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Abstract
Rust is a programming language designed with a focus on
memory safety. It introduces new concepts such as ownership
and performs static bounds checks at compile time to ensure
spatial and temporal memory safety. For memory operations
or data types whose safety the compiler cannot prove at com-
pile time, Rust either explicitly excludes such portions of the
program, termed unsafe Rust, from static analysis, or it relies
on runtime enforcement using smart pointers. Existing studies
have shown that potential memory safety bugs in such unsafe
Rust can bring down the entire program, proposing in-process
isolation or compartmentalization as a remedy. However, in
this study, we show that the safe Rust remains susceptible to
memory safety bugs even with the proposed isolation applied.
The smart pointers upon which safe Rust’s memory safety is
built rely on metadata often stored alongside program data,
possibly within reach of attackers. Manipulating this meta-
data, an attacker can nullify safe Rust’s memory safety checks
dependent on it, causing memory access bugs and exploita-
tion. In response to this issue, we propose METASAFE, a
mechanism that safeguards smart pointer metadata from such
attacks. METASAFE stores smart pointer metadata in a gated
memory region where only a predefined set of metadata man-
agement functions can write, ensuring that each smart pointer
update does not cause safe Rust’s memory safety violation.
We have implemented METASAFE by extending the official
Rust compiler and evaluated it with a variety of micro- and ap-
plication benchmarks. The overhead of METASAFE is found
to be low; it incurs a 3.5% average overhead on the execution
time of a web browser benchmarks.

1 Introduction

Rust is a systems programming language that strongly em-
phasizes memory safety. It ensures memory safety through its
strict ownership model and enforced borrowing rules, unlike
C/C++, which is plagued by memory vulnerabilities such as
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buffer overflows and use-after-free (UAF). The language’s se-
curity advantages have contributed to its growing popularity,
as evidenced by its adoption in real-world projects such as the
Linux kernel, Mozilla Firefox browser, and Android operating
system [13, 21, 36]. Google attested to Rust’s memory safety
when they reported a drastic reduction in memory bugs, from
76% to 25%, since the adoption of Rust to the Android OS,
and now 32% of Android OS is written in Rust [17].

Rust achieves memory safety by relying on a distinguished
memory safety system with rules enforced both statically at
compile time and dynamically at runtime. The compiler en-
sures strict adherence to memory safety rules by performing
static analysis during compilation. In cases where the com-
piler checks cannot be deterministically enforced through
static analysis, Rust employs smart pointers to enforce the
memory safety rules. Smart pointers carry metadata alongside
the data pointer, which is relied on to perform memory safety
checks at runtime. The type of metadata varies depending on
the intended usage. For example, some smart pointers have
metadata representing the length of a dynamically allocated
buffer, used to check against buffer address indices and miti-
gate buffer overflows. Another example is a smart pointer for
reference-counted shared pointers, where it has the number
of pointer copies as metadata to mitigate use-after-free (UAF)
bugs. Therefore, smart pointers and their associated metadata
play a crucial role in ensuring Rust’s memory safety.

The storage and access of this metadata may vary across
different compiler versions, as explained in [6]. In Rust, the
metadata is generally stored alongside program data, poten-
tially within reach of malicious actors seeking to exploit vul-
nerabilities. With knowledge of these implementation details,
attackers can maliciously overwrite the metadata, compro-
mising the integrity of the runtime memory safety checks.
Additionally, Rust exposes some application programming
interface (API) functions that allow the programmer to mod-
ify this metadata at will without verification. In such cases,
the integrity of the metadata, and consequently the safety
checks dependent on it, is left at the mercy of the program-
mer’s proficiency, similar to memory management in C/C++.



Logical bugs resulting from improper utilization of these API
functions by the programmer can reintroduce memory bugs
that Rust was designed to solve. Consequently, despite Rust’s
reputation for memory safety, programs written in it can still
suffer from memory bugs.

Our analysis of these memory bugs found that a significant
proportion of them is caused by smart pointer metadata over-
writing and misuse of smart pointer APIs by programmers.
For example, many reported vulnerabilities [18,25,26], which
received common vulnerabilities and exposures (CVEs) IDs,
demonstrate the risks introduced by modified smart pointer
metadata. CVEs such as [26] highlight memory bugs result-
ing from smart pointer API misuse and logical errors commit-
ted by programmers. Interestingly, programs with these bugs
can still compile successfully because the compiler relies on
metadata to enforce memory safety at runtime, only to en-
counter undefined behavior (UB) at runtime due to tampered
metadata.

According to our knowledge, no existing studies com-
prehensively protect smart pointers’ integrity, leaving them
within reach of untrusted code and incorrect updates at the
run time despite their obvious sacrality. Rust, especially safe
Rust, is assumed to be memory-safe in principle. Only the
remainders in the program, the unsafe Rust and external li-
braries linked through the foreign function interface (FFI) are
considered potentially vulnerable. This observation has been
the rationale behind most existing works [2, 14, 19, 23] on
Rust memory safety, focusing on protecting safe Rust’s mem-
ory objects from the others. However, this assumption only
holds when the integrity of metadata on which the runtime
security checks depend is maintained. Even when protected
by existing works, a Rust program can still be vulnerable to
memory safety violations within safe Rust if the metadata
of smart pointers is exposed to unsafe Rust code or external
libraries. Current approaches do not specifically address the
protection of smart pointer metadata, inadvertently leaving it
accessible to code outside of safe Rust.

This paper introduces METASAFE, a compilation frame-
work designed to fortify the runtime protection of smart point-
ers. Recognizing the critical importance of smart pointers,
METASAFE adopts a proactive approach by securely iso-
lating them from program data and storing them in a pro-
tected compartment. To safeguard against vulnerabilities aris-
ing from API operations that modify metadata, METASAFE
inserts sanitization checks that refer to allocator metadata,
such as block size, to examine the validity of the attempted
metadata updates. By default, METASAFE’s implementation
caters to smart pointers defined in Rust’s standard library,
but it empowers developers to define custom sanitization rou-
tines for their own smart pointer implementations by defining
generic validation routines for developers to extend. As a
result, METASAFE ensures the veracity and correctness of
metadata, thereby guaranteeing memory safety, even in the
presence of logic bugs stemming from API misuse. Note that

METASAFE cannot replace existing methods that compart-
mentalize safe Rust from other components, as its primary
aim is to protect the metadata of smart pointers from exploita-
tion. For instance, METASAFE is not designed to prevent
attackers from manipulating the memory space of safe Rust
by exploiting memory safety bugs in external libraries. There-
fore, METASAFE should be used in conjunction with existing
compartmentalization approaches to provide comprehensive
protection for the Safe Rust components of Rust programs.

Among others, the most significant challenge we overcome
in designing METASAFE is that smart pointers could be em-
bedded within a composite data type as a field, complicating
its isolation. To address this, we propose two solutions: The
first solution treats the entire composite type as a smart pointer
and applies METASAFE’s protection to it as a whole. The
second approach employs a more sophisticated method by
casting composite type-embedded smart pointers onto a sepa-
rate protected shadow memory region. This approach enables
finer-grained isolation and protection of smart pointers within
ADTs. To further secure the smart pointer region, METASAFE
leverages hardware extensions such as Intel Memory Protec-
tion Keys (MPK), which prevent malicious attackers from
bypassing validation and overwriting isolated metadata.

Another challenge METASAFE faces is relying on allocator
metadata for synchronization and assuming the correctness of
this metadata. A heap allocator is often a separate component
that can be compartmentalized from the rest of the program
and maintains the information about each heap object used at
runtime to examine the safety of a metadata update. To ensure
the correctness of this metadata, METASAFE compartmen-
talizes allocator metadata in a similar way as it does smart
pointer metadata.

