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Abstract
We present a detailed analysis of Samsung’s Offline Find-
ing (OF) protocol, which is part of Samsung’s Find My Mo-
bile system for locating Samsung mobile devices and Galaxy
SmartTags. The OF protocol uses Bluetooth Low Energy
(BLE) to broadcast a unique beacon for a lost device. This
beacon is then picked up by nearby Samsung phones or tablets
(the helper devices), which then forward the beacon and the
location it was detected at, to a vendor server. The owner of
a lost device can then query the server to locate their device.
We examine several security and privacy related properties of
the OF protocol and its implementation. These include: the
feasibility of tracking an OF device through its BLE data, the
feasibility of unwanted tracking of a person by exploiting the
OF network, the feasibility for the vendor to de-anonymise
location reports to determine the locations of the owner or the
helper devices, and the feasibility for an attacker to compro-
mise the integrity of the location reports. Our findings suggest
that there are privacy risks on all accounts, arising from issues
in the design and the implementation of the OF protocol.

1 Introduction

Portable devices such as smart phones and tablets often come
with a feature that allows their owner to find those devices
when they are lost, typically through the use of a web portal
provided by their vendors, such as Google’s Find My De-
vice [15], Samsung’s Find My Mobile (FMM) [28] and Ap-
ple’s Find My [2]. A typical requirement for such a feature to
work is that the lost device must be connected to the internet
so that it can send its location report to a vendor server in the
event that its owner flags the device as lost. In recent years,
mobile device manufacturers such as Samsung and Apple
have extended their lost-device tracking systems with an of-
fline finding (OF) feature, which allows a lost mobile device
to be found even when it does not have an internet connection.
Both Apple and Samsung OF features share two key elements:
the use of Bluetooth Low Energy (BLE) for short range trans-
mission of data between devices of a vendor, and crucially,

an extensive network of (internet-connected) mobile devices
(which we call helper devices) that relay location information
to a vendor controlled server. We refer to the latter as the OF
network. The basic idea is quite simple: when a lost device
loses its internet connection, it starts broadcasting a unique
beacon over BLE, which is then picked up by nearby helper
devices participating in the OF network, who then forward
the beacon and the location it is found to a vendor server. In
this work, we are mainly concerned with Samsung’s FMM
Offline Finding (OF) feature [29], which was introduced in
2020. An owner can track their devices’ locations through
Samsung FMM application running in a Samsung mobile
device (e.g., a phone or a tablet).

In 2021, Samsung released the Galaxy SmartTag [35],
which is a small BLE tracker that can be attached to vari-
ous items to keep track of their locations. SmartTags are not
capable of connecting to the Internet, so they rely on the OF
network for long range location tracking (outside the range of
BLE). SmartTags are registered and controlled through Smart-
Things, which is an umbrella control and management plat-
form for a large variety of smart devices and home appliances.
OF is also supported for SmartTags using the "SmartThings
Find" add-on which works in conjunction with FMM.

Devices in Samsung’s OF network can be categorized into
three roles: the owner device, the helper device, and the lost
device. A mobile device can be registered to the Samsung
OF network through the FMM app, while a SmartTag can
be registered through Samsung SmartThings app. Each regis-
tered device is linked to the owner’s account under which it
was registered from. When a registered device loses internet
connectivity, or in the case of SmartTags, when it is out of the
BLE range from its owner device, it broadcasts certain data
over BLE periodically. This data contains a rotating identifier,
called the privacy ID, which is unique to the lost device and
which, in theory, can only be linked to its owner by Sam-
sung and the owner device. The helper devices consist of both
Samsung devices (phones and tablets), and some third-party
devices that support Samsung OF protocol. An active helper
device periodically scans for BLE advertisements from nearby



OF devices and reports their locations to a location server.
The location reports of the lost devices will be downloaded
onto the owner device when the owner queries their locations.
The effectiveness of the OF feature depends on the size of its
OF network, which in the case of Samsung OF, is estimated
to have around 200 million active helper devices [18] in 2022.

In the following, we shall refer to end-user devices, such as
mobile phones and SmartTags, that participate in Samsung OF
network as OF devices. Our work was driven by the following
research questions:

(RQ1) Identification of an OF device. Can an OF device be
identified through its BLE data?

(RQ2) Unwanted tracking. Can Samsung OF network be
misused for unwanted tracking of a person or an object
by a party other than Samsung?

(RQ3) End-to-end location privacy. To what extent does the
design of the OF protocol protect the location privacy of
the lost devices and the helper devices from the service
provider (Samsung)?

(RQ4) Location report integrity. Is it possible for an actor
(other than the owner and the vendor) to forge a location
report of a lost device?

RQ1 concerns the privacy protection of the owner of an OF
device against (long term or short term) location tracking
through the BLE data emitted by the device by an adversary.
RQ2 addresses an attack scenario where a tag is used by
its owner to stalk a person without their consent [12]. RQ3
raises the question as to what extent Samsung is aware of the
movement of both the owner devices and the helper devices.
RQ4 is more of a security (integrity) issue rather than a privacy
one and addresses a scenario where the attacker intentionally
disrupts the location tracking capability of the OF network
through false location reports.

Our main contributions are as follows:

• We provide the first comprehensive reverse-engineering
of Samsung OF protocol that allows us to answer defini-
tively the research questions (RQ1 to RQ4) raised above.

• We identified several vulnerabilities that would allow
an attacker to link BLE packets observed from a target
device over multiple observations, through BLE interac-
tions only, allowing a long term identification of an OF
device through its BLE data (RQ1).

• Through our analysis of the OF protocol, we managed to
impersonate completely a SmartTag to the OF network.
This opens the possibility of creating a custom tracking
device that can be tuned to circumvent potential anti-
tracking mechanisms by the vendor.

• Our analysis also confirmed that unwanted tracking
(RQ2) is possible.

• Our analysis suggests that the vendor does indeed pos-
sess the information needed to link an account to a lo-
cation report (RQ3). Moreover, the vendor server does
not appear to check the integrity of the location reports,
opening it to manipulation by third parties (RQ4).

Coordinated disclosure. We have reported all the issues
we found (see §4) to Samsung and followed an industry-
standard of a minimum of 90-day embargo period, prior to the
publication of these issues. One of the issues we raised con-
cerns the small pool of privacy IDs being used for FMM BLE
packets, which has now been assigned a CVE (CVE-2022-
33707, SVE-2022-0126). The more critical security issues
that affect the server-side of Samsung OF network, related to
SmartTag registration and the location reporting, have been
fixed. Section 4.5 provides an update on the status of these is-
sues. Not all the issues we reported have been patched, and in
one case, concerning the issue of de-anonymisation through
BLE DFU mode (see Section 4.1), the vendor confirmed that
they have no plans to issue a fix. However, we believe there
is significant public interest in the disclosure of these issues,
both from the end user perspective, so that they can make
informed decisions on the use of affected devices, and from
a scientific perspective, as some of the issues we discovered
arise from design choices not specific to a particular vendor.

Related work. The closest to our work is the security and
privacy analysis of Apple’s FindMy network [21]. Their study
uncovered design and implementation flaws that could lead
to location correlation attacks and unauthorized access to
location histories. They reverse-engineered FindMy protocols
and showed that one could create custom tracking devices
leveraging on the FindMy network [30].

Several vulnerabilities [11] have been identified in an ear-
lier version of Samsung FMM app, that allow, among others,
a malicious app installed in the device to manipulate the URL
endpoint accessed by the FMM app and to access unprotected
broadcast receivers in the FMM app. This analysis was done
prior to the introduction of the offline finding features to
FMM, so it did not cover the OF related vulnerabilities.

Both Apple AirTags and Samsung SmartTags use the
nRF52 series System on Chips (SoC), which are known to be
vulnerable to a power glitching attack. The firmware of both
AirTags and SmartTags have been extracted by researchers us-
ing this attack [5,27]. While AirTag firmware has been studied
extensively [27], we are not aware of any reverse-engineering
on the SmartTag firmware prior to our work.

There have been a variety of BLE trackers prior to the in-
troduction of AirTags and SmartTags, such as the Tile tracker.
Weller et. al. [34] provides a detailed security and privacy
analysis of the security and privacy aspects of these trackers,
focusing on their interactions with their associated mobile
apps and the backend cloud servers for crowd-sourced loca-
tion tracking. However, they did not analyze the privacy issues
arising from the BLE protocols used in these trackers.



Apple’s FindMy network consists of hundreds of mil-
lions of active devices, which has raised privacy concerns
on whether the network can be abused for malicious tracking.
Apple has implemented an anti-tracking framework to detect
unknown FindMy trackers for iOS devices. However, May-
berry et al. [25] discovered that Apple’s tracking detection
mechanism can be defeated through a number of techniques.
One technique exploits a “blindspot” in Apple’s anti-tracking
algorithm that ignores lost mobile devices, focusing only on
detecting lost AirTags. As we shall see later, Samsung’s anti-
tracking feature suffers from a similar oversight.

