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Abstract
Advance Persistent Threats (APTs), adopted by most delicate
attackers, are becoming increasing common and pose great
threat to various enterprises and institutions. Data provenance
analysis on provenance graphs has emerged as a common
approach in APT detection. However, previous works have ex-
hibited several shortcomings: (1) requiring attack-containing
data and a priori knowledge of APTs, (2) failing in extract-
ing the rich contextual information buried within provenance
graphs and (3) becoming impracticable due to their prohibitive
computation overhead and memory consumption.

In this paper, we introduce MAGIC, a novel and flexible
self-supervised APT detection approach capable of perform-
ing multi-granularity detection under different level of su-
pervision. MAGIC leverages masked graph representation
learning to model benign system entities and behaviors, per-
forming efficient deep feature extraction and structure ab-
straction on provenance graphs. By ferreting out anomalous
system behaviors via outlier detection methods, MAGIC is
able to perform both system entity level and batched log level
APT detection. MAGIC is specially designed to handle con-
cept drift with a model adaption mechanism and successfully
applies to universal conditions and detection scenarios. We
evaluate MAGIC on three widely-used datasets, including
both real-world and simulated attacks. Evaluation results indi-
cate that MAGIC achieves promising detection results in all
scenarios and shows enormous advantage over state-of-the-art
APT detection approaches in performance overhead.

1 Introduction

Advanced Persistent Threats (APTs) are intentional and so-
phisticated cyber-attacks conducted by skilled attackers and
pose great threat to both enterprises and institutions [1]. Most
APTs involve zero-day vulnerabilities and are especially diffi-
cult to detect due to their stealthy and changeful nature.
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Recent works [2–18] on APT detection leverage data prove-
nance to perform APT detection. Data provenance transforms
audit logs into provenance graphs, which extract the rich con-
textual information from audit logs and provide a perfect plat-
form for fine-grained causality analysis and APT detection.
Early works [2–6] construct rules based on typical or spe-
cific APT patterns and match audit logs against those rules to
detect potential APTs. Several recent works [7–9] adopt a sta-
tistical anomaly detection approach to detect APTs focusing
on different provenance graph elements, e.g, system entities,
interactions and communities. Most recent works [10–18],
however, are deep learning-based approaches. They utilize
various deep learning (DL) techniques to model APT pat-
terns or system behaviors and perform APT detection in a
classification or anomaly detection style.

While these existing approaches have demonstrated their
capability to detect APTs with reasonable accuracy, they en-
counter various combinations of the following challenges: (1)
Supervised methods suffer from lack-of-data (LOD) problem
as they require a priori knowledge about APTs (i.e. attack
patterns or attack-containing logs). In addition, these methods
are particularly vulnerable when confronted with new types
of APTs they are not trained to deal with. (2) Statistics-based
methods only require benign data to function, but they fail to
extract the deep semantics and correlation of complex benign
activities buried in audit logs, resulting in high false positive
rate. (3) DL-based methods, especially sequence-based and
graph-based approaches, have achieved promising effective-
ness at the cost of heavy computation overhead, rendering
them impractical in real-life detection scenarios.

In this paper, we address the above three issues by introduc-
ing MAGIC, a novel self-supervised APT detection approach
that leverages masked graph representation learning and sim-
ple outlier detection methods to identify key attack system
entities from massive audit logs. MAGIC first constructs the
provenance graph from audit logs in simple yet universal
steps. MAGIC then employs a graph representation module
that obtains embeddings by incorporating graph features and
structural information in a self-supervised way. The model



is built upon graph masked auto-encoders [19] under the
joint supervision of both masked feature reconstruction and
sample-based structure reconstruction. An unsupervised out-
lier detection method is employed to analyze the computed
embeddings and attain the final detection result.

MAGIC is designed to be flexible and scalable. Depending
on the application background, MAGIC is able to perform
multi-granularity detection, i.e., detecting APT existence in
batched logs or locating entity-level adversaries. Although
MAGIC is designed to perform APT detection without attack-
containing data, it is well-suited for semi-supervised and fully-
supervised conditions. Furthermore, MAGIC also contains
an optional model adaption mechanism which provides a
feedback channel for its users. Such feedback is important for
MAGIC to further improve its performance, combat concept
drift and reduce false positives.

We implement MAGIC and evaluate its performance and
overhead on three different APT attack datasets: the DARPA
Transparent Computing E3 datasets [20], the StreamSpot
dataset [21] and the Unicorn Wget dataset [22]. The DARPA
datasets contain real-world attacks while the StreamSpot and
Unicorn Wget dataset are fully simulated in controlled en-
vironments. Evaluation results show that MAGIC is able to
perform entity-level APT detection with 97.26% precision
and 99.91% recall as well as minimum overhead, less mem-
ory demanding and significantly faster than state-of-the-art
approaches (e.g. 51 times faster than ShadeWatcher [18]).

To benefit future research and encourage further improve-
ment on MAGIC, we make our implementation of MAGIC
and our pre-processed datasets open to public1. In summary,
this paper makes the following contributions:

• We propose MAGIC, a universal APT detection approach
based on masked graph representation learning and outlier
detection methods, capable of performing multi-granularity
detection on massive audit logs.

• We ensure MAGIC’s practicability by minimizing its com-
putation overhead with extended graph masked auto-encoders,
allowing MAGIC to complete training and detection in ac-
ceptable time even under tight conditions.

• We secure MAGIC’s universality with various efforts. We
leverage masked graph representation learning and outlier de-
tection methods, enabling MAGIC to perform precise detec-
tion under different supervision levels, in different detection
granularity and with audit logs from various sources.

• We evaluate MAGIC on three widely-used datasets, involv-
ing both real-world and simulated APT attacks. Evaluation
results show that MAGIC detects APTs with promising results
and minimum computation overhead.

• We provide an open source implementation of MAGIC
to benefit future research in the community and encourage
further improvement on our approach.

1MAGIC is available at https://github.com/FDUDSDE/MAGIC
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Figure 1: The provenance graph of a real-world APT at-
tack, exploiting the Pine Backdoor vulnerability. All attack-
irrelevant entities and interactions have been removed from
the provenance graph.

2 Background

2.1 Motivating Example
Here we provide a detailed illustration of an APT scenario
that we use throughout the paper. Pine backdoor with Drakon
Dropper is an APT attack from the DARPA Engagement 3
Trace dataset [20]. During the attack, an attacker constructs
a malicious executable (/tmp/tcexec) and sends it to the tar-
get host via a phishing e-mail. The user then unconsciously
downloads and opens the e-mail. Contained within the e-mail
is an executable designed to perform a port-scan for inter-
nal reconnaissance and establish a silent connection between
the target host and the attacker. Figure 1 displays the prove-
nance graph of our motivation example. Nodes in the graph
represent system entities and arrows represent directed in-
teractions between entities. The graph shown is a subgraph
abstracted from the complete provenance graph by remov-
ing most attack-irrelevant entities and interactions. Different
node shape corresponds to different type of entities. Entities
covered in stripes are considered malicious ones.

