domain. Additionally, we make use of the builtin simp tactic,

which invokes Lean’s simplifier – a proof-producing proce-

dure which allows a user to specify lemmas that are then

iteratively applied to simplify an expression. We construct

a variety of Lean simplification attributes for normalizing

statements about polynomials and their coefficients. The end

product is a system which is capable of automatically con-

structing a proof of the knowledge-soundness theorem for a

SNARK.

1.3 Related Work

Cryptography in general and proof systems in particular have

been of great interest to the formal verification community.

In this section, we will go over some of these contributions

and their relevance to the problem at hand.

Lean itself is a somewhat rare choice for formalization of

cryptographic protocols. We nevertheless considered it appro-

priate for our work here, for a few reasons: The comprehensive

and well-integrated mathlib library and its implementation

of numerous lemmas about multivariate polynomials makes

Lean ideal in the setting of succinct proofs. Avigad et al. [4]

also use Lean and mathlib and theirs is the only other work

of which we are aware that formalizes statements about a

general-purpose succinct proof system: Their development

provides a full formalization of the Cairo virtual machine in

Lean, with a proof of correctness for its execution, (rather

than soundness). It is encouraging to see another aspect of a

proof system formalized, and it suggests that a full proof of

completeness and soundness of some system could be within

grasp. Extensions to Lean could make it a better basis for

cryptography in the future - In the time our project has been

underway, mathlib has added an implementation of elliptic

curves [3], as well as a tactic [18] for solving Gröbner basis

problems. This tactic, polyrith, works by calling a web in-

terface to a Sage Gröbner-basis solver - while the problems

that our code generates are too large to be handled on their

own by polyrith, it is promising that a more general version

of the problem is being worked on, and in the future it could

make our system more flexible.

Coq [46] is the theorem proving language perhaps most

related to Lean - both languages are based on dependent type

theory. The Certicrypt Coq library [11] provides tools for

developing formalizations of cryptographic protocols. Highly

relevant is Fournet et al.’s work on a certified compiler for

the Pinocchio proof system [37]. This work formally verifies

a SNARK “front-end” - code that is necessary to compile a

high-level language (in this case C) to the QAP. Also relevant

are [5], which formalizes the portion of the zero-knowledge

stack which compiles relations into the necessary form to be

handled by a SNARK, and [12], which uses Certicrypt to for-

malize Σ-protocols, a class of proof systems involving three

rounds of communication. There have also been several ap-

plications of Coq to other (non-proof-system) cryptographic

protocols, including Proof-of-Stake consensus systems [66],

mix nets [45] and signature schemes [65]. Efforts in Coq to

formalize broader classes of cryptographic techniques include

SSProve [1], which formalizes a modularization of crypto-

graphic proofs, the formalization [57] of some of the number-

theoretic underpinnings of cryptography, and [9], which for-

malizes the generic model for group-based cryptography and

random oracle model. This last is relevant to our own applica-

tion - the generic group model [63] is related to the algebraic

group model that our own work uses, in that both seek to

codify an adversary’s interaction with a cryptographic group.

External to cryptography, Coq also has well developed math

libraries, including the [60] tactic for Gröbner bases - the de-

cision to use Lean over Coq for this project comes down to a

few matters of convenience, such as Lean’s ability to express

tactics themselves in Lean.

EasyCrypt is another proof assistant. Like Coq, it is writ-

ten in OCaml, but EasyCrypt is designed specifically with

cryptography in mind. EasyCrypt allows one to reason about

probabilistic computation, which is convenient for the for-

malization of game-based cryptographic proofs. Works in

EasyCrypt relevant to proof systems include [2], which for-

malizes the "MPC-in-the-head" paradigm for zero knowledge

and [36], which formalizes a variety of protocols including

protocols for proof of knowledge of quadratic residues, dis-

crete logarithms, and Hamiltonian cycles. The first two of

the latter are protocols for specific problems not known to be

NP-complete, so they cannot be turned into general-purpose

proof systems. The Hamiltonian cycle and MPC-in-the-Head

approaches are general purpose, but these proof systems are

not succinct - they require the verifier to do work linear or

more in the problem. EasyCrypt has also been used for many

applications beyond proof systems, including verifications of

multi-party computation itself [34,44], post-quantum cryptog-

raphy [8], Pedersen commitments [54], electronic voting [30],

and key exchange [10]. The framework has also formalized

some more general techniques, including Canetti’s Universal

Composability framework [24] in [25] and Brzuska et al.’s

State separating proofs [20] in [33].

On the other end of the spectrum from strongly-typed lan-

guages like Lean and Coq is the Isabelle [56] ecosystem,

with its CryptHOL [14] cryptographic framework. Butler et

al. [23] have done work to formalize Σ-protocols using this

system, and there are also modules for constructive cryptogra-

phy [13, 48], and oblivious transfer [22]. ACL2, a Lisp-based

theorem prover, has been used to verify the Ethereum Recur-

sive Length Prefix encoding scheme [29].

It is also worth mentioning that there is some work done

in the space of verification for proof systems which does not

prove theorems formally, but nevertheless uses automated

processes to check the construction of protocols. These often

focus on the circuit compilation component of the SNARK

toolchain: Ecne [67] is a Julia project which analyzes Rank-1

Constraint Systems to determine if their outputs are uniquely

determined. Picus [26] is a symbolic VM for formal verifi-

cation of Rank-1 Constraint Systems. [28] describes the Leo

language, a DSL for writing SNARK programs with a facility

for ACL2 verification.

To summarize, formal modelling of cryptography, like cryp-

tography itself, is diverse both in its scope and in its tech-

niques. For more in-depth surveys, the reader can consult the

Systematization of Knowledge papers of [7], [53] or [64]

2 Linear PCP SNARKs

2.1 Overview of Elliptic Curve Pairings and

the Algebraic Group Model

In the SNARKs we analyze, every message transmitted during

the protocol comes in the form of a collection of elliptic

curve group elements. These elements come from one of three

predefined elliptic curves G1,G2,GT , each of prime order p.

The three curves admit a pairing operation: That is, there is an

efficiently-computable nontrivial operation e : G1×G2→GT

which satisfies the bilinearity property: For any g ∈ G1,h ∈
G2,a,b ∈ Fp, we have

e(ga,hb) = e(g,h)a·b.

Fixing some generators g,h of the first two groups G1,G2,

and fixing e(g,h) as a generator of GT , any value computed

by any algorithm in the protocol can be expressed as a power

of one of these generators. In keeping with the literature, we

will often express group elements by corresponding power in

Fp used to obtain it from the corresponding generator.

In order to formally check the soundness of a SNARK

construction, we must make a cryptographic assumption that

limits what the prover is capable of doing in assembling the

proof-message, and as is typical with cryptography done us-

ing elliptic curves, our assumption is related to the difficulty

of evaluating discrete logarithms in the three groups. In par-

ticular, we formalize the soundness of our chosen SNARKs

with the Algebraic Group Model assumption [38], or AGM.

The AGM assumes that the prover can only carry out alge-

braic operations on group elements that come from the above

operations. That is, a prover can carry out group operations

(multiplication and exponentiation) within any one of the

three groups G1,G2,GT and can use the pairing operation to

take an element from each of the groups G1,G2 and obtain an

element of GT , but can do nothing else in the way of opera-

tions on the group elements it holds. A critical consequence

of this assumption is that any element of the G1 or G2 curves

that the prover outputs must necessarily be a linear combina-

tion of elements from those curves that the prover has seen

before.

Definition 1 (See [6]). An algorithm A : W ×Gk
b → Gn

b is

algebraic if there is a polynomial-time X : Gk
i ×Gn

b→ F
k×n
p

taking the inputs and outputs of A and returning an k×

n matrix of field elements such that, except with negligible

probability,

Ai(w,g
n1 , · · · ,gnk) = g∑ j∈n n jX (gn1 ,··· ,gnk ,Ai(w,g

n1 ,··· ,gnk))i, j .

2.2 SNARKs

As we have mentioned, we focus on soundness proofs for

pairing-based SNARKs in the structured reference string

model. In particular, we focus on knowledge soundness. This

refers to a guarantee that a prover who consistently convinces

a verifier of a statement can only do so because they possess

knowledge of a witness corresponding to that statement.

A typical approach in the field of interactive cryptographic

proof systems is to prove this knowledge by defining an ex-

tractor algorithm. This algorithm has access to the prover

algorithm, and can run it (potentially multiple times with

different inputs) to extract the witness. This paradigm is chal-

lenging for SNARKs, though, because their non-interactive

nature limits the information the extractor can access when

trying to recover a witness.

To get around this, the SNARKs we formalize construct

proofs from a larger piece of data, called a structured refer-

ence string (SRS, sometimes also referred to as a common

reference string or CRS), the prover’s interaction with which

is the basis for the extractor. An SRS is produced before the

proof phase of the protocol by a trusted third party. This leads

us the usual definition for a Non interactive Zero-knowledge

argument, (e.g. as found in [43])

Definition 2. A Non-interactive argument for a relation R is

a triple of randomized PPT algorithms (SRS,P,V) where:

• The SRS algorithm takes no input and generates a struc-

tured reference string σ← SRS()

• The prover takes a statement x and witness w for it in

the relation (x,w) ∈ R as well as the SRS and returns a

proof π← P(σ,x,w)

• The verifier takes an instance of the relation and the SRS

and returns a proof 0/1←V (σ,π,x)

Our formal definition is more specialized than this broad

one, to better capture the structure of SNARKs we encoun-

tered. For example, the values of the field elements corre-

sponding to the SRS elements are represented as polynomial

functions of a collection of 1 to 6 field elements that the

trusted third party samples uniformly at random. These sam-

ple elements are sometimes called toxic waste to reflect the

fact that if they become known to the prover, the soundness of

the proof system can be broken. The trusted third party pro-

duces the SRS from the waste samples, which the prover can

then use to produce the proof. The verifier will subsequently

verify the proof-message by making equality checks on GT

elements produced through the proof elements, the SRS, the

statement, and the pairing.

