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Abstract
Constant-time implementations are essential to guarantee

the security of secret-key operations. According to Jancar et
al. [42], most cryptographic developers do not use statistical
tests to evaluate their implementations for timing side-channel
vulnerabilities. One of the main reasons is their high unreli-
ability due to potential false positives caused by noisy data.
In this work, we address this issue and present an improved
statistical evaluation methodology with a controlled type-1
error (α) that restricts false positives independently of the
noise distribution. Simultaneously, we guarantee statistical
power with increasing sample size. With the bounded type-1
error, the user can perform trade-offs between false positives
and the size of the side channels they wish to detect. We
achieve this by employing an empirical bootstrap that creates
a decision rule based on the measured data.

We implement this approach in an open-source tool called
RTLF and compare it with three different competitors: Mona,
dudect, and tlsfuzzer. We further compare our results to the
t-test, a commonly used statistical test for side-channel analy-
sis. To show the applicability of our tool in real cryptographic
network scenarios, we performed a quantitative analysis with
local timing measurements for CBC Padding Oracle attacks,
Bleichenbacher’s attack, and the Lucky13 attack in 823 avail-
able versions of eleven TLS libraries. Additionally, we per-
formed a qualitative analysis of the most recent version of
each library. We find that most libraries were long-time vul-
nerable to at least one of the considered attacks, with side
channels big enough likely to be exploitable in a LAN setting.
Through the qualitative analysis based on the results of RTLF,
we identified seven vulnerabilities in recent versions.

1 Introduction
Cryptographic algorithms that operate on secret data are prone
to side-channel attacks. One primary example are timing side
channels, where the algorithm may leak information about
the secret data through their execution time. An attacker can
exploit this by benchmarking execution times of known and
unknown secrets.

Side Channels Are Hard To Prevent Prime examples of
timing side channels are conditional branches based on secrets
and secret-based memory access, which create timing differ-
ences through the CPU cache. To prevent timing side-channel
attacks, developers devised different strategies, colloquially
known as constant-time programming. These strategies in-
clude, for example, the replacement of branches by logical
operations to ensure a constant control flow. However, de-
velopers often do not mitigate side channels systematically;
according to Jancar et al. [42], two out of 20 cryptographic
libraries claimed that side-channel attacks were outside their
attacker model, and another ten libraries only used best-effort
strategies to mitigate them. While there are different tools
available to support developers [4, 5, 6, 7, 8, 11, 14, 20, 22,
25, 31, 38, 39, 49, 50, 59, 71, 83, 84, 94, 96, 97, 98, 105],
according to Jancar et al. [42], these tools are often perceived
as hard to use.

All previously mentioned tools rely on a well-defined leak-
age model [9, 30, 56] to abstractly reason about the absence
of timing side channels. However, accurately modeling real-
world leakages is challenging and requires intensive knowl-
edge about underlying software and hardware layers [9]. An
example of this is the underlying assumption that the CPU
instructions are executed in constant time independently of
their operands. This is not always the case as, for exam-
ple, the UMUL instruction on an ARM Cortex-M3 is not con-
stant time. The expectations of the cryptographic community
on the underlying hardware keep getting further subverted
by attacks like Spectre [47], Meltdown [53], and the recent
Hertzbleed [95]. Hertzbleed is especially interesting in this
context, as it showed that changes in the CPU frequency may
depend on the values used in otherwise identical instructions.
Since the CPU frequency directly influences the execution
time, an attacker may be able to derive information about a
secret parameter based on a timing side channel.

Measurements Are Necessary Given the complex hard-
ware impact on timing behavior and the unreliability of source
code tools, measuring the timing behavior of a deployed sys-



tem is indispensable. Analysis of the gathered timing sam-
ples is offered through tools like Mona [75], dudect [68],
and tlsfuzzer [45]. However, timing measurements are often
omitted in the development life cycle; according to Jancar
et al. [42], five out of 20 libraries only did manual statistical
runtime testing.

Statistical Terminology A statistical evaluation can test a
hypothesis on two random distributions, for example, to test
if a random number generator is good, one tests the hypoth-
esis H0 that the distribution of its outputs is identical to the
uniform distribution. If a statistical test rejects H0, this means
that the outputs of the generator are not uniformly distributed.
It is then assumed that hypothesis H1 holds, which states that
the two distributions are different.

In cryptographic timing measurements, we repeatedly mea-
sure the execution time of a secret-key operation under two
different preconditions PX and PY (e.g., padding is correct vs.
padding is incorrect). We thus produce two different statisti-
cal samples x := (x1, . . . ,xn) and y := (y1, . . . ,yn). If there is a
statistically significant difference between these two samples,
it may be possible to learn, for a randomly chosen cipher-
text, if PX or PY holds. To determine if this is the case, we
test the null hypothesis, which assumes that the distributions
of x and y are equal. If H0 is rejected, this is an indication
that the two distributions may not be equal and that there
may be a difference. However, since we are working with
finite samples, a test of the H0 hypothesis may fail for two
reasons: wrongfully rejecting H0 (type-1 error, false positive)
or wrongfully accepting H0 (type-2 error, false negative). The
rate of correctly rejecting H0 is referred to as statistical power
(true positive rate).

Statistical Guarantees In general, for two unknown distri-
butions DX and DY , it is impossible to give a bound on the
type-2 error for a given sample size. This is because these dis-
tributions may be arbitrarily close but still different; think of
two otherwise identical distributions DX and DX+ε, where the
values for DX+ε are sampled from DX , but a small constant
value ε is added to each sample. For each sample size n, we
can then choose a value εn such that H0 is falsely accepted.

However, it is possible to bound the type-1 error. For para-
metric distributions, i.e., distributions that can be character-
ized by a few parameters, such tests are available in standard
tools. For example, if the tested distribution is ’close enough’
to the normal distribution (which can be characterized by the
two parameters mean and variance), a t-test can be used. Un-
fortunately, such parametric approaches are inadequate for
timing measurements as real-world timing measurements are
highly complex and cannot be sufficiently captured through
parametric distributions.

There are two research directions for designing statistical
tests with a bounded type-1 error rate for non-parametric
distributions:

• Bounded type-1 error for small samples: Since sam-
pling (not only for timing measurements) comes with a
cost, it is desirable to bound the type-1 error already for
small samples. This implies that as much information as
possible from the samples should be used in the test.

• Trade-off between type-1 error rate and detection
rate: For a fixed sample size, a lower type-1 error im-
plies a lower detection rate. For example, for a given
sample size of two distributions, the mean will nearly
always be different; for a low type-1 error, we would
make the tolerance interval (or confidence intervals) for
this difference, which we consider to be attributable to
random noise, larger, and would therefore not detect a
difference if the mean of the two distributions lies in
this interval. This implies that it is desirable to use the
desired type-1 error rate as an input parameter to the
statistical test and not hardcode it.

Tools like Mona [75] and dudect [68] aim for low error and
good detection rates for small samples, but both error and
detection rates have not been quantified. Moreover, we will
empirically show in Section 4 that both tools may have low
detection rates or unbounded type-1 errors. This leads to our
first research question:

RQ1: Can statistical techniques be used in the
context of the non-parametric distributions of
timing measurements to design tests for arbi-
trary samples, where the type-1 error and detec-
tion rate are balanced by an input parameter?

We answer this question in the affirmative. Any statistical
method aims to maximize the detection rate (or minimize the
type-2 error) for a prescribed type-1 error. tlsfuzzer [45], a
recently released tool for timing analyses, already addresses
this challenge better than Mona and dudect but still lacks ef-
fectiveness in terms of statistical power. In our approach, we
use multiple quantiles to extract as much information as pos-
sible from the distributions. In order to guarantee a balance
of type-1 error and detection rate, we employ an empirical
bootstrap to obtain a reasonable decision rule (i.e., a rule to
reject or accept H0) based on the measurements. Specifically,
the derived decision rule does not exhibit excessively conser-
vative behavior, nor does it produce an inflated type-1 error
rate (cf. Section 4). Our construction is described in Section 3
and implemented in our tool R-Time-Leak-Finder (RTLF).

Timing Measurements for TLS To evaluate our approach,
we chose especially noisy timing side channels – secret data
operations in complex real-world TLS implementations. For
TLS implementations, various exploitable timing side chan-
nels have been published [1, 2, 16, 17, 60, 62, 104, 108], and
various fixes have been applied to the source code of the at-
tacked libraries to make them ’more constant time’. These
fixes were mostly applied after a vulnerability was discovered
and published – the success of these fixes is not documented.
This leads to our second research question:



RQ2: Do potential timing side channels still exist
in TLS implementations? If not: when have they
been fixed, and are these fixes stable?

We answer this research question by performing the first quan-
titative timing side-channel study on TLS libraries. We tested
eleven different libraries, in 823 versions. We considered
Bleichenbacher [12], Vaudenay Padding Oracle [92], and
Lucky13 attacks [1] which triggered a large body of side-
channel research [2, 13, 55, 61, 62, 72, 73, 77, 106] and thus
had continuous impact on the tested libraries.

Results in TLS Libraries Our qualitative analysis of the
most recent libraries revealed that a significant number of
libraries exhibit vulnerabilities that are probably exploitable
in a LAN setting. Our approach detected eight potential vul-
nerabilities across the libraries, seven of which we could man-
ually attribute to specific locations in the source code (cf.
Section 7).

Overall, a high number of TLS libraries contained remotely
exploitable timing vulnerabilities throughout different ver-
sions that are present for very long periods and sometimes
still not fixed. Our study shows that throughout its history,
TLS is and was in a bad state regarding the analyzed vulnera-
bilities (cf. Section 6 and Section 8).

Contributions We make the following contributions:

• We propose a non-parametric test based on quantile dif-
ferences to statistically evaluate timing measurements
with a type-1 error bounded by an input parameter α (cf.
Section 3.3), which we publish in an open-source tool
called RTLF1.

• We compare RTLF with different competitors by evalu-
ating them based on artificial timing side channels (cf.
Section 4)

• We present a large-scale and longitudinal timing evalua-
tion of eleven TLS libraries in 823 versions across three
vulnerabilities and discuss the results for OpenSSL in
more detail (cf. Section 6 and Section 8).