2.2 Prior Research and their Limitations
Supervised Methods. For early works [2–6], special heuris-
tic rules need to be constructed to cover all attack patterns.
Many DL-based APT detection methods [11, 14–16, 18] con-
struct provenance graphs based on both benign and attack-
containing data and detect APTs in a classification style.
These supervised methods can achieve almost perfect detec-
tion results on learned attack patterns but are especially vulner-
able facing concept drift or unseen attack patterns. Moreover,
for rule-based methods, the construction and maintenance of
heuristic rules can be very expensive and time-consuming.
And for DL-based methods, the scarcity of attack-containing
data is preventing these supervised methods from being actu-
ally deployable. To address the above issue, MAGIC adopts
a fully self-supervised anomaly detection style, allowing the
absence of attack-containing data while effectively dealing
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with unseen attack patterns.
Statistics-based Methods. Most recent statistics-based meth-
ods [7–9] detect APT signals by identifying system entities,
interactions and communities based on their rarity or anomaly
scores. However, the rarity of system entities may not neces-
sarily indicate their abnormality and anomaly scores, obtained
via causal analysis or label propagation, are shallow feature
extraction on provenance graphs. To illustrate, the process
tcexec performs multiple portscan operations on different IP
addresses in our motivating example (See Figure 1), which
may be considered as a normal system behavior. However,
taking into consideration that process tcexec, derived from
the external network, also reads sensitive system informa-
tion (uname) and makes connection with public IP addresses
(162.66.239.75), we can easily identify tcexec as a malicious
entity. Failure to extract deep semantics and correlations be-
tween system entities often results in low detection perfor-
mance and high false positive rate of statistics-based methods.
MAGIC, however, employs a graph representation module to
perform deep graph feature extraction on provenance graphs,
resulting in high-quality embeddings.
DL-based Methods. Recently, DL-based APT detection
methods, no matter supervised or unsupervised, are pro-
ducing very promising detection results. However, in real-
ity, hundreds of GB of audit logs are produced every day
in a medium-size enterprise [23]. Consequently, DL-based
methods, especially sequence-based [11, 14, 24] and graph-
based [10, 12, 15–18] methods, are impracticable due to
their computation overhead. For instance, ATLAS [11] takes
an average 1 hour to train on 676MB of audit logs and
ShadeWatcher [18] takes 1 day to train on the DARPA E3
Trace dataset with GPU available. Besides, some graph auto-
encoder [25–27] based methods encounter explosive memory
overhead problem when the scale of provenance graphs ex-
pands. MAGIC avoids to be computationally demanding by
introducing graph masked auto-encoders and completes its
training on the DARPA E3 Trace dataset in mere minutes.
Detailed evaluation of MAGIC’s performance overhead is
presented in Sec. 6.4.
End-to-end Approaches. Beyond the three major limitations
discussed above, it is also worth to mention that most recent
APT detection approaches [11, 17, 18] are end-to-end detec-
tors and focus on one specific detection task. For instance,
ATLAS [11] focused on end-to-end attack reconstruction and
Unicorn [10] yields system-level alarms from streaming logs.
Instead, MAGIC’s approach is universal and performs multi-
granularity APT detection under various detection scenarios,
which can also be applied to audit logs collected from differ-
ent sources.

2.3 Threat Model and Definitions

We first present the threat model we use throughout the pa-
per and then formally define key concepts that are crucial to

understanding how MAGIC performs APT detection.
Threat Model. We assume that attackers come from outside
a system and target valuable information within the system.
An attacker may perform sophisticated steps to achieve his
goal but leaves trackable evidence in logs. The combination
of the system hardware, operating system and system audit
softwares is our trusted computing base. Poison attacks and
evasion attacks are not considered in our threat model.
Provenance Graph. A provenance graph is a directed cyclic
graph extracted from raw audit logs. Constructing a prove-
nance graph is common practice in data provenance, as it
connects system entities and presents the interaction rela-
tionships between them. A provenance graph contains nodes
representing different system entities (e.g., processes, files and
sockets) and edges representing interactions between system
entities (e.g., execute and connect), labeled with their types.
For example, /tmp/tcexec is a FileObject system entity and the
edge between /tmp/tcexec and tcexec is an execute operation
from a FileObject targeting a Process (See Figure 1).
Multi-granularity Detection. MAGIC is capable to perform
APT detection at two-granularity: batched log level and sys-
tem entity level. MAGIC’s multi-granularity detection ability
gives rises to a two-stage detection approach: first conduct
batched log level detection on streaming batches of logs, and
then perform system entity level detection on positive batches
to identify detailed detection results. Applying this approach
to real-world settings will effectively reduce workload, re-
source consumption and false positives and, in the meantime,
produce detailed outcomes.

• Batched log level detection. Under this granularity of APT
detection, the major task is given batched audit logs from a
consistent source, MAGIC alerts if a potential APT is detected
in a batch of logs. Similar to Unicorn [10], MAGIC does not
accurately locate malicious system entities and interactions
under this granularity of detection.

• System entity level detection. The detection task under
this granularity of APT detection is given audit logs from a
consistent source, MAGIC is able to accurately locate mali-
cious system entities in those audit logs. Identification of key
system entities during APTs is vital to subsequent tasks such
as attack investigation and attack story recovery as it provides
explicable detection results and reduces the need for domain
experts as well as redundant manual efforts [11].

3 MAGIC Overview

MAGIC is a novel self-supervised APT detection approach
that leverages masked graph representation learning and out-
lier detection methods and is capable of efficiently performing
multi-granularity detection on massive audit logs. MAGIC’s
pipeline consists of three main components: (1) provenance
graph construction, (2) a graph representation module and
(3) a detection module. It also provides an optional (4)
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Figure 2: Overview of MAGIC’s detection pipeline.

model adaption mechanism. During training, MAGIC trans-
forms training data with (1), learns graph embedding by (2)
and memorizes benign behaviors in (3). During inference,
MAGIC transforms target data with (1), obtains graph em-
bedding with the trained (2) and detects outliers through (3).
Figure 2 gives an overview of the MAGIC architecture.

Streaming audit logs collected by system auditing soft-
wares are usually stored in batches. During provenance graph
construction (1), MAGIC transforms these logs into static
provenance graphs. System entities and interactions between
them are extracted and converted into nodes and edges respec-
tively. Several complexity reduction techniques are utilized
to remove redundant information.

The constructed provenance graphs are then fed through the
graph representation module (2) to obtain output embeddings
(i.e. comprehensive vector representations of objects). Built
upon graph masked auto-encoders and integrating sample-
based structure reconstruction, the graph representation mod-
ule embeds, propagates and aggregates node and edge at-
tributes into output embeddings, which contain both node
embeddings and the system state embedding.

The graph representation module is trained with only be-
nign audit logs to model benign system behaviors. When
performing APT detection on potentially attack-containing
audit logs, MAGIC utilizes outlier detection methods based
on the output embeddings to detect outliers in system behav-
iors (3). Depending on the granularity of the task, different
embeddings are used to complete APT detection. On batched
log level tasks, the system state embeddings, which reflect
the general behaviors of the whole system, are the detection
targets. An outlier in such embeddings means its correspond-
ing system state is unseen and potentially malicious, which
reveals an APT signal in that batch. On system entity level
tasks, the detection targets are those node embeddings, which

represent the behaviors of system entities. Outliers in node
embeddings indicates suspicious system entities and detects
APT threats in finer granularity.

In real-world detection settings, MAGIC has two pre-
designed applications. For each batch of logs collected by
system auditing softwares, one can either directly utilize
MAGIC’s entity level detection to accurately identify ma-
licious entities within the batch, or perform a two-stage detec-
tion, as stated in Sec. 2.3. In this case, MAGIC first scans a
batch and sees if malicious signals exist in the batch (batched
log level detection). If it alerts positive, MAGIC then performs
entity level detection to identify malicious system entities in
finer granularity. Batched log level detection is significantly
less computationally demanding than entity level detection.
Therefore, such a two-stage routine can help MAGIC’s users
to save computational resource and avoid false alarms with-
out affecting MAGIC’s detection fineness. However, if users
favor fine-grain detection on all system entities, the former
routine is still an accessible option.

To deal with concept drift and unseen attacks, an optional
model adaption mechanism is employed to provide feedback
channels for its users (4). Detection results checked and con-
firmed by security analysts are fed back to MAGIC, helping
it to adapt to benign system behavior changes in a semi-
supervised way. Under such conditions, MAGIC achieves
even more promising detection results, which is discussed
in Sec. 6.3. Furthermore, MAGIC can be easily applied to
real-world online APT detection thanks to it’s ability to adapt
itself to concept drift and its minimum computation overhead.

4 Design Details

In this section, we explain in detail how MAGIC performs
efficient APT detection on massive audit logs. MAGIC con-



tains four major components: a graph construction phase that
builds optimised and consistent provenance graphs (Sec. 4.1),
a graph representation module that produces output embed-
dings with maximum efficiency (Sec. 4.2), a detection module
that utilizes outlier detection methods to perform APT detec-
tion (Sec. 4.3) and a model adaption mechanism to deal with
concept drift and other high-quality feedbacks (Sec. 4.4).