Our evaluation of METASAFE on targeted microbench-
marks shows it incurs a 25.5% performance overhead on
average. Evaluation of METASAFE on Servo, a real world
browser shows both solutions incur 3.5% overhead on average
showing it is easily adoptable in production. In lightly concur-
rent environments, METASAFE exhibits a memory overhead
of 25.5% on average, while in heavily concurrent environ-
ments, it uses up to 8x more memory on average.

This paper contributes to the run time memory safety of
Rust programs as follows.

• We present a comprehensive examination of memory
safety in Rust from the perspective of smart pointer cor-
rectness, which has been understudied despite being a
crucial component of Rust’s memory safety. Our study
reveals the need to protect smart pointer metadata and
APIs, filling a gap in the current literature.

• We introduce METASAFE, a framework that improves
memory safety by protecting smart pointer metadata
and the API uses. We also explore ways to combine
METASAFE with existing solutions to provide a com-
plete solution to memory safety issues in Rust.



• Finally, we conduct experiments with real-world CVEs
to showcase the effectiveness of METASAFE. We further
apply METASAFE to real-world programs and evaluate
their performance and memory overhead.

We will open the implementation of METASAFE to the
public upon publication of this paper for the follow-up studies
on Rust memory safety.

2 Background

Rust delivers statically checked memory safety at the cost of
limited expressiveness. To write programs that cannot fully
adhere to the statically checked restrictions, developers use
either smart pointers (§2.1), unsafe Rust (§2.2), or external
libraries FFI.

2.1 Smart Pointers in Rust
Rust delivers the level of memory safety that C/C++ could
never achieve by design. By imposing the programs to ad-
here to several strict rules, such as ownership, Rust proves
the safety of many pointer dereferences at compile time. This
design choice of burdening developers to achieve efficient
memory safety verified at compile time comes with the limita-
tion in the expressiveness of the language. For example, only
the memory objects whose size can be determined at compile
time can benefit from the static memory safety check. How-
ever, programs often use dynamically sized data structures
like linked lists, trees, and hash tables, whose memory safety
Rust cannot prove statically.

To overcome this limitation, Rust advises using smart point-
ers. In support of this, Rust standard library provides several
smart pointers for various use cases as summarized in Table 1.
For example, a program can use Rc to enable multiple owner-
ship of a memory object, which the Rust ownership system
does not allow for non-smart pointers. Smart pointers are
designed to enable such potentially unsafe behavior without
compromising the memory safety of the program by maintain-
ing metadata along with the raw pointer to ensure the safety
of pointer dereferences at run time. Rc stands for Reference
Counted, and it maintains a reference counter along with the
raw pointer to the memory object to ensure that the object
is not freed while there are still references to it. Vec enables
a program to use a dynamically allocated buffer similar to
std::vector in C/C++. As expected, using Vec is not sup-
posed to expose the program to the risk of buffer overflow.
The Vec smart pointer has the length and capacity of the allo-
cated memory chunk as the metadata. On each dereference,
the implementation of this smart pointer automatically checks
the safety of memory accesses using the metadata, ensuring
the absence of out-of-bounds access.

As such, the memory safety guarantee Rust provides
through smart pointer relies on the metadata’s correctness.

An unfortunate observation behind our study is that the meta-
data is at the risk of corruption by memory bugs due to its
storage alongside program data, as we explain later §3.

2.2 Unsafe Rust

Writing performant and expressive code in Rust remains chal-
lenging, even with smart pointers. Some features such as in-
lined assembly and raw pointer dereferencing are still strictly
prohibited. Unsafe Rust is a part of Rust in which some mem-
ory system rules are relaxed. It is organized in code compart-
ments wrapped by the unsafe keyword. Using unsafe Rust, a
programmer can: dereference raw pointers, call unsafe func-
tions and FFI, use inline assembly, and access or modify a
mutable static variable. While it helps write more performant
and expressive code, unsafe Rust is risky because not only
does the compiler forego some safety checks on memory
accesses in the unsafe region, Rust provides limited safety
guarantees, and memory safety relies on programmer’s ex-
pertise. For example, raw pointers provide no guarantees on
pointer validity and do not implement any automatic cleanup.
Therefore, writing unsafe Rust introduces the same risk of
memory bugs in C/C++. This is why unsafe Rust has received
vast attention in studies on memory safety in Rust.

2.3 Isolated Storage: In-process memory isola-
tion

In-process memory isolation is a conventional technique that
creates separate compartments within the same process to
quarantine untrusted code or to give only specific components
access to sensitive data. The isolation can be achieved in many
different forms [15]; for example, hardware-based memory
protection, virtual memory management, or software-based
isolation techniques such as sandboxes. Several works [2,
14, 19] have employed this in-process memory isolation to
enhance memory safety in Rust, especially by preventing
unsafe Rust or FFI functions from accessing the safe Rust’s
memory objects.

3 Motivation

Existing solutions [2, 14, 19, 23] for mitigating memory
bugs in Rust programs focus on isolating unsafe Rust and FFI
functions from safe Rust. We find that such a strategy leaves
safe Rust vulnerable to memory bugs because they do not
safeguard smart pointer metadata (§3.1). Our observation is
that smart pointer metadata integrity is at risk of being com-
promised by memory bugs in unsafe Rust and FFI functions
(§3.2) or inappropriately updated by logic bugs in intentional
changes (§3.3). We argue that the integrity of smart pointer
metadata, which is critical to the memory safety of safe Rust,
should be protected.



Smart Pointer Metadata Purpose Safety Vulnerabilities

Box None Basic Heap Object Rust Ownership UAF
Vec Len, Capacity Dynamic Buffer Spatial Overflow, UAF

Cell, RefCell Borrow Counter Interior Mutability Temporal UAF
Rc Reference Counters Shared Reference Temporal UAF
Arc Reference Counters Thread Safe Shared References Temporal, Thread UAF, Races

Mutex, MutexGuard Locks Thread Safe Interior Mutability Thread, Temporal UAF, Races
RwLock Reference Counters Similar to Arc+Mutex Thread, Temporal UAF, Races

Table 1: General Rust smart pointers, their metadata, intended purpose, and vulnerabilities.

1 use std::rc::Rc;
2 fn main {
3 let mut xvec = vec![0,2,3];
4 let mut array = [0,2,3,4];
5

6 unsafe {
7 let mut ptr = array.as_mut_ptr()
8 .offset(10);
9 *ptr = 10;

10 }
11 //...
12 //...
13 unsafe {
14 let elem = xvec.get_unchecked_mut(1);
15 *elem = 5;
16 }
17 dgb!(xvec);
18 }

(a) A Rust program where a vulnerable buffer is allocated right
next to smart pointer metadata
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(b) The layout of the stack containing xvec and array while
executing the function in Figure 1a. An overflow on array may
result in the corruption of xvec’s metadata.

Figure 1: An example showcasing the possibility of smart pointer metadata corruption owing to the vulnerability in unsafe Rust

Table 2: Consideration as a source of Rust memory bugs by
different works.

Motivation XRust TRust PKRU-Safe Galeed METASAFE

Unsafe Rust ✓ ✓ ✗ ✗ ✓
FFI Functions ✗ ✓ ✓ ✓ ✓

Smart Pointer Integrity ✗ ✗ ✗ ✗ ✓

3.1 Existing Solutions for Rust Memory Safety

The memory unsafety of practical Rust programs has recently
attracted significant attention.

XRust [19], TRust [2], Galeed [23] and PKRU-Safe [14]
are four recent studies exploring the unsafety arising from
the use of unsafe Rust and FFI functions. They propose the
isolation of the unsafe Rust and FFI functions from the safe
Rust by restricting their access to the safe Rust’s memory ob-
jects. The idea is to confine memory vulnerabilities in unsafe
Rust and FFI functions, thereby protecting safe Rust. Each
study identifies the set of memory objects to be protected from
these untrusted code and applies a protection mechanism that
isolates them. XRust [19] requires a programmer to explicitly
identify heap memory allocations to be used in unsafe Rust
and protect the memory objects allocated by the remaining
allocation sites, primarily using software fault isolation (SFI)

or guard pages. TRust [2] employs static analysis to track
memory objects used in unsafe Rust and FFI functions, and
protect the remaining memory objects using SFI and Intel
MPK. PKRU-Safe [14] uses dynamic profiling to determine
which memory objects the FFI functions access, and protect
the remaining memory objects from the FFI functions using
Intel MPK. Galeed [23] uses static data-flow analysis to rea-
son about memory allocation and flow between FFI functions
and Rust, and protects Rust-allocated memory using Intel
MPK. Galeed further wraps Rust-allocated memory pointers
used by FFI with pseudo-pointers that ensure FFI access to
Rust-allocated memory is examined by Rust.