Another way in which our formalization is specialized is

that it assumes the witness is a vector of field elements. In

order to provide a proof system for any language in NP in the

AGM, we must have some way of reducing the problem to a

language that involves the field our pairing works over. This is

typically done by first encoding the relation into an arithmetic

circuit and then reducing the circuit to a language such as the

language of Quadratic arithmetic programs (QAPs) or Square

Sum Programs (SSPs). The details of these representations

are not too important; we simply refer to them collectively

as circuits. They do work over field elements, though, which

informs our choice of witness representation.

Figure 1 shows the Lean data structure which we use to

represent the Proof System instantiations. The structure in-

cludes:

• A Type of statements

• A variety of Types to index into the set of toxic waste

samples, the equality checks made by the verifier, and

the pairings the verifier computes, as well as the SRS

elements and Proof elements for both the left (G1) and

right (G2) groups.

• Explicit lists to represent, for both groups, the complete

lists of SRS element indices and proof indices. Addition-

ally, there is a family of lists of pairings, one for each

equality check.

• Maps from SRS element indices to the multivariable

polynomials over the sample elements that the trusted

third party uses to compute them.

• Functions that indicate, for a particular pairing input

group, statement, pairing, and SRS element (similarly,

proof element), the coefficient to which the verifier will

include that SRS element (or proof element) in the linear

combination which comprises the corresponding input

to that pairing.

• A list of identified proof elements, to capture the possi-

bility of non Type III pairings (see Section 2.3.1)

Note that we use the terminology "instantiation" to indicate

that a member of this type is a proof system for a specific cir-

cuit or problem instance. By contrast, we use the terminology

"scheme" or "protocol" to describe systems which, like the

six we cover, are general. While these linear PCP SNARK

schemes can represent any problem in NP via a circuit crafted,

it should be noted that the SRS will depend on the circuit,

and that these SNARKs therefore do not have a "universal"

trusted setup.

2.3 Formalizing Soundness in the AGM

The only input to an adversarial proof generation procedure,

in terms of cryptographic group elements, are the SRS ele-

ments that the trusted third party provides. Thus, the AGM

structure AGMProofSystemInstantiation
(F : Type) [Field F] where
Stmt : Type
Sample : Type
SRSElements_G1 : Type
ListSRSElements_G1 : List SRSElements_G1
SRSElements_G2 : Type
ListSRSElements_G2 : List SRSElements_G2
SRSElementValue_G1 : SRSElements_G1→ MvPolynomial

Sample F
SRSElementValue_G2 : SRSElements_G2→ MvPolynomial

Sample F
Proof_G1 : Type
ListProof_G1 : List Proof_G1
Proof_G2 : Type
ListProof_G2 : List Proof_G2
EqualityChecks : Type
Pairings : EqualityChecks→ Type
ListPairings : (k : EqualityChecks)→ List (Pairings k)
verificationPairingSRS_G1 : Stmt→
(k : EqualityChecks)→ Pairings k→ SRSElements_G1→

F
verificationPairingSRS_G2 : Stmt→
(k : EqualityChecks)→ Pairings k→ SRSElements_G2→

F
verificationPairingProof_G1 : Stmt→
(k : EqualityChecks)→ Pairings k→ Proof_G1→ F
verificationPairingProof_G2 : Stmt→
(k : EqualityChecks)→ Pairings k→ Proof_G2→ F
Identified_Proof_Elems : List (Proof_G1 × Proof_G2) :=

[]

Figure 1: Data structure for SNARK instantiations

guarantees that each curve point in G1 or G2 that comprises

the proof will be formed as a linear combination of the SRS

elements from those respective groups. With this, and the

SNARK and AGM definitions in hand, we can define knowl-

edge soundness against algebraic prover adversaries.

Definition 3. A SNARK (SRS,P,V) is knowledge-sound with

respect to a relation R if for any input statement x and

adversarial prover consisting of two algebraic algorithms

A = A1 ×A2 to output proof components in either group,

there is a PPT extractor which takes the output of the cor-

responding X1,X2 and recovers a value w such that either

(x,w)∈ R or V (σ,π,x) = 0, except with negligible probability.

Again, the formalization of this makes a few structural

elaborations for simplicity. All of the operations the algebraic

prover and verifier execute are either additions and multiplica-

tions on the underlying elements of Fp coming from the SRS

elements and linear combination coefficients of the prover.

Since the SRS elements are themselves multivariable polyno-

mials over the toxic waste elements, we can therefore obtain

the expressions which the verifier ultimately compares in its

equality checks as multivariable polynomials over the toxic

waste. Since the toxic waste elements are chosen at random,

the Schwartz-Zippel lemma guarantees that the checks al-

most certainly will only pass (and therefore that the proof is

only likely to succeed) if these multivariable polynomials are

exactly equal.

Lemma 1 ([62, 68]). Let p ̸= q be n-variable polynomials

of total degree d over a finite field F. Let r1, · · · ,rn← F be

sampled uniformly at random. Then with probability at most
d
|F| over the samples,

Pr[p(r1, . . . ,rn) = q(r1, . . . ,rn)]≤
d

|F |

We use this fact to do away with the "except with negli-

gible probability" clause, and simply directly check in our

formalization that the polynomials are equal. Figure 2 shows

how this is captured in terms of a Lean Proposition, which

asserts that this equality holds for all the checks in the index.

def AGMProofSystemInstantiation.Prover
(F : Type) [Field F]
(P : AGMProofSystemInstantiation F) : Type :=

(P.Proof_G1→ P.CrsElements_G1→ F)
× (P.Proof_G2→ P.CrsElements_G2→ F)

def AGMProofSystemInstantiation.verify
{F : Type} [Field F]
(P : AGMProofSystemInstantiation F) (prover : P.Prover)

(stmt : P.Stmt) : Prop :=
(∀ check_idx : P.EqualityChecks,

((P.ListPairings check_idx).map fun pairing =>
(((P.ListProof_G1.map fun pf_elem =>
C (P.verificationPairingProofLeft

stmt check_idx pairing pf_elem)
∗

P.proof_element_G1_as_poly prover pf_elem).sum)
+
((P.ListCrsElements_G1.map fun crs_elem =>
C (P.verificationPairingCRSLeft

stmt check_idx pairing crs_elem)
∗ (P.crsElementValue_G1 crs_elem)).sum))
∗

(((P.ListProof_G2.map fun pf_elem =>
C (P.verificationPairingProofRight

stmt check_idx pairing pf_elem)
∗

P.proof_element_G2_as_poly prover pf_elem).sum)
+
((P.ListCrsElements_G2.map fun crs_elem =>
C (P.verificationPairingCRSRight

stmt check_idx pairing crs_elem)
∗ (P.crsElementValue_G2 crs_elem)).sum))).sum = 0)

∧
∀ pfs ∈ P.Identified_Proof_Elems,
P.proof_element_G1_as_poly prover pfs.fst =

P.proof_element_G2_as_poly prover pfs.snd

Figure 2: Verification procedure for SNARKs.

This gives us the path to defining soundness (see Figure 3):

In order to formally assert the soundness of such a SNARK

instantiation, we provide an extractor which gets access to

the prover in the form of the coefficients of the linear com-

binations of SRS elements used to construct the proof, and

a predicate that the witness should satisfy. We say that if

the satisfaction of the multivariate polynomial equalities cor-

responding to the verifier checks implies that the extracted

witness satisfies the predicate, then the system is sound with

respect to that predicate and extractor.

def AGMProofSystemInstantiation.soundness
(F : Type) [Field F]
(P : AGMProofSystemInstantiation F)
(Wit : Type)
(relation : P.Stmt→ Wit→ Prop)
(extractor : P.Prover→ Wit) : Prop :=
∀ stmt : P.Stmt,
∀ prover : P.Prover,
P.verify prover stmt→
relation stmt (extractor prover)

Figure 3: Formalization of the soundness predicate.

To summarize, formally specifying and proving the sound-

ness of a pairing-based linear PCP SNARK in the AGM model

consists of:

• Identifying the toxic waste elements

• Formally modeling the SRS elements as polynomials

over the toxic waste elements

• Formally modeling the proof elements as parameterized

linear combinations of SRS elements

• Formalizing the verification equations as equations over

the proof elements and SRS elements

• Formalizing the satisfaction condition for the NP-

Complete relation which the SNARK certifies instances

of.

• Formally proving that the verification equations holding

implies that the extractor obtains a valid witness under

this relation.

2.3.1 Pairing types

As a short remark on our framework, we note that elliptic

curve pairings can actually come in one of three types: Type

I, Type II, or Type III, per the classification of [41]. A Type

III elliptic curve is one in which there is no efficiently com-

putable homomorphism between G1 and G2. Practically, this

means that for a SNARK defined using a Type III curve,

we may assume that the prover cannot include components

from G1 SRS elements in a G2 proof element and vice versa.