4.1 Provenance Graph Construction

MAGIC first constructs a provenance graph out of raw audit
logs before performing graph representation and APT de-
tection. We follow three steps to construct a consistent and
optimised provenance graph ready for graph representation.
Log Parsing. The first step is to simply parse each log entry,
extract system entities and system interactions between them.
Then, a prototype provenance graph can be constructed with
system entities as nodes and interactions as edges. Now we
extract categorical information regarding nodes and edges.
For simple log format that provides entity and interaction
labels, we directly utilize these labels. For some format that
provides complicated attributes of those entities and inter-
actions, we apply multi-label hashing (e.g., xxhash [28]) to
transform attributes into labels. At this stage, the provenance
graph is a directed multi-graph. We designed an example to
demonstrate how we deal with the raw provenance graph after
log parsing in Figure 3.
Initial Embedding. In this stage, we transform node and edge
labels into fixed-size feature vector (i.e., initial embedding)
of dimension d, where d is the hidden dimension of our graph
representation module. We apply a lookup embedding, which
establish an one-to-one mapping between node/edge labels
to d-dimension feature vectors. As demonstrated in Figure 3
(I and II), process a and b share the same label, so they are
mapped to the same feature vector, while a and c are embed-
ded into different feature vectors as they have different labels.
We note that the possible number of unique node/edge labels
is determined by the data source (i.e., auditing log format).
Therefore, the lookup embedding works under a transductive
setting and do not need to learn embeddings for unseen labels.
Noise Reduction. The expected input provenance graph of
our graph representation module would be simple-graphs.
Thus, we need to combine multiple edges between node pairs.
If multiple edges of the same label (also sharing the same
initial embedding) exist between a pair of nodes, we remove
redundant edges so that only one of them remains. Then we
combine the remaining edges into one final edge. We note
that between a pair of nodes, edges of several different labels
may remain. After the combination, the initial embedding of
the resulting unique edge is obtained by averaging the initial
embeddings of the remaining edges. To illustrate, we show
how our noise reduction combines multi-edges and how it
affects the edge initial embeddings in Figure 3 (II an III).
First, three read and two write interactions between a and c
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𝒆𝒆𝒃𝒃𝒑𝒑 = 𝒆𝒆𝟏𝟏 = (𝟎𝟎,𝟎𝟎,𝟏𝟏,𝟎𝟎)

Ⅲ.  Multi-Edges Combined

Nodes with 
different types

Edges with 
different types Combined Edges

Figure 3: Example of MAGIC’s graph construction steps.

are merged into one for each label. Then we combine them
together, forming one edge eac with initial embedding equal to
the average initial embedding of the remaining edges (e′2 and
e′5). We provide a comparison between our noise reduction
steps and previous works in Appendix E.

After conducting the above three steps, MAGIC has fin-
ished constructing a consistent and information-preserving
provenance graph ready for subsequent tasks. During prove-
nance graph construction, little information is lost as MAGIC
only damages the original semantics by generalizing detailed
descriptions of system entities and interactions into labels.
However, an average 79.60% of all edges are reduced on the
DARPA E3 Trace dataset, saving MAGIC’s training time and
memory consumption.

4.2 Graph Representation Module

MAGIC employs a graph representation module to obtain
high-quality embeddings from featured provenance graphs.
As illustrated in Figure 4, the graph representation module
consists of three phases: a masking procedure to partially
hide node features (i.e. initial embeddings) for reconstruction
purpose (Sec. 4.2.1), a graph encoder that produces node and
system state output embeddings by propagating and aggregat-
ing graph features (Sec. 4.2.2), a graph decoder that provides
supervision signals for the training of the graph representation
module via masked feature reconstruction and sample-based
structure reconstruction (Sec. 4.2.3). The encoder and de-
coder form a graph masked auto-encoder, which excels in
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Figure 4: Graph representation module of MAGIC.

producing fast and resource-saving embeddings.

4.2.1 Feature Masking

Before training our graph representation module, we perform
masking on nodes, so that the graph masked auto-encoder
can be trained upon reconstruction of these nodes. Masked
nodes are randomly chosen, covering a certain proportion
of all nodes. The initial embeddings of such masked nodes
are replaced with a special mask token xmask to cover any
original information about these nodes. Edges, however, are
not masked because these edges provide precious informa-
tion about relationships between system entities. In summary,
given node initial embeddings xn, we mask nodes as follows:

embn =
xn, n /∈ Ñ
xmask, n ∈ Ñ

where Ñ are randomly-chosen masked nodes, embn is the em-
bedding of node n ready for training the graph representation
module. This masking process only happens during training.
During detection, we do not mask any nodes.

4.2.2 Graph Encoder

Initial embeddings obtained from the graph construction steps
take only raw features into consideration. However, raw fea-
tures are far from enough to model detailed behaviors of
system entities. Contextual information of an entity, such as
its neighborhood, its multi-hop relationships and its interac-
tion patterns with other system entities plays an important
role to obtain high-quality entity embeddings [29]. Here we
employ and extend graph masked auto-encoders [19] to gen-
erate output embeddings in a self-supervised way. The graph
masked auto-encoder consists of an encoder and a decoder.
The encoder produces output embeddings by propagating
and aggregating graph features and the decoder reconstructs
graph features to provide supervision signals for training.
Such encoder-decoder architecture maintains the contextual
and semantic information within the generated embeddings,
while its computation overhead is significantly reduced via
masked learning.

The encoder of our graph representation module con-
tains multiple stacked layers of graph attention networks
(GAT) [30]. The function of a GAT layer is to generate output
node embeddings according to both the features (initial em-
beddings) of the node itself and its neighbors. Differing from
ordinary GNNs, GAT introduces an attention mechanism to
measure the importance of those neighbors.

To explain in detail, one layer of GAT takes node embed-
dings generated by previous layers as input and propagates
embeddings from source nodes to destination nodes into mes-
sages along the interactions. The message contains informa-
tion about the source node and the interaction between source
and destination:

MSG(src,dst) =W T
msg(hsrc||embe).

And the attention mechanism is employed to calculate the
attention coefficients between the message source and its
destination:

α(src,dst) = LeakyReLU(W T
ashsrc +WamMSG(src,dst)),

a(src,dst) = So f tmax(α(src,dst)).

Then for the destination node, the GAT aggregates mes-
sages from incoming edges to update its node embedding by
computing a weighted sum of all incoming messages. The
weights are exactly the attention coefficients:

AGG(hdst ,hN ) =Wsel f hdst + ∑
i∈N

a(i,dst)MSG(i,dst),

hl
n = AGGl(hl−1

n ,hl−1
Nn

).

where hl
n is the hidden embedding of node n at l-th layer

of GAT, hl−1
n is that of layer l − 1 and Nn is the one-hop

neighborhood of n. The input of the first GAT layer are the
initial node embeddings. embe is the initial edge embedding
and remains constant throughout the graph representation
module. Was,Wam,Wsel f ,Wmsg are trainable parameters. The
updated node embedding forms a general abstraction of the
node’s one-hop interaction behavior.

Multiple layers of such GATs are stacked to obtain the
final node embedding h, which is concatenated by the original
node embedding and outputs of all GAT layers:

hn = embn||h1
n|| · · · ||hl

n.

where ·||· denotes the concatenate operation. The more layers
of GAT stacked, the wider the neighboring range is and the
farther a node’s multi-hop interaction pattern its embedding is
able to represent. Consequently, the graph encoder effectively
incorporates node initial features and multi-hop interaction
behaviors to abstract system entity behaviors into node em-
beddings. The graph encoder also applies an average pooling
to all node embeddings to generate a comprehensive embed-
ding of the graph itself [31], which recapitulates the overall



state of the system:

hG =
1
|N| ∑

ni∈N
hni .

The node embeddings and system state embeddings gen-
erated by the graph encoder are considered the output of the
graph representation module, which are used in subsequent
tasks in different scenarios.

4.2.3 Graph Decoder

The graph encoder does not provide supervision signals that
support model training. In typical graph auto-encoders [25,
27], a graph decoder is employed to decode node embeddings
and supervise model training via feature reconstruction and
structure reconstruction. Graph masked auto-encoders, how-
ever, abandon structure reconstruction to reduce computation
overhead. Our graph decoder is a mixture of both, which
integrates masked feature reconstruction and sample-based
structure reconstruction to construct an objective function that
optimizes the graph representation module.

Given node embeddings hn obtained from the graph en-
coder, the decoder first re-masks those masked nodes and
transforms them into the input of masked feature reconstruc-
tion:

h∗n =
{

W ∗hn, n /∈ Ñ
W ∗vremask, n ∈ Ñ

,

Subsequently, the decoder uses a similar GAT layer described
above to reconstruct the initial embeddings of the masked
nodes, allowing the calculation of a feature reconstruction
loss:

x∗n = AGG∗(h∗n,h
∗
Nn
),

L f r =
1

|Ñ| ∑
ni∈Ñ

(1−
xT

ni
x∗ni

||xni || · ||x∗ni
||
)γ.

where L f r is the masked feature reconstruction loss obtained
by calculating a scaled cosine loss between initial and re-
constructed embeddings of the masked nodes. This loss [19]
scales dramatically between easy and difficult samples which
effectively speeds up learning. The degree of such scaling is
controlled by a hyper-parameter γ.