• We verify our results in the newest version of the an-
alyzed libraries through manual code review. Our tool
could detect eight potential attacks, of which we could
pinpoint seven to specific locations in the code, result-
ing in three Vaudenay Padding Oracle vulnerabilities,
three Bleichenbacher vulnerabilities, and two Lucky13
vulnerabilities (cf. Section 7).

Responsible Disclosure We contacted the developers of
the libraries for which we identified exploitable timing leaks
in their most recent version. Mozilla is in the process of
patching the reported issues for NSS. The responses from
other libraries reflect the results from Jancar et al. [42], that
timing side channels are typically not systematically mitigated
and are not the highest priority for the developers.

1https://github.com/RUB-NDS/RTLF

2 Background
Timing attacks were first described by Paul Kocher in the con-
text of private-key operations on smartcards [48]. He showed
that if the naive square-and-multiply algorithm is used for
exponentiation, the Hamming weight of the exponent can
directly be deduced from the execution time; with more so-
phisticated measurements, the private key itself can be com-
puted. Secret-data-based cache access (a prime example for
the more general case of secret data access) also poses a com-
mon source for timing differences, as frequently used data
will be available faster to a program than less frequently used
data.

Attacker Models The attacker’s position in relation to the
target is important for the exploitability of side channels. The
closer the attacker is to the victim, the better the attacker can
gather the leaked data. A special attacker model is the co-
located attacker, where the attacker shares the hardware with
the victim, giving the attacker the ability to probe cache lines,
allowing for more powerful side-channel attacks like trace
attacks. While academically, the co-located attacker model
has been intensively studied [18, 19, 23, 65, 107, 108], it is not
considered by all implementations. For example, OpenSSL,
one of the most prominent cryptographic libraries in the world,
updated its security policy in 2019 to exclude side-channel
attacks with a co-located attacker from their security model.
Such security issues will be mitigated, but not awarded with
a CVE anymore. In our paper, we therefore focus on side
channels that likely do not require a co-located attacker.

2.1 Transport Layer Security
The Transport Layer Security protocol (TLS) [28, 69] pro-
vides confidentiality, authenticity, and integrity of the ex-
changed data on the underlying transport protocol. To guar-
antee secure encryption using the record layer, all required
cryptographic parameters, such as keys and algorithms, are
negotiated through the TLS handshake protocol.

CBC Padding Oracle Attacks In 2002, Vaudenay first
introduced the concept of a Cipher Block Chaining (CBC)
Padding Oracle attack [92]. The attack relies on a decryption
oracle that responds to queries about CBC padding validity.
This behavior can be used to execute an adaptive chosen-
ciphertext attack. TLS 1.0, 1.1, and 1.2 employ CBC mode
in a MAC-then-Pad-then-Encrypt scheme [28], making them
potentially vulnerable to these attacks.

Lucky13 In 2013, AlFardan and Paterson discovered
Lucky13, the most commonly known timing side-channel at-
tack on the MAC-then-Pad-then-Encrypt scheme in TLS [1].
They showed that certain padding modifications also affect
the length of data validated by the MAC algorithm, result-
ing in a tiny timing side channel that can be exploited to run
Padding Oracle attacks.

https://github.com/RUB-NDS/RTLF


Bleichenbacher Attacks In 1998, Daniel Bleichenbacher
published an adaptive chosen-ciphertext attack on RSA en-
cryption schemes that use PKCS #1 v1.5 padding [12]. For
TLS, this attack enables the attacker to recover the Premaster
Secret of a recorded session and thus decrypt any applica-
tion data exchanged by the communicating peers. Over time,
different types of oracles re-enabled Bleichenbacher’s attack.
For example, Klima et al. [46] found an oracle resulting from
an invalid TLS version in the decrypted ciphertext.

The most recent version TLS 1.3 [69] solves many of these
issues by prohibiting RSA PKCS#1 v1.5 and CBC. However,
Jager et al. [41] showed that a cross-protocol Bleichenbacher
attack is possible against TLS 1.3, if server implementations
use the same certificate for previous versions of TLS.

2.2 Statistics
Statistical hypothesis tests are used to derive a quantitative
decision based on data x := (x1, . . . ,xn) and y := (y1, . . . ,yn).
They derive a decision to accept or reject the null hypothe-
sis H0 in favor of an alternative hypothesis H1 based on a
summary statistic S := S(x,y), which derives a summarizing
quantity based on the data (e.g., mean). Here, S(·, ·) is also
called the test statistic.

Background Usually, a two-sample hypothesis test is con-
structed in a way that given data x and y, they select H1 in
favor of H0 if the summary statistic S(x,y) exceeds some
threshold c, above which S seems at odds with H0. Since
the data contains some unpredictable randomness, there is
always a risk of a false decision against or for H0. In statisti-
cal terms, rejecting H0 when it holds true is usually referred
to as a type-1 error (false positive), while not rejecting the
hypothesis H0, which does not hold true, is called a type-2
error (false negative). In this context, α represents the prede-
termined type-1 error rate that is deemed acceptable. Specifi-
cally, we have P(S > c|H0; is true)≤ α. The statistical power
of a hypothesis test is the probability of rejecting H0 when
H1 is true (i.e., the probability of a true positive). As the
sample size increases, a well-designed hypothesis test should
eventually reject H0 when H1 is indeed true. In other words,
limn→∞P(S > c|H1; is true) = 1. This is an important charac-
terization for the type-2 error, as it is asymptotically negligible
in the sample size n.

Bootstrap In a lot of statistical frameworks, the threshold c
may be unknown. In such cases, the true theoretical threshold
c can be estimated through a procedure known as bootstrap-
ping, which is based on a simulation of the test statistic for
artificially generated random data with a distribution closely
similar to the true but unknown distribution of the data. In this
paper, we use a specific resampling strategy that depends on
the data set. By repeatedly resampling the data set and imitat-
ing the behavior of S given H0, an empirical estimator c∗ for
c := c(1−α) can be obtained. More detailed, if we consider a
rejection rule of the form S > c and S is resampled exactly B

times, we can order the resulting values, S∗1, . . . ,S
∗
B and output

the empirical threshold c∗ := S(⌊(1−α)B⌋). In summary, boot-
strapping allows one to define a configurable threshold. For a
more theoretical introduction and statistical guarantees, we
refer to [89].

Quantiles The p−th quantile is a statistical measure that
separates the lowest p% of the data set from the remain-
ing (100− p)% of the data. The p−th quantile of a con-
tinuous real-valued random variable X can be defined by
P(X ≤ qp)≥ p and P(X ≥ qp) ≤ 1− p. In other words, the
p−th quantile is the value qp ∈ R such that p% of the proba-
bility mass is lower or equal to qp and (1− p)% larger.

2.3 Timing Measurements
Timing measurements, which capture the real runtime of a
system, can be analyzed with statistical techniques to detect
timing side channels. However, statistical techniques cannot
prove the absence of certain types of side channels but can
only make statistical statements. Since statistical techniques
operate on actual measurements, they are limited by the ability
to perform accurate measurements. Additionally, because
statistical methods have to execute the code, only a limited
number of inputs from the input space can be tested. Choosing
inputs that will most likely trigger side-channel vulnerabilities
is up to the user of the technique.

That said, a considerable upside of statistical techniques is
that they do not require a leakage model as they interact with
the system like a remote attacker would. This allows statisti-
cal techniques to potentially also find issues that are outside
of the expected leakage model of the developer. Statistical
methods are independent of the used programming language
or hardware, which makes them generally easy to use.

Mona Timing Report2 [75] is a statistical analysis tool
that performs Crossby’s box test [24] for a given set of mea-
surements. Unless the user specifies a box, Mona Timing
Report will iterate over all percentile boundaries in steps of
one percent. Finally, it returns the biggest box where the mea-
surements of two distributions did not intersect. If any box
was found, the distributions are assumed to be different. If
no box could be found, the distributions are assumed to be
the same. Subsequently, we refer to Mona Timing Report as
Mona.

dudect3 [68] performs a series of Welch’s t-tests [74]. It
collects measurements in batches until a difference has been
determined. For distributions without a timing difference,
dudect will never terminate. Based on its first set of mea-
surements, dudect determines 100 percentiles, ranging from
the fastest 6.7% to the fastest 99.9%, to group future mea-
surements into data sets of increasing size. For each data set,
dudect conducts a separate t-test as well as a t-test based on
all measurements and on the variance of all measurements,

2https://github.com/seecurity/mona-timing-report
3https://github.com/oreparaz/dudect

https://github.com/seecurity/mona-timing-report
https://github.com/oreparaz/dudect


resulting in a total of 102 t-tests. Only if the result of one t-test
with at least 10,000 data sets exceeds ten, dudect assumes that
two distributions are different.

tlsfuzzer4 [45] conducts a series of different statistical tests.
For the final decision, four distinct tests are executed, namely
the Wilcoxon signed-rank test [103], Sign test [93, Section
15.3], t-test [74], and Friedman test [34]. If any of these tests
reveal a statistically significant difference among the distribu-
tions, tlsfuzzer asserts the presence of a difference. In addition
to these tests, tlsfuzzer also generates confidence intervals
for certain quantities, such as the mean or median, through
a bootstrap procedure. However, these are not part of the
decision-making process.

3 Methodology
In this work, we propose a new statistical technique based on
a combination of quantile estimators with a bootstrap method
for detecting subtle timing side channels. This approach al-
lows us to obtain a configurable threshold for the type-1 error
that can be used to optimize the analysis towards nuanced
side channels or low false positives.

3.1 Trade-Off Between Type-1 Errors and
Power

Statistical approaches in tools like Mona [75] or dudect [68]
use static algorithmic methods to decide if H0 should be ac-
cepted or rejected. There are several ways in which this can
cause significant problems. For example, if the static decision
rule is based on some highly conservative value, one will al-
most always obtain a false positive rate of 0. This might seem
attractive at first glance. However, a highly conservative value
also reduces the probability of detecting timing differences
and thus inflicts a significant loss of statistical power. We
could observe such static rules defined in dudect.