AirGuard is an anti-tracking application developed by
SEEMOO lab to protect Android users from BLE trackers
that leverage Apple’s FindMy network [20]. It has a higher
success rate and lower false positive rate in detecting and
reporting trackers compared to Apple’s built-in anti-tracking.

A BLE device can be identified by its MAC address. To
avoid long-term tracking of a BLE device, vendors often im-
plement anti-tracking mechanisms, such as by randomizing
its MAC address. However, issues have been found in im-
plementations of the communication protocols of BLE de-
vices, which can be used to defeat such anti-tracking mecha-
nisms [8–10, 24]. Our own investigations show that many of
these issues also affect SmartTags.

Another closely related research area is BLE-based contact-
tracing applications, such as Google-Apple Exposure Notifica-
tion (GAEN) framework [16], DP3T [33], Singapore’s Trace-
Together and Australia’s COVIDSafe [32]. The BLE-related
attack surface of these applications, i.e., in relation to RQ1, is
similar to our findings, e.g., attacks discussed in [3, 7, 22, 32]
show that devices running these applications can be linked
through their BLE data. Another similarity is the “wormhole”
relay attack demonstrated in [3], which is similar to the relay
attack discussed in Section 4.2. There is, however, a crucial
difference between an offline location tracking system and a
contact-tracing system. In the latter, the “location” informa-
tion (which takes the form of a list of anonymized user IDs
detected in proximity, without any geolocation information)
is not sent to users of the applications, but only to a desig-
nated health authority. This essentially makes the RQ2, i.e.,
the possibility of unwanted tracking irrelevant.

Outline. The remainder of the paper is structured as fol-
lows: Section 2 gives a brief overview of relevant crypto-
graphic and BLE related concepts. Section 3 presents techni-
cal details of the OF protocol that result from our investiga-
tions. This section covers the OF operations for SmartTags.
The OF operations for FMM devices are a much simplified
version of the SmartTag protocol, so its security and privacy
issues are subsumed to those of SmartTags. The interested
reader can consult Appendix B for details of the FMM proto-
col. In Section 4, we perform a security and privacy analysis
on Samsung OF protocol based on our findings discussed in
previous sections. In Section 5 we discuss the broader implica-
tion of our findings on the design of offline finding protocols

in general. Section 6 concludes the paper. For clarity, our
presentation of the OF protocol abstracts away some concrete
details such the data format and the BLE interface used, but
these details are available in the appendices.

2 Background and methodology

This section gives a very brief overview of the relevant cryp-
tographic functions used in the Samsung OF protocols and
some basic concepts related to BLE.

ECDH key exchange and AES block cipher. There are
two main cryptographic constructions used in the OF protocol:
the Elliptic-curve Diffie-Hellman (ECDH) key exchange pro-
tocol and the AES block cipher and its associated encryption
modes. We explain briefly each of these constructions. For
further details, we refer interested readers to [19] for ECDH
and [13] for the AES algorithm.

The ECDH builds on the Diffie-Hellman key exchange
protocol [14], where the underlying group operations are
defined over an elliptic curve (EC). Samsung’s OF imple-
mentation of ECDH uses the elliptic curve Curve25519 [4],
which was designed to achieve high speeds at computation
without compromising the security strength. The Advanced
Encryption Standard (AES) algorithm [13] is a symmetric
block cipher that is widely used for data encryption, and as a
building block for other cryptographic functions. Samsung’s
FMM and SmartTags implement AES CBC mode cipher with
PKCS#7 padding scheme [26] to encrypt/decrypt data for
various OF related operations.

Bluetooth Low Energy (BLE) SmartTags uses BLE [17],
which is a short-range wireless communication technology,
for data transmission. The protocol stack of BLE consists of
various layers and profiles, of which, the most relevant ones
to this work are the Generic Access Profile (GAP) and the
Generic Attribute Profile (GATT). GAP defines the proce-
dures for device discovery and connection establishment. A
BLE device can operate in one or more of the following roles:

• Advertiser: a device that sends out BLE data that is
available to any nearby Bluetooth capable devices.

• Observer: a device that listens to BLE advertisement
data and may process the data from advertisers.

• Central: a device that initiates a connection after receiv-
ing advertisement data from an advertiser.

• Peripheral: a device that accepts the incoming connec-
tion from a central.

GATT defines the data organization and exchange over con-
nections between BLE devices. GATT uses a hierarchical
structure to organize data. A GATT profile may contain multi-
ple services, each contains one or more characteristics. Each
characteristic is a container of user data. A characteristic can



be followed by descriptors, which provide additional metadata
of the characteristic and its value.

BLE has two ways of transferring data: advertising over
BLE and data exchange over connections. Advertising is the
process of a BLE device sending out data packets in one-way,
while communication over connections allows bidirectional
data transfer between the peripheral and the central. Data
packets are exchanged through characteristics in the GATT
server of the peripheral device. A BLE device is addressed
through its MAC address, which is a 48-bit identifier. There
are four types of MAC addresses: Public Address, Random
Static Address, Random Private Non-Resolvable Address,
and Random Private Resolvable Address. A Public Address
is registered with IEEE and never changes. A Random Static
Address is not registered and remains constant during de-
vice runtime. Each Bluetooth-capable device has an Iden-
tity Address, which is either a Public Address or Random
Static Address. The two types of Random Private Addresses
(Non-Resolvable, Resolvable) are used for privacy protection
purposes. Random Private Non-Resolvable Addresses are
generated completely randomly, whereas Random Private Re-
solvable Addresses (RPAs) are generated using a key-hashed
function from a random seed value and a 16-byte key called
the Identity Resolving Key (IRK). The possession of the IRK
of a device would also allow one to de-anonymize its RPAs.

Pairing is the process by which two BLE devices exchange
necessary information so that an encrypted connection can be
established. BLE has several pairing modes, which are deter-
mined by the authentication requirements and input/output
(IO) capabilities of the pairing devices. As part of pairing, the
IRKs are exchanged, so the devices can identify their respec-
tives RPAs using the IRKs. BLE supports different pairing
methods to authenticate participants in the pairing procedure.
The simplest pairing method, called Just Works, does not
check the authenticitiy of the participants, and has been ex-
ploited to steal the IRK of a target device stealthily [32,36,37].

Methodology. A combination of investigation approaches
were used to understand the OF protocol for SmartTags and
the FMM app. Devices involved in the analysis include a
research laptop equipped with a BLE 4.2 adapter running
Ubuntu 20.04 LTS, a number of Samsung mobile phones run-
ning Android versions 8.0 - 12, and SmartTags with firmware
version 1.01.26 and 1.02.06. We used a combination of ap-
plication and firmware reverse engineering to study the in-
nerworking of various protocols involved in the OF network,
analysis of various logs produced by Android systems and
applications, and analysis of both BLE and network traffic be-
tween devices and vendor servers. The methodology is quite
standard for vulnerability research so we omit the details here.

3 The offline finding protocol

This section discusses the key findings on the Samsung offline
finding (OF) protocol. Here we discuss only the OF protocol

Owner Tag (pubtag, privtag) Server (pubtag) Helper

querying tag data
key establishment

authentication &
confirm physical possession

ownership check &
finalize registration

finalize registration

Registration
(§3.1)

authentication &
commands

Connected
mode (§3.2)

privacy id broadcast
location report

query tag location

privacy id broadcast
unknown tag check &

request temp. key

authentication (temp. key) &
play sound

Overmature
Lost mode
(§3.4)

Lost mode
(§3.3)

Figure 1: An overview of Samsung OF protocol for Smart-
Tags

for Galaxy SmartTags, but details of the OF protocol for FMM,
which is a simplified version of the SmartTag protocol, are
available in Appendix B. Our analysis was performed on
SmartTags with firmware versions 1.01.26 and 1.02.06, and
the FMM app versions prior to version 7.2.24.12.

The OF protocol for SmartTags involves both online inter-
actions (over the Internet) with various vendor servers and
offline interactions (over BLE) with nearby tags and mobile
devices. We discuss here four important subprotocols, which
are summarised in Figure 1. The communication between
the devices and the server is done through HTTPS, which we
assume to be secure. There are four principals involved: the
owner device, the tag, the vendor server and the helper device.
The subprotocols are as follows:

1. The registration protocol (§3.1). This protocol involves
the owner device, the tag and the server. The owner
initiates the protocol by acquiring relevant tag data, such
as the serial number, firmware version, etc., and initiates
a key establishment protocol with the server, to derive
various symmetric keys that will be used in subsequent
interactions with the tag.

2. The protocol for tags in the connected mode (§3.2). This
protocol is executed right after the registration, and when-
ever the tag is in the proximity of the owner device after
having been out of the BLE range. It contains subproto-
cols for authenticating the owner device to the tag and
vice versa. Once authenticated, various commands and
data may be exchanged over BLE.