Meanwhile, sample-based structure reconstruction aims to
reconstruct graph structure (i.e. predict edges between nodes).
Instead of reconstructing the whole adjacency matrix, which
has O(N2) complexity, sample-based structure reconstruction
applies contrastive sampling on node pairs and predicts edge
probabilities between such pairs. Only non-masked nodes
are involved in structure reconstruction. Positive samples
are constructed with all existing edges between non-masked
nodes and negative samples are sampled among node pairs
with no existing edges between them.

A simple two-layer MLP is used to reconstruct edges be-
tween node pairs samples, generating one probability for each

sample. The reconstruction loss takes the form of a simple
binary cross-entropy loss on those samples:

prob(n,n′) = σ(MLP(hn||hn′)),

Lsr =− 1
|N̂| ∑

n∈N̂

(log(1− prob(n,n−))+ log(prob(n,n+))).

where (n,n−) and (n,n+) are negative and positive samples
respectively and N̂ = N − Ñ is the set of non-masked nodes.
Sample-based structure reconstruction only provides supervi-
sion to the output embeddings. Instead of using dot products,
we employ a MLP to calculate edge probabilities as interact-
ing entities are not necessarily similar in behaviors. Also, we
are not forcing the model to learn to predict edge probabilities.
The function of such structure reconstruction is to maximize
behavioral information contained in the abstracted node em-
beddings so that a simple MLP is sufficient to incorporate and
interpret such information into edge probabilities.

The final objective function L = L f r +Lsr combines L f r
and Lsr and provides supervision signals to the graph repre-
sentation module, enabling it to learn parameters in a self-
supervised way.

4.3 Detection Module
Based on the output embeddings generated by the graph rep-
resentation module, we utilize outlier detection methods to
perform APT detection in an unsupervised way. As detailedly
explained in previous sections, such embeddings summarize
system behaviors in different granularity. The goal of our de-
tection model is to identify malicious system entities or states
given only a priori knowledge of benign system behaviors.
Embeddings generated via graph representation learning tend
to form clusters if their corresponding entities share similar in-
teraction behaviors in the graph [19,25–27,32]. Thus, outliers
in system state embeddings indicate uncommon and suspi-
cious system behaviors. Based on such insight, we develop a
special outlier detection method to perform APT detection.

During training, benign output embeddings are first ab-
stracted from the training provenance graphs. What the de-
tection module does at this stage is simply memorizing those
embeddings and organize them in a K-D Tree [33]. After
training, the detection module reveals outliers in three steps:
k-nearest neighbor searching, similarity calculation and fil-
tering. Given a target embedding, the detection module first
obtains its k-nearest neighbors via K-D Tree searching. Such
searching process only takes log(N) time, where N is the total
number of memorized training embeddings. Then, a similarity
criterion is applied to evaluate the target embedding’s close-
ness to its neighbors and compute an anomaly score. If its
anomaly score yields higher than a hyper-parameter θ, the
target embedding is considered an outlier and its correspond-
ing system entity or system state is malicious. An example
workflow of the detection module is formalized as follows,



using euclidean distance as the similarity criterion:

Nx = KNN(x)

distx =
1

|Nx| ∑
xi∈Nx

||x− xi||

scorex =
distx
dist

resultx =
{

1, scorex ≥ θ

0, scorex < θ

where dist is the average distance between training em-
beddings and their k-nearest neighbors. When performing
batched log level detection, the detection module memorizes
benign system state embeddings that reflects system states
and detects if the system state embedding of a newly-arrived
provenance graph is an outlier. When performing system en-
tity level detection, the detection module instead memorizes
benign node embeddings that indicates system entity behav-
iors and given a newly-arrived provenance graph, it detects
outliers within the embeddings of all system entities.

4.4 Model Adaption
For an APT detector to effectively function in real-world
detection scenarios, concept drift must be taken into consid-
eration. When facing benign yet previously unseen system
behaviors, MAGIC produces false positive detection results,
which may mislead subsequent applications (e.g. attack in-
vestigation and story recovery). Recent works address this
issue by forgetting outdated data [10] or fitting their model to
benign system changes via a model adaption mechanism [18].
MAGIC also integrates a model adaption mechanism to com-
bat concept drift and learn from false positives identified by
security analysts. Slightly different from other works that use
only false positives to retrain the model, MAGIC can be re-
trained with all feedbacks. As discussed in previous sections,
the graph representation module in MAGIC encodes system
entities into embeddings in a self-supervised way, without
knowing its label. Any unseen data, including those true neg-
atives, are valuable training data for the graph representation
module to enhance its representation ability on unseen system
behaviors.

The detection module can only be retrained with benign
feedbacks to keep up to system behavior changes. And as it
memorizes more and more benign feedbacks, its detection ef-
ficiency is lowered. To address this issue, we also implement
a discounting mechanism on the detection module. When the
volume of memorized embeddings exceeds a certain amount,
earliest embeddings are simply removed as newly-arrived em-
beddings are learned. We provide the model adaption mech-
anism as an optional solution to concept drift and unseen
system behaviors. It is recommended to adapt MAGIC to
system changes by feeding confirmed false positive samples
to MAGIC’s model adaption mechanism.

5 Implementation

We implement MAGIC with about 3,500 lines of code in
Python 3.8. We develop several log parsers to cope with dif-
ferent format of audit logs, including StreamSpot [34], Cam-
flow [35] and CDM [36]. Provenance graphs are constructed
using the graph processing library Networkx [37] and stored
in JSON format. The graph representation module is imple-
mented via PyTorch [38] and DGL [39]. The detection mod-
ule is developed with Scikit-learn [40]. For hyper-parameters
of MAGIC, the scaling factor γ in the feature reconstruction
loss is set to 3, the number of neighbors k is set to 10, the
learning rate as 0.001 and the weight decay factor equals
5× 10−4. We use a 3 layer graph encoder and a mask rate
of 0.5 in our experiments. The output embedding dimension
d is different on two detection scenarios, batched log level
detection and entity level detection. We use d equals 256 in
batched log level detection and of and an we set d equals
64 in entity level detection to reduce resource consumption.
The detection threshold θ is chosen by a simple linear search
separately conducted on each dataset. The hyper-parameters
may have other choices. We demonstrate the impact of these
hyper-parameters on MAGIC later in the evaluation section.
In our hyper-parameter analysis, d is chosen from {16, 32,
64, 128, 256} , l from {1, 2, 3, 4} and r from {0.3, 0.5, 0.7}.
For the threshold θ, it is chosen between 1 and 10 in batched
log level detection. For entity level detection, please refer to
Appendix D.

6 Evaluation

We use 131GB of audit logs derived from various system au-
diting softwares to evaluate the effectiveness and efficiency of
MAGIC. We first describe our experimental settings (Sec. 6.1),
then elaborate the effectiveness of MAGIC in different sce-
narios (Sec. 6.2), conduct a false positive analysis and assess
the usefulness of the model adaption mechanism (Sec. 6.3)
and analyze the run-time performance overhead of MAGIC
(Sec. 6.4). The impact of different components and hyper-
parameters of MAGIC is analyzed in Sec. 6.5. In addition, a
detailed case study on our motivation example is conducted
in Appendix C to illustrate how MAGIC’s pipeline work for
APT detection. These experiments are conducted under the
same device setting.

6.1 Experimental Settings

We evaluate the effectiveness of MAGIC on three public
datasets: the StreamSpot dataset [21], the Unicorn Wget
dataset [22] and the DARPA Engagement 3 datasets [20].
These datasets vary in volume, origin and granularity. We
believe by testing MAGIC’s performance on these datasets,
we are able to compare MAGIC with as many state-of-the-art



Table 1: Datasets for batched log level detection.
Dataset Scenario Malicious #Log pieces Avg. #Entity Avg. #Interaction Size(GB)