Most of the SNARKs we deal with use Type III groups. Type

II and Type I pairings assume, respectively, an efficiently

computable one-way map or an efficiently computable bi-

jection between G1 and G2. Thus, for SNARKs designed to

work with these pairings, we must assume that SRS elements

of G1 are available in G2 as well, or that elements of both

groups are available in either. This means that adversaries

for such SNARKs have access to many more variables, and

the soundness proofs can therefore be more involved. The

Groth ’16 SNARK is notably compatible with any kind of

pairing, and we found that the proof of this SNARK was the

most computationally intensive (see Table 2). While our own

formalization most closely reflects the semantics of the Type

III pairing, we can also formalize Type I and II SNARKs in it

by providing these additional SRS elements, specifying that

proof elements are proved in both groups, and using the final

Identified_Proof_Elems field to guarantee that these two

proof elements are equal.

3 Automation of the Soundness Proof

Our development uses a variety of techniques and tools from

the Lean ecosystem to automate the soundness proofs for the

SNARKs we study. In this section, we outline the general

structure of the formal proofs by way of a toy example of

a SNARK.1 While this proof is very simple, it constitutes

an outline which is analogous in its steps to the process we

applied to all the SNARKs we formalized. In Section 4, we ex-

plain some of the reasons why this procedure works even for

the much more complicated SNARKs we see in the literature.

3.1 Specification of the Toy SNARK

We first describe the relation our Toy SNARK certifies. We

assume that there are two witness elements A,B ∈ Fp that the

SNARK verifier has access to and three statement elements

x,y,z ∈ Fp that the prover has access to. The relation that the

verifier wants to check is the disjunction "either Ax = z or

By = z".

R = {((x,y,z),(A,B))|A · y = z∨B · x = z}

The SNARK operations work as follows:

• The trusted third party’s produces the SRS production

by sampling two toxic waste sample elements which we

denote α,β← Fp, it then outputs the group elements

α1 = gα
1 ,β1 = g

β
1 in group G1 and α2 = gα

2 ,β2 = g
β
2 in

group G2.

• The prover outputs a single proof element, in the first

group, π = αA
1 βB

1 = g
Aα+Bβ
1 .

• The verifier constructs the group 2 element αx
1β

y
1 =

g
xα+yβ
1 and computes the pairing with π to get

e(π,αx
1β

y
1) = g

(Aα+Bβ)(xα+yβ)
T

1For completeness, we also provide this SNARK formalized in our repos-

itory.

It also computes another pairing using z and the SRS

elements:

e(αz
1,β2) = g

zαβ
T .

As its only check, the verifier determines if these pairings

are equal.

• Finally, to prove the soundness, we construct an extractor

which obtains values for the witness elements A,B by

assuming that they are exactly the coefficients to α and

β used to construct π in the AGM, as they are supposed

to be.

3.2 The Steps of the Proof

We now describe the proof of soundness step-by-step. Ac-

companying this explanation is Table 1, which depicts the

sequence of operations in tabular form.

3.2.1 Introducing the equality check equations

Taking stock, our formalization of the soundness requires us

to prove that the witness elements given by the extractor, if

they lead to a satisfactory proof, are themselves satisfactory

of the relation.

The first step in the proof is to unfold this definition: A

Lean proof environment consists of a number of hypotheses

and a goal that the user must prove from those hypotheses.

To make sure we have the equations corresponding to the

verifier checks among our hypotheses, we can use the Lean

intro tactic. For our toy SNARK, this gives us the equation

corresponding to our single verifier check:

(Ãα+ B̃β)(xα+ yβ) = zαβ

Or, in Lean notation,

(extA∗X α+extB∗X β)∗ (x∗X α+ y∗X β) = z∗X α∗X β.

Note the Xs applied to α,β. These indicate that, rather than

being instances of the sample type of which α,β are members,

the multiplicands here are the multivariate polynomials in α,β
over F (MvPolynomial.X is a mathlib function which takes

a variable and returns the MvPolynomial corresponding to

that variable).

3.2.2 Normalizing polynomial equations

The first nontrivial step is to normalize our equation expres-

sion by distributing multiplications over additions, to get

extA∗ x∗X α2+extA∗ y∗X α∗X β+extB∗ x∗X α∗X β

+extB∗ y∗X β2 = z∗X α∗X β

This can be accomplished using Lean’s simplifier: Lean has

a built-in tactic called simp which takes in a list of lemmas

which have the form of a equivalence and recursively applies

them to selected hypotheses or goals until it no longer can. So

for example, we could call simp [mul_add], which invokes

the simplifier with the mul_add lemma which asserts that

a(b+c) = ab+ac for a,b,c in a ring. Calling simp with this

and the symmetrical add_mul fully distributes multiplication

over addition wherever this can be done.

3.2.3 Isolating coefficients

We now take advantage of the form of this equation as a

multivariable polynomial over α and β. Two multivariable

polynomials are equal only if each corresponding coefficient

is equal. If we apply this principle to each of the three nonzero

coefficients on the left hand side α2,αβ, and β2, we get the

three equations:

coeff(α 7→ 2,β 7→ 0)(extA∗ x∗X α2 +extA∗ y∗X α∗X β

+extB∗ x∗X α∗X β+extB∗ y∗X β2)

= coeff(α 7→ 2,β 7→ 0)(z∗X α∗X β)

coeff(α 7→ 1,β 7→ 1)(extA∗ x∗X α2 +extA∗ y∗X α∗X β

+extB∗ x∗X α∗X β+extB∗ y∗X β2)

= coeff(α 7→ 1,β 7→ 1)(z∗X α∗X β)

coeff(α 7→ 0,β 7→ 2)(extA∗ x∗X α2 +extA∗ y∗X α∗X β

+extB∗ x∗X α∗X β+extB∗ y∗X β2)

= coeff(α 7→ 0,β 7→ 2)(z∗X α∗X β)

Here, coeff (more specifically MvPolynomial.coeff

from mathlib) is a function which takes a finitely supported

natural-valued function on the space of coefficients of a

multivariate polynomial and returns the coefficient of the

monomial in that polynomial for which the exponents to vari-

ables correspond to the values of the function. Thus, for the

function which maps α to 2 and β to 0, (denoted above as

(α 7→ 2,β 7→ 0)), it returns the α2 coefficient of the polyno-

mial.

This can be carried out in Lean by use of the congr_arg

lemma, a generic lemma that states that given a function f ,

x1 = x1 implies f x1 = f x2.

3.2.4 Distribute coefficient-taking

We now can carry out another simplification step, which in-

vokes the coeff_add lemma. This lemma states that a coef-

ficient of an addition of polynomials is the addition of the

coefficients. By applying this lemma, we can transform the

Stage Description Tactics invoked Hypotheses in Proof State

Stage 0 Initial state (Aα+Bβ)(xα+yβ) =zαβ

Stage 1a Polynomial put in normal

form

simp [...] at eqn Axα2+(Ay+Bx)αβ+Byβ2 =zαβ

Stage 1b Coefficients are isolated h := congr_arg (coeff

(...)) eqn

coeff αβ (Axα2+(Ay+Bx)αβ+Byβ2

= coeff αβ zαβ
...

Stage 1c Distribute coefficient-

taking

simp [...] at h coeff αβ Axα2

+ coeff αβ Ay+Bxαβ
+ coeff αβ Byβ2

= coeff αβ zαβ
...

Stage 1d Expression broken down

into term-by-term coeffi-

cient comparisons

simp [...] at h (if αβ = α2 then Ax else 0)

+ (if αβ = αβ
then Ay+Bx else 0)

+ (if αβ = β2 then By else 0)

= if αβ = αβ then z else 0

...

Stage 1e Coefficient comparisons

decided, leaving proof

state of polynomial

equations in the prover

coefficients

simp [...] at h Ax = 0

Ay + Bx = z

By = 0

Stage 2a Polynomials are simpli-

fied algebraically

integral_domain_tactic A = 0 or x = 0

Ay + Bx = z

B = 0 or y = 0

Stage 2b Proof state consists of

simple equations of

prover coefficients

integral_domain_tactic

or polyrith

Bx = z

or

Ay = z

Table 1: Describing the stages of a proof. The left row gives an example for a toy (incomplete) SNARK illustrating the type of

the hypotheses at each stage, with trapdoor elements in blue and prover coefficients in red.

hypotheses to consist of additions of coefficient evaluations

solely of monomial terms.

coeff(α 7→ 2,β 7→ 0)(extA∗ x∗X α2)

+coeff(α 7→ 2,β 7→ 0)(extA∗ y∗X α∗X β)

+coeff(α 7→ 2,β 7→ 0)(extB∗ x∗X α∗X β)

+coeff(α 7→ 2,β 7→ 0)(extB∗ y∗X β2)

= coeff(α 7→ 2,β 7→ 0)(z∗X α∗X β)

coeff(α 7→ 1,β 7→ 1)(extA∗ x∗X α2)

+coeff(α 7→ 1,β 7→ 1)(extA∗ y∗X α∗X β)

+coeff(α 7→ 1,β 7→ 1)(extB∗ x∗X α∗X β)

+coeff(α 7→ 1,β 7→ 1)(extB∗ y∗X β2)

= coeff(α 7→ 1,β 7→ 1)(z∗X α∗X β)

coeff(α 7→ 0,β 7→ 2)(extA∗ x∗X α2)

+coeff(α 7→ 0,β 7→ 2)(extA∗ y∗X α∗X β)

+coeff(α 7→ 0,β 7→ 2)(extB∗ x∗X α∗X β)

+coeff(α 7→ 0,β 7→ 2)(extB∗ y∗X β2)

= coeff(α 7→ 0,β 7→ 2)(z∗X α∗X β)

3.2.5 Break down into monomial equality conditionals

We can now simplify further: The X function is defined as

an application of mathlib’s MvPolynomial.monomial func-

tion, which constructs a monomial out of coefficient terms

and uses a finitely supported function to represent the expo-

nents of the variables. We can use the lemma monomial_mul

to collapse the multiplications into single applications of

MvPolynomial.monomial and the coeff_monomial lemma,

which asserts that coeff applied to monomial yields either

the coefficient argument of monomial when the function ar-

guments match, or 0 when they do not. We can then apply

function extensionality, which asserts that functions are equal

if they are equal on all of their arguments. Because there are

only a finite number of possible arguments to the functions

we are comparing, we can convert the comparison of the func-

tions into a conjunction over comparisons of their evaluations.