3. The protocol for tags in the lost mode (§3.3). This pro-
tocol is triggered after the tag has lost its BLE connec-
tion to its owner for less than 24 hours. In this state, it
broadcasts anonymized rotating privacy IDs that trigger
nearby helper devices (who are scanning for privacy IDs
periodically) to record and report the locations of the
recorded privacy IDs to the server.

4. The protocol for tags in the overmature lost mode (§3.4).
A tag transitions to the overmature lost mode after being
lost for over 24 hour. A helper device that detected a
tag in the overmature lost mode would initiate an anti-
stalking detection process. This process aims to enable
the helper device to locate a (potentially) tracking tag
by playing sound on the tag. To play sound, the helper
would need to obtain a temporary key from the server to
authenticate itself to the tag.

3.1 SmartTag registration
The SmartTag registration protocol requires interacting with
an unregistered tag and the vendor server. For the latter, there
are actually multiple servers involved, providing services such
as user authentication, application related services such as re-
mote attestation, and services related to storing and retrieving
location reports. For simplicity, we shall refer to these servers
collectively as the vendor server (or simply "the server") in
the following discussion.

The interaction between the owner device and the tag is
done through BLE using BLE advertisement and a GATT
profile. A SmartTag uses two UUIDs to advertise its presence
over BLE: FD59 for non-registered tags, and FD5A for reg-
istered tags. SmartTags do not support internet connectivity
and thus rely on the owner device (typically a mobile phone)
to perform various setups over BLE connections. This is done
through its GATT profile, which defines various services and
characteristics that the tag and its owner device use to ex-
change data and commands. In the following, we shall omit
the concrete UUID used for each characteristic in the GATT
profile, and refer to it using a symbolic name instead. But
detailed characteristic UUIDs can be found in Appendix C on
arXiv. The SmartTag GATT profile has four primary services
which can be summarized as follows:

Authentication Service The Authentication Service uses
three characteristics, NONCE, ENONCE and SUPPORTED_-
CIPHER, for authenticating a connected device over BLE.

DFU Service Service UUID FE59 is a part of the nRF52833
Buttonless Secure DFU service for over-the-air firmware
updates. It has a writeable characteristic (BUTTONLESS_-
DFU) that can be used to reboot the tag.

Onboarding Service Service UUID FD59 is used for device
onboarding/registration activities. During the registra-
tion process, the owner device and the tag exchanges

configuration and cryptographic data over various char-
acteristics under this service.

Command Service Service UUID FD5A is primarily used
for performing more complicated interactions between
the owner device and a tag, such as executing a supported
command (e.g., alarm, changing ringtone) on the tag.

A SmartTag registration is initiated by an owner device
running the SmartThings app. It involves online interactions
with the server, and offline interactions with the tag. The in-
teraction with the server requires a valid user account. In the
following discussion, we shall assume that a valid user ac-
count has been created and an authenticated session between
the owner device and the server has been established. The
registration protocol consists of five stages: key establishment,
owner-tag authentication, confirmation of physical possession
of the tag, tag ownership check, and registration finalisation.

Figure 2: Shared secret establishment protocol

Stage 1: key establishment The first stage of the regis-
tration protocol is essentially a key establishment protocol
between the tag and the server, mediated by the owner device.
Note that since we do not have access to the server code, our
analysis of this stage is based on our analysis of the SmartTag
firmware and the intercepted traffic between the owner device
and the server. Our findings suggest that the tag keeps a pair
of private-public ECDH key (a,Apub), which is fixed for the
lifetime of the tag and that the server keeps at least the public
key of each tag. A tag is identified uniquely via its serial num-
ber, which is the identity address of its BLE controller. The
public-private key pair of the tag is never sent out from the
tag or the server. The shared secret establishment protocol is
summarized in Figure 2, which we elaborate below.

Step 1. The owner device obtains the necessary registration
data from the tag, through the tag’s advertisement pay-
load and Onboarding Service. Among this registration
data is a hashed serial number (hashed_sn) unique to the
tag, which corresponds to the SHA256 digest of the BLE
identity address of the tag.

https://arxiv.org/abs/2210.14702
https://arxiv.org/abs/2210.14702


Step 2. The owner device generates a 32-byte random value
x, and sends x along with the registration data obtained
from Step 1 to the server.

Step 3 & 4. After receiving the request, the server looks
up the public key of the tag Apub associated with the
hashed_sn. The server then generates an ephemeral
private-public key pair (b,Bpub), and computes the ECDH
shared key Bkey = bA. Finally, the shared key is concate-
nated with the random number x to form the input for
the SHA-256 hash function to produce the shared secret:
Bsecret = SHA256(Bkey|x). The server then sends Bpub and
Bsecret to the owner device.

Step 5. The owner receives Bpub and Bsecret from the server,
and forwards Bpub and x, to the tag.

Step 6. The tag receives Bpub and x from the owner device
and computes Akey = aB and Asecret = SHA256(Akey|x).

By the property of ECDH, assuming no tampering from
an adversary, at the end of Step 6, we should have Asecret =
Bsecret . That is, all participants now share the same secret
Bsecret . This shared secret will be used next to compute several
AES keys that will be used in subsequent protocols.

The first 16 bytes of the shared secret Bsecret are taken as
the masterSecret. It is used to derive six 16-byte subkeys
for securing communication between the owner device and
the tag. Note that Samsung OF protocol does not use any
default BLE pairing and authentication mechanisms, so this
shared secret is unrelated to BLE Long Term Key (LTK) that
is normally exchanged as part of BLE pairing protocols [17].

The subkeys are derived using a key derivation function,
given below, that combines the masterSecret and a parame-
ter that is used to differentiate subkeys:

kdf (k,x) = SHA256(m(k,x))[0 : 15]

where m(k,x) =
Bytes 0-15 Bytes 16-19 Bytes 20-

k 00000001 x
.

The following four subkeys are computed by the owner
device, the tag and (presumably) the server.

1. Owner authentication key: This key is used by the
owner to establish an authenticated BLE session with a
SmartTag. It is computed by applying :

AKo = kdf (masterSecret,"bleAuthentication")

2. Owner GATT key: This key is used for encrypting the
data exchanged in the GATT interactions between the
owner and the tag. It is dependent on a nonce and is valid
for a single session of interactions with the tag.

GKo(nonce) = kdf (masterSecret,nonce)

Here nonce is a 16-byte value received from the Smart-
Tag during each BLE authentication process, see §3.1.

3. Privacy key : This key is used for generating unique
privacy IDs for a SmartTag (see §3.3).

PIDK = kdf (masterSecret,"privacy").

4. Advertisement signing key : This key is used for sign-
ing and validating the integrity of the BLE data broad-
casted by a SmartTag:

ASK = kdf (masterSecret,"signing")

Two additional subkeys are derived by a SmartTag and the
server, but not the owner device (see §3.4 for details of when
and how these keys are used).

• Non-owner authentication key. This key is used by a
non-owner device to authenticate to the tag.

AKno = kdf (masterSecret,"nonOwner")

• Non-owner GATT key. This key is used in a GATT
session between a non-owner and the tag for exchanging
commands. It is dependent on a nonce that is exchanged
during the GATT interaction.

GKno(nonce) = kdf (AKno,nonce).

Notice that unlike the owner GATT key, the non-owner GATT
key is not generated directly from the masterSecret; rather it
is derived from the non-owner authentication key.

Stage 2: Owner-tag authentication After computing the
masterSecret and the AES keys, the owner device initi-
ates a two-way authentication with the tag to establish an au-
thenticated connected session. This protocol is implemented
through BLE interaction only, using the Authentication Ser-
vice of the GATT profile of the tag. In the protocol descrip-
tion below, O denotes the owner device and T denotes the
tag. Throughout the remainder of the paper, we shall use the
notation Ek(x,y) to denote the AES/CBC/PKCS7 encryption
of plaintext y with key k and initialization vector x.

1. O → T : nO
2. T → O : nT
3. O → T : EAKo(nT ,"smartthings")
4. T → O : EAKo(nO,"smartthings")

Here nO and nT refer to nonces generated by O and T , respec-
tively. At Step 3, the tag checks that the received ciphertext
is indeed the encryption of the text "smartthings"; likewise in
Step 4, the owner checks that the received ciphertext is of the
expected form. If any of these checks fail, the authentication
fails; otherwise the authentication is established, and both the
tag and the owner derive an Owner GATT key using nT , i.e.,
gko = GKo(nT ). This key acts as a session key that is used to
secure data transmission in this authenticated session, until
the BLE connection is terminated.



Stage 3: confirming physical possession of the tag. Af-
ter the owner and the tag have successfully established an
authenticated BLE connection and derived the session key
gko, the next step is to establish the physical presence of the
tag. In a normal registration flow, the SmartThings app will
ask the user to press the tag button to ensure physical posses-
sion of the tag. Pressing the tag button sets the value of the
CONFIRM_STATUS characteristic on the tag to 0x01 (encrypted
using gko with IV set to nT ) from the default value 0x00.