StreamSpot

CNN 100 8,989 294,903 0.9
Download 100 8,830 310,814 1.0

Gmail 100 6,826 37,382 0.1
VGame 100 8,636 112,958 0.4

YouTube 100 8,292 113,229 0.3
Attack ✓ 100 8,890 28,423 0.1

Unicorn Wget Benign 125 265,424 975,226 64.0
Attack ✓ 25 257,156 949,887 12.6

APT detection approaches as possible and explore the uni-
versality and applicability of MAGIC. we provide detailed
descriptions of the three datasets as follows.
StreamSpot Dataset. The StreamSpot dataset (See Ta-
ble 1) is a simulated dataset collected and made public by
StreamSpot [34] using auditing system SystemTap [41]. The
StreamSpot dataset contains 600 batches of audit logs mon-
itoring system calls under 6 unique scenarios. Five of those
scenarios are simulated benign user behaviors while the attack
scenario simulates a drive-by-download attack. The dataset
is considered a relatively small dataset and since no labels
of log entries and system entities are provided, we perform
batched log level detection on the StreamSpot dataset similar
to previous works [10, 15, 17].
Unicorn Wget Dataset. The Unicorn Wget dataset (See Ta-
ble 1) contains simulated attacks designed by Unicorn [10].
Specifically, it contains 150 batches of logs collected with
Camflow [35], where 125 of them are benign and 25 of them
contain supply-chain attacks. Those attacks, categorized as
stealth attacks, are elaborately designed to behave similar to
benign system workflows and are expected to be difficult to
identify. This dataset is considered the hardest among our
experimental datasets for its huge volume, complicated log
format and the stealthy nature of these attacks. The same
as state-of-the-art approaches, we perform batched log level
detection on this dataset.
DARPA E3 Datasets. The DARPA Engagement 3 datasets
(See Table 2), as a part of the DARPA Transparent Computing
program, are collected among an enterprise network during
an adversarial engagement. APT attacks exploiting different
vulnerabilities [20] are conducted by the red team to exfiltrate
sensitive information. Blue teams try to identify those attacks
by auditing the network hosts and performing causality anal-
ysis on them. Trace, THEIA and CADETS sub-datasets are
included in our evaluation. These three sub-datasets consist
of a total 51.69GB of audit records, containing as many as
6,539,677 system entities and 68,127,444 interactions. Thus,
we evaluate MAGIC’s system entity level detection ability and
address the overhead issue on these datasets.

For different dataset, we employ different dataset splits
to evaluate the model and we use only benign samples for
training. For the StreamSpot dataset, we randomly choose 400
batches out of 500 benign logs for training and the rest for
testing, resulting in an balanced test set. For the Unicorn Wget
dataset, 100 batches of benign logs are selected for training

Table 2: Datasets for system entity level detection.
Dataset Scenario Malicious #Node #Edge Size (GB)

DARPA E3 Trace

Benign 3,220,594

4,080,457 15.40Extension Backdoor ✓ 732
Pine Backdoor ✓ 67,345

Phishing Executable ✓ 5

DARPA E3 THEIA Benign 1,598,647 2,874,821 17.91Attack ✓ 25,319

DARPA E3 CADETS Benign 1,614,189 3,303,264 18.38Attack ✓ 12,846
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Figure 5: ROC curves on all datasets.

while the rest are for testing. For the DARPA E3 datasets, we
use the same ground-truth labels as ThreaTrace [17] and split
log entries according to their order of occurrence. The earliest
80% log entries are for training while the rest are preserved
for testing. During evaluation, the average performance of
MAGIC under 100 global random seeds is reported as the
final result, so the experimental results may contain fractions
of system entities/batches of logs.

6.2 Effectiveness
MAGIC’s effectiveness of multi-granularity APT detection
is evaluated on three datasets. Here we present the detection
results of MAGIC on each dataset, then compare it with state-
of-the-art APT detection approaches on those datasets.
Detection Result. Results show that MAGIC successfully
detects APTs with high accuracy in different scenarios. We
present the detection results of MAGIC on each dataset in
Table 3 and their corresponding ROC curves in Figure 5.

On easy datasets such as the StreamSpot dataset, MAGIC
achieves almost perfect detection results. This is because
the StreamSpot dataset collects only single user activity per
log batch, resulting in system behaviors that can be easily
separated from each other. We further present this effect by
visualizing the distribution of system state embeddings ab-
stracted from those log batches in Figure 6. The system state
embeddings are separated into 6 categories, matching the 6
scenarios involved in the dataset. Also, this indicates that
MAGIC’s graph representation module excels at abstracting
system behaviors into such embeddings.

When dealing with the Unicorn Wget dataset, MAGIC



Table 3: MAGIC’s detection results on different datasets. For batched log level detection, the detection targets are log pieces.
And for system entity level detection, system entities are the targets.

Granularity Dataset Train Ratio Ground Truth #TP #FP #TN #FN Precision Recall FPR F1-Score AUC#Benign #Malicious

Batched log level StreamSpot 80% 100 100 100.0 0.59 99.41 0.0 99.41% 100.00% 0.59% 99.71% 99.95%
Unicorn Wget 80% 25 25 24.0 0.5 24.5 1.0 98.02% 96.00% 2.00% 96.98% 96.32%

System entity level
DARPA E3 Trace

All

80% 616,025

68,082 68,072

569 615,456

10

99.17% 99.98% 0.09% 99.57% 99.99%Extension Backdoor 732 727 5
Pine Backdoor 67,345 67,342 3

Phishing Executable 5 3 2
DARPA E3 THEIA All 80% 319,448 25,319 25,318 456 318,992 1 98.23% 99.99% 0.14% 99.11% 99.87%

DARPA E3 CADETS All 80% 344,327 12,846 12,816 759 343,568 30 94.40% 99.77% 0.22% 97.01% 99.77%

Scenario
Youtube
Gmail
Vgame
Attack
Download
CNN

Figure 6: Latent space of system state embeddings in the
StreamSpot dataset. Each point represents a log piece in
the dataset, which belongs to one of six scenarios: watch-
ing YouTube, checking G-mail, playing vgame, undergoing
a drive-by-download attack, downloading ordinary files and
watching CNN.

yields an average 98.01% precision and 96.00% recall, sig-
nificantly lower compared to that of the StreamSpot dataset.
MAGIC’s self-supervised style makes it difficult to distin-
guish between stealth attacks and benign system behaviors.
However, MAGIC still successfully recovers an average 24
out of 25 log batches with only 0.5 false positives generated,
better than any of the state-of-the-art detectors [10, 15, 17].

On the DARPA datasets, MAGIC achieves an average
99.91% recall and 0.15% false positive rate with only be-
nign log entries for training. This indicates MAGIC quickly
learns to model system behaviors. The test set in this scenario
is unbalanced, which means the total number of ground-truth
benign entities far exceeds that of malicious entities. Among
1,386,046 test entities, only 106,246 are labeled malicious.
However, few false positives are generated, as MAGIC identi-
fies malicious entities with outlier detection and anomalous
entities are naturally detected as abnormalities.

Among the false negative results, we notice that most of
them are malicious files and libraries involved in the attacks.
This indicates that MAGIC excels at detecting malicious pro-
cesses and network connections that behave differently from
benign system entities. However, MAGIC finds it hard to
locate passive entities such as malicious files and libraries,
whose behaviors tend to be similar to benign ones. Fortunately,

Table 4: Comparison between MAGIC and state-of-the-art
APT detection methods on different datasets. Within column
supervision, B indicates benign data, A refers to attack data
and SA for streaming attack data.

Dataset Approach Train Ratio Supervision Precision F1-Score Recall FPR

StreamSpot

StreamSpot 80% B 73% 81% 91% 6.6%
Unicorn (baseline) 75% B 95% 96% 93% 1.6%

Prov-Gem 80% B,A 100% 97% 94% 0%
ThreaTrace 75% B 98% 99% 99% 0.4%

MAGIC (Ours) 80% B 99% 99% 100% 0.6%

Unicorn
Wget

Unicorn (baseline) 80% B 86% 90% 95% 15.5%
Prov-Gem 80% B,A 100% 89% 80% 0%
ThreaTrace 80% B 93% 95% 98% 7.4%

MAGIC (Ours) 80% B 98% 97% 96% 2.0%

DARPA
E3 Trace

DeepLog N/A B,A 41% 51% 68% 2.7%
Log2vec (baseline) N/A B,A 54% 64% 78% 1.8%

ThreaTrace N/A B 72% 83% 99% 1.1%
ShadeWatcher 80% B,SA 97% 99% 99% 0.3%

MAGIC (Ours) 80% B 99% 99% 99% 0.1%

DARPA
E3 THEIA

DeepLog N/A B,A 16% 15% 14% 0.5%
Log2vec (baseline) N/A B,A 62% 64% 66% 0.3%

ThreaTrace N/A B 87% 93% 99% 0.1%
MAGIC (Ours) 80% B 98% 99% 99% 0.1%

DARPA
E3 CADETS

DeepLog N/A B,A 23% 35% 74% 4.4%
Log2vec (baseline) N/A B,A 49% 62% 85% 1.6%

ThreaTrace N/A B 90% 95% 99% 0.2%
MAGIC (Ours) 80% B 94% 97% 99% 0.2%

these intermediate files and libraries can be easily identified
during attack story recovery, given the malicious processes
and connections successfully detected.
MAGIC vs. State-of-the-art. The three datasets used to eval-
uate MAGIC are also used by several state-of-the-art learning-
based APT detection approaches. For instance, Unicorn [10],
Prov-Gem [15] and ThreaTrace [17] for Unicorn Wget and
StreamSpot dataset, ThreaTrace and ShadeWatcher [18] for
sub-dataset E3-Trace. Methods that require a priori informa-
tion about APTs, such as Holmes [3], Poirot [5] and Morse [6],
are not taken into consideration as MAGIC cannot be com-
pared to them in the same detection scenario.