We get:

if (2 = 2∧0 = 0) then (extA∗ x) else 0

+ if (2 = 1∧0 = 1) then (extA∗ y) else 0

+ if (2 = 1∧0 = 1) then (extB∗ x) else 0

+ if (2 = 0∧0 = 2) then (extB∗ y) else 0

= if (2 = 1∧0 = 1) then (z) else 0

if (1 = 2∧1 = 0) then (extA∗ x) else 0

+ if (1 = 1∧1 = 1) then (extA∗ y) else 0

+ if (1 = 1∧1 = 1) then (extB∗ x) else 0

+ if (1 = 0∧1 = 2) then (extB∗ y) else 0

= if (1 = 1∧1 = 1) then (z) else 0

if (0 = 2∧2 = 0) then (extA∗ x) else 0

+ if (0 = 1∧2 = 1) then (extA∗ y) else 0

+ if (0 = 1∧2 = 1) then (extB∗ x) else 0

+ if (0 = 0∧2 = 2) then (extB∗ y) else 0

= if (0 = 1∧2 = 1) then (z) else 0

Here if ... then ... else ... is Lean syntax for the

function that takes a proposition as its first argument and,

according to its truth value, returns either the second or third

argument.

3.2.6 Decide monomial equality conditionals

Finally, we leverage the fact that these equalities can be de-

cided to reduce these equations.

(extA∗ x) = 0

(extA∗ y)+(extB∗ x) = z

(extB∗ y) = 0

We are left with a simple collection of equations over the

base field.

3.2.7 Recursively factor and simplify

The convenience of having our hypotheses in the form of

equations over F is that our goal is a formula over equations

of values having type F. All that remains, then, is to use equa-

tional reasoning prove our hypotheses imply this goal.

Because the SNARK equations arise through pairings, our

hypotheses are all quadratic in the atoms. In fact, many of the

equations are of the form A * B = 0 for atoms A and B. This

is by design, as it is necessary for the proofs to leverage the

fact that the product of two values equating to zero implies

at least one of the multiplicands is zero. This leads us to

formulate the following approach to simplifying the goal:

We use the fact (inferred by Lean’s typeclass system) that a

polynomial ring over a field is an integral domain, and we

simplify all equations of the form A * B = 0 to A = 0 or

B = 0.

extA= 0∨ x = 0

(extA∗ y)+(extB∗ x) = z

extB= 0∨ y = 0

We can then split these hypotheses into two cases and prove

the goal for each case, simplifying our hypotheses by rewriting

A or B to 0, and carry on this process until we are left with

a collection of goals that cannot be simplified through these

rules. This finishes the soundness proof for the toy SNARK,

since whichever disjunction we case over, we will eliminate a

term from the second equation and be left with an equation

which satisfies the goal relation.

To facilitate this, we wrote a tactic

integral_domain_tactic, which carries out the above

simplifications and calls itself recursively until it reaches a

point where it can make no more progress. We can then either

solve these goals by hand, or by dispatching them with the

built-in mathlib tactic polyrith, which solves problems of

this type.

The core of this recursive operation is only around 13 lines

of Lean code, as seen in Figure 4 :

4 “Straightforwardness” for SNARKs from

the literature

The development outlined in the preceding sections cov-

ers a broad design space for the construction of linear PCP

SNARKs instantiations. In our experience, though, there are

deep-cutting regularities in the way that SNARK schemes

in the literature construct these instantiations for particular

problem instances. We call SNARK schemes that display

these regularities straightforward: We now discuss the requi-

site properties be straightforward and how they allow us to

automate the soundness proving process.

One High-Degree Variable One property of the SNARKs

we consider is that all only have one toxic waste element that

appears to a non-bounded degree in the SRS elements.

syntax "integral_domain_tactic" : tactic

macro_rules

| ‵(tactic| integral_domain_tactic) =>
‵(tactic|
-- Simplify

simp_all
(config := {decide := false, failIfUnchanged :=
false})
only [false_or, or_false, true_or, or_true, not_true,
not_false_iff, add_zero, zero_add, mul_zero,
zero_mul, mul_one, one_mul, neg_zero, neg_eq_zero,
add_eq_zero_iff_eq_neg, eq_self_iff_true, Ne.def,
eq_zero_of_zero_eq, one_ne_zero, mul_ne_zero_iff,
zero_sub_eq_iff, mul_eq_zero];

first
-- If we are done, halt

| done
-- If possible, split and recurse

| cases_or _ ∨ _
all_goals integral_domain_tactic

| skip
)

Figure 4: Recursive simplification tactic for systems of equa-

tions in an integral domain.

For an example to demonstrate this, consider the Pinocchio

protocol. We show the sample elements and SRS elements for

Pinocchio in Equation 1. Note how the only variable that ap-

pears to a degree greater than 1 is s – all other variables appear

only to degree 1 or not at all in each of the SRS elements.

This feature informs how we represent the type of sample

elements in our formalization. Since there is just a single

element which has this special feature of being raised to large

powers in the SRS element, we represent the type of elements

as an Option type over an inductive type Vars, where the

unbounded element is represented by the none value, and

some gives values for the bound elements.

inductive Vars : Type where
| r_v : Vars
| r_w : Vars
| α_v : Vars
| α_w : Vars
| α_y : Vars
| β : Vars
| γ : Vars
deriving Repr, BEq

local notation "poly_s" => X (none)
local notation "poly_r_v" => X (some Vars.r_v)
. . .

Figure 5: Pinocchio’s sample element type, as it appears in

our formalization. We use the local notation feature to

work with these variables as MvPolynomials

The convenience of this is that it allows is to in-

voke mathlib’s optionEquivRight just before the "Iso-

lating coefficients" step described in Section 3.2.3. The

optionEquivRight object is an isomorphism between

the type of multivariate polynomials in this option type

MvPolynomial (Option Vars) F and the type of multi-

variable polynomials over single-variable polynomials in

F MvPolynomial Vars (Polynomial F). Rewriting using

this equivalence allows us to "hide" the unbound variable

polynomials within the Polynomial F type, so that we only

have to deal with MvPolynomials with a bounded total de-

gree. This is important for the coefficient-taking step to go

smoothly, since our proof can only extract a fixed number of

these coefficients.

Extractor is a projection Another key commonality dis-

played by all the SNARK schemes in the literature is that

the extractor used to prove soundness is extremely simple.

In fact, for the six SNARKs we consider, it is always a pro-

jection function: Each witness component that the extractor

outputs corresponds to exactly one coefficient of one of the

components of the proof-message.

The convenience of this is that a projection function is

always linear, and can therefore be interpreted as a polyno-

mial function in the prover coefficients which make up its

inputs. This means that, when we reach the stage of our proof

described in Section 3.2.7 where our hypotheses have been

reduced to equations in the prover coefficients over a field,

the goal will itself be of the same form as these hypotheses

- an equation over the field, where the equated expressions

consist solely of additions and multiplications on the prover

coefficients and statement and witness values.

This is an important observation. If we subtract off the

right hand side of each of these equations, we are left to prove

that when the polynomials that remain in the hypotheses are

zero, the polynomial in the goal is also zero. This is known

as the ideal membership testing problem, and has been well-

studied for decades – it is known to be decidable by a class

of algorithms known as Gröbner basis methods [21], which

polyrith implements. This is a strong hint that we have

the right approach - because of this regularity, we are consis-

tently able to reduce our soundness proofs to problems of this

decidable form.

SRS Components regular and fixed over circuits One

issue is that Gröbner basis algorithms are superexponential the

size of the circuit [32,52]. This frustrates the goal of verifying

soundness because many circuits verified by SNARKs are

themselves cryptographic in nature, and therefore too large to

be handled by brute force.

However, a second regularity in the SNARK systems in

the literature allows us to get around this. While a partic-

ular SNARK instantiation may have arbitrarily many SRS

variables, a particular scheme like Pinocchio or Groth ’16

consistently organizes these variables into a fixed number

of components. Each component always has either a single

element, or is a collection of elements for which the prover or

verifier computes an inner product with the statement or part

of the witness to produce either a proof or paring input. When

there is a collection with multiple elements, the expression of

the elements is always uniform - all elements of the compo-

nent are obtained by a multiplication of some polynomial in

the degree-unbound variable with a fixed polynomial in the

bound-degree variables.

We leverage these components by abstracting over them

to get a soundness proof that works for all circuit instances

at once. The uniformity of the SRS collections is important -

when we factor out constants from these sums, we are left with

sums over free variables. Due to the linearity of the adversary

in the AGM, it will be the case that whenever one of these

elements appears in the proof, it is always as part of a sum

indexed over all members of the collection. Because we have

no constraints over the instance-specific polynomials, once

we factor out constant-degree factors, these formal sums can

be treated as atoms by the soundness proof.