3.2 Memory Bugs Corrupting Smart Pointers

Vulnerable Unsafe Rust Code. The importance of smart
pointer metadata remains understudied, and none of these
studies give special care to them. They all focus on identify-
ing the memory objects visible from the source code level,
i.e., the ones allocated and accessed by the program under the
developer’s instruction. Unfortunately, a Rust program stores
more data in the memory during execution, some of which
affect the memory safety of safe Rust. Figure 1a shows an
example where a smart pointer is likely to remain unprotected



1 extern "C" unsafe fn do_array_stuff(ptr: *const c_void);
2 fn main() {
3 let mut buffer = vec![0,2,3];
4 let char_slice = [’a’, ’b’, ’c’];
5 unsafe {
6 do_array_stuff(char_slice.as_ptr() as *const c_void);
7 buffer.set_len(10);
8 }
9 println!("Element at 100: {}", buffer[99]);

10 }

(a) Sending a pointer to FFI from Rust.

1 void do_array_stuff(void* ptr){
2 char string[100];
3 read_from_user(&string);
4 memcpy(ptr,(void*)string, READ_SIZE);
5 }

(b) An overflow bug in FFI affecting a pointer received
from Rust.

Figure 2: Exploiting FFI memory bugs to overwrite smart
pointer metadata.

under the protection of existing solutions. At run time, the
program stores array alongside the smart pointer for xvec,
as Figure 1b shows. Should an attacker exploit the buffer over-
flow vulnerability of the array at line 9, they could overwrite
the metadata of the xvec smart pointer. This manipulation
could cause subsequent uses of the smart pointer to fail in
guaranteeing memory safety. Applying the existing mech-
anisms does not protect the smart pointer metadata in this
example. PKRU-safe is not designed to mitigate vulnerable,
unsafe Rust code, so it does not help. TRust [2] or XRust [19]
does not help as well because both the xvec smart pointer and
array will be classified as accessible from the unsafe Rust
and thus will be allocated in the same unprotected memory
region. array is clearly accessible from the unsafe Rust from
the example, and the existence of smart pointer implementa-
tion, which is composed of unsafe Rust functions, makes the
xvec smart pointer metadata also accessible from the unsafe
Rust.

Vulnerabilities in FFI functions. Figure 2 shows an ex-
ample where the Vec smart pointer becomes vulnerable to
a bug in an FFI function. In Figure 2a, the Rust compiler
creates a smart pointer for the mutable variable buffer on
the stack, together with another array, char_slice. In line
6, the function passes the pointer to this array as an argu-
ment to invoke an FFI function. The callee FFI function,
however, has a buffer overflow bug, as shown in Figure 2b.
At line 4 of Figure 2b, the function invokes memcpy with the
inappropriate buffer size, resulting in the overflow into the
buffer’s metadata that is stored right next to char_slice.
Any further smart pointer dereferences in safe Rust will use
the corrupted one to examine if the memory access adheres
to the memory safety, potentially resulting in memory safety

1 fn main() {
2 let mut buffer = vec![0,2,3];
3 unsafe {
4 buffer.set_len(10);
5 }
6 println!("Element at 9: {}", buffer[9]);
7 }

Figure 3: Misusing smart pointer APIs to update smart pointer
metadata.

1 use std::ptr;
2 use std::alloc::{dealloc, Layout};
3 fn test(input: *mut String){
4 unsafe{
5 //destructor of the pointed-to value
6 ptr::drop_in_place(input);
7 dealloc(input);
8 }
9 }

10 fn main(){
11 let x = Box::new(String::from("hello"));
12 let p = Box::into_raw(x);
13 test(p);
14 println!("{:?}",p);
15 let tmp1 = unsafe{ Box::from_raw(p)};
16 println!("{:?}",tmp1);
17 }

Figure 4: Misusing smart pointer APIs to feed invalid pointers
to smart pointers

violations. We refer the readers to an earlier work [20] for
more details about this kind of vulnerability. Attacks of this
nature are commonplace in Rust programs that depend on
bug-ridden FFI functions, as discussed in a recent study on
cross-language attacks [20]. Similarly to the earlier exam-
ple, neither XRust [19] nor TRust [2] mitigates such attacks.
XRust does not consider FFI functions, and TRust stores both
buffer smart pointer and char_slice in the same region
which FFI functions can access because buffer is used in
an unsafe block at line 7. PKRU-Safe [14] and Galeed [23],
on the other hand, would successfully mitigate because the
FFI function will not access the buffer smart pointer during
the profiling. Nevertheless, PKRU-safe does not provide the
comprehensive protection of the smart pointer in that they
do not protect safe Rust memory objects from unsafe Rust,
which could also have memory safety vulnerabilities.

3.3 Logical Bugs in Smart Pointer Changes

Logical bugs in the legitimate smart pointer changes also
threaten its integrity. Smart pointers are supposed to be
changed at run time, and their implementation provides the
interface for intended updates. However, the Rust compiler
cannot statically verify the correctness of such updates regard-
ing memory safety, leaving room for potential logical bugs



in intended changes to smart pointers, which could violate
memory safety. Figure 3 shows an example of buggy smart
pointer updates. In line 4, the length metadata of buffer is
overwritten to a value larger than the allocated buffer’s ac-
tual length. Subsequent dereferences using the updated smart
pointer, such as the one at line 6, will be examined with inap-
propriate smart pointer metadata, causing the memory safety
violation in safe Rust. Logical bugs like this are repeatedly
found in real-world Rust programs [7, 18, 26], suggesting that
this is an actual problem demanding a systematic solution.
Figure 4 shows another example where Box smart pointer is
updated with a dangling pointer. In line 12–13, a raw pointer
p is taken and passed to a function test, which frees the
memory chunk pointed by p. In line 16, the pointer p is used
to create another smart pointer Box, causing the program to
commit a UAF violation when the Box is dereferenced in line
17. The root cause behind this is that Box accepts a pointer
without ensuring that the pointer is actually pointing to a live
memory chunk.

3.4 Need for Isolation and Sanitization
We argue that simultaneously applying isolation and saniti-
zation techniques is necessary to protect smart pointers. Iso-
lation is essential to protect smart pointers from corruption
exploiting memory bugs in unsafe Rust or FFI functions. Such
corruption does not happen through the predefined interfaces
for smart pointer updates; thus, sanitization on the interfaces
alone cannot prevent it. On the other hand, sanitization is also
necessary to protect smart pointers from logical bugs in in-
tended smart pointer updates and from the crafted invocation
of the updated interface using memory bugs in unsafe Rust
or FFI functions. METASAFE fulfills the first requirements
by storing smart pointers in a separate, gated memory region
and enabling only the intended update interface to write to
the region. For the second requirement, METASAFE refers to
the memory layout and liveness information available in the
memory allocator to validate the correctness of smart pointer
updates. These design decisions arise from the observation
that smart pointers are rarely updated while frequently used,
as we further detail in the following section. Table 2 summa-
rizes the motivation of METASAFE and its consideration as
the source of Rust memory bugs from observation compared
with other works.