Another potential damage can result from statistical meth-
ods using static sizes of quantiles. For example, Mona formu-
lates a decision rule based on a difference in quantiles of at
least 1%. This brings several drawbacks. First, the decision
rule does not account for variability in the data, i.e., the rule
does not compensate for larger variances. Ignoring the com-
pensation of larger variances inflicts inflated type-1 error for
noisy data. In other words, the analyses performed by Mona
can potentially lead to false positives if the data contains much
noise. Second, Mona excludes any side channels that are be-
low 1% while they may still be relevant. Specifically, for any
difference below 1%, Mona’s type-2 error will converge to 1
for n→ ∞.

Given these two examples, it is clear that statistical ap-
proaches that balance the type-1 and type-2 errors can im-
prove the outcome significantly. In particular, our approach
makes a conscious (and quantifiable) decision about the
amount of acceptable type-1 errors.

4https://github.com/tlsfuzzer/tlsfuzzer

3.2 Intuition
Our approach aims to detect systematic differences between
the measurements collected under two distinct precondi-
tions PX and PY , such as two differently structured proto-
col messages. We base our analysis on time differences in
quantiles of measurements by comparing the deciles (i.e.,
10%,20%, . . . ,90% quantiles). Even for identical distribu-
tions, we expect some noise and measurement imprecision,
meaning the deciles will never be exactly the same. There-
fore, we need a threshold to determine when the deciles of the
two preconditions are different enough to conclude that the
distributions are distinct. To set this threshold, we repeatedly
sample two sets of measurements for each vector and compare
the deciles of these sets. By repeating this step B = 10,000
times, we obtain 10,000 simulated differences for each decile
and vector. For a type-1 error α = 9%, we discard the worst
1% of differences observed in each decile. We use the next-
largest value as the tolerance of the measuring setup, as it
estimates the expected noise (cf. Algorithm 1). We consider
the distributions A and B to be different only if the difference
in at least one decile of A and B exceeds this tolerance. The
type-1 error threshold amounts to at most 9% since each of
the nine deciles has an empirical type-1 error of at most 1%.

3.3 Distinguishing Distributions Dynamically
There are several statistical methods discussed in the literature
that can distinguish two distributions (e.g., [74]). The primary
objective of our approach is to ensure robustness against type-
1 errors. Specifically, our method is designed to adhere to a
pre-selected maximum type-1 error rate (α), while avoiding
excessive conservatism and maintaining adequate statistical
power as the sample size (n) increases. Additionally, we make
no distributional assumptions on the data x and y. In particular,
we consider independent and identically distributed (iid) ran-
dom variables X1, . . . ,Xn and Y1, . . . ,Yn with finite variances.
In order to compare their distributions, we will compare their
quantiles qX

i ,q
Y
i . In more detail, we consider the hypothesis

H0 : |qX
i −qY

i |= 0,∀i = 1, . . . ,9 , (1)

versus
H1 : ∃i = 1, . . . ,9 : |qX

i −qY
i | ̸= 0 . (2)

Note that the above construction is a natural extension of non-
parametric tests, like e.g. the Wilcoxon signed-rank test [103],
which essentially discriminates against distributions through
their median. However, due to the complex structure of timing
measurements, we explicitly allow for a more sophisticated
analysis by considering more quantiles than the median. In
our work, we decided to consider deciles. While there is a
natural conflict between testing more quantiles and the type-1
error in this construction, our preliminary simulations sug-
gested that this is an appropriate trade-off. In particular we
point out that decreasing the number of quantiles potentially
produces more false negatives, while increasing it would yield

https://github.com/tlsfuzzer/tlsfuzzer


a higher false positive rate or in our case inflict more conser-
vative thresholds for the same α.
In the following, we use a standard quantile estimator. For
data x1, . . . ,xn, we define the i−th quantile estimator by

q̂x
i :=

{
x(⌈ni⌉), if ni /∈ Z
1
2 (x(ni)+ x(ni+1)), if ni ∈ Z

, (3)

where x(i) denotes the i−th order statistic. To construct an
appropriate test, we need to define a test statistic which can
test the hypothesis in (1). For that purpose, we consider

Q̂i(x,y) := |q̂x
i − q̂y

i | . (4)

With that in hand, H0 will be rejected, if and only if there
exists i ∈ {1, . . . ,9} such that

Q̂i(x,y)> c(1−α/9, i) , (5)

where c(1−α, i), i ∈ {1, . . . ,9} is the critical value for the
test, and α denotes the level of the test which has to be
fixed in advance and is supposed to amount to the type-1
error of the test. In the following section, we will determine
c(1−α) := (c(1−α/9, i))i=1,...,9 by a bootstrap procedure
(cf. Algorithm 1). In order to avoid an inflated type-1 error,
we use the Bonferroni correction [78], i.e., we set α := α1/9,
where α1 is the desired type-1 error (e.g., 0.01,0.09).

3.4 Bootstrap
Next, we discuss the estimation of the threshold c(1−α) by
a bootstrap-based threshold c∗(1−α). The basic idea of the
bootstrap is to simulate the distributional behavior under H0
by repeated application of the method to bootstrap datasets
generated from the original data by some random procedure.
Such resampling strategies have not only been shown to be
effective in empirical studies (e.g., [27]) but have also proven
to lead to consistent decision rules (cf. [89]). In a statistical
context, Algorithm 1 is usually called empirical bootstrap
(for further details, see [89] and Appendix A). With that in
hand, we obtain a sustainable decision rule by comparing

Q̂ := (Q̂1(x,y), . . . , Q̂9(x,y))> c∗
(

1− α

9

)
, (6)

where the comparison is done decilewise. We reject H0 if and
only if at least one component is larger. The final test decision
is then done by Algorithm 2.

3.5 R-Time-Leak-Finder (RTLF)
We implemented our approach in a script called RTLF5 in R.
The script takes two labeled measurements and a value α as
input. While the bootstrap parameter can be set by the user,
we choose B = 10,000 for the rest of this paper. We briefly
discuss the effect of this parameter in Section 8. The script

5https://github.com/tls-attacker/RTLF

Algorithm 1 Threshold Bootstrap
Require: Time measurements: x = (x1, . . . ,xn), y = (y1, . . . ,yn),

bootstrap iterations: B, type-1 error: α

Ensure: c∗(1−α, j).
1: function Threshold(x, y, B, α)
2: for i = 1, . . . ,B do
3: Sample x∗1 = sample(x,n),x∗2 = sample(x,n), x∗ := (x∗1,x

∗
2) .

4: Sample y∗1 = sample(y,n),y∗2 = sample(y,n), y∗ := (y∗1,y
∗
2) .

5: for j = 1, . . . ,9 do
6: Compute Q∗i, j(x

∗) = |q̂x∗1
j − q̂

x∗2
j |

7: Compute Q∗i, j(y
∗) = |q̂y∗1

j − q̂
y∗2
j |

8: end for
9: end for

10: for j = 1, . . . ,9 do
11: Sort statistics in ascending order:
12: (Q∗(1), j(x

∗), ...,Q∗(B), j(x
∗)) = sort(Q∗1, j(x

∗), ...,Q∗B, j(x
∗)) .

13: (Q∗(1), j(y
∗), ...,Q∗(B), j(y

∗)) = sort(Q∗1, j(y
∗), ...,Q∗B, j(y

∗)) .
14: c∗(1−α/9, j) :=max{Q∗(⌊(1−α/9)B⌋), j(x

∗),Q∗(⌊(1−α/9)B⌋), j(y
∗)} .

15: end for
16: return c∗(1−α) := (c∗(1−α/9,1), . . . ,c∗(1−α/9,9)).
17: end function

Algorithm 2 Timing Test
Require: Time measurements: x = (x1, . . . ,xn), y = (y1, . . . ,yn),

bootstrap iterations: B, type-1 error: α

Ensure: classification 0 or 1.
1: function Test(x, y, B, α)
2: c :=Threshold(x, y, B, α)
3: for j = 1, . . . ,9 do
4: Compute Q̂ j(x,y) = |q̂x

j− q̂y
j|

5: end for
6: if there exists j = 1, . . . ,9 with Q̂ j(x,y)> c j then
7: return 1
8: else
9: return 0

10: end if
11: end function

outputs c∗(1−α), Q̂, and a binary vector that indicates the
decision for each quantile. Here, large values of c∗(1−α)
imply large variances, which can be an indicator of noise.
If one coordinate of Q̂ j surpasses its threshold c∗(1−α, j),
we reject H0. Here, a larger value of the absolute difference
Q̂ j− c∗(1−α, j) implies a larger timing difference, poten-
tially indicating a larger side channel.

4 Ground Truth Analysis
To evaluate our statistical approach, we compared RTLF to
two previous statistical tools, dudect and Mona. Addition-
ally, we also compare RTLF to Welch’s t-test [74] (t-test),
which was also used in the Test Vector Leakage Assessment
(TVLA) approach proposed by Goodwill et al. [37], which
was later recommended for side-channel analysis by ISO/IEC
17825 [40]. We excluded tlsfuzzer from the comparison be-
cause it requires at least three distributions as input to perform
its entire range of tests. For our comparison, we created ar-
tificial applications with well-defined timing side channels
such that we could gather data with ground truth. These artifi-

https://github.com/tls-attacker/RTLF


Side Channel Distribution X Distribution Y

tail 100%: 20x256 N 5%: 19x256 N + 128 N
80%: 20x256 N
10%: 20x256 N + 32 N
5%: 20x256 N + 64 N

same-mean 100%: 40x256 N 50%: 10x256 N
50%: 70x256 N

shift-5% 100%: 20x256 N 100%: 20x256 N + 250 N

shift-1% 100%: 20x256 N 100%: 20x256 N + 50 N

shift-0.9% 100%: 20x256 N 100%: 20x256 N + 45 N

same-xy 100%:100x256 N + 10 R 100%:100x256 N + 10 R

Table 1: Description of the side channels built to model vari-
ous distributions based on varying numbers of no operation
instruction (N) and sampling of random numbers using C’s
rand() call (R).

cial timing side channels were created using ASM no opera-
tion (N) instructions and system calls to the random number
generator of the OS to follow specific controllable distribu-
tions (X and Y ) to show how these tools perform in different
situations.