Abstracting over SNARK schemes in this way, the size

of the ideal membership testing problem instances we en-

counter will depend only on the SNARK scheme. Gröbner

basis methods therefore now have a chance of working, since

the instance sizes will be smaller and will not implicitly en-

code cryptographically-hard problems.

Straightforwardness and General SNARK Decidability

The observations made in this section can be crystallized into

a straightforwardness predicate on linear SNARK schemes

which captures all of the properties we need in order for

us to be able to carry out our proof process. We find that

an informative theorem can be demonstrated about SNARK

schemes of this kind:

Theorem 1. Let E be the set of all cryptographically secure

elliptic curve pairings (G1,G2,G3,e), and let ι be the set of all

circuit instances accepted by the scheme. Let S : E × ι→Π
be a straightforward linear PCP SNARK scheme for relation

R which returns an instantiated SNARK protocol Π, given a

pairing and instance. Then the proposition

∀E ∈ E ,∀i ∈ ι,∀π ∈ AAGM,∀s

SE,i.Verify(s,π) =⇒ (s,SE,i.Extractor(π)) ∈ R

is decidable.

A proof of this fact roughly follows from the procedural

outline given in the above parts of this section. On the level of

individual SNARK instantiations with fixed fields, Theorem

1 does not tell us much. If we were to fix the field and circuit

instance, there is a brute-force soundness deciding procedure

for the resulting linear PCP SNARK: Since every algorithm

in play takes an input consisting of a finite number of group

or field elements, one can explicitly enumerate the possible

inputs at each step and determine exactly how often each

potential adversarial prover tricks the verifier.

But this naive decision procedure has the downsides of

having exponential running time in both the size of the field

and the size of the instance, as well as only ultimately de-

ciding soundness for a single instantiation. Our procedure,

on the other hand, works over a scheme as a whole, rather

than particular instantiations of one. Thus, the running time

depends only on the description of the scheme, and while this

running time is still technically super-exponential due to the

Gröbner basis procedure, our results show that it terminates

in a reasonable amount of time in practice.

5 Design of SNARKs and their proofs

In this section, we discuss some of the SNARKs as they

appear in the original references on which our formalizations

were based. The process of creating these formalizations was

not always smooth, in part because there are a few places in

which the arguments presented in the papers are misleading.

In the interest of a better understanding of these proofs by the

community as a whole, we will explain why we found these

proofs confusing, and the impact it had on our proof efforts.

5.1 Pinocchio

First, we discuss Pinocchio. We present the protocol itself in

Equation 1 – we match the notation and description from Pro-

tocol 2 of [59], but with some of the intermediate definitions

made explicit, and the fact that all values are powers of the

generator g made implicit.

Pinocchio represents its circuit in terms of various polyno-

mials vk,wk,yk, with k ranging over various index sets: The

Imid associated with the prover’s knowledge of the witness

for the circuit being evaluated and 0∪ [N] associated with

the statement the verifier is checking relationship member-

ship for. The Vmid ,Wmid ,Ymid proof elements are meant to

represent sums over these polynomials with the witness el-

ements as coefficients - so that the extractor can eventually

extract them. Pinocchio structures itself so that these polyno-

mials are mostly kept separate from each other except when

necessary, with three of the verifier checks being dedicated

to validating these three proof elements related to a single

group of these polynomials. It is ensured that none of the

prover coefficients for Vmid ,Wmid ,Ymid can be manipulated

to influence these checks by introducing the αv,αw,αy sam-

ple elements and the V ′mid ,W
′
mid ,Y

′
mid proof elements. These

three samples and proof elements appear only in the vali-

dation checks corresponding to the v,w, and y polynomials

respectively, and they effectively isolate these equations from

a malicious prover introducing coefficients to Vmid ,Wmid ,Ymid

proof elements that should not be there. As the paper puts it,

they are to “Check that the linear combinations of V , W , and

Y are in their appropriate spans”. Something similar happens

with the Z proof element – Z is intended to be computed as

a sum of polynomials from all three sets, so γ is introduced

in the corresponding check to ensure only these coefficients

can be used in that check. The final check then proves that,

when the verifier adds their own statement-related terms to

the V , W , and Y polynomial sums, the Y polynomials can

be subtracted from the product of the V and W polynomials

to get a resulting polynomial which has zeros at a number

of critical points corresponding to “gates” from the circuit,

so that each zero’s presence proves that the corresponding

gate was computed correctly. The presence of the zeros are

proved by equating the subtraction on the right-hand side of

the last check to a pairing on the left-hand side which takes

the product of a polynomial t which has the same zeros with

an additional h polynomial (which the prover can choose to

make the equation work out).

Pinocchio.Sample := rv,rw,s,αv,αw,αy,β,γ← Fp

Pinocchio.SRS :=

{rvvk(s)}k∈Imid
,{rwwk(s)}k∈Imid

,{rvrwyk(s)}k∈Imid

{rvαvvk(s)}k∈Imid
,{rwαwwk(s)}k∈Imid

,{rvrwαyyk(s)}k∈Imid

{rvαvvk(s)}i∈[d],{rvβvk(s)+ rwβwk(s)+ rvrwβyk(s)}k∈Imid

g,αv,αy,αw,γ,βγ,rvrwt(s),

{rvvk(s)}k∈0∪[N],{rwwk(s)}k∈0∪[N],{rvrwyk(s)}k∈0∪[N]

Pinocchio.ProofElements :=

Vmid := rv ∑
k∈Imid

ckvk(x),V
′
mid := rvαv ∑

k∈Imid

ckvk(x)

Wmid := rw ∑
k∈Imid

ckwk(x),W
′
mid := rwαw ∑

k∈Imid

ckwk(x)

Ymid := rvrw ∑
k∈Imid

ckyk(x),Y
′
mid := rvrwαy ∑

k∈Imid

ckyk(x)

H = h(x),Z = β ∑
k∈Imid

rvckvk(x)+ rwckwk(x)+ rvrwckyk(x)

Pinocchio.Checks :=

e(V ′mid ,1) = e(Vmid ,αv),

e(W ′mid ,1) = e(Wmid ,αw),

e(Y ′mid ,1) = e(Ymid ,αy),

e(Z,γ) = e(Vmid +Wmid +Ymid ,βγ)

e

(

∑
k∈{0}∪[N]

rvckvk(s)+Vmid , ∑
k∈{0}∪[N]

rwckwk(s)+Wmid

)

− e

(

∑
k∈{0}∪[N]

rvrwckyk(s)+Ymid ,1

)

= e(rvrwt(s),H),

(1)

In our formalization we surprisingly had the most trouble

with the first three checks. The “appropriate spans” in the

paper are identified as “the vk(x)’s, wk(x)’s, and yk(x)’s, re-

spectively”. Somewhat confusing is whether this is meant to

be just the k indices in the witness or in the statement too

- if the witness and statement polynomials are not linearly

independent, then an AGM adversary can add these linear

combinations to their proof coefficients, leading to a verifying

set of coefficients for which the coefficients of the witness

polynomials in V , W , and Y do not match the witness itself.

This does not actually change the proof elements, but it makes

them trickier to reason about formally in the model.

A more glaring issue is that these checks by themselves

do not guarantee that the proof elements will be in the span

of the statement and witness polynomials combined: It is

technically possible for a prover to construct proof elements

with nonzero coefficients for verifier key elements, and for

which these checks pass. Specifically, after constructing a key

honestly, the prover can multiply g
Vmid
v and g

V ′mid
v by g1 and

gα
v respectively, and similarly with Wmid and Ymid . We noticed

this by way of our attempt to construct a proof that the only

nonzero coefficients for V are in this set, finding that even

after simplifying using the equalities generated by this check,

there were still terms that we could not eliminate.

The fifth check turns out to be enough to complete the

guarantee: It primarily shows “that the same coefficients were

used in each of the linear combinations over V , W and Y ”,

but it also precludes the construction of proof terms which fall

outside the span. This caused us to change our original plan

for the proof: Rather than prove V was exactly equal to gVmid ,

we left the g1 terms (as well as the statement polynomial

terms) in our simplifications of V , W and Y , then proved

that when one plugs these into the fifth check, the extra terms

can be ignored and the coefficients of the g
βvk(s)
v g

βwk(s)
w g

βyk(s)
y

terms in Z are equal to the supposed coefficients of V , W and

Y , so that these coefficients can act as the extracted witness.

5.2 Groth ’16

Consider Groth ’16, described in Equation 2 (following the

notation from Section 3 of [43]). Groth ’16 came after Pinoc-

chio chronologically and made several refinements – its proof

is more compact, and it requires only four pairing computa-

tions and a single verifier check, making it much quicker to

verify.

The one Groth ’16 check has to do the work of all the

checks from Pinocchio, so the proof is more complicated, but

some features are roughly analogous. The A,B and C proof

elements essentially correspond to the roles of V,W and Y el-

ements from Pinocchio (note that v,w,y from Pinocchio have

been renamed to u,v,w here). The main conceptual difference

is that the Z and H proof elements have been folded into C,

and some additional terms have been moved around or added.

Another small difference is the presence of r and s terms –

r and s are random values meant to keep the prover from

leaking information.