4 Assumption and Threat Model

We assume that a program is primarily written in Rust, but
inevitably contains some unsafe Rust blocks or functions,
and use external libraries that are written in potentially any
language, such as C. To mitigate the risks of using such un-
safe code pieces, we assume that the program may use exist-
ing compartmentalization schemes such as XRust, Galeed or
TRust to protect safe Rust’s memory objects from the unsafe

code pieces. As presented in Figure 2, Figure 3 and Figure 4,
with or without such protection, such a program is left vulner-
able to malicious smart pointer manipulation, the threat that
METASAFE is designed to fight against.

We consider an attacker targeting a Rust program and know-
ing the vulnerabilities of the program. This includes memory
safety vulnerabilities in unsafe Rust or external libraries and
logical bugs in smart pointer metadata manipulation. The pro-
grams that compartmentalize such unsafe parts effectively
prevent such attackers from corrupting safe Rust’s memory
objects. However, exploiting such vulnerabilities still enables
the attackers to modify certain smart pointer metadata to trick
even the safe Rust program into making unsafe memory ac-
cess. Specifically, such an attacker corrupts one or more smart
pointer metadata so that safe Rust code is misled to make un-
safe memory access. For example, manipulating the bounds
in a smart pointer can cause the safe Rust code to access
memory out of bounds (e.g., buffer overflow). Finally, in a
program hardened by isolating unsafe Rust, the attacker may
still be interested in corrupting the unprotected objects used
by internal unsafe Rust by corrupting smart pointer metadata.
METASAFE aims to narrow the attack surface by considering
all smart pointers regardless of where they are used in the
program.

We also consider an attacker aware of Rust’s polymorphism
and attempting to corrupt the function pointer in a trait object
to hijack the program. Using an existing vulnerability, the
attacker may overwrite a trait object to execute a desired
routine. Such code reuse attacks are highlighted by CLA [20],
and we aim to mitigate them by treating trait objects similar
to smart pointers.

5 METASAFE Design

Isolation and Validation. Figure 5 provides an overview of
how METASAFE isolates smart pointers and validates their
updates. METASAFE ensures the correctness of smart pointer
metadata by allowing only the implementation of the smart
pointer 1 to update it and validate new smart pointer meta-
data whenever updated 2 . METASAFE compartmentalizes
the smart pointers in a separate memory region, called gated
region 3 , and allows only the smart pointer’s implementa-
tion to update the metadata, i.e., prevents the others from
writing to the gated region 4 . On each update through the
genuine smart pointer implementation, METASAFE further
examines the new metadata value’s correctness regarding
memory safety 2 . That is, METASAFE refers to the ground
truth it can find from the memory allocator 5 to determine if
a new metadata value could cause a memory safety violation.
Compile Time Transformation. To this end, METASAFE
performs static analysis and code transformation at compile
time as an extension of the Rust compiler and runs with
its runtime library, including the augmented heap allocator.
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Figure 5: An overview of METASAFE

1 struct Firm {
2 employees: Vec<String>,
3 captital: usize,
4 open_year: usize,
5 }

(a) An ADT with a smart
pointer field.

ptr
len

capacity
capital
open_year

Vec fields

(b) Layout of the Firm ADT
in memory

Figure 6: A general ADT may include a smart pointer as a
data field.

METASAFE can employ any existing in-process isolation
mechanism to protect the gated region. For example, our im-
plementation of METASAFE uses Intel MPK to protect the
gated region by associating the gated region pages with pkey
1 and the rest with pkey 0. The heap allocator is augmented
to enable the program to determine with which pkey a heap
chunk is allocated, so that the program can store smart point-
ers in the gated region and the others outside the gated region
(Figure 5). During the compilation, METASAFE identifies
smart pointers and their implementations to transform the
program to utilize the METASAFE runtime. METASAFE first
identifies all smart pointer types and the corresponding imple-
mentation. Using the identified types, METASAFE associates
each heap allocation site with the corresponding type and
transform the program to request chunks from the gated re-
gion when allocating for the smart pointer. The smart pointer
update functions are wrapped with appropriate entry and exit
mechanisms proposed in existing mechanisms [2, 14, 35].

5.1 Challenges
The succinct and elegant objective of isolating smart pointers
and gating all their updates presents several challenges.
C1. Ground Truth for Metadata Validation. Smart pointer

metadata is not static and is often updated legitimately by
the smart pointer implementation at run time. METASAFE is
tasked not only with validating the correctness of such legiti-
mate updates but also with scrutinizing unintended alterations
originating from misbehaving unsafe Rust or FFI functions.
Consequently, METASAFE must have access to a reliable ref-
erence or ground truth to ensure metadata updates’ validity.
This ground truth must provide key information about the
memory objects, such as the bounds or type.

C2. Identifying Smart Pointers. The Rust official document
does not state any criteria for a type to be a smart pointer.
Smart pointers are essentially composite types and are treated
similarly to other composite types defined in Rust programs,
as described in §2.1. Smart pointer types often implement
Deref trait to appear as if they are primitive pointer types
by overriding the * operator. However, whether or not imple-
menting the Deref trait cannot be a criterion because it is not
a requirement for a type to be a smart pointer type. Having a
statically determined list of smart pointer types is not a viable
option either because Rust allows users to define their own
smart pointer types.

C3. Embedded Smart Pointers. Smart pointer objects can
be embedded within another object of a composite type, as
Figure 6 shows. Compartmentalizing such smart pointers is
not straightforward because they are supposed to be located
within the same heap chunk or stack slot with the other fields
of the composite type. Storing the entire object that embeds
a smart pointer in the gated region is a viable option, but it
limits the extent of METASAFE security guarantees, as we
further explain in §5.2.4.

C4. Securing References to Smart Pointers. Safe Rust
occasionally accesses smart pointers indirectly through their
references. This poses another risk when the referenced object
is not a smart pointer and can potentially be accessed by
unsafe Rust code or FFI functions. Corruption of such pointers
can lead to the same consequences as direct corruption of
smart pointers, as it can result in Safe Rust using a counterfeit
smart pointer.



1 impl<T, A> MetaUpdate for Vec<T, A> {
2 fn validate(&self) -> bool {
3 metasafe::isLive(self.ptr) &&
4 metasafe::getSize(self.ptr) >=
5 self.capacity()*sizeof(T) &&
6 self.capacity() >= self.len()
7 }
8 }

Figure 7: Vec’s implementation of the MetaUpdate trait.

5.2 METASAFE Compiler

METASAFE extends the Rust compiler to identify smart point-
ers and transform the program to utilize METASAFE runtime
to protect smart pointers.

5.2.1 MetaUpdate Trait

METASAFE defines a trait called MetaUpdate that a smart
pointer type can implement to be recognized as a smart pointer.
The trait defines a function that METASAFE invokes to val-
idate updates to the smart pointer implementing the trait,
named validate.

For each smart pointer, the developer is supposed to pro-
vide the implementation of this validate as well so that the
function can examine the genuineness of the smart pointer
metadata, i.e., if the new metadata adheres the property that
the smart pointer must satisfy. For example, the Vec smart
pointer is considered genuine if it meets the following three
criteria, as outlined in Figure 7. First, the data pointer must
accurately point to the correct memory object. Second, the
object should be adequately sized to contain the capacity
number of elements. Finally, the capacity must be at least
as large as len, the number of elements the vector currently
contains. Similarly, the Rc smart pointer is genuine only if
at least one of its counters is not zero and its pointer is live.
For some smart pointers such as Box, validating the liveness
of the pointer suffices. We also implemented MetaUpdate
traits for the data structures that the collections in Rust’s
standard library (std) implements. These data structures in-
clude LinkedList, Iter, IterMut, IntoIter, BtreeMap,
BinaryHeap, VecDeeque.

As Figure 7 shows, METASAFE’s heap allocator provides
two special interfaces that developers can use to obtain
ground truth for examining the smart pointer updates. Invok-
ing isLive enables the validate to determine if the pointer
is live, and getSize returns the size of the object associated
with the pointer.

During the compilation, METASAFE automatically inserts
calls to these validate functions at the end of every function
in smart pointer implementation that modifies its fields in a
fashion similar to Rust’s Drop glues. If the call to this function
returns false, METASAFE interprets it as a memory bug and
aborts the program.