T → O : Egko(nT ,0x01)

The owner’s device would only continue the registration flow
after validating the value of this characteristic.

Stage 4: tag ownership status check This stage checks the
ownership status of the tag to ensure that it is not currently
registered to another user. This is done via a simple request
to the server, containing the serial number sn of the tag. If
the server indicates that the tag has already been registered to
another account, the registration process will abort.

Stage 5: finalizing tag registration This stage creates an
online profile of the tag, associated with the owner’s account.
The protocol can be described abstractly as follows (a more
detailed version can be found in Appendix C on arXiv), where
S denotes the server.

1. O → S : sn, id,Bsecret
2. S → O : deviceId,metadata
3. O → T : Egko(nT ,metadata)
4. O → T : Egko(nT ,curtime)
5. O → T : Egko(nT ,"Finish")
6. T → O : pid
7. O → S : pid, loc

In Step 1, the owner device sends a record, containing, among
others, the tag serial number sn, an identifier id and the shared
secret Bsecret established in §3.1. Recall that sn is used in the
ownership status check in the previous stage, to avoid a tag
being registered twice. Our observations showed that sn and
id were identical and equal to the tag BLE identity address.

In Step 2, the server returns a unique deviceId that is linked
to the tag, and a metadata record that contains the following
fields: the privacy Id pool size (pidsize), the privacy Id seed
(pidseed) and the privacy Id IV (pidIV ). The owner device
keeps a record of these parameters and in Step 3, forwards
them (encrypted) to the tag. These parameters are used later
by the tag to generate BLE advertisements. The deviceId can
be used later to lookup the location of the tag.

In Step 4, the owner device sends the current time infor-
mation (in UTC) to the tag so the tag can synchronize its
time with the owner. Finally, the owner sends an encrypted
message ("Finish") to indicate the end of the registration
process and disconnect from the tag in Step 5.

In Step 6, the tag broadcasts BLE data containing a privacy
ID (see §3.3) that the owner device uses to identify it. After
discovering its own tag, in Step 7, the owner device reports the
current location loc and the tag pid to the location server. The
first location report of a tag made by its owner device creates a
device profile on the server, which bonds the tag’s ownership
status with the owner’s Samsung account, preventing others
from registering the tag (§3.1). Crucially, the server uses the
value id as the identity of the tag for the ownership bonding.

3.2 Owner-Tag interaction
A tag may move in and out of the BLE range of its owner
device. The owner device (which also acts as a helper device
for tags it does not own) periodically scans for tags in its prox-
imity. When a tag is detected in the proximity of its owner,
after having been away, the owner (through the SmartThings
app) will automatically initiate the owner-tag authentication
protocol over BLE, as described in §3.1. Upon successful
authentication, the app will show the tag as connected and
the owner can perform various supported commands on the
tag, such as ringing the tag. SmartThings also allow an option
to configure the tag to perform limited actions on the owner
device, such as ringing the owner device when a physical
button in the tag is pressed. Appendix C on arXiv contains
details of some of these commands. Each command is trig-
gered by exchanging encrypted data Egko(nT ,Data), where
gko is the owner GATT key and nT is the tag’s nonce sent
during the owner-tag authentication stage (§3.1), and Data is
an encoding of the command:

Data =
Bytes 0-3 4 5-
Counter Opcode Argument(s)

The counter value corresponds to the total number of com-
mands successfully sent by O during the current authenticated
session. The opcode specifies the command type, as a charac-
teristic may support multiple commands, e.g., opcode 0 for
alarm off, 1 for alarm on.

3.3 Location querying and reporting
We now discuss the subprotocols for an owner device to query
its lost tags from the location server, and for a helper device
to report location information of lost tags to the server. The
location querying protocol consists only of simple POST
requests to an URL under the api.samsung.com domain,
so we shall omit the details. In the following, we focus on
subprotocols used for location reporting.

SmartTag BLE advertisement data. The helper device
identifies nearby (lost) SmartTags through their BLE adver-
tisement data only, so we first present details on the advertise-
ment structure and how it is generated. Figure 3 shows the
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Figure 3: The OF advertisement structure for SmartTags

Bits 5-7 Name

001 (1) Premature lost mode
010 (2) Lost mode
011 (3) Overmature lost mode
100 (4) Paired with one device
101 (5) Connected to one device
110 (6) Connected to two devices

Table 1: Operating states of a SmartTag

OF advertisement structure for SmartTags with the following
fields highly relevant to the OF protocol: the tag state (byte
0), the aging counter (bytes 1-3), the privacy ID (bytes 4-11),
and the signature (bytes 16-19).

The tag state is encoded in bits 5-7 of byte 0 and denotes
the operating states of a tag. There are six different tag states,
shown in Table 1. The state of a registered tag becomes pre-
mature lost once it is disconnected from its owner device or
rebooted. After operating in premature lost mode for 15 min-
utes, the state changes to lost, which informs nearby helper
devices that it is considered lost. After 24 hours in lost mode,
the state becomes overmature lost, where certain BLE opera-
tions slow down for power saving. A helper device that finds
a tag in the overmature lost mode will initiate an anti-tracking
process (see §3.4).

Bytes 1-3 store the aging counter, a timestamp com-
puted using the tag’s time (UTC) and a hardcoded constant:
agingCounter = (tagTime− 1593648000)/900. The aging
counter is universal for all SmartTags in-sync with the server’s
time and updates periodically.

Bytes 4-11 store an 8-byte privacy ID, which is a unique
identifier of a SmartTag. Each registered SmartTag has a set
of unique privacy IDs called the privacy ID pool. This set is
deterministically generated using the privacy key (PIDK) and
the privacy ID configurations (pidsize, pidseed, pidIV ) that
the server sent to the owner during the finalization stage in the
registration process (§3.1). The privacy IDs are an essential
part of the OF protocol as they associate a tag with its owner’s
Samsung account. For each i ∈ {1, . . . , pidsize}, the privacy
ID pidi is generated as follows:

pidi = EPIDK(pidIV, inputi), where inputi is the byte array

Byte 0 Byte 1 Byte 2-9 Byte 10 Byte 11
xi yi pidseed xi yi

xi = (i ≫ 8)∧256 and yi = i∧256. Here, ≫ represents right
bitshift and ∧ denotes bitwise AND.

The privacy pool size for SmartTags is 1000 when we made
our analysis, but the value is controlled by the server so it is
not firmware-specific.

The signature field at the end of the advertisement data
serves as a cryptographic checksum for the first 16 bytes. Let
blePayload denote the first 16 bytes of the BLE advertisement
data. Then the four signature bytes are obtained from the first
4 bytes of the f ullSignature defined below:

f ullSignature = EASK(pidIV,blePayload)

where ASK is the advertisement signing key (see subkey 4).
Any changes to the first 16 bytes of the advertisement will
likely cause the signature bytes to change correspondingly,
which allows the integrity of the BLE data to be validated
by parties with the privacy ID configuration and the shared
secret of the tag, such as the owner and the server.

A tag rotates its advertisement data periodically. A tag in
any non-overmature lost mode updates its privacy ID, aging
counter (incremented by 1), and signature every 15 minutes.
Under the overmature lost mode, a tag updates the aging
counter and signature every 15 minutes. However, the fre-
quency for shuffling the privacy ID reduces from once every
15 minutes to once every 24 hours.

Location reporting A helper device regularly scans for
BLE advertisement data from nearby SmartTags. It filters
BLE advertisements based on the advertising UUID for Smart-
Tags (FD5A). The helper device stores the privacy IDs of
lost devices in a local database that can store up to 1000 en-
tries. Note that these privacy IDs do not necessarily represent
distinct devices, as a tag can generate multiple privacy IDs
and the (honest) helper device does not have the privacy key
(PIDK) needed to link these IDs. A privacy ID of a tag is
marked as expired if it has not appeared in the BLE scanning
for 15 minutes and will be removed from the database. More-
over, the helper device only reports locations of SmartTags in
lost or overmature lost mode.

The helper device will report geolocations of lost Smart-
Tags in the database based on estimated locations received
from the WiFi or GPS service. Through reverse engineering
and runtime analysis on a helper device, we found that each
helper device has a pair of RSA 2048-bit private signing key
(pkH) and its corresponding verification key (pubH) stored
in the device, secured using Android keystore. Our analysis
shows that these keys are embedded in a native library con-
tained in the FMM apk, so they are likely not unique per
device. The public key pubH is signed by an intermediate
CA owned by Samsung. These keys are used in the location
report protocol below to certify the originality of the report



(in that it originated from an official Samsung device rather
than an unauthorized third party).

To submit a location report, the helper must first obtain
an access token from the server. This token request process
is re-used again in another protocol (for interacting with an
unknown tag), so we describe it separately here.