Comparison results between MAGIC and other state-of-
the-art approaches on each dataset are presented in Table 4.
Comparison between MAGIC and other unsupervised ap-
proaches (i.e. Unicorn and ThreaTrace) yields a total victory
of our approach, revealing MAGIC’s effectiveness in model-
ing and detecting outliers of benign system behaviors with no
supervision from attack-containing logs.

Beyond unsupervised methods, Prov-Gem is a supervised
APT detector based on GATs. However, it fails to achieve
a better detection result on even the easiest StreamSpot
dataset. This is mainly because simple GAT layers super-
vised on classification tasks are not as expressive as graph



masked auto-encoders in producing high-quality embeddings.
Another APT detector mentioned, ShadeWatcher, adopts a
semi-supervised detection approach. ShadeWatcher lever-
ages TransR [42] and graph neural networks (GNNs) to de-
tect APTs based on recommendation and is able to achieve
the best recall rate on the E3-Trace sub-dataset. TransR, a
self-supervised graph representation method on Knowledge
Graphs, contributes most to the detection accuracy of Shade-
Watcher. Unfortunately, TransR is extremely expensive in
computation overhead. For example, ShadeWatcher spends as
much as 12 hours training the TransR module on the E3-Trace
sub-dataset. On the contrary, evaluation on the computation
overhead of MAGIC(Sec. 6.4) shows that MAGIC is able
to complete training on the same amount of training data 51
times faster than ShadeWatcher [18].

6.3 False Positive Analysis
For real-time applications, APT detectors must prevent false
alarms at best effort, as those false alarms often tire and
confuse security analysts. We evaluate MAGIC’s false pos-
itive rate (FPR) on benign audit logs and investigate how
our model adaption mechanism reduces those false alarms.
Table 3 shows MAGIC’s false positive rate on each dataset.
Within each dataset, only benign logs are used for training
and testing. MAGIC yields low FPR (average 0.15%) with
large training data. This is because MAGIC models benign
system behaviors with self-supervised embeddings, allow-
ing it to effectively handle unseen system entities. Such a
low FPR enables MAGIC’s application under real-world set-
tings. When conducting fine-grain entity-level detection only,
MAGIC only yields 569 false alarms on the Trace dataset,
with an average only 40 false alarms every day. Security ana-
lysts can easily handle this number of alarms and do security
investigations on them. If the two-stage detection described
in Sec. 3 is applied, the average number of false alarms every
day can be further lowered to 24.

Our model adaption mechanism is designed to help
MAGIC to learn from newly-observed unseen behaviors. We
evaluate how such mechanism reduces false positives on be-
nign audit logs in Table 5. Specifically, we test MAGIC on
the Trace dataset under five different settings:

• Training on the first 80% log entries and testing on the rest
20% with no adaption, identical to our original setting.

• Training on the first 20% and testing on the last 20% with
no adaption, for comparison purpose.

• Training on the first 20%, adapting on false positives gener-
ated from the following 20%, and testing on the last 20%.

• Training on the first 20%, adapting on both false positives
and true negatives generated from the following 20% log
entries, and testing on the last 20%.

• Training on the first 20%, adapting on both false positives
and true negatives generated from the following 40% log

Table 5: MAGIC’s false positive rates on different datasets.
The effect of model adaption mechanism is tested under dif-
ferent settings.

Dataset Train Ratio Adaption Test Ratio FPR
StreamSpot 80% N/A 20% 0.59%

Unicorn Wget 80% N/A 20% 2.00%

DARPA
E3 Trace

80% N/A 20% 0.089%
20% N/A 20% 0.426%
20% 20% FP 20% 0.272%
20% 20% FP & TN 20% 0.220%
20% 40% FP & TN 20% 0.173%

Table 6: Performance overhead of MAGIC on the E3-Trace
sub-dataset.

Phase Component Time consumption (s) Peak Memory consumption (MB)with GPU CPU only
Graph

Construction N/A 642 2,610

Training
Graph

Representation 151 685 1,564

Detection 78 1,320

Inference
Graph

Representation 5 10 2,108

Detection 825 1,667

entries, and testing on the last 20%.
Experimental results indicate that adapting the model to be-

nign feedbacks consistently reduces false positives. A further
reduction can be achieved by feeding both false positives and
true negatives to the model. This is because the graph repre-
sentation module can be retrained with any data to enhance
its representation ability, as described in Sec 4.4.

6.4 Performance Overhead

MAGIC is designed to perform APT detection with minimum
overhead, granting it applicability under various conditions.
MAGIC completes its training and inference in logarithmic
time and takes up linear space. We provide a detailed analysis
of its time and space complexity in Appendix B. We further
test MAGIC’s run-time performance on sub-dataset E3-Trace
and present its time and memory consumption in Table 6.

In real-world settings, GPUs may not be available at all.
We also test MAGIC’s efficiency without the GPU. With only
CPUs available, the training phase becomes apparently slower.
The efficiency of graph construction and outlier detection
phase is not affected as they are implemented to perform on
CPUs. We also measure the max memory consumption during
training and inference. MAGIC’s low memory consumption
not only prevents OOM problems on huge datasets, but also
makes MAGIC approachable under tight conditions.

Evaluation results on performance overhead manifest the
claim that MAGIC is advantageous over other state-of-the-art
APT detectors in efficiency. For instance, ATLAS [11] takes
about an hour to train its model on 676MB of audit logs and
ShadeWatcher [18] takes 1 day to train on the E3-Trace sub-
dataset. Compared with ShadeWatcher, MAGIC is 51 times
faster in training under the same train ratio setting (i.e. 80%
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Figure 7: Effect of different reconstruction components on
MAGIC’s performance and efficiency.

log entries for training on E3-Trace sub-dataset).
These evaluation results also illustrate that MAGIC is fully

practicable in different conditions. Considering the fact that
sub-dataset E3-Trace is collected in 2 weeks, 1.37GB of audit
logs is produced per day. This means under CPU-only condi-
tions, MAGIC takes only 2 minutes to detect APTs from those
logs and complete model adaption every day. Such promising
efficiency makes MAGIC an available choice for individuals
and small-size enterprises. For larger enterprises and insti-
tutions, they produces audit logs in hundreds of GBs every
day [23]. In this case, efficiency of MAGIC can be ensured
by training and adapting itself with GPUs and parallelizing
the detection module with distributed CPU cores.

6.5 Ablation Study

In this section, we first address the effectiveness of impor-
tant individual components in MAGIC’s graph representation
module, then carry out a hyper-parameter analysis to evaluate
the sensitivity of MAGIC. Analysis on individual components
and most hyper-parameters are conducted on the most dif-
ficult Wget dataset and the hyper-parameter analysis on the
detection threshold θ is conducted on all datasets.
Individual Component Analysis. We study how feature re-
construction (FR) as well as structure reconstruction (SR) af-
fect MAGIC’s performance and Figure 7 presents the impact
of these component to both detection result and performance
overhead. Both FR and SR provide supervision for MAGIC’s
graph representation module. Compared with ordinary FR,
Masked FR slightly boosts performance and significantly re-
duces training time. Sampled-based SR, however, is an ef-
fective complexity reduction component which accelerates
training without losing performance, compared with full SR.
Hyper-parameter Analysis. The function of MAGIC is con-
trolled by several hyper-parameters, including an embedding
dimension d, number of GAT layers l, node mask rate r and
the outlier detection threshold θ. Figure 8 illustrates how
these hyper-parameters affect model performance in different
situations. Hyper-parameters have little impact in most cases.

Generally speaking, relatively higher model performance

is achieved with a larger embedding dimension and more
GAT layers by collecting more information from more distant
neighborhoods, as shown in Sub-figure 8(a) and 8(b). How-
ever, increasing d or l introduces heavier computation which
leads to longer training and inference time.

The default mask rate of 0.5 yields best results. This is
because MAGIC is unable to get sufficient training under a
low mask rate. And under a high mask rate, node features
are severely damaged which prevents MAGIC to learn node
embeddings via feature reconstruction. Increasing mask rate
slightly introduces more computation burden.