In our test setup, we let a client connect locally to a server
application. The client performs measurements for two dis-
tributions, X and Y . Based on the data sent by the client, the
server knows which distribution to simulate. As in previous
studies [58, 68], we randomized the measurement order for X
and Y to mitigate the impact of side effects and allow for the
iid assumption made in Section 3.3. We collected n measure-
ments for each distribution. This setup was chosen to simulate
the same effects one might see in real applications using a
mix of system calls and network operations.

Test Data Generation An overview of our created side
channels is presented in Table 1. The test cases tail and same-
mean simulate two different distributions, X and Y , with the
same mean value. shift-5%, shift-1%, and shift-0.9% simulate
a shift between the X and Y distributions. Test case same-xy
is used to evaluate the theoretical type-1 error α for different
sample sizes – here the distributions X and Y are identical.

Rationale Some presented distributions were specifically
chosen to show shortcomings in the analyzed tools while still
being plausible in real-world applications. We expect that the
test case tail should present the weaknesses of dudect as it
operates on the mean of the distributions. The test cases shift-
5%, shift-1%, and shift-0.9% should reveal the weaknesses of
Mona. We expect that Mona fails to detect the side channels
with 1% and 0.9% shifts since its static box-test boundary
ranges exclude any side channels that are below 1%.

Setup For each distribution (and experiment), we gathered
up to 500,000 timing values based on CPU clock cycles. For
the experiments, we used a consumer desktop PC with Intel(R)
Core(TM) i7-6700 CPU 3.40GHz with 16 GB RAM running
Ubuntu 20.04.2 LTS.

Side Channel Samples RTLF dudect Mona t-test

tail (X ,Y ) 30k 59.1% 0% 68.3% 40.9%
same-mean (X ,Y ) 30k 100% 100% 100% 68.9%
shift-5% (X ,Y ) 30k 100% 98.8% 100% 14.2%
shift-1% (X ,Y ) 30k 22.6% 0.2% 25.6% 43.8%
shift-0.9% (X ,Y ) 30k 22.1% 0% 23.6% 51.8%

tail (X ,Y ) 500k 100% 98.3% 95% 55.9%
same-mean (X ,Y ) 500k 100% 100% 100% 83.4%
shift-5% (X ,Y ) 500k 100% 100% 100% 99.1%
shift-1% (X ,Y ) 500k 97.5% 50.9% 33.2% 31.6%
shift-0.9% (X ,Y ) 500k 93.5% 21.2% 12% 45.3%

Table 2: Analysis of the true positive rates based on the gener-
ated side channels. We evaluated each tool 1,000 times with
each side channel and state. We configured RTLF and the
t-test with α = 0.09.

4.1 Evaluation
For the tool comparison, we configured RTLF with a type-
1 error rate of α = 0.09. We chose this value as it is large
enough to illustrate how our type-1 error rate behaves for
varying sample sizes (see Table 3), while also remaining low
enough to be distinguishable from an uncontrolled type-1
error in all sample sizes. Moreover, we adapted dudect to
operate on a given set of measurements as it was designed
to collect measurements itself. We ran each tool 1,000 times
with samples of the size given in Table 2. For each tool, we
state how often H0 was rejected, which corresponds to a True
Positive for tail, same-mean, shift-5%, shift-1%, and shift-
0.9%. For same-xy, in contrast, this represents a type-1 error
(False Positive).

Result As shown in Table 2 and Table 3, our analysis con-
firms the expected weaknesses of Mona and dudect: For tail,
shift-1%, and shift-0.9%, dudect fails to detect the existing
side channels for a small sample size of 30,000. On the other
hand, dudect shows a constant type-1 error rate of 0% for all
sample sizes. Both of these effects are the result of its con-
servative decision rule. For Mona, we can see the expected
drop in statistical power for a decreasingly distinct shift: for
shift-5%, the detection rate is close to 100% for both sample
sizes, while for shift-1% and shift-0.9%, we observed signifi-
cantly lower detection rates, even for large sample sizes. The
type-1 error, in contrast, steadily declines with increasing sam-
ple size, dropping from 40.8% (15,000 sample size) to 0%
(500,000 sample size). The t-test generally performs worse
than Mona except for shift-1% and shift-0.9%, where it is
significantly better for a smaller sample size but still also does
not detect the timing difference reliably. As shown in Table 3,
the t-test shows a consistently high type-1 error rate of around
30% for test case same-xy for sample sizes up to 30,000 and
only manages to remain within its α-value for large sample
sizes.

In comparison, RTLF reliably detects all distinct distri-
butions for a sample size of 500,000. For 30,000 samples,



the detection rate is on par with Mona. This also applies to
shift-1% and shift-0.9%, where RTLF likewise failed to detect
the difference reliably. Our analysis in Table 3 confirms that
RTLF remains within the configured type-1 error threshold
α = 0.09, resulting in lower error rates than for Mona and
the t-test. For completeness, we also performed a type-1 error
analysis based on samples of distribution Y of the distinct side
channels. The results are in line with our previous results and
are shown in Table 4. We further depict the effect of varying
α values on the type-1 error rate in Table 5.

Side Channel Samples RTLF dudect Mona t-test

same-xy (X ,Y ) 15k 9.2% 0% 40.8% 27.6%
same-xy (X ,Y ) 20k 9.4% 0% 24% 30.8%
same-xy (X ,Y ) 25k 7.6% 0% 12.7% 30.6%
same-xy (X ,Y ) 30k 5.9% 0% 7.5% 30.6%
same-xy (X ,Y ) 500k 2.7% 0% 0% 8.8%

Table 3: Analysis of the type-1 error rates based on 1,000
simulations of the side channel same-xy with different sample
sizes. We configured RTLF and t-test with α = 0.09.

Side Channel Samples RTLF dudect Mona t-test

tail (Y,Y ) 30k 4.3% 0% 6.2% 8.4%
same-mean (Y,Y ) 30k 4.3% 0% 7.1% 9.0%
shift-5% (Y,Y ) 30k 3.5% 0% 5.1% 10.8%
shift-1% (Y,Y ) 30k 3.4% 0% 5.9% 9.4%
shift-0.9% (Y,Y ) 30k 3.7% 0% 5.1% 10.3%

Table 4: Analysis of type-1 error rates based on a sample size
of 30,000 for measurements sampled from distribution Y of
the denoted side channel. We configured RTLF and t-test with
α = 0.09.

Side Channel Samples α = 0.009 α = 0.09 α = 0.18

tail (Y,Y ) 30k 0.5% 4.3% 8.9%
same-mean (Y,Y ) 30k 0.5% 4.3% 9.0%
shift-5% (Y,Y ) 30k 0.4% 3.5% 6.7%
shift-1% (Y,Y ) 30k 0% 3.4% 6.4%
shift-0.9% (Y,Y ) 30k 0.5% 3.7% 7.2%

Table 5: Analysis of RTLF’s type-1 error rates based on a
sample size of 30,000 for measurements sampled from distri-
bution Y of the denoted side channel.

5 Real-World Evaluation
While the previous evaluation showed that our approach per-
formed better with artificial side channels, it is important to
show that our tool also performs well in real-world applica-
tions. In this section, we discuss the real-world measurement
setup and its potential noise sources. Additionally, we list
all attack vectors considered in this study. We conclude the

section with an interpretation guideline for the upcoming
quantitative and qualitative analysis.

Collecting Measurements As our analysis required us to
test a multitude of versions for eleven TLS libraries, we used
the TLS-Docker-Library [55, 86], which provides Docker im-
ages for different TLS libraries. For each version, we started
a docker container running the example server of the tested
implementation. Where necessary and possible, we explicitly
allowed RSA key exchanges to test for Bleichenbacher vul-
nerabilities. We collected 200,000 measurements per attack
vector and measured the time until a library reacted to an
attack vector, either by sending a TLS alert or closing the
TCP connection. If a library frequently showed no reaction,
we aborted the measuring process for the corresponding at-
tack and excluded it from the study. This could, for example,
happen if the library crashed or kept the TCP connection in an
open but dead state. Note that this behavior is not necessarily
safe.

We used TLS-Scanner [87] to automatically test if an im-
plementation meets the requirements of the individual attacks
and to adapt our measuring tool to the various legacy ver-
sions. To create and deliver the test vectors to the respective
libraries, we used TLS-Attacker [77, 85], a well-established
framework for a systematic analysis of TLS implementations.
We spread the experiments across 21 consumer desktop PCs
with Intel(R) Core(TM) i7-6700 CPUs 3.40GHz with 16 GB
RAM running Ubuntu 20.04.2 LTS. In total, we evaluated
823 server versions from the TLS-Docker-Library.6 We chose
the same libraries studied by Maehren et al. [55]. However,
we excluded Rustls, as it does not support RSA key exchange
or CBC encryption, and s2n, as it intentionally omits alert
messages and often does not close the TCP connection for
error cases.

Noise The selected setup is not noise-free, with multiple
potential noise sources:

1. We gather timing measurements on the same PC that
generates the test vectors and that hosts the target appli-
cation.

2. There are concurrent processes running on the OS.
3. The processes are not running on dedicated CPU cores.
4. We do not optimize the OS.

We deliberately chose to use a non-optimal setup to better
reflect the noise in the measurements a typical user would
experience when using RTLF on their own machine without
special considerations.

5.1 Considered Attack Vectors
For each considered attack, we chose test vectors that account
for different test cases based on previous research. Compar-

6https://github.com/tls-attacker/TLS-Docker-Library/rel
eases/tag/v2.3.1

https://github.com/tls-attacker/TLS-Docker-Library/releases/tag/v2.3.1
https://github.com/tls-attacker/TLS-Docker-Library/releases/tag/v2.3.1


ing the timing behavior between the individual vectors of an
attack indicates if a timing side channel is present.

Bleichenbacher Based on the work of Böck et al. [13], we
selected the following test vectors that we send after the first
server flight in a ClientKeyExchange message, together with
a ChangeCipherSpec message and a Finished message that is
encrypted under an incorrect Master Secret.