1. H → S : REQ
2. S → H : nS
3. H → S : pubR,nS,sig(nS, pkH),cert(pubH)
4. S → H : access_token

In Step 1, the helper device generates a pair of private-
public key (pkR, pubR) and then sends a request for location
report to the server S. Concretely this step is done via a simple
HTTPS GET request to S. The server responds with a 16-
byte nonce, encoded as a hexadecimal string. H extracts the
signing key pkH from its keystore, after having performed
an attestation protocol, and uses it to sign the nonce nS. The
helper then sends the nonce nS, its signature sig(nS, pkH), the
certified public key cert(pubH), and pubR to server. Note that
the key pair (pkR, pubR) is not used in the location report
but will be important later in another protocol. If the server
checks the validity of the certificate and verifies the signature
and sends a unique access token (which is a JWE token, tied
to the nonce nS) (Step 4) if everything checks out. The access
token is then used to authenticate the location report.

H → S : access_token,report

where report contains a list of advertisement data and the
geolocation they were detected. Each location report al-
lows a maximum of 5 recently found devices (time f ound ≥
timecurrent −1 (minute)) from the local database to be reported.
Each access token has a fixed expiry time (around 32 hours,
based on our experiments), after which, the token request
protocol above must be repeated to obtain a new token.

3.4 Unknown tag detection
The SmartThings app has a feature for detecting nearby over-
mature lost mode tags for anti-stalking purposes. If such as
tag has been detected to be following a helper device, the
SmartThings app gives the device owner an option to play
sound on the tag to help locating it. Unlike AirTags where
any user can issue a command to the tag to play sound [21], a
SmartTag only responds to commands from an authenticated
device. Since the helper device does not have the authentica-
tion key to authenticate to the tag, it would need the vendor
server’s help.

We assume that the helper device has performed the proto-
col to request JWE access token (see the location reporting
protocol above) and obtained the token. To play sound on the
tag, the helper needs to initiate a GATT connection and reads
off a nonce from a certain characteristic. In the following,

the notation AEpub(x) denotes an asymmetric encryption of
plaintext x with public key pub.

1. H → T : nH
2. T → H : nT
3. H → S : access_token,nT , pid
4. S → H : X ,Y
5. H → T : enT
6. T → H : EAKno(nH)
7. H → T : Egkno(nT ,command)

In Step 4, the messages are computed as follows:

X = AEpubR(EAKno(nT )) Y = AEpubR(GKno(nT ))

where pubR is the public key H generated in the access token
request protocol. H decrypts these to obtain enT = EAKno(nT )
and gkno = GKno(nT ) used in the remainder of the protocol.
If we omit step 3 and 4, this protocol is similar to the owner-
tag authentication protocol, except that the authentication key
used is AKno, and the GATT key used to send the command is
GKno(nT ). Note that the server never discloses the AKno itself.
This request needs to be accompanied by a current access
token, and an identifying information from the tag (i.e., its
privacy ID pid, and some other information we omit here).

4 Security and privacy analysis

The four research questions guide the construction of our
adversary model (Table 2) which we use for our analysis.
This model classifies potential threats to the OF system into
four categories based on our research objectives, extending the
FindMy adversary model proposed in [21]. Firstly, our model
subdivides proximity-based threats (A1) into passive (A1.1)
and active (A1.2) categories, based on the level of interaction
with the SmartTag’s BLE interfaces. In line with the FindMy
model, we consider network-based (A2) and service operator
(A3) threats. Finally, we introduce a new Tag Owner category
(A4), acknowledging potential security implications posed by
SmartTag owners themselves. The final column indicates the
related research questions, highlighting the implications of
each threat category.

We now analyze the security and privacy issues affecting
Samsung’s OF system in alignment with our research ques-
tions, each addressed in the following sections: §4.1 (RQ1),
§4.2 (RQ4), §4.3 (RQ3), and §4.4 (RQ2). Then, we provide
an update on various bugs discussed in Section 4.5.

4.1 Proximity-Based Attack (A1-RQ1)
Attack Scenario By passively eavesdropping on BLE ad-
vertisements (A1.1) or actively engaging with the SmartTag’s
GATT server (A1.2), the attacker could identify and track
the presence of the neighbour’s FMM device or SmartTag,
thereby gaining insights into their daily schedule.



Table 2: Adversary Model for Samsung SmartTags

Model Assumptions Capabilities Impact
Passive Proximity-based (A1.1) Within BLE communication distance with a

tag; Controls a Bluetooth device
Record and replay BLE advertisements RQ1

(§4.1)Active Proximity-based (A1.2) Interact with tag’s GATT server
Network-based (A2) MITM position between Samsung server and

a tag.
Intercept, redirect, or modify network traf-
fic

RQ4
(§4.2)

Service Operator (A3) Access to backend systems. Access to all location reports and secret
keys for each registered SmartTag.

RQ3
(§4.3)

Tag Owner (A4) Owns a SmartTag; Controls a Bluetooth de-
vice; Direct contact with a victim

Hide the tag/customized tracking device in
victim’s belongings

RQ2
(§4.4)

Linkability Flaws The privacy ID pool size for OF devices
is specified through a parameter sent by the server during
the registration phase. For FMM devices, this is 51, while for
SmartTags, it is 1000. As the pool size is not hardcoded on the
client side, this could change in future updates to the server.
As it stands currently, even with 1000 pool size, there is a high
probability (due to the birthday theorem) that the same privacy
ID could be reused in approximately

√
n rotations, where n

is the pool size. From our experiments, a few days of passive
observations of the BLE data would cover all 51 privacy IDs
of an FMM device. Recent versions of the FMM app have
added a layer of obfuscation to the privacy IDs, keeping the
same privacy ID pool size. However, our preliminary finding
shows this can be easily de-obfuscated (see Appendix B.2.3).
This obfuscation is not implemented in SmartTags.

GATT server leaking sensitive data. A registered SmartTag
advertises on RPAs that frequently change. However, we have
found that sensitive information leaked by characteristics in
SmartTags’ GATT profile (Appendix C.1 on arXiv) provides
two ways for an attacker to de-anonymize the tag’s identity:
The IDENTIFIER characteristic contains its identity MAC
address, and the HASHED_SERIAL_NUMBER characteristic con-
tains the SHA256 hash of the identity address. Both values
are static and unique for each tag and readable, which can be
used by any nearby adversaries to identify the tag.

The SUPPORTED_CIPHER characteristic is readable and
writable. It contains a default value "AES128/CBC/PKCS7"
that specifies the cipher being used for BLE authentication.
However, we discovered that writing custom values to this
characteristic would overwrite the default value until the tag
is restarted. Hence, an adversary can identify a registered tag
by writing a custom identifier to this characteristic.

DFU device reboot. The Galaxy SmartTag has a DFU
(Device Firmware Update) Service for secure over-the-air
Firmware updates. We discovered that a SmartTag can be
rebooted to the DFU mode by enabling indication on the But-
tonless DFU characteristic and writing byte 0x01 to it [31].
This is actually not part of Samsung implementation; rather it
is a default service available to nRF52 chipset for firmware
updates so this vulnerability is not specific to SmartTags.

In the DFU mode, the tag advertises on a random static
MAC address and waits for new firmware packages. If no data

is received over a short period (approximately two minutes),
the tag will reboot and resume its lost mode BLE operations.
Additionally, the DFU mode reveals the identity MAC ad-
dress of the tag - the MAC address used in the DFU mode
(addrDFU ) equals to the identity MAC address (addrId) plus
one [31], e.g., if addrDFU is observed to be 11:22:33:44:55:66,
it can be inferred that addrId is 11:22:33:44:55:65. However,
after coming out of the DFU mode, the aging counter in the
OF data is reset to 0, making OF tracking unavailable for the
tag since the aging counter will be considered as too old and
its location will not be accepted by the server.

Unintended pairing with a SmartTag. The update to
firmware 1.02.06 introduces a new vulnerability. A SmartTag
with this new firmware appears to accept pairing request, us-
ing the Just Works association mode, allowing the attacker
to obtain the IRK and the identity address of the tag. The
IRK can then be used to resolve the RPAs the tag use in BLE
advertising. The IRK appears to be persistent across reboot
and account switching. So removing the tag from a Samsung
account and pairing with another account does not reset the
IRK. The possession of the IRK allows a more stealthy track-
ing of the tag, as the attacker does not need to connect to tag;
they simply observe the RPAs used to advertise the payload
and de-anonymize them using the IRK.

Unintended Silent Pairing with an Owner Device. It is pos-
sible to impersonate a SmartTag and silently pair with its
owner device by exploiting the following pairing behavior
in the BLE specification: if a central device encounters an
"Insufficient Authentication" error when interacting with a
characteristic in a peripheral, it will initiate the pairing pro-
cedure with the peripheral. This behavior has been exploited
in previous work [32, 36, 37] to initiate unintended pairing.
As noted in [37], the attacker can influence the association
method for the pairing, e.g., force the pairing to use a less
secure method, such as Just Works.