Groth16.Sample := x,α,β,γ,δ← Fp

Groth16.SRS :=

α,β,γ,δ,(xi)n−1
i=0 ,

(

βui(x)+αvi(x)+wi(x)

γ

)l

i=0
(

βui(x)+αvi(x)+wi(x)

δ

)m

i=l+1

,

(

xit(x)

δ

)n−2

i=0

Groth16.ProofElements :=

A := α+
m

∑
i=0

aiui(x)+ rδ,B := β+
m

∑
i=0

bivi(x)+ rδ,

C :=
∑m

i=0 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ

+As+ rB− rsδ,

Groth16.Checks :=

e(A,B)− e(α,β)

= e(C,δ)+ e

(

∑l
i=0 ai(βui(x)+αvi(x)+wi(x))

γ
,γ

)

(2)

A first obstacle in formalizing the system as described here

is that γ and δ appear in the denominator of some expressions.

This means that these are not technically polynomials, but

rather Laurent polynomials. This poses a slight problem for

the formalization, as mathlib does not support multivariable

Laurent polynomials.

Luckily, we can sidestep this issue by multiplying through

all the SRS elements by γδ. This transformation doesn’t im-

pact the functioning or the soundness of the SNARK – we

create a formal version of a theorem to this effect in our

codebase. After we have done the SRS multiplication trans-

formation, we get the new SRS:

Groth16.SRS’ :=

αγδ,βγδ,γ2δ,γδ2,{xiγδ}n−1
i=0 ,((βui(x)+αvi(x)+wi(x))δ)

l
i=0

{(βui(x)+αvi(x)+wi(x))γ}
m
i=l+1},{x

it(x)γ}n−2
i=0

(3)

In the written proof of soundness of Groth16, similar to

Pinocchio, it is tricky to parse which equalities of terms in the

check polynomial guarantee which relationships between co-

efficients of the SRS elements. The soundness proof given by

Theorem 1 of [43] proceeds by first analyzing the α2,αβ, and

β2 coefficients of the polynomial, which allows one to sim-

plify this polynomial, zeroing out a few of the terms without

loss of generality. We are then shown that the terms involving

1/δ2 give us:2

m

∑
i=l+1

Ai(βui(x)+αvi(x)+wi(x))+ t(x)Ah(x) = 0

2Incidentally, there is a typo in the Groth 16 paper here – At is written

instead of Ah.

We then get the confusing claim that “the terms in”

α
∑m

i=l+1 Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x)

δ
= 0 show us:

m

∑
i=l+1

Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x) = 0 (4)

What is meant by "the terms in" this expression? It seems

the paper is saying that the coefficients corresponding to the

monomials α2/δ, αβ/δ and α/δ (the only monomials that

appear in this expression) imply Equation 4. It is indeed the

case that α2/δ gives us ∑m
i=l+1 Bivi(x) = 0, and αβ/δ gives

us ∑m
i=l+1 Biui(x) = 0, and these reduce the term to

m

∑
i=l+1

Biwi(x)+ t(x)Bh(x).

But notice that the coefficient of α/δ actually includes

a term of the form A(x)∑m
i=l+1 Bi

αvi(x)
δ

, so summing these

three coefficients does not give us that this term is zero, it

gives us that the term is equal to−A(x)∑m
i=l+1 Bi

αvi(x)
δ

. Is this

expression itself provably equal to 0? Yes, but the justification

is not obvious. One finds that the terms with coefficient 1/δ
give

(

∑m
i=l+1 Biwi(x)+ t(x)Bh(x)

)

A(x) = 0, and after doing

casework on whether or not A(x) = 0, one sees that either

way, the full Equation 4 can indeed be reduced to 0, saving

the theorem. Similar reasoning appears immediately after

this with "The terms in α
∑m

i=l+1 Bi(βui(x)+αvi(x)+wi(x))+Bh(t)

γ =
0", but this can be fixed in the same way.

Helpful in resolving this confusion was Baghery et al. [6]

Theorem 2, which carefully lists the equations from each

coefficient, and explicitly clarifies that the proof uses cases on

A(x) = 0. They do this for a version of the Groth ’16 SNARK

intended for use with type-III pairing friendly curves, but the

proof carries over to the non-type-III case.

6 Evaluation of the Proof code

The initial development of the proofs for the six SNARKs

was done in Lean 3 over the course of several months

from 2021 through mid-2022. Our first proofs were rela-

tively unsystematic, as we had not identified many of the

commonalities from Sections 3 and 4. During 2023, the

Lean community deprecated Lean 3 and ported mathlib to

Lean 4. We ported our code as well, and took the oppor-

tunity to make our codebase more uniform by defining

the AGMProofSystemInstantiation structure and recast-

ing our SNARK definitions in terms of it. While this has

codified the SNARK security definitions more strongly, it has

made the translation effort more difficult – Our approach to

the soundness proofs in Lean 3 was more organic, and used

intermediate lemmas to shortcut some parts of the proof or

to prepare the proof state before using the heavier tactics to

make them run more smoothly. Our more automated approach

Name Samples Proof elements SRS Components Checks Check Time Check Time (Lean 4)

GGPR [42] 5 7 (6) 19 5 (4) 140.61 s -

Pinocchio [59] 8 8 21 5 342.89s -

Groth ’16 [43] 5 3 8 1 13741.86s -

Baghery et al. [6] 5 3 7 and 4 1 552.67s 162.74s

BabySNARK [55] 3 3 4 2 74.98s -

Lipmaa [47] 2 3 7 and 4 and 1 1 81.82s 144.30s

Table 2: Data on different SNARK variants, including the number of toxic waste samples, number of proof elements, number of

SRS components, number of verifier equality checks, and the time to check the soundness proofs in both Lean 3 and Lean 4.

Note that GGPR includes in the paper a proof element and a check which are not strictly necessary for the soundness proof - we

write the number used in our code in parentheticals.

in Lean 4 makes it harder to identify bugs when they exist.

Currently we have only translated two of our six soundness

proofs to Lean 4.

Summarizing our code by line count, we have:

• 150 LOC defining AGMProofSystemInstantiation

and its soundness property.

• Approximately 3000 LOC of code in total defining and

proving soundness across the six SNARK schemes.

• 80 LOC for integral_domain_tactic and other sim-

plification tactics.

• 212 LOC for definitions and theorems about the trans-

formations of SNARKs, including:

– A theorem proving that, given a SNARK, it is pos-

sible to multiply through each SRS element by an

existing (or new) toxic waste sample without af-

fecting the soundness of the SNARK. This theorem

justifies our treatment of the Laurent polynomials

in Groth ’16.

– A theorem proving that if a toxic waste σ element

appears to maximum degree < n in a check poly-

nomial, and τ is another toxic waste element, then

it is possible to replace τ with σn is the maximum

degree, thus reducing the number of toxic waste

samples needed. One can view this transformation

as one of the conceptual differences between the

Lipmaa SNARK [47] relative to the Baghery et al.

presentation.

– A theorem proving that if the coefficient of a partic-

ular SRS element in a particular proof element is

the same for any satisfying statement-witness pair,

then we can treat that component as a constant and

remove the dependence of the proof element linear

combination on that SRS element. This could po-

tentially be useful in optimizing SNARK circuits

after the trusted setup.

• 419 LOC for supporting lemmas about polynomials and

other datatypes intended for upstreaming to mathlib, as

well as 53 LOC modifying existing mathlib definitions

to make them more general and compatible with our

development.

Our code is available on GitHub and is also listed on Reser-

voir, the Lean 4 package index.3

Table 2 shows data about the sizes of various parameters

of the various SNARKs and the time it takes Lean to verify

the proofs. In each case, the proof time is dominated by the

mutual simplification phase, as one might expect, given that

this phase requires recursive casework.

7 Future Work and Conclusion

To bring our discussion to a close, we mention a few topics

that could make for good future research directions in the area

of formal verification of SNARKs:

Integrating polyrith and independent verifiability The

bulk of the work of our proof procedure happens in the re-

cursive calls to integral_domain_tactic. While this is

necessary in practice to reduce the size of the Gröbner ba-

sis computation instances passed to polyrith, a version of

polyrith with unlimited proof size could dispatch this goal

all on its own. One good direction for future work would

be to integrate the integral_domain_tactic heuristic into

polyrith to make this possible. One could then take advan-

tage of other features of polyrith: In particular, polyrith

by default logs to the user a description of the sequence of

equational operations one carries out on the hypotheses to

reach the conclusion. One could use this to create external

tools, potential faster than our own, that check the certificates

of SNARK soundness our code produces. One drawback is

that this external verifier would then itself be part of the trusted

computing base for our proof (working in Lean all proofs are

3The latest version of our code can be found at https://github.com/

BoltonBailey/formal-snarks-project

https://github.com/BoltonBailey/formal-snarks-project
https://github.com/BoltonBailey/formal-snarks-project

checked by the kernel – vetting the proof only requires check-

ing our formalization of the theorem statement).

Practical Application To bring the work further into practi-

cal relevance, one could use our framework to produce sound-

ness proofs for real-world SNARK implementations, or mod-

ify it to provide explicit attacks if they exist. This would

involve precisely replicating these implementations with our

AGMProofSystemInstantiation structure. One could also

try to use our system to search for new sound schemes. An ob-

stacle here is performance: Each of our proof scripts takes at

least several seconds to run, and since there a multitude of dif-

ferent values the generic AGMProofSystemInstantiation

can take, it would take an unreasonable amount of time to

search through them while simultaneously checking each

of them for soundness. It would therefore be necessary to

aggressively prune the search space, and perhaps also find

algorithmic optimizations to our code.