We further examine the anomaly scores of entities to assess
the sensitive of θ. A lower θ naturally leads to a higher recall
performance at the cost of more false positives and vice versa.
As demonstrated in Figure 9, most malicious entities are given
high anomaly scores compared with benign ones and are well-
separated from them with little overlapping. The considerable
spaces between benign and malicious anomaly scores support
the claim that MAGIC does not depend on a precise threshold
θ to perform accurate detection in practical situations. We
quantify such spaces in Appendix D.

For an unsupervised detector as MAGIC, hyper-parameters
are usually difficult to select. However, that is not the case for
MAGIC. We provide a general guideline for hyper-parameter
selection also in Appendix D.

7 Discussion and Limitations

Quality of Training Data. MAGIC models benign system
behaviors and detects APTs with outlier detection. Similar to
other anomaly-based APT detection approaches [7, 8, 10], we
assume that all up-to-date benign system behaviors are ob-
served during training log collection. However, if MAGIC is
trained with low quality data that insufficiently covers system
behaviors, many false positives can be generated. .
Outlier Detection. MAGIC implements a KNN-based outlier
detection module for APT detection. While it completes train-
ing and inference in logarithmic time, its efficiency on large
datasets is still unsatisfactory. To illustrate, our detection mod-
ule takes 13.8 minutes to check 684,111 targets, making up
99% of total inference time. Other outlier detection methods,
such as One-class SVM [43] and Isolation Forest [44], do not
fit in our detection setting and cannot adapt to concept drift.
Cluster-based methods and approximate KNN search may be
more suitable to huge datasets. Meanwhile, KNN-based meth-
ods may be extended to GPU. We leave such improvements
on our detection module to future research.
Adversarial Attacks. In Sec. 6.2, we show that MAGIC han-
dles stealth attacks well, which avoid detection by behaving
similar to the benign system. However, if attackers get to know
how MAGIC works in details, they might conduct elaborately
designed attacks to infiltrate our detector. We make a simple
analysis on adversarial attacks and demonstrate MAGIC’s
robustness against them in Appendix A. As Graph-based
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Figure 8: Effect of different hyper-parameters on MAGIC’s performance and efficiency.
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approaches become increasingly popular and powerful in dif-
ferent detection applications, designing and avoiding these
adversarial attacks on both the input graphs and the GNNs
stands for an interesting research topic.

8 Related Work

MAGIC is mainly related to three fields of research, includ-
ing the detection of APTs, graph representation learning and
outlier detection methods.
APT Detection. The goal of APT detection is to detect APT
signals, malicious entities and invalid interactions from audit
logs. Recent works are mostly based on data provenance. As
suggested by [18], provenance-based detectors can be catego-
rized into rule-based, statistics-based and learning-based ap-
proaches. Rule-based approaches [2–6] utilize a priori knowl-
edge about previous seen attacks and construct unique heuris-
tic rules to detect them. Statistics-based approaches [7–9]
construct statistics to measure the abnormality of provenance
graph elements and perform anomaly detection on them.
Learning-based approaches [10–18, 45] leverage deep learn-
ing to model either benign system behaviors [10, 12, 17] or
attack patterns [11, 14–16, 18] and perform APT detection
as classification [11, 15, 16] or anomaly detection [18, 45].
Among them, sequence-based methods [11, 14] detect APTs

based on system execution/workflow patterns and graph-
based methods [10, 12, 15–18, 45] model entities and interac-
tions via GNNs and detect abnormal behaviors as APTs.
Graph Representation Learning. Embedding techniques on
graphs start from the graph convolutional network (GCN) [46]
and are further enhanced by the graph attention network
(GAT) [30] and GraphSAGE [47]. Graph auto-encoders [19,
25–27] bring unsupervised solutions for graph representation
learning. GAE, VGAE [25] and GATE [27] utilize feature
reconstruction and structure reconstruction to learn output
embeddings in a self-supervised way. However, they focus
on link prediction and graph clustering tasks, irrelevant to
our application. Recently, graph masked auto-encoders [19]
leverage masked feature reconstruction and have achieved
state-of-the-art performance on various applications.
Outlier Detection. Outlier detection methods view outliers
(i.e. objects that may not belong to the ordinary distribution)
as anomalies and aim to identify them. Traditional outlier
detection methods include One-class SVMs [43], Isolation
Forest [44] and Local Outlier Factor [48]. These traditional
approaches are widely used in various detection scenarios, in-
cluding credit card fraud detection [49] and malicious transac-
tion detection [50]. This proves that outlier detection methods
work well in anomaly detection. Meanwhile, auto-encoders
themselves are effective tools for outlier detection. We explain
why we do not use graph auto-encoders as anomaly detectors
in Appendix F.

9 Conclusion

We have introduced MAGIC, an universally applicable APT
detection approach that operates in utmost efficiency with
little overhead. MAGIC leverages masked graph representa-
tion learning to model benign system behaviors from raw
audit logs and performs multi-granularity APT detection
via outlier detection methods. Evaluations on three widely-
used datasets under various detection scenarios indicate that
MAGIC achieves promising detection results with low false
positive rate and minimum computation overhead.
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Appendix

A Analysis on Adversarial Attack

Adversarial attacks against MAGIC, such as evasion attacks
and poison attacks, are tricky to implement but still possi-
ble to carry out. Two types of adversarial attacks are poten-
tially practical against MAGIC, manipulating input audit logs
or exploiting model architecture. The later approach is not
an option for MAGIC’s attackers, as they have no access to
MAGIC’s inner parameters. Similar to SIGL [45], we conduct
a simple experiment concerning MAGIC’s robustness against
graph manipulations, which shows these attacks do not affect
MAGIC’s detection effectiveness.

In this experiment, we expect attackers have no knowledge
of MAGIC’s inner parameters and cannot get any feedback
from MAGIC. However, attackers can freely manipulate the
malicious entities within MAGIC’s input audit logs, as well
as a small proportion of benign entities. Consequently, we
consider four types of attacks:

Malicious Feature Evasion (MFE). Attackers have al-
tered the features of all malicious entities in the raw audit
logs trying to evade detection. This affects the node initial em-
beddings of the input provenance graph and forces malicious
entities to mimic benign ones in node features.

Malicious Structure Evasion (MSE). Attackers have
adding new edges between malicious entities and benign ones,
so that malicious entities behave more normally and tend to
have local structures more similar to benign entities. This
affects the graph representation module and pulls the embed-
dings of malicious nodes towards benign ones, making them
more difficult to identify.

Combined Evasion (MCE). This type of attack is a com-
bination of the MFE and MSE and causes malicious entities
to approximate benign ones in both features and structures.

Table 7: Impact of different adversarial attack strategies on
MAGIC’s detection effectiveness.

Attack Type None MFE MSE MCE BFP
AUC 0.9999 0.9999 0.9999 0.9994 0.9942

Benign Feature Poison (BFP). Attackers have manipu-
lated the features of benign entities to poison MAGIC. At-
tackers have injected some benign entities with similar initial
features as malicious entities, trying to convince MAGIC that
the malicious entities behave normally. This shifts benign en-
tities to mimic malicious ones in node features and gradually
poisons MAGIC’s detection module.

We evaluate MAGIC’s robustness against the above four at-
tack strategies on the E3-Trace sub-dataset and we present the
results in Table 7. Experimental results confirm that MAGIC
is robust enough against adversarial attacks. MFE has almost
no impact on MAGIC’s effectiveness. MAGIC is slightly
more vulnerable facing the structure evasion attacks, because
the graph structure is critical to unsupervised graph repre-
sentation learning. However, the structure attacks are still
weak against MAGIC’s detection effectiveness. We believe
that the feature and structure reconstruction involved in our
graph representation module contributes to this robustness,
as it learns a model to reconstruct both node features and its
neighboring structure with the information from its neighbors.
Consequently, adversarial attacks involving feature and struc-
ture altering of malicious entities will fail, and with MAGIC’s
model itself well-protected, attackers have to either extend
their effort on searching and manipulating benign entities, or
find other attack strategies against MAGIC. Meanwhile, BFP
poses a relatively greater threat to MAGIC’s performance.
However, under BFP, only 0.057 AUC reduction is achieved
by manipulating the input feature of an enormous 161,029
benign entities. This level of intervention in the benign sys-
tem is beyond the capability of ordinary attackers and will
definitely leave observable trace. Therefore, an effective BFP
attack is also very difficult to carry out.