In this attack, the attacker acts as the peripheral, while the
central device is the owner device. The attacker creates a
GATT profile of a SmartTag and replay the latest BLE adver-
tisement from the tag to trick the owner device into initiating
the BLE Authentication procedure (§3.1). BLE Authentica-
tion starts with the owner device writing to the NONCE charac-
teristic of the (impersonated) SmartTag’s GATT server. By set-
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Figure 4: Fake location being updated on the owner device

ting the write permission for the NONCE to encrypted-write,
the "Insufficient Authentication" error will be triggered upon
write requests. Prior to the November 2020 patch [1], pairing
is performed silently on most Android versions if Just Works
is used [32]. Older models of Samsung devices that are not
eligible to receive the update, such as Samsung Galaxy 7,
remain vulnerable. This attack allows the attacker to obtain
the IRK and the identity address of the owner device that can
be used for long-term tracking.

4.2 Network-based Attack (A2-RQ4)

Attack Scenario In the context of network-based threats,
an attacker stealing a tag (attached to a stolen item) may be
able to hide the location of the stolen item by forging location
reports using the tag’s lost mode advertisement, leading the
owner to a false trail.

Forging location reports We found several ways in which
the integrity of the location report can be compromised, al-
lowing an attacker to report fake locations of a lost tag.

Relay attack. Recall that the helper device simply forwards
the BLE advertisement data of a lost tag or mobile device to
the location server. There are no mechanisms for the helper
to determine whether the data was indeed broadcasted by a
nearby legitimate OF device. This allows a very simple relay
attack: two attackers A and B in two different locations can
collude by forwarding the BLE advertisement data of a device
observed in A’s location to B to be replayed at B’s location,
and vice versa. If there are helper devices in both locations,
they will submit conflicting reports. Indeed, our experiments
show the location server does not check for the consistency
of the location reports, e.g., one device could appear to be de-
tected in two different continents within seconds. This attack
is especially effective against FMM devices as their advertise-
ment data has no expiry time and can be replayed indefinitely.
In contrast, with SmartTags, the aging counter in the adver-
tisement prevents an indefinite replay. From our observation,
we’ve noticed that advertisement data that is more than 7 days
old will be rejected by the server.

Notably, this appears to be a universal issue affecting
all crowd-sourced BLE tracking systems, including Apple’s
FindMy. Potential mitigation will be discussed in §5, such as
using a distance-bounding protocol. However, we emphasize
that this is a difficult problem that extends beyond the scope
of this paper.

The next three attacks exploit the location report protocol
itself. They correspond to three different ways in which the
attacker can obtain an access token to submit location reports
(see §3.3). Recall that the location report will only be accepted
by the location server if the reporter has a valid access token.
These attacks are more powerful as they do not require any
helper devices to be present at all at the target location. For
example, we were able to forge a report of an OF device
detected in the middle of an ocean, as shown in Figure 4.

Re-using location reporting access token. As it turned out,
once the helper device receives an access token from the ven-
dor’s server for location reporting, it records the token in its
system log. Consequently, an attacker who owns a helper de-
vice can extract this token from the log and send fake location
reports using it. This process can be easily automated as the
report is done through a simple HTTPS POST request to the
location server.

Access token renewal through signature replay. We discov-
ered that in the access token request protocol, the server does
not check whether the nonce nS it sent in Step 2 is the same
as the nS it receives in Step 3. This allows an attacker who is
in possession of a signed nonce from a previous session to re-
play it to get another access token. More specifically, suppose
the attacker has n′S and sig(n′S, pkH). Then the following is a
valid protocol run for token renewal:

1. H → S : REQ
2. S → H : nS
3. H → S : pubR,n′S,sig(n′S, pkH),cert(pubH)
4. S → H : access_token

even when nS ̸= n′S. Note that as all communication between
the helper device and the location server are secured via
HTTPS, for this attack to be possible, the attacker would need
to be able to decrypt the TLS encrypted traffic. In our experi-
ments, this was done by installing a root CA in a rooted helper
device, and perform MITM attack between the device and the
server. We observed that in recent Samsung phones running
Android 10 or later, the location report process involves an
attestation protocol before the phone could extract the signing
key to sign the nonce. This attestation step would fail if it
detects the phone is rooted. We only managed to execute this
attack in an older Samsung phone running Android 8.0.

Extracting the signing key. We discovered a flaw that al-
lowed us to extract the signing key itself.1 This then allowed
us to run the entire location reporting protocol outside the

1We decide to withhold the details of this flaw as it remains unpatched,
to avoid it being exploited.



phone as we now possess all the information to pass the au-
thentication stage to get the access token.

4.3 Service Operator (A3-RQ3)
Attack Scenario Without a strong end-to-end privacy, the
service operator may infringe user privacy by inferring social
connections through location history analysis.

End-to-end privacy The OF protocol assumes the vendor
as the trusted party, since the vendor has the key material
needed to compute the privacy IDs for any registered Smart-
Tag. This means that the vendor can de-anonymize the lo-
cation reports of a lost device. From a privacy standpoint,
this is worse than Apple’s FindMy network, in which the
cryptographic key needed to generate the privacy IDs is not
disclosed to the vendor.

A more interesting question is whether the design of Sam-
sung OF protocol protects the privacy of helper devices. From
the location reporting protocol in §3.3, we see that the access
token can be used to link multiple location reports. Since each
access token is assigned to a helper device, its location reports
can be linked to plot its trajectory over the validity period of
the token. In principle, the access token is not tied to a par-
ticular Samsung account. However, under normal operations,
such a token request would be accompanied by other requests
to Samsung servers that they can potentially be correlated.

4.4 Tag Owner (A4-RQ2)
Attack Scenario Without adequate anti-tracking mecha-
nisms, malicious SmartTag owners could misuse the OF net-
work for stalking purposes, e.g., covertly track a colleague by
hiding the tag in their belongings, or create a hard-to-detect
customized tracker leveraging Samsung’s OF protocol.

OF device emulation. Emulating an OF device helps both
in understanding the various sub-protocols involved in the
interactions between the devices and vendor’s server and in
evaluating the feasibility of creating custom trackers to evade
Samsung’s anti-tracking mechanisms. Emulating FMM mo-
bile devices is straightforward as the (only) secret for gen-
erating privacy IDs can be extracted easily from the device
log. For SmartTags, this is not possible. To impersonate a
SmartTag that can be registered through normal flow, the im-
personation would need to successfully pass the finalization
stage (see §3.1), to establish a shared secret with the server.
Since the private key for deriving the secret is embedded in the
hardware of a legitimate tag and is not explicitly exchanged
during registration, it cannot be obtained easily without per-
forming a hardware-level attack on the tag. Unlike the case
with FMM device, this shared secret is not recorded in the
device log of the owner device. However, we managed to
obtain the shared secret by setting up a MITM attack between

the owner device and the server, and monitor their exchanges.
Since this shared secret is sent by the server to the owner
device, we sidestep the need for extracting the private-public
key of the tag.

Anti tracking feature The FMM version 7.2.25.14 intro-
duces an anti-tracking module for background detection of
tracking tags. The OF data advertised by a lost mode Smart-
Tag contains two temporary identifiers: the Non-Resolvable
RPA it uses and the privacy ID in the BLE payload. For a
lost mode tag, the two change every 15 minutes. For an over-
mature lost mode tag, the MAC address still randomizes as
normal, yet the privacy ID only updates once every 24 hours.

We noticed that the anti-tracking feature could only detect
SmartTags in overmature lost mode through initial observa-
tions. Reverse-engineering of the FMM app has shown that
the tracking detection algorithm uses the privacy ID contained
in the BLE advertisement data of a tag as its identifier, then
uses two thresholds to determine whether the tag is a tracker:
(1) the duration since the tag was first discovered and saved
to the local database; (2) the distance traveled while the tag is
nearby (according to the geolocations saved to the database).
This explains why the algorithm cannot detect tracking tags in
lost mode: Since the anti-tracking algorithm uses the privacy
ID data as the only identifier of a tag, it cannot correlate a tag
before and after its privacy ID changes. Thus, the detected
tracking duration is at most 15 minutes for an lost mode tag.
While, for an overmature lost mode tag, the privacy ID value
only changes once a day, which typically allows both thresh-
olds to eventually satisfy. Another consequence of this is that
privacy IDs generated by offline FMM mobile devices are
also ignored by the anti-tracking mechanism.

The above allows an attacker to circumvent anti-tracking
through a custom BLE tag that either impersonates an offline
FMM device, or a SmartTag with fast rotating privacy IDs.

4.5 Updates on the vendor bug fixes
1. Small Privacy ID Pool (§4.1): The pool size remains the

same, but an obfuscation process has been introduced
to make the privacy IDs appear more unique. However,
attackers can de-obfuscate these IDs (Appendix B.2.3).

2. Linkability Flaws (§4.1): In the latest firmware version
(1.04.01), the IDENTIFIER characteristic only returns
the tag’s serial number to authenticated devices, the
HASHED_SN is no longer writable, and the silent pair-
ing (with tag) vulnerability has been fixed. However, the
DFU service remains vulnerable.