B1: A correctly formatted PKCS #1 v1.5 message.
B2: A PKCS #1 v1.5 message with invalid second byte

(0x17 instead of 0x02).
B3: A correctly formatted PKCS #1 v1.5 message with an

invalid TLS version set in the Premaster Secret.
B4: A PKCS #1 v1.5 message that contains a one-byte

Premaster Secret instead of 48 bytes.
B5: A PKCS #1 v1.5 message without a 0x00 delimiter.

Padding Oracle Based on the work of Merget et al. [61],
we selected the following test vectors that we send after com-
pleting a handshake:

P1: A TLS record with 80 bytes divided into 59 bytes of
padding, MAC, and no application data, where the first
padding byte has been invalidated.

P2: A TLS record with 80 bytes divided into 59 bytes of
padding, MAC, and no application data, where the first
byte of the MAC has been invalidated.

P3: A TLS record solely consisting of 80 0xFF bytes result-
ing in a record that is too short to parse all expected
255 padding bytes.

P4: A TLS record consisting solely of 80 padding bytes
leaving no bytes for MAC and application data parsing.

Lucky13 For the Lucky13 attack, we selected test vectors
as described in the distinguishing attack by AlFardan and
Paterson [1] that we send after completing a handshake:

L1: A TLS record containing 287 random bytes followed by
a 0x00 padding length byte, i.e., the record is perceived
to contain no padding.

L2: A TLS record containing 32 random bytes followed by
256 0xFF bytes, i.e., the record is perceived to contain
255 bytes of valid padding.

5.2 Putting Figures Into Context
When analyzing the results of timing measurements, one has
to be careful with the conclusions that are drawn from the re-
sults. Generally speaking, a statistical test identifies structural
differences in the two gathered samples but can not specify
the source of that difference. This means that any structural
difference observed can be due to a timing side-channel vul-
nerability in the target or a bias in the measurement setup.
Therefore, it is evident that the measurement setup should be
constructed carefully to minimize technical influences that
could cause a structural bias between vectors.

Color Encoding Throughout the paper, we use figures with
color encoding to represent detected timing differences and
their respective size. Our choice for the boundaries for the
different colors is inspired by Crosby et al. [24], who mentions
that side channels bigger than 100 ns (red) are likely remotely
exploitable in a LAN setup and that timing differences bigger
than 20,000 ns (black) are likely exploitable over the Internet.
To provide further insight into our data, we introduced a third
option at 500 ns (dark red) to indicate timing differences
that are very likely exploitable. We depict timing differences
below 100 ns in yellow. Green fields depict versions for which
no statistically significant difference has been reported. Since
the other tools considered in our comparison do not estimate
the timing difference in ns, we use pink to depict their boolean
findings.

Type-1 Errors One key feature of our approach is that it al-
lows the user to define how many type-1 errors are acceptable
in the results. This means that our results will also contain
a certain amount of type-1 errors. However, the bigger the
reported timing difference, the less likely it is indeed a false
positive. Concretely, for our figures, this means that yellow
squares are more likely false positives than red, dark red, or
black squares. However, note that a consistent grouping of
yellow squares across multiple subsequent versions is likely
the result of a subtle timing difference and not solely due to
type-1 errors.

Type-2 Errors While we try to provide high statistical
power, we must refrain from making absolute claims regard-
ing type-2 errors. This implies that the presence of green
squares cannot guarantee a completely side-channel-free im-
plementation. Rather, it signifies that any potential side chan-
nel might be too subtle for us to confidently assert its presence
through our measurements for the given variance of a tested
library and the noise introduced by the measurement setup
(see Section 2.2).

6 Quantitative Analysis of OpenSSL
In this section, we examine the efficacy of RTLF. The primary
emphasis is on evaluating its effectiveness for the real-world
application OpenSSL and showcasing its notable enhance-
ments when compared to the tools described in Section 2.3.
To assess our results for OpenSSL, we use known protocol
vulnerabilities corresponding to our considered test vectors.

Figure 1 presents the outcomes of our timing analyses
conducted on OpenSSL, arguably the most important cryp-
tographic library. To test for timing leaks, we pairwise com-
pared the measurements of the considered vectors of an attack.
Note that the project is developed in several different version
branches simultaneously, meaning that patches for discovered
vulnerabilities typically get backported to older versions as
long as they are still maintained. Within Figure 1, we indi-
cate simultaneous fixes to different branches using identical
numbers ( 1 to 4 ).



0.9.7 0.9.8 1.0.0 1.0.1 1.0.2 1.1.0 1.1.1 3.0.

·a·c·e·g·i·k·m·a·c·e·g·i·k·m·n·p·r·t·v·x·z·z·z·z·β·β·β·a·c·e·g·i·k·m·o·q·s·β·|·b·d·f·h·j·l·n·p·r·t·β·β·a·c·e·g·i·k·m·o·q·s·u·a·c·e·g·i·k·p·p·p·p·p·a·c·e·g·i·n·p·s·1·3·5·β
β b d f h 1 3 5 2 1 3 11 3 5 7 9

B1B2

B1B3

B1B4

B1B5

B2B3

B2B4

B2B5

B3B4

B3B5

B4B5

P1P2

P1P3

P1P4

P2P3

P2P4

P3P4

L1L2

33 33 33 33

22 22 22

11

44 44

TL > 20000 ns 20000 ns ≥ TL > 500 ns 500 ns ≥ TL > 100 ns 100 ns ≥ TL > 0 ns No TL Excluded from study

Figure 1: Result of the timing analysis for version 0.9.7 (2002) to 3.1.0-beta1 (2022) of OpenSSL. Each row shows the 17 analysis
results obtained for a single version through pairwise comparison of measurements collected for Bleichenbacher (B), Padding
Oracle (P), and Lucky13 (L) vectors. We categorized timing leaks (TL) based on Crosby’s classification. Note that different
version branches of OpenSSL are developed in parallel. The numbers indicate simultaneously deployed countermeasures against
the Klima-Pokorny-Rosa (CVE-2003-0131) 1 , Lucky13 (CVE-2013-0169) 2 , various Bleichenbacher 3 (2014), and CVE
2016-2107 oracles 4 . The labels below indicate every second version tested.

Bleichenbacher The first referenced patch ( 1 ) targeted
one of the first available CVEs in OpenSSL, the Klima-
Pokorny-Rosa Bleichenbacher vulnerability (CVE-2003-
0131). It addressed significant timing differences in OpenSSL
0.9.7 and 0.9.7a. Accordingly, we see a transition from grave
timing differences to only subtle leaks (e.g., vector pair B3B5)
or no difference (B2B5 and B3B4). However, some distinct
Bleichenbacher timing leaks are still present up to branches
0.9.8, 1.0.0, 1.0.1, and beta versions of 1.0.2. These have
been addressed by a simultaneous patch ( 3 ) that specifically
aimed to make RSA-related code constant time. As shown,
for each of the affected branches, we see a transition from red
to green in at least two Bleichenbacher vectors. Interestingly,
we still detected more subtle timing differences throughout
later versions of 0.9.8. We inspected the code after the fix
and found that the developers knowingly kept some code
that branches based on the PKCS padding validity, and thus
OpenSSL still did not run in constant time. Interestingly, this
check considers our vectors B1, B3, and B4 as compliant,
while B2 and B5 are considered non-compliant. This matches
our results as we only see timing differences when comparing
a compliant vector with a non-compliant one (B1B2, B1B5,
B2B3, B2B4, B3B5, and B4B5) but never within these two
sets. We found the same code in the 1.0.0 branch after the
countermeasure had been deployed at 3 but were unable to
detect timing differences based on our 200,000 measurements.
We tested versions from both branches with 500,000 measure-
ments and found that we identify these timing differences
more consistently in 0.9.8 and also find them sporadically in
1.0.0 versions. We assume the difference is less prevalent in
branch 1.0.0 due to side effects of other parts of the code.

Padding Oracle & Lucky13 Generic Padding Oracle at-
tacks and the Lucky13 attack are closely related as they both
exploit timing leaks in the TLS record layer. As shown, de-
ployment of the Lucky13 countermeasure ( 2 ) eliminated the
timing leak in 0.9.8y and 1.0.0k. Up to this point, RTLF con-
sistently reported timing differences for related vectors with
only a few exceptions. For branch 1.0.1, the Lucky13 counter-
measure eliminated the timing leak for L1L2 but only reduced
the leak for P1P3, P1P4, P2P3, and P2P4. This is caused by a
second-timing leak present only in early versions of 1.0.1 and
1.0.2. These versions were the first to use AES-NI. Unfortu-
nately, there was a bug in OpenSSL that caused an observable
behavior difference if a record contained overflowing padding.
Since our test vectors P3 and P4 contain overflowing padding,
we can observe a timing leak, but it appears to be less preva-
lent than the previous Lucky13 leaks. As a result, we do not
observe a continuous block. Still, with the introduction of the
fix ( 4 ), we do not observe further consistent timing leaks for
these vectors.

Scattered Findings RTLF reported isolated unexpected tim-
ing differences. This applies to findings for Lucky13 tests in
versions 1.0.0l and 1.0.2c, Padding Oracle tests in 1.0.2n and
3.0.0, and Bleichenbacher tests in 1.1.1s. Given the number
of versions and vectors we evaluated, it is plausible to assume
that these findings result from the configured type-1 error
threshold of 0.9%, are very small side channels close to the
decision rule, or bias introduced by our measurement setup.
Choosing the threshold is a trade-off between low false posi-
tives and false negatives. To illustrate the effect, Figure 2 uses
the same measurements as Figure 1 but presents the outcomes
for varying α values. As can be seen, a higher threshold re-



(a) type-1 error < 18% (b) type-1 error < 9 %

(c) type-1 error < 0.9 % (d) type-1 error << 0.9%

Figure 2: Overview of the effect of different type-1 er-
ror thresholds on the analysis of our OpenSSL measure-
ments. For (d), we used the worst noise we sampled in our
B = 10,000 bootstrap iterations, resulting in the lowest possi-
ble type-1 error for our collected measurements.

sults in more scattered findings. For the lowest threshold, the
unexpected findings in the newer versions disappear as they
are significantly less prevalent. However, some expected side
channels also appear less distinct for lower thresholds.