B Time and Space Complexity of MAGIC

Given number of system entities N, number of system inter-
actions E, number of possible node/edge labels t, graph repre-
sentation dimension d, number of GAT layers l and mask rate
r the graph construction steps builds a featured provenance
graph in O((N +E)∗ t) time, masked feature reconstruction
is completed in O((N+E)∗d2 ∗ l ∗ r) time and sample-based
structure reconstruction takes only O(N ∗d) time. Training
of the detection module takes O(N ∗ logN ∗d) time to build a
K-D Tree and memorize benign embeddings. Detection result
of a single target is obtained in O(logN ∗ d ∗ k) time. Thus,
the overall time complexity of MAGIC during training and
inference is O(N ∗ logN ∗d ∗ k+E ∗d2 ∗ l ∗ r+(N +E)∗ t).
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Figure 10: Another provenance graph of our motivating ex-
ample (i.e. Pine Backdoor). Numbers assigned to nodes are
the anomaly scores assessed by MAGIC’s detection module.

MAGIC’s memory consumption largely depends on d and
t. The graph representation module takes up O((N +E)∗ t)
space to store a provenance graph and O((N +E)∗ (t +d))
space to generate output embeddings. The detection module
takes O(N ∗d) space to memorize benign embeddings. The
overall space complexity of MAGIC is O((N +E)∗ (t +d)).

C Case Study

We use our motivating example described in Sec. 2.1 again
to illustrate how MAGIC detects APTs from audit logs. Our
motivating example involves an APT attack: Pine Backdoor,
which implants an malicious executable to a host via phishing
e-mail, aiming to perform internal reconnaissance and build
a silent connection between the host and the attacker. We
perform system entity level detection on it and obtain real
detection results from MAGIC. First, MAGIC constructs a
provenance graph from raw audit logs. We provide the ex-
ample provenance graph in Figure 10 to illustrate. Among
them, tcexec, Connection-162.66.239.75 and the portscan Net-
FlowObjects which tcexec connects to are malicious enti-
ties while the others are benign ones. The graph represen-
tation module then obtains their embeddings via the graph
masked auto-encoder. The embedding of tcexec is calculated
by propagating and aggregating information from its multi-
hop neighborhood to model its interaction behavior with
other system entities. For instance, its 2-hop neighborhood
is namely Connection-162.66.239.75, tcexec’s sub-process,
uname, ld-linux-x86-64.so.2 and other portscan NetFlowOb-
jects. The detection module subsequently calculates distances
between those embeddings and their k-nearest benign neigh-
bors in the latent space and assigns anomaly scores to them.
The malicious entities are given very high anomaly scores
(3598.58~6802.93) that far exceed our detection threshold
(3000) while others present low abnormality (0.01~1636.34).
Thus, MAGIC successfully detects malicious system entities
with no false alarm generated.

D Hyper-parameter Choice Guideline

The choice of detection threshold θ depends on the corre-
sponding dataset MAGIC is operating on. However, finding a
precise θ is not necessary on each individual dataset, accord-
ing to Sec. 6.5. Even if there is only benign data available,
users may adjust and choose the optimal θ according to the
resulting false positive rate (i.e. use the first θ when false
positive rate is below the desired value). Here we provide a
simple analysis on how wide the threshold selection range is
and what consequence selecting different θ may lead to.
Impact of Different θ Choices. Altering θ does not lead to
drastic changes in detection results, especially for #FN. For
example, on the E3-Trace sub-dataset, changing θ from 1000
to 5000 results in 2 more FNs and an 1% decrease in FPR. On
E3-THEIA, altering θ from 100 to 500 provides 0.5% FPR
decrease and does not change #FN. On E3-Cadets, setting θ

as 100 instead of 10 leads to a 10% decreased FPR with only
30 new FNs generated.
Quantifing the Threshold Selection Range. By limiting
FPR below 1% on entity level tasks, we get a minimum θ

equals 1980 on E3-Trace, 180 on E3-THEIA dataset and 95
on E3-CADETS dataset. The resulting recalls are respectively
0.99985, 0.99996 and 0.99782. Meanwhile, the maximum
θs that ensure recall > 99% are actually 6600, 1020 and 120
on the three different sub-datasets. The space between the
minimum and maximum θ is big enough and the curves are
flat. Consequently, MAGIC does not need a precise θ to obtain
the desirable result and selecting threshold θ based on false
positive rate is practical.

E Noise Reduction

Noise reduction is widely adopted by various recent works [11,
15,17,18] to reduce the complexity of provenance graphs and
remove redundant and useless information. MAGIC applies
a mild noise reduction approach as MAGIC is less sensitive
to the scale of the provenance graph and more information is
preserved in this way. Compared with noise reduction done
in recent works [11, 18], we neither delete irrelevant nodes
nor merge nodes with the same interaction behavior. This is
because (1) attack-irrelevant nodes provide information for
benign system behaviors and (2) multiple nodes with the same
interaction behavior duplicate the information propagated to
near-by nodes and impact on their embeddings.

F Auto-encoder Based Anomaly Detection

Among traditional applications of machine learning, anomaly
detection via auto-encoders is common practice. Typically,
auto-encoders are trained to reconstructing a target and min-
imize its reconstruction loss. Thus, the reconstruction loss
of a newly-arrived sample indicates how similar it behaves
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Figure 11: Attack graph of sub-dataset E3-Trace.

to training samples and samples with high reconstruction
errors are detected as outliers. However, we do not apply
auto-encoder-based outlier detection because of two reasons:
(1) our sample-based structure reconstruction produces high-
variance reconstruction loss on single sample, which prevents
stable threshold-based outlier detection and (2) MAGIC per-
forms batched log level detection by detecting outliers in
system state embeddings, which do not have a reconstruction
target and cannot be compared in reconstruction error.

G Entity-level Data Labeling on DARPA TC
datasets

A Feasible Labeling Methodology. Mining and labeling
attack-relevant entities in DARPA TC datasets can be ex-
tremely effort-consuming, given the fact that the ground truth
document they provide is practically unreadable. Recently,
Watson [51] have carrited out a successful attempt to label
the E3-Trace sub-dataset. We are able to repeat this label-
ing methodology on sub-datasets E3-Trace, E3-THEIA and
E3-CADETS. The following is a detailed description on this
labeling process:

• Traverse all log entries in the dataset. Among those records,
we extract process, file and netflow entities.

• Extract entity names. Entities’ semantic names are stored
in different fields. For instance, Subject.properties.map.name
stores process names in sub-dataset E3-Trace.

• Mine key attack-relevant entities from the ground truth
document. Some attacks were not well-recorded but at least
one of the attacks using the same strategy is well-recorded.

• Match the names of key attack entities with all extracted
entities. The matching entities are labeled as positive. Explore
the neighborhood of these entities and search for other entities
that are involved in the attack. Newly-identified ones are also
treated as positives.
The Resulting Ground Truth. We perform such labeling
steps on sub-datasets E3-Trace, E3-THEIA and E3-CADETS
and obtain the following ground truth, in the form of descrip-
tive text and attack graphs.

• E3-Trace (Figure 11). Two successful attack attempts
worked on Trace: Browser Extension and Pine Backdoor. Dur-
ing the Browser Extension attack, the user downloaded and
executed gtcache via browser extension pass_mgr. gtcache

firefox

glx_alsa_675 profile 149.52.198.23141.43.176.203

146.153.68.151

clean

clean

profile mail mail

gtcache xdev wdev /etc/passwd
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Figure 12: Attack graph of sub-dataset E3-THEIA.
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Figure 13: Attack graph of sub-dataset E3-CADETS.

communicated with the attacker, scaned sensitive information
and created ztmp to portscan host 128.55.12.73. In the Pine
Backdoor attack, the user unfortunately launched the phishing
executable tcexec. tcexec connected back to the attacker and
performed a wide postscan on the local network.
• E3-THEIA (Figure 12). Three successful attack attempts
worked on THEIA: Firefox Backdoor, Browser Extension and
Pine Backdoor. The user was compromised by a malicious
payload clean while browsing via firefox. clean acquired root
privileges, connected back to the attacker and executed an-
other payload profile. The Browser Extension attack aimed
to resume the first attack by re-establishing the connection,
grabbing root privileges and portscanning the local network
via gtcache and mail. The Pine Backdoor attack is very simi-
lar to the one conducted on Trace but unexpectedly stopped
due to missing library error.
• E3-CADETS (Figure 13). The attacker exploited the Ng-
inx Backdoor and tried two attacks on CADETS. During
the first attack, the attacker connected to a vulnerable Nginx
server running on CADETS and injected process vUgefal
with root privileges. It read sensitive information and tried to
further infect the sshd process with malicious implants before
the host crashed. The attacker then tried another attack on
CADETS, resulting in a malicious process XIM. The attacker
also created another process test to establish a long-lasting
connection and portscan the local network.
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