3. Location Report Protocol: Samsung has implemented a
consistency check to secure the nonce used for access to-
ken renewal, preventing the signature replay attack from
§4.2. Yet, the other two location report vulnerabilities
remain.



5 Discussions

We now discuss a broader implication of our findings, in terms
of what we think are issues that go beyond the specific imple-
mentation we presented in the preceding sections. Again, our
discussion here is organised around the four research ques-
tions we pose in the introduction, which we think highlight
important features of an offline location tracking system. We
shall contrast Samsung’s OF protocol design and implemen-
tation against Apple’s Find My (as analyzed in [21]).

Both Apple and Samsung seem to strike a balance in provid-
ing privacy to the owner of a tracker (RQ1) while at the same
time providing means to detect unwanted tracking (RQ2). The
latter seems to be a focus of much public attention, as indi-
cated by articles in major news outlets such as [12], and has
prompted an initiative [23] by Apple and Google to jointly
develop a standard to ensure that future BLE trackers will
have features built-in that allow cross-platform detection of
unwanted tracking. On the issue of unlinkability of BLE data,
our conclusion, given our findings and many in BLE finger-
printing work [8–10, 24], it seems quite impossible to design
a system that would fully enforce unlinkability.

On the issues prompted by RQ2 (unwanted tracking), both
Apple and Samsung seem to adopt a similar approach: a lost
tracker will transition to a “lost mode”, under which its pri-
vacy ID rotates infrequently, allowing an easy detection by a
victim’s phone. The essential difference in their implemen-
tations is in terms of how long it takes for a lost tracker to
transition into the lost mode. In Samsung’s case, it takes 24
hours, which provides ample time for the attacker to achieve
its target. However, both Apple [25] and Samsung designs
share a similar flaw: their anti-stalking algorithms seem to
ignore BLE devices which are not dedicated trackers.

Samsung’s protocol design follows a fundamentally dif-
ferent approach to Apple’s with respect to end-to-end pri-
vacy (RQ3). Apple’s design follows a decentralised approach,
where the cryptographic keys controlling the generation of
privacy IDs are controlled by the end users. This guarantees,
in principle at least, that Apple cannot de-anonymize a privacy
ID without additional information. This is in contrast to Sam-
sung’s centralised approach, where the cryptographic keys for
generating privacy IDs are known and controlled by Samsung
server. This fact may come as a surprise to the reader, and as
far as we know, it is not something that is well-understood
by the public. This centralised approach does, however, have
an advantage over the decentralised approach when it comes
to identifying a stalking tag. In the case of Apple’s AirTags,
this identification is done through reading its serial number,
which can be linked to the owner’s account. But this assumes
the victim can locate the tag and access it physically, and that
the tag is a genuine AirTag, so not a custom-modified tag
(e.g., using the Open Haystack framework [30]). In the case
of Samsung’s OF system, the server possesses the informa-
tion to identify a stalking tag through its privacy IDs, without

needing physical access to the tag. From a law enforcement
perspective, this allows an easier attribution of the attack.

Lastly, concerning the location report integrity (RQ4), there
is an inherent difficulty in preventing the relay attack that is
not specific to offline location tracking systems. This issue,
for example, also manifests in BLE-based contact-tracing sys-
tems. A potential solution could be to adopt some sort of
distance-bounding protocols [6] to ensure physical proxim-
ity, but whether such an approach is practical and whether it
will not introduce further vulnerabilities into the system, is
something that is beyond the scope of the current paper.

6 Conclusion

In this work, the Offline Finding (OF) and device management
protocols for Find My Mobile (FMM) devices and SmartTags
have been thoroughly analyzed, and a security and privacy
analysis was performed. Our analysis of the protocols’ design
and implementation has identified several flaws, allowing each
of the research questions to be answered definitively.

We have also discovered vulnerabilities outside the scope
defined by the proposed research questions, including multiple
other flaws related to the GATT server implementation for
SmartTags, and the flaw in the registration protocol that allows
an attacker to register a SmartTag of someone else without
knowing its ECDH private key (Appendix D.2 on arXiv).

Most of the flaws we identified have been fixed in the latest
firmware, so some of our findings and analysis results may not
apply to devices/tags with higher version numbers. However,
our tests show that devices or tags with older firmware/soft-
ware versions can still participate in the OF network. Existing
users of SmartTags and other FMM devices who have the
option to upgrade the firmware/apps on their devices are en-
couraged to do so to mitigate the issues we discuss here.

Among the issues discussed, of great concern is the pos-
sibility of unwanted tracking using SmartTags and similar
trackers, such as AirTags and Tile, or custom trackers leverag-
ing on these offline finding networks. The current fragmented
approach to anti-stalking features leaves a significant number
of people vulnerable to unwanted tracking without an effec-
tive mean for detecting it. Fortunately, a standardisation effort
is on-going, by Apple and Google, to allow a cross-platform
detection of unwanted tracking [23]. We hope our analysis
would help inform the design choices in such a process. For
future work, we plan to investigate ways to detect unwanted
tracking that are effective against a variety of OF networks,
leveraging on existing efforts such as AirGuard [20].
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A Table of Acronyms

Acronym Full Name
FMM Find My Mobile
Helper Device A device that discovers and reports

lost FMM devices/SmartTags
Lost Device An FMM device/a SmartTag operat-

ing in lost mode or overmature lost
mode

Owner Device A device signed in with a Sam-
sung account that owns FMM de-
vice(s)/SmartTag(s)

OF Offline Finding
Privacy ID A unique identifier of an FMM de-

vice/a SmartTag

Table 3: Samsung’s Offline Finding Protocol Acronyms
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Acronym Full Name
AES Advanced Encryption Standard
API Application Programming Inter-

face
APK Android application Package
BLE Bluetooth Low Energy
CA Certificate Authority
DFU Device Firmware Update
ECDH Elliptic-curve Diffie–Hellman
GAP Generic Access Profile
GATT Generic Attribute Profile
GUI Graphical User Interface
IRK Identity Resolving Key
LTK Long Term Key
MAC Media Access Control
MITM Man-in-the-Middle
RPA Random private address
TLS Transport Layer Security
URL Uniform Resource Locator
UUID Universally Unique Identifier

Table 4: Common Acronyms

B Offline Finding protocol for smartphones

In this section, we discuss our findings in the reverse engineer-
ing of offline finding features of the FMM app. The results of
this section apply to all versions of FMM app (with the offline
finding features) prior to version 7.2.24.12 (July 2022). We
have not studied comprehensively the patched FMM app, but
some preliminary findings related to how the advertisement
payload is generated is given in Appendix B.2.3.

The OF protocol has multiple modes of operations that de-
pend on the functions supported by the devices involved. We
outline the main OF protocol that applies to mobile devices,
which consists of four main operations: Device/Account Reg-
istration, lost (offline) device Operation, helper (online) device
Operation, and Device/Account Deregistration. To simplify
presentation, we omit the detailed concrete details of various
messages exchanged and would refer to some important data
symbolically. We also conflate the different servers used in
the OF protocol to a single entity, which we simply refer to
as "the server".

The protocol can be summarised as follows. Initially, de-
vices must complete the registration process with the server
to obtain various parameters that will be used in the offline
operation. When a registered device goes offline, it starts ad-
vertising a unique payload that identifies itself. This payload
is picked up by nearby online (registered) devices which parse
the payload extracting the device’s identifier. The online de-
vice then accesses available location services to find out its
own location. It then sends the lost device’s identifier and the
location through to the server. The owner of the lost device

can then access the server to find out its location. Further
details of each operation are outlined below.

B.1 Device registration
The Offline Finding (OF) feature can be enabled on
Samsung smartphones in the device settings when
the device is signed in with a Samsung account.
The device will then make an HTTPs request to
the /v1/kms/cf/device/registerDevice URL of the
samsungdive server to register itself to the OF network. The
request contains the following information:

• Secret key: 16-byte random generated by Java Random.

• Device ID: Base64 encoding of an MD5 hash of the
device’s IMEI, which is constant and unique for a device.

• User ID: A value associated with the Samsung account
logged in.

• Other information such as device type, region code,
client version, and device model.

The server then responds with several pieces of informa-
tion; the most important one (from a security/privacy per-
spective) is the PrivateIDConfig, which consists of a 16-
byte secret key, an IV (PrivacyIV), and a size parameter
(PrivacyPoolSize) that will be used to generate BLE adver-
tisements for the OF operations. The IV value is fixed to the
same 16-byte value (i.e., "+IABCfvBZHJYFUek8vp3Gg==" in
base64 encoding) across accounts and devices. The privacy
ID pool size determines the amount of possible advertising
values the device will generate. This has also been observed
to be standard for all devices, taking the value 51. This means
that there are only 51 possible advertisement payloads from a
lost device.

Registration process details Listing 1 contains the system
log produced when enabling the Offline Finding Service on
a phone. The Highlighted parts show the information for the
device registration request and response. The request con-
tains the account and device information, such as userId,
deviceId, and email. The server’s response contains the
Offline Finding policy, the privateIdConfig, and other con-
figuration data.