5.2.2 Identifying Smart Pointers

The first step of METASAFE’s smart pointer-aware compi-
lation is to identify smart pointers at High-level Intermedi-
ate Representation (HIR) level in the Rust compilation flow.
METASAFE considers every and only the type that imple-
ments MetaUpdate as a smart pointer type. Using the clas-
sification result, METASAFE annotates each heap and stack
allocation site whether it allocates for a smart pointer. To be
more specific, METASAFE associates each heap allocation
site with the corresponding type ID that the Rust compiler
generates for each type during the compilation and classify
the type IDs into two categories: smart pointer types and non-
smart pointer types. For the stack allocation site, METASAFE
does not need the type IDs, so it only annotates each site
with a boolean value indicating whether the allocation is for
a smart pointer or not.

5.2.3 Storing Smart Pointers in Gated Region

METASAFE transforms the program at LLVM IR level to let
the program store smart pointers in the gated region using the
type IDs and annotations that it created in the previous step.

The stack allocation sites, which are the execution of
alloca instructions, are transformed to allocate its slot from
the gated region if the allocation is for a smart pointer. To this
end, METASAFE creates and maintains one more stack in the
gated region similar to existing safe stack or shadow stack
techniques often used to defeat return-oriented programming
(ROP) attacks [2, 4, 12].

METASAFE similarly transforms heap allocation sites to
allocate smart pointers from gated regions. One difference
is that it makes the program deliver a bit more information
to the heap allocator so that it can provide more information
about a heap chunk for subsequent validation of metadata
updates. We call this information as CIndex and the informa-
tion, and the heap allocator uses this to determine how each
allocation request will be handled, as we detail in §5.3. Specif-
ically, METASAFE uses 1 as the CIndex for smart pointers
and derived it from the type ID for non-smart pointers.

One challenge in this transformation is in the fact that
many types a Rust program uses are generic types whose type
ID is determined only at the monomorphization stage of the
compilation. For this reason, METASAFE actually obtains the
exact type ID during the LLVM IR generation from MIR.
Actual smart pointer identification also happens at the same
time.

5.2.4 Handling Embedded Smart Pointers

As elucidated in §5.1, one of the main challenges confronting
METASAFE pertains to safeguarding smart pointers nested
within another composite type as a field. Figure 6a shows an
example of such composite type containing a smart pointer,
and Figure 6b shows the memory layout of the composite type.
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Figure 8: Redirecting smart pointer struct fields to the gated
region.

Such a composite type containing a smart pointer cannot be
stored entirely in the gated region because this requires all
memory instructions that may write to the composite type
object, including non smart pointer fields, to be granted access
to the gated region. This potentially leads to a large number of
memory instructions being granted access to the gated region,
which is undesirable.

To avoid this undesirable relaxation of access control,
METASAFE stores shadow copies of the smart pointer fields
in the gated region and redirects all memory instructions that
access the smart pointer fields to the shadow copies, as illus-
trated in Figure 8. To this end, METASAFE instruments the
program to redirect all memory references pertaining to the
employees field, which is a smart pointer, thereby steering
them toward the corresponding objects within the gated re-
gion. To be more specific, we make two design choices on top
of our observation on creating and working with the shadow
smart pointers.
Secure and Efficient Redirection for Heap Objects. An
important observation enabling secure and efficient redirec-
tion to the shadow copies of smart pointers is that METASAFE
maintains a type-pooled heap, and the ratio of composite types
containing smart pointers is low. This observation first allows
METASAFE to be capable of determining the exact amount
of shadow memory required for containing smart pointers.
Whenever the heap allocator creates a new pool for a smart
pointer-containing composite type, it can deterministically
compute the amount of shadow memory required for the pool
and prepare it. Moreover, this observation allows METASAFE
to redirect memory references to the shadow copies of smart
pointers securely and efficiently by using a simple offset com-
putation relying only on heap metadata. At the moment of
the redirection, the program is given only the original smart
pointer field’s address, along with the composite type object’s
base address, from which the heap allocator determines the
pool that the object belongs to with the object’s offset. From
the base address of the pool and the object’s offset, the heap
allocator can compute the base address of the shadow copy’s
pool and its offset and return it to the program. This flow of
obtaining the shadow copy’s address is secure because the
program does not use the content of the composite object that

resides outside the gated region.
Secure and Efficient Redirection for Stack Objects. A
similar approach also works for the composite objects and
embedded smart pointers in the stack. The layout of a func-
tion’s stack frame is determined at compile time, during which
METASAFE creates a shadow stack frame for the smart point-
ers. At the same time, METASAFE can allocate slots for such
smart pointers embedded in the other composite types in the
stack and redirect memory references to the shadow copies of
the smart pointers statically using the shadow stack pointer.
Handling Contiguous Memory Operations. Nonetheless,
this approach necessitates METASAFE’s vigilant monitoring
of contiguous memory operations conducted on buffers har-
boring such data structures. For instance, a memcpy operation
involving a Firm type pointer mandates a subsequent memcpy
operation on the shadow region. This entails further analy-
sis by METASAFE during the code generation from MIR to
LLVM, owing to the partial loss of type information at the
LLVM level.

5.3 Type-pooled Heap Allocator
METASAFE runtime comes with an augmented heap allocator
based on mimalloc that manages more than one pool of heap
chunks to provide the ground truth for both the chunk bounds
and the chunk types. In addition to the size and other existing
arguments, METASAFE’s allocator takes the index of the de-
sired pool, called CIndex, as an argument. The heap allocator
then returns a heap chunk from the pool corresponding to the
given CIndex. As mentioned earlier, the heap allocator also
creates the pool for shadow copies of the embedded smart
pointers when needed. It also ensures that all its metadata
are stored within the gated region and serves the allocation
requests with CIndex 1 from the gated region.

The heap allocator also implements the two interfaces that
validate function in MetaUpdate needs, namely getSize
and isLive using its metadata.

METASAFE’s is_valid_ptr is an extension of
mimalloc’s that checks whether a pointer is part of the
heap. Since mimalloc pages are classified by object size, a
particular page fits a known number of objects.

To implement isLive, we extend page metadata of
mimalloc by adding bits for tracking liveness of a given
object. The liveness bit is set when the corresponding ob-
ject is allocated from the page, and unset when the object is
freed. With this extension, isLive determines if a pointer
is still alive in O(1). isLive further verifies that the pointer
belongs to the correct type pool of chunks. This typed iso-
lation and liveness check reduces the chances of hijacking
through UAF bugs because UAF leaves undetected only when
a pointer is wrapped again with the same type after the corre-
sponding chunk is also allocated again. METASAFE enables
mimalloc’s deferred free option to further mitigates UAF
exploits.



Figure 9: Impact of METASAFE on the execution time of
microbenchmarks.

5.4 Protecting the Gated Region

The choice of mechanism for protecting the gated region is
orthogonal to the design of METASAFE, and the details of its
implementation are not part of our contribution. Nevertheless,
we explain two primitives that we use in our evaluation for
completeness. For example, TRust [2] and PKRU-Safe [14]
have already explored the design space where a Rust program
uses software fault isolation (SFI) and Protection Keys for
Userspace (PKU), which is also called Memory Protection
Key (MPK), to isolate unsafe Rust and FFI functions.