6.1 Comparison to Mona, dudect, t-test, and
tlsfuzzer

Mona and dudect In addition to our ground truth evaluation
from Section 4, we also analyzed our OpenSSL measurements
using Mona and dudect to assess how RTLF performs com-
pared to these tools. We tested all three tools with 30,000
and all 200,000 measurements per vector. The results are
shown in Figure 3 and demonstrate the expected shortcom-
ings for Mona and dudect (discussed in Section 3.1) even for
real-world applications like OpenSSL: dudect sets a conser-
vative decision rule that causes most expected timing leaks to
remain unnoticed. This is especially evident for 30,000 mea-
surements, where only the CVE-2003-0131 timing leak (fixed
at 1 in Figure 1) has been detected. For 200,000 measure-
ments, dudect detects most Bleichenbacher timing leaks but
fails to identify Padding Oracle and Lucky13 leaks reliably.
On the contrary, Mona detects most expected timing leaks at
30,000 measurements. However, it also produces a notably
high number of scattered findings across all versions, which
are often inconsistent and likely to be false positives. This
issue primarily arises from the fact that Mona’s decision rule
does not account for the variance of the quantile estimator,
leading to a higher false positive rate for smaller sample sizes.
For 200,000 measurements, these scattered findings disap-
pear. Nevertheless, because the decision rule remains static,
requiring a difference above the 1% threshold, smaller tim-
ing leaks, especially those related to CVE-2016-2107 (fixed
at 4 in Figure 1), remain unnoticed. Compared to Mona,
RTLF finds fewer expected timing leaks for 30,000 measure-
ments but also produces significantly less scattered findings.
This is the result of the configured type-1 error threshold

of 0.9%. Setting a higher threshold α would reveal more ex-
pected timing leaks but also introduce more potential false
positives as demonstrated in Figure 2. Therefore, we recom-
mend to rather increase the sample size, since then RTLF
detects even minor timing leaks, i.e., obtains asymptotically
statistical power 1 (recall Section 2.2). The empirical eval-
uation of OpenSSL confirms that RTLF consistently yields
reliable outcomes, whereas static decision rules, as employed
by Mona and dudect, exhibit unreliability across all sample
sizes. While dudect possesses a high false negative rate for
both sample sizes, Mona produces many false positives for
30,000 measurements and some false negatives for 200,000
measurements. Even though Mona offers some pertinent in-
sights, the static one-percent decision rule significantly falters
when dealing with timing differences below one percent, as
demonstrated in CVE-2016-2017.

t-test For the smaller sample size, the t-test fails to detect
any of the expected timing differences reliably, performing
only slightly better than dudect. While the detection rate
improves significantly for the larger sample size of 200,000
measurements, the results for Bleichenbacher and Padding
Oracle timing leaks are still less consistent than those of
RTLF. At the same time, the t-test indicates more unexpected
timing leaks than RTLF for both sample sizes.

(a) dudect 30,000 (b) dudect 200,000

(c) Mona 30,000 (d) Mona 200,000

(e) t-test 30,000 (f) t-test 200,000

(g) RTLF 30,000 (h) RTLF 200,000

Figure 3: Overview of the analysis results of dudect (a, b),
Mona (c, d), the t-test (e, f), and RTLF (g, h) for 30,000 mea-
surements and 200,000 measurements each. We configured
RTLF and the t-test with α = 0.009. Since the t-test, Mona
and dudect do not state the time difference, we use pink to
depict their boolean result.



(a) tlsfuzzer 30,000 (b) tlsfuzzer 200,000

(c) tlsfuzzer Bonferroni 30,000 (d) tlsfuzzer Bonferroni 200,000

(e) RTLF 30,000 (f) RTLF 200,000

Figure 4: Overview of the analysis results of tlsfuzzer using
the unmodified (a, b) and Bonferroni-corrected (c, d) version,
in comparison to RTLF (e, f) for 30,000 measurements and
200,000 measurements each and α = 0.009. Pink fields de-
note a reported timing difference. Individual attack vectors
for Bleichenbacher (top) and Padding Oracle (bottom) have
been merged to comply with tlsfuzzer’s methodology.

tlsfuzzer In contrast to Mona, dudect, and RTLF, tlsfuzzer
comprises a combined result for all vectors of an attack. To
compare RTLF to tlsfuzzer, we adapt our script to also deter-
mine a single result based on the measurements of all vectors
of an attack. As tlsfuzzer requires at least three vectors to run
its full range of tests, it cannot be applied to our Lucky13
tests, hence we limit our comparison to Bleichenbacher and
Padding Oracle attacks. tlsfuzzer uses four tests and sets its
type-1-error α respective for each individual test, which will
not result in the same combined type-1 error, making it less
conservative than RTLF with the same targeted value α. To
ensure a fair comparison (i.e., test with the same type-1 error),
we apply the Bonferroni correction [78] in analogy to our
method. More precisely, we set the type-1 error of the four
distinct tests to α/4, rather than using the correction method
originally employed by the authors (in that case α/10 for
10 different Bleichenbacher vectors). Note that this adaption
lowers the type-1-error α for the Friedmann test and increases
α for the remaining three tests of tlsfuzzer. In Figure 4, we
can observe that the deviations between the unmodified (a, b)
and Bonferroni-corrected (c, d) versions are negligible. One
can observe that while tlsfuzzer produces significantly better
results than dudect and Mona, RTLF detects expected tim-
ing differences more consistently, especially for small sample
sizes (see Figure 4(c) and 4(e)).

7 Qualitative Analysis of Newest Libraries
In this section, we provide an overview of the results
of the most recent library versions of BearSSL (commit
46f7dddce75227), BoringSSL (commit d9ea5553c3c9af),
Botan (2.19.3), GnuTLS (3.7.8), LibreSSL (3.7.0), MatrixSSL
(4.6.0), mbedTLS (3.3.0), NSS (3.87), OpenSSL (3.0.7 &
3.1.0-beta1), tlslite-ng (0.8.0-alpha43), and wolfSSL (5.5.4).
As these versions are most likely to be still in use, we in-
creased the number of measurements to 500,000 to be able
to identify smaller timing differences. Figure 5 presents the
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Figure 5: Results for our measurements of the most recent
library versions. Each row denotes the comparison of two
vectors of an attack based on the measurements collected for
the library specified at the bottom of the column. We collected
500,000 measurements per attack vector and configured RTLF
with α = 0.009.

outcomes. We manually analyzed all issues for which RTLF
reported a measurable side channel above 100 ns and tried to
pinpoint the source of the leak.

7.1 Vulnerabilities in MatrixSSL
RTLF indicated timing differences in the measurements for
Padding Oracle and Bleichenbacher vectors for MatrixSSL
4.6.0. Since the results are similar to those of other libraries,
we use MatrixSSL7 as an example for a more detailed analy-
sis.

Bleichenbacher In Algorithm 3, we give a simplified ver-
sion of MatrixSSL’s PKCS #1 v1.5 parsing code used to
extract the Premaster Secret from the padded plaintext when
performing an RSA key exchange.

MatrixSSL first verifies that the initial two bytes of the
padded plaintext have correct byte values. If the check fails,
an error is returned (line 3). Otherwise, MatrixSSL loops over
the bytes of the plaintext until it either reaches the end of
the plaintext or finds the 0x00 delimiter byte (lines 6-11). It
then checks if the remaining plaintext has the correct size and
returns otherwise (line 14). If the size is correct, it copies the
PMS to the result buffer and returns. The MatrixSSL code
contains no real countermeasures against Bleichenbacher tim-
ing attacks and exits the function at multiple different posi-
tions, creating an obvious side channel. Our Bleichenbacher
vectors correspond to different return calls in this function.
Concretely, our vector B2 would exit at line 3, vectors B4 and
B5 would exit at line 14, and B1 and B3 would exit at line 21,
where the vectors B4 and B5 can additionally be separated by

7Note that the development of MatrixSSL has recently stopped and the
repository has since been deleted.



Algorithm 3 Simplified MatrixSSL v4.6.0 PKCS#1 parsing code
Require: Decrypted PKCS byte array: pkcs,

Decrypt type: decryptType = PMS,
Expected Premaster Secret length: expectedLen

1: function pkcs1UnpadExt(pkcs, expectedLen, resultBu f f er)
2: if pkcs[0] != 0x0 || pkcs[1] != 0x2 then
3: return PS_FAILURE; //B2 will exit here
4: end if
5: i← 1
6: while i < len(pms) && pms[i] != 00 do
7: if decryptType == SIGNATURE && pms[i] != 0xFF then
8: return PS_FAILURE //this return is never taken
9: end if

10: i++
11: end while
12: i++
13: if len(pms) - i != expectedLen then
14: return PS_LIMIT_FAIL //B4 and B5 will exit here
15: end if
16: j← 0
17: while i < len(pms) do
18: resultBuffer[j]← pms[i]
19: i++
20: end while
21: return PS_SUCCESS //B1 and B3 will exit here
22: end function

a varying amount of loop iterations in lines 6-11.
Based on the code, we would expect to see no difference at

B1B3, while for all other cases, we would expect a timing side
channel, with the difference in B4B5 being the smallest.The
only difference between B1, the benign message, and B3 is
that B3 has an invalid TLS version set in the Premaster Secret.
MatrixSSL, however, always overwrites this value using the
protocol version at a later stage. A timing difference could
thus only be caused if writing 0x0303 to the byte array is
measurably faster when this value is already set. As shown
in Figure 5, RTLF reported expected differences for vector
comparisons B1B4, B2B3, B2B4, B3B5, and B4B5. RTLF
further indicated an unexpected timing difference based on
our measurements of B1 and B3. This may be a type-1 error
since the executed instructions are identical, or there may be a
difference in execution time caused by the concrete operands
used within these instructions. Based on our measurements,
RTLF did not indicate the expected differences for B1B2,
B1B5, B2B5, and B3B4.