Larger Cryptographic Frameworks Section 1.3 discusses

a number of cryptographic frameworks in other languages

[11, 14, 25]. Future work could create such a framework for

Lean, which our work could then fit into. This would involve

both replicating the work of these other frameworks, as well as

ironing out some of the details, (such as the Schwartz-Zippel

lemma applications) that we currently elide.

Other kinds of SNARKs Future work in formalizing

SNARKs could move outside the linear PCP paradigm to

newer SNARKs such as Sonic, PlonK, Marlin [27, 40, 49].

These “Polynomial IOP” SNARKs use the Fiat-Shamir

paradigm [35], which involves the random oracle model [15],

so a formalization here would have to cover this idea.

Conclusion We have presented our efforts to formalize the

Groth ’16 SNARK and similar constructions in Lean. Our

work includes a variety of programs that help accomplish this

task, and we have described a variety of pitfalls associated

with this challenge and our strategies for overcoming them.

Our work indicates that there is substantial facility to use

automated proof techniques in the formalization of cryptogra-

phy – going forward, we hope that tools with which security

researchers can more easily analyze SNARKs continue to

develop.

Acknowledgements

The authors would like to thank Bryan Parno for discussions

on early drafts of this paper.

This material is based upon work supported by the National

Science Foundation under the Graduate Research Fellowship

Program with Grant No. DGE – 1746047, and additionally

under NSF grant #1943499.

References

[1] Carmine Abate, Philipp G Haselwarter, Exequiel Rivas,

Antoine Van Muylder, Théo Winterhalter, Cătălin Hriţcu,

Kenji Maillard, and Bas Spitters. SSProve: A founda-

tional framework for modular cryptographic proofs in

Coq. In 2021 IEEE 34th Computer Security Foundations

Symposium (CSF), pages 1–15. IEEE, 2021.

[2] José Bacelar Almeida, Manuel Barbosa, Manuel L Cor-

reia, Karim Eldefrawy, Stéphane Graham-Lengrand,

Hugo Pacheco, and Vitor Pereira. Machine-checked

ZKP for NP relations: Formally verified security proofs

and implementations of MPC-in-the-head. In Proceed-

ings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, pages 2587–2600, 2021.

[3] David Kurniadi Angdinata and Junyan Xu. An ele-

mentary formal proof of the group law on Weierstrass

elliptic curves in any characteristic. arXiv preprint

arXiv:2302.10640, 2023.

[4] Jeremy Avigad, Lior Goldberg, David Levit, Yoav

Seginer, and Alon Titelman. A verified algebraic repre-

sentation of Cairo program execution. In Proceedings

of the 11th ACM SIGPLAN International Conference on

Certified Programs and Proofs, pages 153–165, 2022.

[5] José Bacelar Almeida, Manuel Barbosa, Endre

Bangerter, Gilles Barthe, Stephan Krenn, and Santiago

Zanella Béguelin. Full proof cryptography: verifiable

compilation of efficient zero-knowledge protocols. In

Proceedings of the 2012 ACM conference on Computer

and communications security, pages 488–500, 2012.

[6] Karim Baghery, Markulf Kohlweiss, Janno Siim, and

Mikhail Volkhov. Another look at extraction and ran-

domization of Groth’s zk-SNARK. In Financial Cryp-

tography and Data Security: 25th International Confer-

ence, FC 2021, Virtual Event, March 1–5, 2021, Revised

Selected Papers, Part I 25, pages 457–475. Springer,

2021.

[7] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,

Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan

Parno. SoK: Computer-aided cryptography. In 2021

IEEE symposium on security and privacy (SP), pages

777–795. IEEE, 2021.

[8] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin

Grégoire, Shih-Han Hung, Jonathan Katz, Pierre-Yves

Strub, Xiaodi Wu, and Li Zhou. EasyPQC: Verifying

post-quantum cryptography. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 2564–2586, 2021.

[9] Gilles Barthe, Jan Cederquist, and Sabrina Tarento. A

machine-checked formalization of the generic model

and the random oracle model. In Automated Reasoning:

Second International Joint Conference, IJCAR 2004,

Cork, Ireland, July 4-8, 2004. Proceedings 2, pages 385–

399. Springer, 2004.

[10] Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech,

and Benedikt Schmidt. Mind the gap: Modular machine-

checked proofs of one-round key exchange protocols.

In Advances in Cryptology-EUROCRYPT 2015: 34th

Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part II, pages 689–718.

Springer, 2015.

[11] Gilles Barthe, Benjamin Grégoire, and Santiago

Zanella Béguelin. Formal certification of code-based

cryptographic proofs. In Proceedings of the 36th annual

ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 90–101, 2009.

[12] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin,

Benjamin Grégoire, and Sylvain Heraud. A machine-

checked formalization of sigma-protocols. In 2010 23rd

IEEE Computer Security Foundations Symposium, pages

246–260. IEEE, 2010.

[13] David Basin, Andreas Lochbihler, Ueli Maurer, and

S Reza Sefidgar. Abstract modeling of system commu-

nication in constructive cryptography using CryptHOL.

In 2021 IEEE 34th Computer Security Foundations Sym-

posium (CSF), pages 1–16. IEEE, 2021.

[14] David A Basin, Andreas Lochbihler, and S Reza Se-

fidgar. CryptHOL: Game-based proofs in higher-order

logic. Journal of Cryptology, 33:494–566, 2020.

[15] Mihir Bellare and Phillip Rogaway. Random oracles are

practical: A paradigm for designing efficient protocols.

In Proceedings of the 1st ACM Conference on Computer

and Communications Security, pages 62–73, 1993.

[16] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,

Eran Tromer, and Madars Virza. SNARKs for C: Veri-

fying program executions succinctly and in zero knowl-

edge. In Advances in Cryptology–CRYPTO 2013:

33rd Annual Cryptology Conference, Santa Barbara, CA,

USA, August 18-22, 2013. Proceedings, Part II, pages

90–108. Springer, 2013.

[17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and

Madars Virza. Succinct non-interactive zero knowledge

for a von Neumann architecture. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages

781–796, 2014.

[18] Dhruv Bhatia. A tactic using Sage to solve

polynomial equalities with hypotheses, 2022.

https://github.com/leanprover-community/

mathlib/pull/14878.

[19] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and

Evan Shapiro. Coda: Decentralized cryptocurrency at

scale. Cryptology ePrint Archive, Report 2020/352,

2020. https://ia.cr/2020/352.

[20] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Four-

net, Konrad Kohbrok, and Markulf Kohlweiss. State

separation for code-based game-playing proofs. In Ad-

vances in Cryptology–ASIACRYPT 2018: 24th Inter-

national Conference on the Theory and Application of

Cryptology and Information Security, Brisbane, QLD,

Australia, December 2–6, 2018, Proceedings, Part III

24, pages 222–249. Springer, 2018.

[21] Bruno Buchberger. A criterion for detecting unnecessary

reductions in the construction of Gröbner-bases. In

International Symposium on Symbolic and Algebraic

Manipulation, pages 3–21. Springer, 1979.

[22] David Butler, David Aspinall, and Adrià Gascón. For-

malising oblivious transfer in the semi-honest and ma-

licious model in CryptHOL. In Proceedings of the 9th

ACM SIGPLAN International Conference on Certified

Programs and Proofs, pages 229–243, 2020.

[23] David Butler, Andreas Lochbihler, David Aspinall, and

Adrià Gascón. Formalising σ-protocols and commit-

ment schemes using CryptHOL. Journal of Automated

Reasoning, 65(4):521–567, 2021.

[24] Ran Canetti. Universally composable security: A new

paradigm for cryptographic protocols. In Proceedings

42nd IEEE Symposium on Foundations of Computer

Science, pages 136–145. IEEE, 2001.

[25] Ran Canetti, Alley Stoughton, and Mayank Varia.

EasyUC: Using EasyCrypt to mechanize proofs of uni-

versally composable security. In 2019 IEEE 32nd Com-

puter Security Foundations Symposium (CSF), pages

167–16716. IEEE, 2019.

[26] Yanju Chen, Clara Rodriguez, Yu Feng, and Bryan Tan.

Picus, 2022.

[27] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush

Mishra, Noah Vesely, and Nicholas Ward. Marlin: Pre-

processing zkSNARKs with universal and updatable

SRS. In Advances in Cryptology–EUROCRYPT 2020:

39th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Zagreb,

Croatia, May 10–14, 2020, Proceedings, Part I 39, pages

738–768. Springer, 2020.

https://github.com/leanprover-community/mathlib/pull/14878
https://github.com/leanprover-community/mathlib/pull/14878
https://ia.cr/2020/352

[28] Collin Chin, Howard Wu, Raymond Chu, Alessandro

Coglio, Eric McCarthy, and Eric Smith. Leo: A program-

ming language for formally verified, zero-knowledge

applications. Cryptology ePrint Archive, 2021.

[29] Alessandro Coglio. Ethereum’s recursive length prefix

in ACL2. arXiv preprint arXiv:2009.13769, 2020.

[30] Véronique Cortier, Constantin Catalin Dragan, François

Dupressoir, and Bogdan Warinschi. Machine-checked

proofs for electronic voting: privacy and verifiability

for Belenios. In 2018 IEEE 31st Computer Security

Foundations Symposium (CSF), pages 298–312. IEEE,

2018.