The primary mechanism that METASAFE uses for protect-
ing the gated region is MPK. On a system where MPK is
available, we consider it a better choice than SFI in that the
transformed Rust program does not frequently enter and exit
the functions granted to write to the gated region. To use
MPK as a means to protect the gated region, we follow the
design choices that many existing studies have already ex-
plored [2, 14, 35]. All memory pages belonging to the gated
region are associated with pkey 1. The write permission to
these pages is granted temporarily only for legal writers to the
gated region, such as the smart pointer APIs and heap alloca-
tor. METASAFE regards outermost callsites to smart pointer
functions as the boundaries for granting and revoking write
access. It disallows inlining callee functions at such callsites,
clones the callee, and inserts instructions that enable and re-
voke write access at the beginning and just before every return
instruction of the cloned function, respectively. METASAFE
then uses the cloned function as the callee at such callsite.
Similar to ERIM [35], METASAFE insert one more check just
after revoking access to ensure attackers do not redirect the
program with write access enabled. It is worth noting that
system patching and addressing potential pitfalls, as outlined
in [5], are essential responsibilities outside the scope of this
work but critical for maintaining the overall security posture.

Benchmark Full Inlining (ns/iter) Controlled Inlining (ns/iter) Slowdown

Bytes 1975 1858 0.9407
Regex 1088948 1432505 1.3155

std-string 1056 1184 1.1212
std-VecDeque 446 531 1.1906

std-vec 311 327 1.0514
std-BTreeMap 20158 21334 1.0583
std-linkedlist 104 108 1.0385

json-rust 681 803 1.1791
Geomean 1.1067

Table 3: Impact on the execution time of controlled inlining
of gate callsites that METASAFE uses.

6 Evaluation

We evaluate METASAFE on performance and security. For
performance evaluation, we measure the impact of execution
time and memory usage when running microbenchmarks §6.1
and a real-world application §6.2. We test if METASAFE stops
the exploits real-world CVEs for security evaluation §6.3, and
measure the performance impact when METASAFE works
together with an existing isolation mechanism §6.4.

Experimental Setup. We build and test METASAFE on a
workstation that runs Ubuntu Jammy 22.04.2 LTS with kernel
version 5.19.0. The workstation runs on a 12th Gen Intel Core
i5-12400 CPU with 6 cores operating at 2.50GHz with 16GB
of DDR4 ECC memory. We ran all our experiments under the
same system settings. In all our experiments, the benchmarks
are compiled with Rust optimization level 3, and we make
sure the baselines are executed with the original mimalloc
allocator without METASAFE components.

Benchmarks. To understand the effects of its design on a
lower level, we apply METASAFE to 19 microbenchmarks
from widely used Rust crates, similar to the earlier stud-
ies on Rust runtime memory safety [2, 14, 19]. We choose
these benchmarks with the consideration of smart pointer us-
age, memory usage intensity, and concurrency. For example,
we include std collections, many of which heavily up-
date smart pointer metadata, presenting the worst case for
METASAFE.

We further investigate the effect of METASAFE on real-
world programs by applying it to Servo, an upcoming Rust-
written web rendering engine. The web rendering engine
is one of the core building blocks of web browsers, which
is a widely used application, and has been used for evalua-
tion in several works [14]. In this evaluation, we use three
widely used browser benchmarks to evaluate the impact of
METASAFE on the performance of Servo.

Note that we do not compare the performance overhead
of METASAFE with the others because no existing studies
present a mechanism that protects smart pointer metadata.



Figure 10: Impact of METASAFE on memory usage.

6.1 Microbenchmark Results

Benchmarks. We run widely used Rust crates to eval-
uate the impact of METASAFE. We include the std
collections in the test suite because METASAFE imple-
ments the MetaUpdate trait for them, affecting their perfor-
mance. Hyper and Tokio are famous crates used for asyn-
chronous programming. Using them, we intended to gain
insight into the impact of METASAFE on the performance
of concurrent programs. Finally, Regex, Json, Bytes, and
Byteorder represent common data manipulating crates in
Rust. All these crates rely on std collections, and most
of their data structures contain smart pointers as their data
fields, i.e., have embedded smart pointers that we discussed
in §5.2.4.
Impact on Execution Time. Figure 9 shows that
METASAFE slows down the execution by 25.5% on aver-
age (geometric mean). What contributes to this overhead are
permission switches in smart pointer implementation and redi-
rection for embedded smart pointers. The high overhead on
three std components, vecdequeue and linkedlist are
due to their frequent smart pointer updates, and the overhead
on regex and json can be explained by their heavy use of
embedded smart pointers. One of the implementation detail,
METASAFE’s controlled inlining at smart pointer update sites
(see §5.4), also contributes to the overhead. Table 3 evalu-
ates the impact of this detail, showing that it incurs 10.67%
slowdown on average (geomean). This design choice can be
revised to perform inlining with care to eliminate this extra
overhead.
Impact on Memory Usage. We measure the maximum
resident set size (MRSS), the maximum allocated physi-
cal memory during a process’s lifetime to evaluate the im-
pact of METASAFE on memory usage. Figure 10 shows
that for single-threaded and lightly concurrent environments
(i.e., all but tokio), METASAFE uses up to 27% more
memory on average (geomean). In heavily multithreaded

Figure 11: Performance overhead of METASAFE on Kraken.

settings such as tokio—where thousands of threads are
spawned, METASAFE uses 8.3× more memory on aver-
age. This high overhead can be explained by three things,
that is, METASAFE’s extra stacks, shadow memory, and
METASAFE’s segregated memory allocation. To establish
the exact cause, we decided to disable segregated memory
allocation per type and maintain only two memory regions -
one for smart pointers and the other for the rest of the objects,
but this showed negligible change in memory overhead. We
therefore decided to store all objects on the same stack, a
change that showed METASAFE using only approximately
31% more memory in tokio benchmarks, which is similar to
the overhead in single-threaded and lightly-concurrent envi-
ronments. For every thread created, METASAFE creates two
stacks—one for pure smart pointers and the other for objects
with embedded smart pointers. In an environment that creates
thousands of threads, thousands of stacks will be created. This
explains METASAFE’s high memory overhead.

6.2 Servo Results

We use Servo to evaluate the performance impact of
METASAFE when applied to real-world programs. In particu-
lar, we run on Dromaeo [33], Kraken [34] and Octane2.0 [32]
on Servo. We modified Servo to use our mimalloc alloca-
tor and protected by METASAFE. For the baseline execution,
we use the unmodified mimalloc as the heap allocator to
rule out the impact of allocator choices on performance. We
do not make any other changes to Servo or the benchmarks
themselves.
Benchmarks. Kraken and Octane2 predominantly evaluate
JavaScript performance in web browsers, covering various
tasks, including audio processing, image manipulation, en-
cryption algorithms, mathematical calculations, and memory
management, with test cases drawn from real-world appli-
cations and synthetic scenarios. Both benchmarks empha-
size the execution speed and efficiency of JavaScript code,



Figure 12: Performance overhead of METASAFE on Octane2.

with Octane2 offering a more robust assessment of various
dimensions of JavaScript optimization. On the other hand,
Dromaeo, while still covering JavaScript operations like pars-
ing and string manipulation, places a stronger emphasis on
DOM manipulation. It measures the time taken by a browser
to complete individual test cases in real-world scenarios and
generates an overall score based on average completion times.
This approach positions Dromaeo as a more accurate indi-
cator of a web browser’s rendering engine performance, in
contrast to the JavaScript-focused Kraken and Octane2. The
tests are run as recommended by the Servo team to ensure
reliable results.
Kraken. Figure 11 shows the performance overhead of
METASAFE on servo executing Kraken benchmarks. On av-
erage, METASAFE slows down the execution the benchmark
only by 1.2% (geomean). This result shows that METASAFE
is not likely to slow down real-world applications signifi-
cantly.
Octane2. Figure 12 shows the impact of METASAFE on
servo for the Octane2 benchmark. On average, METASAFE
incurs an overhead of 3.1% for METASAFE on this bench-
mark.
Dromaeo. Figure 13 shows the impact of METASAFE on the
execution time of METASAFE on Dromaeo. The overhead of
METASAFE on Dromaeo is slightly higher than the overhead
on Kraken or Octane2. On average, METASAFE incurs a 6.4%
geomean overhead. While executing this benchmark, we no-
ticed that it is memory allocation intensive. That is, Servo
frequently allocates and frees heap chunks during the execu-
tion, where each allocation is likely to be followed by smart
pointer updates. Nonetheless, this overhead still remains as
low as 6.4%.