CBC Padding Oracle Regarding the Padding Oracle vec-
tors, we found that MatrixSSL similarly has three distinct
code paths for padding validation. First, MatrixSSL defines
an error case when the padding bytes do not have the same
value (P1). Second, MatrixSSL checks if enough bytes re-
main to parse a MAC, which is not possible for P3 and P4.
Finally, there is a third path for when both of these checks
succeed (P2). Interestingly, all three paths contain their own
countermeasure against the Lucky13 attack.

Using GNU Debugger (gdb), we counted the instructions
from the start of the padding and MAC validation to the
return call that reports the error. For P1, we counted 68,362
instructions; for P2, we counted 68,299 instructions; and for
P3 and P4, we counted 68,222 instructions. The results of

RTLF align with this as we have been able to distinguish
between the groups P1P2 and P1P3 but not between vectors
of the same group. However, expected differences in P1P4
and P2P4 have not been detected by RTLF for a type-1 error
threshold of 0.9%.

7.2 Other Libraries
Lucky13 Vulnerability in Botan RTLF indicated a timing
difference in Botan for the Lucky13 vectors. In our disclosure
process, the developer confirmed that the deployed counter-
measure leaves a small timing difference. Again, we counted
the instructions of the validation function (in a non-optimized
build) using gdb and determined a difference of 428 instruc-
tions between the two vectors.

CBC Padding Oracle Vulnerability in GnuTLS In our
analysis of GnuTLS, we discovered that the cbc_mac_verify()
function incorporates a constant-time padding check that en-
sures uniformity of the padding bytes. However, the function
then branches directly based on the outcome of this check. If
the padding structure is correct, the function performs addi-
tional checks to ensure that there are enough bytes left after
removing the padding to parse the MAC, requiring more in-
structions than the error case, resulting in a Padding Oracle
vulnerability.

Vulnerabilities in NSS For NSS, RTLF indicated grave tim-
ing differences between Bleichenbacher vectors. Our analysis
found that the code for RSA key exchanges is not written to
run in constant time. NSS is mostly used in client implemen-
tations (e.g., in Mozilla’s Firefox or Thunderbird), limiting
the impact of this vulnerability. Mozilla has confirmed the
vulnerability and is preparing a patch to address the issue.

Python Is Not Suitable for Cryptography While the code
for tlslite-ng’s own crypto library is written with side channels
in mind, execution through Python generally does not achieve
secret independent execution time. This is also pointed out
by the developers in the SECURITY.md file on GitHub. To
mitigate this, tlslite-ng can be configured to use other cryp-
tographic libraries, such as OpenSSL. Since we measured
tlslite-ng’s native Python implementation, we found grave
timing differences between most vectors, confirming the de-
velopers’ note.

Indicated Bleichenbacher Finding in mbedTLS RTLF
indicated a Bleichenbacher timing difference for mbedTLS
in a single vector pair. We inspected the code and found
no source for a timing difference. We conducted additional
measurements, for which RTLF did not indicate a difference.
We hence believe that this result was solely caused by our
permitted type-1 error, which is plausible given the overall
number of vectors.

Summary Based on the differences indicated by RTLF, we
could identify several sources for timing differences. The only
potential false positives we noticed were a single vector pair



for mbedTLS and one for MatrixSSL. These cases are indeed
plausible for our prescribed α. Additionally, we identified
cases where expected distinctions went unnoticed. Note that
these instances can likely be attributed to the noise of the
measurement setup in combination with our configured α.

7.3 Comparison to Mona, dudect, t-test, and
tlsfuzzer

We also analyzed the measurements collected for the most
recent versions using the tools from Section 2.3. To achieve
comparable results, we configured the t-test and tlsfuzzer
with α = 0.009 as we did for RTLF. In the case of Mona,
dudect, and the t-test, all identified Bleichenbacher leaks in
MatrixSSL remain unnoticed. Mona and dudect addition-
ally failed to identify any of the Padding Oracle leaks, while
the t-test only missed the GnuTLS leaks. For tlsfuzzer, only
the Bleichenbacher leaks in MatrixSSL remain unnoticed.
However, tlsfuzzer did not produce an unexpected finding for
mbedTLS, which is likely a false positive of RTLF. The t-test
further indicated a Lucky13 timing leak for NSS. Based on
our manual analysis of the source code, we determine this
to be a false positive, which is plausible for the configured
α given the number of test vectors and libraries. A graphical
overview of the results is given in Figure 6 and Figure 7.

8 Discussion
Timing Differences in Older Libraries As part of our
quantitative analysis of the libraries considered in Section 7,
we analyzed 823 server implementations available in the TLS-
Docker-Library [86]. Among the considered versions, most
libraries indicate timing differences for vectors of more than
one attack at some point. However, we also find that for the
considered attack vectors, the most severe side channels have
been mitigated in newer versions. For the timing leaks identi-
fied in Section 7, we find that these have already been present
in previous versions. For Lucky13, it seems that some libraries
tried to deploy countermeasures but were often times not en-
tirely successful with their patch. We provide an extensive
graphical overview of the analysis results for libraries beyond
OpenSSL as part of our artifacts.8

Discrete Data Since we are using a non-parametric statisti-
cal test to evaluate side channels, our approach can be applied
to all sorts of timing side-channels. However, challenges arise
when dealing with too discrete data. This can happen, for ex-
ample, if clock cycles of individual operations are measured
in isolation. In this case, the estimator described in (3) may
not adequately capture the differences. To address this, the
estimator can be changed to one that is specifically tailored for
discrete data (see Ma et al. [54] or Jentsch and Leucht [44]).

Co-Located Attackers Our results challenge the academic
community’s path to tackle timing side channels with static,

8https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Gre
at-Side-Channels

dynamic, or symbolic analysis techniques. Without manual
code review and only a limited number of vectors for each
attack, we could already identify likely remotely exploitable
timing differences (larger than 100 ns). Our manual investiga-
tion of the findings in the latest library versions indicates that
many side channels are rather obvious, revealing a concern-
ing gap between the academic literature and lived practice,
as academia usually considers much stronger leakage mod-
els that only co-located attackers can exploit. Therefore, our
results confirm the results of Jancar et al. [42] that current
techniques are not widely deployed in the real world among
TLS developers.

Small α Values Our methodology allows the user to con-
trol the threshold of the type-1 error. However, α can not be
arbitrarily small for a fixed number of bootstrap iterations, as
the threshold is tied to a percentile of the 10,000 noise simu-
lations we perform for each decile. In principle, it is possible
to choose a value for α that is greater than or equal to 1/B.
However, it is important to note that achieving a very small α,
which is close to 0, can only be accomplished if and only
if the value of 1/B is sufficiently small. Additionally, it is
advisable to avoid approaching the boundary represented by
1/B as the estimation of the threshold becomes less accurate.
Therefore, if a user wants smaller values for α, the bootstrap
parameter B has to be adjusted as well, which increases the
execution time of RTLF.

False Negatives The low type-1 error threshold comes at
the cost of an increased false negative rate, which is increased
by the noise in our evaluation setup. Our evaluation may also
yield model-based type-2 errors when our considered attack
vectors (cf. Section 5.1) are unsuitable for detecting a given
vulnerability. For example, we did not detect a recent vulner-
ability in OpenSSL (CVE-2022-4304), which was created
by a timing difference resulting from messages containing
extensive leading zero bytes.9 Since we relied on test vec-
tors proposed by Böck et al. [13], we could not detect this
vulnerability.

Fault Localization Our qualitative analysis of recent library
versions required us to manually locate and verify potential
findings as statistical tools are not able to point out the source
of the leak. To assess a potential timing leak, a developer
likewise needs to either inspect the code manually or mea-
sure isolated parts to narrow down the source. This is an
inherent disadvantage, as other tools based on static, dynamic,
or symbolic analysis can commonly provide fault localiza-
tion [25, 98, 101, 102].

Applicability to Other Side-Channels While we demon-
strated the application of RTLF to timing side channels, the
approach could, in theory, be applied to other side channels
like power consumption. However, RTLF is not designed for
this use case, and would be computationally very inefficient.

9https://github.com/openssl/openssl/commit/f06ef165

https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels
https://github.com/RUB-NDS/Artifacts-With-Great-Power-Come-Great-Side-Channels
https://github.com/openssl/openssl/commit/f06ef165


Better fitting non-parametric tests like the χ2 test have been
proposed for this use case by Moradi et al. [63], which will
likely perform better in this scenario.

9 Related Work
A lot of timing attacks have already been mounted on crypto-
graphic components. Examples include timing attacks on
AES [10], RSA[21], and WPA3[91]. While these attacks
are traditional timing attacks that could be carried out re-
motely, researchers often also consider different attacker mod-
els where the attacker is co-located with the victim. This
attacker model allows for powerful cache side-channel at-
tacks [18, 23, 65, 107, 108] or even more powerful trace
attacks [19].

9.1 Timing Attacks on TLS
Generic attacks on cryptographic primitives have been ex-
ploited in the context of TLS in the RSA signature gener-
ation [17] and in the ECDSA signature generation [16, 36,
76, 104]. While these attacks exploited generic flaws in the
cryptographic primitives, some attacks, like the Lucky13 at-
tack [1, 2, 73], Bleichenbacher attack [12, 13, 62, 72], Vaude-
nay Padding Oracle attack [61, 92], and Raccoon attack [60]
are of special interest for TLS implementors; these attacks re-
quire careful considerations outside of generic cryptographic
functions due to design flaws in the TLS specification itself.
A technique to increase the timing signal in DTLS was pro-
posed by Paterson and AlFardan [66]. The TIME attack [81]
and HEIST attack [57] converted a compression side chan-
nel [70] into a timing side channel which reduced the required
attacker model for the CRIME attack [70] to a pure Man-in-
the-Browser model. While there are TLS-specific testing tools
like TLS-Scanner [87], testssl.sh [82], or TLS-Anvil [55],
these tools typically do not consider timing vulnerabilities.

9.2 Constant-Time Analysis
Static Techniques Static analysis techniques reason about
the execution behavior of a program by statically looking
at the code. This analysis can either be done for the binary
itself [31], the LLVM IR [3], or the program code.10 Static
tools typically involve the annotation of secret values by the
user.