[31] Leonardo de Moura, Soonho Kong, Jeremy Avigad,

Floris Van Doorn, and Jakob von Raumer. The Lean

theorem prover (system description). In Automated

Deduction-CADE-25: 25th International Conference

on Automated Deduction, Berlin, Germany, August 1-7,

2015, Proceedings 25, pages 378–388. Springer, 2015.

[32] Thomas W Dubé. The structure of polynomial ide-

als and Gröbner bases. SIAM Journal on Computing,

19(4):750–773, 1990.

[33] François Dupressoir, Konrad Kohbrok, and Sabine Oech-

sner. Bringing state-separating proofs to EasyCrypt a

security proof for Cryptobox. In 2022 IEEE 35th Com-

puter Security Foundations Symposium (CSF), pages

227–242. IEEE, 2022.

[34] Karim Eldefrawy and Vitor Pereira. A high-assurance

evaluator for machine-checked secure multiparty com-

putation. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security,

pages 851–868, 2019.

[35] Amos Fiat and Adi Shamir. How to prove yourself: Prac-

tical solutions to identification and signature problems.

In Conference on the theory and application of crypto-

graphic techniques, pages 186–194. Springer, 1987.

[36] Denis Firsov and Dominique Unruh. Zero-knowledge in

EasyCrypt. Cryptology ePrint Archive, Paper 2022/926,

2022. https://eprint.iacr.org/2022/926.

[37] Cédric Fournet, Chantal Keller, and Vincent Laporte. A

certified compiler for verifiable computing. In 2016

IEEE 29th Computer Security Foundations Symposium

(CSF), pages 268–280. IEEE, 2016.

[38] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The al-

gebraic group model and its applications. In Advances in

Cryptology–CRYPTO 2018: 38th Annual International

Cryptology Conference, Santa Barbara, CA, USA, Au-

gust 19–23, 2018, Proceedings, Part II 38, pages 33–62.

Springer, 2018.

[39] Ariel Gabizon. On the security of the BCTV Pinocchio

zk-SNARK variant. Cryptology ePrint Archive, Report

2019/119, 2019. https://ia.cr/2019/119.

[40] Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-

otaru. PLONK: Permutations over Lagrange-bases

for oecumenical noninteractive arguments of knowl-

edge. Cryptology ePrint Archive, Report 2019/953,

2019. https://ia.cr/2019/953.

[41] Steven D Galbraith, Kenneth G Paterson, and Nigel P

Smart. Pairings for cryptographers. Discrete Applied

Mathematics, 156(16):3113–3121, 2008.

[42] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mar-

iana Raykova. Quadratic span programs and succinct

NIZKs without PCPs. In Advances in Cryptology–

EUROCRYPT 2013: 32nd Annual International Confer-

ence on the Theory and Applications of Cryptographic

Techniques, Athens, Greece, May 26-30, 2013. Proceed-

ings 32, pages 626–645. Springer, 2013.

[43] Jens Groth. On the size of pairing-based non-interactive

arguments. In Advances in Cryptology–EUROCRYPT

2016: 35th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Vi-

enna, Austria, May 8-12, 2016, Proceedings, Part II 35,

pages 305–326. Springer, 2016.

[44] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner,

Bas Spitters, and Pierre-Yves Strub. Computer-aided

proofs for multiparty computation with active security.

In 2018 IEEE 31st Computer Security Foundations Sym-

posium (CSF), pages 119–131. IEEE, 2018.

[45] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. Did

you mix me? formally verifying verifiable mix nets in

electronic voting. In 2021 IEEE Symposium on Security

and Privacy (SP), pages 1748–1765. IEEE, 2021.

[46] Gérard Huet, Gilles Kahn, and Christine Paulin-

Mohring. The Coq proof assistant a tutorial. Rapport

Technique, 178, 1997.

[47] Helger Lipmaa. A unified framework for non-universal

SNARKs. In Public-Key Cryptography–PKC 2022:

25th IACR International Conference on Practice and

Theory of Public-Key Cryptography, Virtual Event,

March 8–11, 2022, Proceedings, Part I, pages 553–583.

Springer, 2022.

[48] Andreas Lochbihler, S Reza Sefidgar, David Basin, and

Ueli Maurer. Formalizing constructive cryptography

using CryptHOL. In 2019 IEEE 32nd Computer Secu-

rity Foundations Symposium (CSF), pages 152–15214.

IEEE, 2019.

https://eprint.iacr.org/2022/926
https://ia.cr/2019/119
https://ia.cr/2019/953

[49] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah

Meiklejohn. Sonic: Zero-knowledge SNARKs from

linear-size universal and updatable structured reference

strings. In Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security,

pages 2111–2128, 2019.

[50] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla

Jean-Louis, Alexander Frolov, Tyler Kell, Tyrone Lob-

ban, Christine Moy, Ari Juels, and Andrew Miller. Can-

DID: Can-do decentralized identity with legacy com-

patibility, sybil-resistance, and accountability. In 2021

IEEE Symposium on Security and Privacy (SP), pages

1348–1366. IEEE, 2021.

[51] The mathlib community. The Lean mathematical library.

CoRR, abs/1910.09336, 2019.

[52] Ernst W Mayr and Albert R Meyer. The complexity

of the word problems for commutative semigroups and

polynomial ideals. Advances in mathematics, 46(3):305–

329, 1982.

[53] Catherine A Meadows and Catherine A Meadows. For-

mal verification of cryptographic protocols: A survey.

In Advances in Cryptology—ASIACRYPT’94: 4th In-

ternational Conferences on the Theory and Applica-

tions of Cryptology Wollongong, Australia, November

28–December 1, 1994 Proceedings 4, pages 133–150.

Springer, 1995.

[54] Roberto Metere and Changyu Dong. Automated crypto-

graphic analysis of the Pedersen commitment scheme.

In Computer Network Security: 7th International Con-

ference on Mathematical Methods, Models, and Archi-

tectures for Computer Network Security, MMM-ACNS

2017, Warsaw, Poland, August 28-30, 2017, Proceedings

7, pages 275–287. Springer, 2017.

[55] Andrew Miller, Ye Zhang, and Sanket Kanjalkar. Baby

SNARK (do do dodo dodo, 2020.

[56] Tobias Nipkow, Markus Wenzel, and Lawrence C Paul-

son. Isabelle/HOL: a proof assistant for higher-order

logic. Springer, 2002.

[57] David Nowak. On formal verification of arithmetic-

based cryptographic primitives. In Information Secu-

rity and Cryptology–ICISC 2008: 11th International

Conference, Seoul, Korea, December 3-5, 2008, Revised

Selected Papers 11, pages 368–382. Springer, 2009.

[58] Bryan Parno. A note on the unsoundness of

vnTinyRAM’s SNARK. Cryptology ePrint Archive,

Report 2015/437, 2015. https://ia.cr/2015/437.

[59] Bryan Parno, Jon Howell, Craig Gentry, and Mariana

Raykova. Pinocchio: Nearly practical verifiable com-

putation. Communications of the ACM, 59(2):103–112,

2016.

[60] Loïc Pottier. Nsatz: a solver for equalities in integral

domains, 2021.

[61] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,

Matthew Green, Ian Miers, Eran Tromer, and Madars

Virza. Zerocash: Decentralized anonymous payments

from bitcoin. In 2014 IEEE Symposium on Security and

Privacy, pages 459–474. IEEE, 2014.

[62] Jacob T Schwartz. Fast probabilistic algorithms for

verification of polynomial identities. Journal of the

ACM (JACM), 27(4):701–717, 1980.

[63] Victor Shoup. Lower bounds for discrete logarithms

and related problems. In Advances in Cryptol-

ogy—EUROCRYPT’97: International Conference on

the Theory and Application of Cryptographic Tech-

niques Konstanz, Germany, May 11–15, 1997 Proceed-

ings 16, pages 256–266. Springer, 1997.

[64] Nikolaj Sidorenco, Sabine Oechsner, and Bas Spit-

ters. Formal security analysis of MPC-in-the-head zero-

knowledge protocols. In 2021 IEEE 34th Computer

Security Foundations Symposium (CSF), pages 1–14.

IEEE, 2021.

[65] Sabrina Tarento. Machine-checked security proofs of

cryptographic signature schemes. In ESORICS, vol-

ume 5, pages 140–158. Springer, 2005.

[66] Søren Eller Thomsen and Bas Spitters. Formalizing

Nakamoto-style proof of stake. In 2021 IEEE 34th Com-

puter Security Foundations Symposium (CSF), pages

1–15. IEEE, 2021.

[67] Franklyn Wang. Ecne: Automated verification of ZK

circuits, 2022.

[68] Richard Zippel. Probabilistic algorithms for sparse poly-

nomials. In International symposium on symbolic and

algebraic manipulation, pages 216–226. Springer, 1979.

https://ia.cr/2015/437

	Introduction
	Our Contribution
	The Lean Theorem Prover
	Related Work

	Linear PCP SNARKs
	Overview of Elliptic Curve Pairings and the Algebraic Group Model
	SNARKs
	Formalizing Soundness in the AGM
	Pairing types

	Automation of the Soundness Proof
	Specification of the Toy SNARK
	The Steps of the Proof
	Introducing the equality check equations
	Normalizing polynomial equations
	Isolating coefficients
	Distribute coefficient-taking
	Break down into monomial equality conditionals
	Decide monomial equality conditionals
	Recursively factor and simplify

	``Straightforwardness'' for SNARKs from the literature
	Design of SNARKs and their proofs
	Pinocchio
	Groth '16

	Evaluation of the Proof code
	Future Work and Conclusion