6.3 Security
We evaluate the effectiveness of METASAFE in protecting the
smart pointer integrity using two experiments. The first ex-

Figure 13: Performance overhead of METASAFE on Dro-
maeo.

periment focuses on protection against the vulnerable unsafe
Rust code, and the other targets the vulnerable FFI functions.

6.3.1 Protection against vulnerabilities in Unsafe Rust

In the first experiment, we test if METASAFE stops the at-
tacks exploiting CVE-2021-25900 [26], which showcases a
possible misuse of smart pointer APIs and its catastrophic
outcome. CVE-2021-25900 is a vulnerability found from
SmallVec, a widely used crate providing Vec-like buffers,
within the stack. In the vulnerable version, the vulnerability is
found from the insert_many function [1]. The function has
an unsafe block, where the length of the Vec buffer is set
to 0. It subsequently calls the reserve function to increase
the buffer size, but the reserve does not increase the size
if the length is not greater than capacity. In this context,
the buffer size does not increase, unlike the intention of the
caller, because the length is set to 0 earlier. Despite this, the
length is set to a value greater than the capacity afterward,
potentially causing the safe Rust to misuse this smart pointer
to make an out-of-bound memory access.

To evaluate METASAFE’s ability to fight against this vul-
nerability, we ran the vulnerable version of SmallVec crate to
reproduce CVE-2021-25900 [26]. When we ran this without
METASAFE, the program sometimes exits without an error,
but it crashed when we used a large buffer. With METASAFE,
however, an error is thrown the moment the line 1069 is
executed, halting the program. This bug is caught by Vec’s
validator call inserted by METASAFE. Note that this misbe-
havior would elude the existing works including Galeed [23],
TRust [2], XRust [19], and PKRU-Safe [14] because each
either does not quarantine unsafe Rust from the safe Rust or
does not give smart pointer integrity special care and erro-
neously place it in unsafe Rust-reachable memory region.

6.3.2 Protection against Corruption from FFI Functions

In the second experiment, we evaluate the effectiveness
of METASAFE against an attack exploiting vulnerable FFI
functions. To this end, we choose to reproduce CVE-2019-
15548 [24] from the widely used ncurses library because the li-
brary is also used for Rust programs as it is with its Rust wrap-
per called ncurses-rs [39]. Specifically, we wrote a proof-



Figure 14: Impact on execution time of METASAFE when it
runs with TRust

of-concept exploit around the buffer overflow vulnerability in
the instr function in the library. Without METASAFE active,
we observed that the buffer overflow could corrupt the smart
pointer metadata, leading to memory safety violations in the
safe Rust code that uses the corrupted smart pointer. In con-
trast, METASAFE effectively prevents this type of memory
corruption by isolating smart pointer metadata from FFI func-
tions. Other systems, such as TRust or XRust, do not offer this
protection, as their smart pointers are likely stored in memory
regions accessible to FFI functions. However, systems like
Galeed and PKRU-safe can also prevent this corruption be-
cause they strictly quarantine FFI functions from any objects
not explicitly provided to them.

6.4 METASAFE with TRust

We evaluate the performance impact of METASAFE when
it is used with an existing isolation mechanism, TRust [2].
We choose TRust among several possible choices because it
is open sourced, and is designed to quarantine not only the
external libraries but also the unsafe Rust. Specifically, we
adapt METASAFE to leverage TRust’s isolation to safely keep
smart pointer metadata. METASAFE places the smart pointer
metadata in the safe region that TRust protects from unsafe
blocks written in unsafe Rust and external code. The valida-
tors that METASAFE inserts mediate smart pointer metadata
updates by unsafe blocks, enabling proper use of smart pointer

Figure 15: Impact on memory usage of METASAFE when it
runs with TRust

APIs. These validators are considered as a part of trusted code
blocks, like the safe blocks. With this adaptation, we find
that METASAFE does not need to switch the write permission
using MPK when running smart pointer APIs because unsafe
blocks are already quarantined by TRust using SFI. This pos-
itively affects the performance impact of METASAFE when
working with TRust.

Figure 14 shows the normalized execution time TRust
runs alone and with METASAFE. We use the benchmarks
that TRust was evaluated with to measure the performance,
and ran the benchmarks on a different workstation running
Ubuntu Jammy 22.04.2 LTS, with an Intel 11th Gen CPU
with 8 cores and 72GB of RAM because TRust depends on
SVF [31] which requires a substantial amount of memory
at compile time. As the result shows, METASAFE does not
impose significantly more overhead on execution time be-
cause most overhead comes from isolation. The overhead of
METASAFE running with TRust is 13% on average, while
the overhead of TRust without METASAFE is 11%. Figure 15
shows the impact of METASAFE on memory usage. We ob-
serve that METASAFE increases the overhead on memory
usage because it still has to create the shadow copies of smart
pointer fields in the safe region. On average, TRust running
with METASAFE uses 83% more memory while TRust as it
is uses 69% more memory.



7 Discussion

7.1 Source of Performance Overhead

The METASAFE system appears to adapt proficiently to
real-world applications, as evidenced by its performance
in the Servo benchmarks. However, a more detailed
exploration of METASAFE’s functionality and potential
overheads can be gleaned from microbenchmarks. Upon
evaluating the four microbenchmarks–std-vec_dequeue,
std-linkedlist, json-rust, and regex–that exhibited
the highest overhead, we discovered a crucial factor: the
ratio of useful work accomplished versus gate transitions
significantly impacts performance. std-vec_dequeue and
std-linkedlist consist of 4 and 6 test functions, respec-
tively. In vec_dequeue, the predominant function frequently
calls vec_dequeue::push, a method that alters metadata
and is consequently enclosed with call gates by METASAFE.
Our analysis revealed that this function was accountable for
over 90% of the overhead within this particular microbench-
mark. In the case of std-linkedlist, all six benchmarks
primarily insert and delete nodes from the list—operations
that necessitate metadata modification and transitioning be-
tween METASAFE’s gates.

We observed that json-rust utilizes composite data struc-
tures with smart pointers as fields. All test functions pre-
dominantly parse data, repeatedly invoking smart pointer up-
date functions like vec::push that necessitate METASAFE’s
gates. Thus, the overhead in this microbenchmark originates
from both repetitive gate transitions and address masking re-
quired to access the shadow memory region. regex presents
a similar issue to json-rust, but with 219 tests instead of
a handful. From these observations, it becomes clear that
when a program frequently updates smart pointer metadata
or contains a substantial number of objects with embedded
smart pointers as fields, the overhead can be substantial. How-
ever, real-world applications involve much more than just
transitioning. Memory-intensive programs could also pose
problems, as noted in Servo’s Dromaeo benchmark. This
implies that while METASAFE performs well in some sce-
narios, particular types of applications may reveal inherent
overheads.

7.2 Allocator Metadata Integrity

Although an allocator is primarily for servicing heap mem-
ory requests from a program, it usually stores metadata on
the chunks of memory allocated. METASAFE relies on al-
locator metadata as the ground truth to base its validation
operations. Should the integrity of this metadata be com-
promised, METASAFE’s protection becomes unreliable. In
addition to smart pointer metadata, it becomes natural and
essential for METASAFE to protect allocator metadata as well.
This makes the allocator functions to be granted write per-

mission to the gated region in addition to the smart pointer
functions. Even when an allocator is invoked from an FFI
function, METASAFE must enable write access to the pro-
tected region. This is done carefully by wrapping exposed
allocator function calls with WPKRU routines.

7.3 Hardware Dependence
We realize that METASAFE’s choice of Intel MPK alienates
other architectures. ARM Domain [8] is a similar protection
for ARM CPUs and can be used to replace MPK if available.
Software fault isolation (SFI) can be used for a similar purpose
for architectures with no similar mechanism.