Dynamic Techniques Dynamic techniques execute the
code on a system and analyze the program flow. Just
like static techniques, dynamic techniques typically require
that secrets are annotated by the user. The dynamic anal-
ysis tool can then, for example, check that the program
never branches based on a secret (or tainted) value. Dy-
namic analysis techniques are implemented in tools like ct-
grind [50], TIMECOP [83], ct-fuzz [39], Microwalk [101],
Microwalk-CI [102], and DATA [98].

10http://web.archive.org/web/20200810074547/http://trust-in-soft.
com/tis-ct/

Symbolic Techniques A middle ground between static and
dynamic analysis techniques are symbolic execution tech-
niques, which simulate the execution of a program with sym-
bolic inputs. This allows to reason about the reachability and
potential operands of each instruction. Symbolic approaches
also typically require that secrets are annotated by the user. Ex-
ample tools that use the symbolic approach are CacheD [94],
CaSym [15], and Binsec/Rel [25].

9.3 Statistical Techniques
Statistical analysis techniques have always been an essential
point of timing evaluations, especially outside the academic
community. In 2009, Crosby et al. [24] analyzed to which
extent timing side-channel vulnerabilities could be measured
in a remote setting. The box test proposed by Crosby et al.
was implemented in Mona [75] and several tools presented
at Blackhat [51, 58, 64]. For example, Nanown [64] uses
Crosby’s box test and some resampling strategies, which they
call Monte Carlo bootstrapping. They support a static type-1
error rate of 5%. The method is mainly based on a heuristic ap-
proach and is less motivated by statistical theory, which makes
it difficult to compare it to our proposed method from a theo-
retical perspective. Unfortunately, we could not empirically
compare Nanown with RTLF, due to heavy IO operations
caused by MySQL accesses implemented in Nanown, making
evaluating large data sets time-consuming and infeasible for
our comparisons.

A follow-up preprint of the dudect paper [68] by Fu et
al. [35] also considers Welch’s t-test. Fei et al. [33] imple-
mented a theoretical framework based on likelihood methods
to analyze the theoretical properties of rather general side-
channel attacks in more detail. Zhang et al. [109] provided a
theoretical model for cache-based side-channel attacks that
also accounts for misclassifications using statistical models.
As a general approach for identifying side channels with sta-
tistical techniques, Goodwill et al. proposed the Test Vector
Leakage Assessment (TVLA) framework [52], which was
adopted by ISO/IEC 17825 [40] for the analysis of side chan-
nels also beyond timing side channels and is commonly used
to search for side-channel vulnerabilities in cryptographic
primitives [43, 80, 88]. While the framework is generally flex-
ible with the statistical test, it is most commonly used with
Welch’s t-test. The approach has already been tested with
other statistical algorithms like the paired t-test [29] and the
χ2-test [63]. The TVLA framework is not uncontroversial
and has been criticized by the community [79, 99, 100], with
many of the criticisms directed at Welch’s t-test and how it is
applied in TVLA.

10 Conclusions & Future Work
Due to their unreliability, statistical tools have been mostly
eliminated from the programming flow of many develop-
ers [42]. In this work, we showed that the perceived disadvan-
tages of statistical techniques can be contained by providing

http://web.archive.org/web/20200810074547/http://trust-in-soft.com/tis-ct/
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a configurable type-1 error α to developers, enabling them to
make a trade-off between type-1 errors and how nuanced de-
tectable side channels are. With RTLF, we give practitioners
a tool specifically designed to easily detect likely remotely
exploitable timing differences. This research aligns with the
results from Jancar et al. [42], who states that most libraries
adopt a best-effort approach to timing side channels, focus-
ing primarily on fixing those that can be exploited remotely.
Our approach is in contrast to previous mostly academic so-
lutions, which are based on static, dynamic, and symbolic
techniques that are designed to eliminate even the smallest
side-channel vulnerabilities. Our results indicate a consider-
able gap between academic constant-time research and the
lived reality of cryptographic developers who often have to
prioritize other tasks. Concerningly, this results in a lot of
TLS implementations containing measurable and oftentimes
also likely remotely exploitable timing side-channel vulnera-
bilities, even though the attack vectors have been known for
decades.

While our approach allowed to assert the existence of a
timing difference, it is yet unclear how exploitable the tim-
ing difference really is as Crosby et al. [24] only give rough
empirical estimates. Optimizing classification strategies un-
der real-world conditions from an attacker’s point of view
may present itself as an interesting research direction in the
future to more accurately model the exploitability of timing
differences. Besides RTLF, there are other non-parametric
two-sample tests to distinguish two distributions, such as the
Kolmogorov-Smirnov test (see Darling [26]) or the Wasser-
stein metric (see Ramdan et al. [67]). It is of further interest, if
other non-parametric testing procedures can match the perfor-
mance of RTLF, or even improve it, in the context of timing
side channels.

Acknowledgements
We thank the anonymous reviewers and shepherd for their
valuable feedback. This research was partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972, by the Deutsche Forschungsge-
meinschaft - 450197914, and by the German Federal Min-
istry of Education and Research (BMBF) through the project
KoTeBi.

References
[1] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky thirteen: Breaking the

TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and
Privacy.

[2] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing
attack on amazon’s s2n implementation of TLS. Cryptology ePrint Archive,
Paper 2015/1129.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. Verifying constant-time implementations. In Proceedings of the
25th USENIX Security Symposium.

[4] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. Decomposition instead of self-composition for proving
the absence of timing channels. SIGPLAN Not., 2017.

[5] Konstantinos Athanasiou, Byron Cook, Michael Emmi, Colm MacCarthaigh,
Daniel Schwartz-Narbonne, and Serdar Tasiran. Sidetrail: Verifying time-

balancing of cryptosystems. In Verified Software. Theories, Tools, and Ex-
periments, 2018.

[6] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Formal
verification of side-channel countermeasures using self-composition. Science of
Computer Programming, Vol. 78, 2013.

[7] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.
System-level non-interference for constant-time cryptography. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.

[8] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron
Roth, and Pierre-Yves Strub. Computer-aided verification for mechanism design.
In Web and Internet Economics. Springer Berlin Heidelberg, 2016.

[9] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. ABBY:
automating the creation of fine-grained leakage models. IACR Cryptol. ePrint
Arch., 2021.

[10] Daniel J. Bernstein. Cache-timing attacks on AES. 2005.
[11] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying constant-time im-

plementations by abstract interpretation. In Computer Security – ESORICS
2017.

[12] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Advances in Cryptology - CRYPTO ’98.

[13] Hanno Böck, Juraj Somorovsky, and Craig Young. Return of bleichenbacher’s
oracle threat (ROBOT). In 27th USENIX Security Symposium, 2018.

[14] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S. Păsăreanu. Sym-
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Appendix
A Theoretical Foundations
We now outline a theoretical justification for the bootstrap
procedure proposed in this paper. When dealing with continu-
ous data, we can proceed along the lines of Example 3.9.21
in van der Vaart and Wellner [90] to yield asymptotic normal-
ity using an appropriate scaling of the statistics. In addition,
the Delta method for the empirical bootstrap (cf. van der
Vaart [89]) can be applied to obtain the limit for the differ-
ence q̂X

i − q̂Y
i of the quantiles estimator. However, since the

Delta method for the empirical bootstrap requires Hadamard
differentiable functions and the absolute value g(x) = |x| is
only directionally Hadamard differentiable in 0, we employ
a different Delta method for g(x). In particular, we refer to
Theorem 2.1 and Theorem 3.3 in Fang and Santos [32], which
provide an analogous asymptotic result for functions which
are directionally Hadamard differentiable. However, this only
guarantees α as an upper bound for the empirical bootstrap
quantiles and not equality (see Theorem 3.3).

Finally, we discuss the case of discrete data, such as clock
cycles. Here, the theory is more complicated since the quantile
function is not Hadamard differentiable, which makes the
lines of a proof sketched for continuous data in the previous
paragraph invalid. However, it is worth noting that in our case
(where we measure clock cycles), the empirical results did not
indicate any major drawbacks in practice (compare Table 2).
For a more comprehensive analysis of the asymptotic behavior
for discrete data, we refer to Jentsch and Leucht [44], who

present a methodology to overcome this technical difficulty
through mid-distribution quantiles.
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(a) dudect
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(b) Mona

B
e
a
r
S
S
L

B
o
r
i
n
g
S
S
L

B
o
t
a
n

G
n
u
T
L
S

L
i
b
r
e
S
S
L

M
a
t
r
i
x
S
S
L

m
b
e
d

T
L
S

N
S
S

O
p
e
n
S
S
L

3
.
0

O
p
e
n
S
S
L

3
.
1

t
l
s
l
i
t
e
-
n
g

w
o
l
f
S
S
L

B1B2

B1B3

B1B4

B1B5

B2B3

B2B4

B2B5

B3B4

B3B5

B4B5

P1P2

P1P3

P1P4

P2P3

P2P4

P3P4

L1L2

(c) t-test

Figure 6: Overview of the analysis results of dudect (a),
Mona (b), and t-test (c) for 500,000 measurements per vec-
tor obtained using the most recent library versions. For the
t-test, we set α = 0.009, consistent with the RTLF analysis
in Figure 5. Since the t-test, Mona, and dudect do not state
the time difference, we use pink to depict their boolean result.
With the t-test, Mona, and dudect, all Bleichenbacher leaks in
MatrixSSL remained unnoticed. Mona and dudect also failed
to identify any Padding Oracle leaks in the newest versions,
while the t-test only missed the finding for GnuTLS. Only the
t-test indicated a Lucky13 timing leak for NSS. We manually
analyzed the code and could not identify any disparity in the
instructions executed for the two test vectors. We thus con-
sider it a false positive, which is also plausible for our choice
of α.
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(a) tlsfuzzer
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(b) RTLF

Figure 7: Overview of the analysis results of tlsfuzzer (a)
and RTLF (b) for 500,000 measurements per vector obtained
using the most recent library versions. We configured both
tools with α= 0.009. To comply with tlsfuzzer’s methodology,
individual attack vectors have been merged. For tlsfuzzer, only
the Bleichenbacher leaks in MatrixSSL remain unnoticed.
Both versions of tlsfuzzer discussed in Section 6.1 produced
the same results.
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