Listing 1: FMM device registration log
10−07 17:35:33.429 8983 21707 I DBG_FMMSEC :[AccountManager ]:

getAccountInfo from preference : AccountVO{userId=’***’,
deviceId=’IMEI:’, cntCode=’AUS’, email=’***’,
serverUrl=’www.ospserver.net’, mcc=’505’, remoteControl=true}

10−07 17:35:33.430 8983 21707 I DBG_FMESEC :[CFHTTPRequestor ]: request
url : https://eu−kms.samsungdive.com/v1/kms/cf/device/registerDevice

10−07 17:35:56.916 8983 21707 I DBG_FMESEC :[CFHTTPRequestor ]: Reqeust
result :

{
"policy":{

"version":"1",



"type":"mobile",
"advertiseInterval":10000,
...

},
"TargetURL":"***",
"privateIdConfig":{

"secretKey":"***",
"iv":"+IABCfvBZHJYFUek8vp3Gg==",
"privacyIdPoolSize":51

},
"responseCode":200

}

B.2 Lost device operation
When a OF registered device no longer has an active network
connection, it enters ‘Lost Mode’ and triggers the Offline
Finding service to start. The lost device then creates a GATT
server profile and starts advertising on the main OF service
UUID (FD69). The advertising is the fundamental operation
for lost devices as part of the main OF protocol. The GATT
server is not directly used by the main OF protocol, how-
ever it can be interacted with via BLE and is used as part of
secondary OF protocols.

B.2.1 GATT server profile

Table 5: FMM GATT Services

Name UUID

ENCRYPTION EEDD5E73-6AA8-4673-8219-398A489DA87C
FME 4EBE81F6-B952-465E-9ECE-5CA39D4E8955

The GATT profile of a lost device contains two services: the
encryption service and the FME service, as shown in Table 5.

• Encryption Service (ENCRYPTION). This service is
used to implement a challenge-response protocol for
authenticating a device that wants to connect to the
lost device. It contains three characteristics (see Ta-
ble 6): The SUPPORTED_CIPHER characteristic is read-

Table 6: Characteristics under the Encryption Service

Name UUID

NONCE A12BE31C-5B38-4773-9B9D-3D5735233A7C
ENONCE 4EBE81F6-B952-465E-9ECE-5CA39D4E8955
SUPPORTED_CIPHER 50F98BFD-158C-4EFA-ADD4-0A70C2F5DF5D

able and contains information about the cipher to be
used, which is AES/CBC/PKCS7. The NONCE charac-
teristic is readable and returns an IV to be used during
encryption. This IV is a random nonce that is generated
using Java SecureRandom each time a client connects
to the server. The ENONCE characteristic is writeable and
expects to receive an encrypted version of the string
“smartthings”. This string must be encrypted using the
given IV and with the device’s secret key (from the

PrivateIDConfig). Writing the correct ciphertext to
the encrypted nonce characteristic completes the hand-
shake between client and server.

• FME Service (FME). After completing the handshake,
the client is now authenticated and can interact with the
characteristics in the FME service. The device’s alarm
can be set to ring by writing the byte 01 (encrypted
using the same cipher) to the ALARM characteristic (see
Table 7).

Table 7: Characteristics under the FME Service

Name UUID

ALARM 4a1351bb-d617-4612-a8e3-8dee6ca13e7b
CCCD 00002902-0000-1000-8000-00805f9034f0
MCF 0487d871-d55e-44aa-8318-4faa721278e5

B.2.2 BLE operations

Privacy ID generation The lost mode advertisements are
the fundamental part of the OF protocol. The lost device
generates an advertisement containing a unique identifying
payload which is picked up by a helper and reported to Sam-
sung. A key component of the advertisement payload is the
privacy ID that identifies the device uniquely. A device can
generate a number of privacy IDs, depending on the privacy
ID pool parameter in PrivateIDConfig.

Let k, iv and p denote, respectively, the secret key, IV and
the privacy ID pool from the device’s PrivateIDConfig. To
generate a privacy ID, first we compute a 20-byte array:

xi =
Byte 0 Byte 1 Bytes 2-17 Byte 18 Byte 19

00 i k 00 i

where i is a 1-byte random nonce in {1, . . . , p}, i.e., it is a
random 1-byte value bounded by the privacy ID pool. From
xi, one then generates a ciphertext: yi = Ek(iv,xi), where E
denotes the AES/CBC/PKCS7 cipher, initialized with the key
k and the initialization vector iv. The privacy ID correspond-
ing to each i is then computed by taking the first 12 bytes of
yi: pidi = yi[0 : 11].

BLE advertisement generation Finally, the advertisement
payload is generated from the privacy ID combined with
various meta data. Table 8 describes the full advertisement
payload; Table 9 provides details of the support info byte.

Table 8: FMM lost mode advertisement structure

Byte 0 1-12 13
Info operation mode privacy ID support info

The first byte describes the operation mode of the OF proto-
col that is being used by a lost device. In the main OF protocol,



Table 9: Support info byte (byte 13)

Bit 0-3 4 5 6 7
Info region info E2E flag UWB flag MCF flag reserved

this byte is always zero. The last byte contains information
about the device’s region and functionalities supported. This
last byte varies depending on the device but stays consistent
for all advertisements for a device. If two lost mode devices
are advertising in the same area, then this last byte can be
used as a quasi-differentiator between the two, provided they
do not have the same settings/support.

Once the advertising data has been generated, the lost de-
vice starts advertising over BLE on the OF service’s UUID
FD69. The device will continuously advertise the same data
until a timer is triggered that causes it to shuffle the adver-
tising data. This timer is set to trigger every 60 minutes, af-
ter which the device generates a new random nonce to be
used to generate the advertising data. Since, there are only 51
possible values for the nonce i, and it is the only source of
non-determinism, there are also only 51 possible values of the
advertising data (for a PrivateIDConfig). The lost device
repeats this process until it is online again. If an adversary
has access to the device’s secret key and IV, then it is trivial
to generate the 51 possible values.

B.2.3 BLE operations for newer FMM versions

Privacy ID obfuscation Samsung has introduced change to
the lost mode advertisement format for Galaxy smart devices
with FMM version 7.2.24.12 or above.

Table 10: Payload format for new FMM lost mode advertising

Byte 0 1-12 13 14 15-17 18-19
Info operating mode (obfuscated) privacy ID support info reserved aging counter signature

As shown in Table 10, the key differences for the new FMM
advertisement structure include the following:

obfuscated privacy ID an obfuscation method is applied to
the privacy ID contained in the BLE data. Details of the
obfuscation method will be explained next.

timestamp the added timestamp field is used to store a 3-
byte value that represents the time when the advertise-
ment data was computed. It is computed by dividing the
current system time by 900 and casting the result to an
integer:

timestamp = currentTimeSeconds//900

signature the added signature field stores a 2-byte value. It is
computed using HMAC-SHA256 with the device’s secret
key, and first 18 bytes of the advertisement data.

It was observed that the new FMM version still uses a
size-51 privacy ID pool as for the older versions, meaning
that there will only use 51 unique raw privacy ID for each
device. However, an obfuscation algorithm is used to add
more randomness to the privacy ID value contained in the
advertisement data.

The algorithm uses a universally static obfuscation table
and deterministically generated random Bytes to obfuscate
each raw privacy ID:

1. First, the FMM app computes a 12-byte raw privacy ID
using the same algorithm as in older versions

2. Then, the app computes the current timestamp value and
saves it to a variable, which is later used to determine
the obfuscation filter being used and the random bytes
generated by java.util.Random.

3. The obfuscation table is an ArrayList<String> object
that contains four hex strings as shown in Table 11. For
each advertisement data generation process, the FMM
app selects the timestamp mod 4th string and convert
it to a 12-byte filter.

Table 11: Content of the obfuscation table

Index Value

0 88DFAF0581FFCEB1429F2200
1 4A2635F7AD0E416906A35CBE
2 19DB724B07DF72B9792511DE
3 7BC79BAB386B8AFEFE63B9B7

4. Then, the app creates a new instance of the Random class
and uses the timestamp as the seed to generate 12 ran-
dom bytes deterministically.

5. Finally, the obfuscated privacy ID is computed as fol-
lows:

privacyIDob f = privacyIDraw ⊕ f ilter⊕ randomBytes

Privacy ID de-obfuscation The obfuscation operation can
be easily reversed by an adversary to extract the raw privacy
ID from the lost advertisement data observed over BLE:

1. The adversary uses the timestamp value in the BLE
data as the seed for java.util.Random, which allows
randomBytes′, the same random bytes used in the obfus-
cation process, to be generated.

2. Then, the adversary selects timestamp mod 4th string
from the universally static obfuscation table as the filter,
f ilter′.

3. Finally, the adversary can obtain the raw privacy ID from
the following XOR operation:

privacyIDraw = privacyIDob f ⊕ f ilter′⊕randomBytes′
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