7.4 Dependence on Source Code
METASAFE can protect a Rust program only when the source
code is available, and the program can be recompiled with the
protection. We make this assumption because we consider the
developers who write Rust programs using unsafe Rust and
external libraries for expressiveness and productivity. In such
use cases, it is reasonable to assume that we can compile the
program with the protection enabled because the tool is used
at the time of development. It would be helpful if the same
technique could be applied to binaries without recompilation,
possibly with the help of a specialized runtime library, but
none of the existing works have taken this direction yet.

7.5 Dependence on validate Functions
The effectiveness of METASAFE in preventing smart pointer
corruption is limited by the correctness and expressive power
of validate function. As mentioned in §5.2.1, METASAFE
defers the task of implementing validate functions to be
called on each metadata update to the developers The only
role and guarantee METASAFE delivers is the protected exe-
cution of a developer-provided environment, and any incor-
rect implementation of validate may result in safe Rust
using corrupted smart pointers. What may affect this correct-
ness is the expressive power of validate. Developers can
write validate only with the trustworthy information that is
available at the time of each update, and only the METASAFE-
provided interface, isLive and getSize provide such infor-
mation. We made this design choice because METASAFE
primarily aims to prevent spatial safety violations owing to
the smart pointer corruption, and validate only needs these
two ground truths to ensure spatial safety. Certainly, devel-
opers cannot provide powerful validate function if they
need unavailable information, especially when they want to
ensure a property other than spatial safety violation owing
to smart pointer corruption. For example, the developer may
want to know where the heap object has been allocated in
the code. We believe that exploring the kinds of ground truth
that METASAFE can efficiently provide helps improve the



expressive power of validate functions, and we consider
this as a future work.

7.6 Using METASAFE for Rust Libraries
In designing METASAFE, we implicitly assume that the pro-
gram is primarily written in safe Rust and uses unsafe Rust
or FFI functions for productivity and expressive power. We
designed METASAFE with this assumption because many ex-
amples of software follow this model, but this does not mean
that it is the only use case. As noted in an earlier work [23],
some legacy programs are incrementally adopting Rust for
security by replacing their modules with a Rust version. We
believe that the smart pointer integrity must also be consid-
ered in such scenarios and they may need a mechanism like
METASAFE, but we leave evaluating the efficiency when ap-
plied to such Rust libraries for legacy programs as a future
work.

7.7 Performance Trade-Offs
By presenting METASAFE, we aim to provide developers
with a means to avoid vulnerabilities easily when working
with unsafe Rust or external libraries. The primary use cases
that we consider are those used for productivity or expressive
power. The constraint Rust enforces on the safe Rust program
prohibits the program from using particular data structures,
motivating the developers to introduce unsafe Rust code. FFI
functions are often used to avoid reimplementing something
that already exists in other languages. In these cases, devel-
opers can simply enable METASAFE to defeat the exploits
targeting smart pointers. However, doing this may result in
suboptimal performance, especially if a developer introduces
unsafe Rust code primarily for performance improvement and
the benefit is not significant enough, being amortized by the
overhead of METASAFE. For example, if using unsafe Rust
brings 5% performance benefit while METASAFE introduces
10% overhead (the geomean from our evaluation), rewriting it
with safe Rust and not using METASAFE should bring better
performance. This potential performance degradation does
not nullify the potential use cases of METASAFE because the
overhead of METASAFE is around 10% while unsafe Rust
could bring more performance benefit as a recent work com-
paring the performance of C- and Rust-implementation of
same algorithms [41].

8 Related Work

8.1 Memory Safety in Rust
As mentioned in §3, recent studies viewed unsafe Rust and
FFI functions as the remaining sources of vulnerabilities and
proposed to isolate them from safe Rust. Accordingly, more
existing mechanisms designed to enhance the memory safety

of Rust programs share the primary goal of preventing cor-
ruption from unsafe components propagating to the rest by
restricting access to the safe Rust’s memory objects.

XRust [19] allocates heap objects that are used in unsafe
Rust and FFI functions with separate heap allocator, rely-
ing on the manual indication of a programmer. To enforce
in-process isolation, XRust uses SFI, instrumenting runtime
checks to ensure that objects allocated by the separate alloca-
tor would never be able to dereference outside the specified
region.

TRust [2] automatically identifies stack and heap memory
objects used in unsafe Rust and FFI functions, as well as their
allocation sites. It uses SFI to isolate unsafe Rust and Intel
MPK to isolate FFI functions.

PKRU-Safe [14] uses dynamic profiling to distinguish heap
memory objects the FFI functions access and protect the other
from the FFI functions using Intel MPK. Unlike XRust and
TRust, PKRU-Safe’s focus is FFI and does not handle bugs
arising from unsafe Rust. These techniques assume that the
vulnerability lies only in unsafe Rust and FFI functions and
strive only to isolate them.

Galeed [23] is another work on compartmentalizing Rust
programs. It is distinguished from the others by the target
use case. Unlike most other compartmentalization works,
Galeed aims to protect a Rust program that runs as a part
of a larger program written in unsafe language. From the per-
spective of the threat model, Galeed is close to PKRU-safe.
It also considers unsafe Rust as trusted and only prevents
non-Rust code from accessing the Rust program’s compart-
ment. Specifically, Galeed mediates the access to Rust’s com-
partment from outside using the pointer shared by Rust pro-
gram, called shared pointer, using the concept called pseudo-
pointers. These shared pointers delivered to the external code
are merely the memory addresses that the external code under-
stands and can be derived from either smart pointers or others
used by Rust program. Galeed aims to prevent the misuse of
these shared pointers by the external code, while METASAFE
aims to prevent the corruption of smart pointers within Rust
program. Note that smart pointers remain protected because
only Rust code, which includes the ones in unsafe Rust, has
access to the smart pointer metadata under Galeed’s threat
model. However, vulnerabilities in unsafe Rust code, which
is known to be prevalent, may still enable an attacker to ma-
nipulate safe Rust’s memory object, including smart pointer
metadata.

As discussed in §3, these either leave safe Rust objects
directly accessible from unsafe Rust or do no give special
care to smart pointers, potentially leaving them accessible
from unsafe Rust or FFI functions.



8.2 Compartmentalization and In-process Iso-
lation

The idea of partitioning or compartmentalizing a program
into multiple compartments and granting only the selected
portion of the program access to each compartment is not
new and has been explored for decades under many differ-
ent contexts. One of the most widely used primitive is SFI,
owing to its independence to architectural support. Many so-
lutions have been published to utilize, adapt and optimize SFI
for different use cases [3, 9, 10, 22, 29, 30, 38, 40, 42]. Kon-
ing et al. [16] systematically evaluates and compares many
different primitives, including SFI, and reports that MPK is
effective for compartmentalizing programs thanks to its low
permission switch latency. This work led to the development
of more intra-process sandboxes [11, 28, 35] using MPK or
similar architectural features. The popularity of this technique
also motivated a comprehensive study on the level of secu-
rity and the best practice of MPK- or PKU-based isolation
techniques [5, 27, 37].

9 Conclusion

This study introduces METASAFE, a pioneering approach
that extensively explores and safeguards smart pointers and
their associated metadata storage in Rust. METASAFE is de-
signed to compartmentalize and protect metadata of smart
pointers and allocators from unauthorized access using Intel
MPK. Furthermore, it ensures metadata integrity by validating
modifications to smart pointers through its implementation,
utilizing allocator metadata. We tested the METASAFE pro-
totype across microbenchmarks and real-world applications,
including a web rendering engine. Experimental results re-
veal that METASAFE imposes minimal (<7%) overhead on
the execution time of real-world applications, indicating its ef-
ficiency. We also demonstrated its effectiveness by presenting
real-world CVEs that METASAFE could successfully miti-
gate, thereby attesting to its security guarantees. In essence,
METASAFE presents an effective and efficient solution for
safeguarding smart pointer metadata, a crucial component for
ensuring memory safety in Rust.
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