
Racing on the Negative Force: Efficient Vulnerability Root-Cause Analysis through
Reinforcement Learning on Counterexamples

Dandan Xu1,2, Di Tang3, Yi Chen3∗, XiaoFeng Wang3, Kai Chen1,2∗, Haixu Tang3, Longxing Li1,2

1SKLOIS†, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Indiana University Bloomington

{xudandan, chenkai, lilongxing}@iie.ac.cn, {tangd, chen481, xw7, hatang}@iu.edu

Abstract

Root-Cause Analysis (RCA) is crucial for discovering se-
curity vulnerabilities from fuzzing outcomes. Automating
this process through triaging the crashes observed during the
fuzzing process, however, is considered to be challenging.
Particularly, today’s statistical RCA approaches are known
to be exceedingly slow, often taking tens of hours or even a
week to analyze a crash. This problem comes from the biased
sampling such approaches perform. More specifically, given
an input inducing a crash in a program, these approaches sam-
ple around the input by mutating it to generate new test cases;
these cases are used to fuzz the program, in a hope that a set of
program elements (blocks, instructions or predicates) on the
execution path of the original input can be adequately sampled
so their correlations with the crash can be determined. This
process, however, tends to generate the input samples more
likely causing the crash, with their execution paths involving a
similar set of elements, which become less distinguishable un-
til a large number of samples have been made. We found that
this problem can be effectively addressed by sampling around
“counterexamples”, the inputs causing a significant change to
the current estimates of correlations. These inputs though still
involving the elements often do not lead to the crash. They
are found to be effective in differentiating program elements,
thereby accelerating the RCA process. Based upon the un-
derstanding, we designed and implemented a reinforcement
learning (RL) technique that rewards the operations involving
counterexamples. By balancing random sampling with the ex-
ploitation on the counterexamples, our new approach, called
RACING, is shown to substantially elevate the scalability and
the accuracy of today’s statistical RCA, outperforming the
state-of-the-art by more than an order of magnitude.

∗Corresponding authors
†State Key Laboratory of Information Security, IIE, CAS

1 Introduction

With the pervasiveness of software systems, their security
quality needs to be ensured in a scalable way. For this pur-
pose, automated vulnerability discovery has been intensively
studied in past decades [30, 42, 48, 51]. Among all techniques
being proposed, fuzzing is no doubt the most successful one,
which has been credited with discovery of the most conse-
quential security flaws, such as CVE-2017-5380 [2], CVE-
2018-4145 [3] and CVE-2022-36320 [4]. A problem here,
however, is that fuzzing alone does not find a vulnerability: it
just induces crashes of the target program with test cases it
produces, while leaving triage of the crashes, a critical step to
identify the root cause – the vulnerability behind the crashes,
to the human analyst. Manual root-cause analysis (RCA) is a
slow and pains-taking process, particularly for today’s com-
plicated software system involving subtle connections across
different components, so the program locations where the
crashes occur may not have explicit data dependencies upon
the true cause of the crashes. As a result, vulnerability discov-
ery tends to be significantly delayed even after the flaws have
been reached by test cases, raising a strong demand for the
techniques that enable automated, highly scalable RCA.
Challenges in automated RCA. Today, most RCAs have
been done manually with the help of some analysis tools.
These tools bucket different crash inputs for identifying the
underlying vulnerability [27], or perform reverse execution
and backward taint analysis [16, 17, 45] to trace back to the
program location where the vulnerability is introduced, from
the location where the crash is observed. These approaches
rely on a set of manually drafted rules to identify some spe-
cific types of vulnerabilities and become less effective in the
absence of explicit data flows between a vulnerability and ob-
served crashes, such as the case of type-confusion flaws [21].

A more generic alternative capable of handling different
types of vulnerabilities, including those without explicit data
dependency on the crash they induce, is Spectrum-based Fault
Localization (SFL), a set of statistical, ruleless, fully auto-
mated RCA techniques known to outperform other automated

RCA supports [18]. These techniques aim at capturing the
fundamental causal relations between a crash and its root
cause (a vulnerable program entity like blocks, statements
or the predicate of a statement) based upon their statistical
correlation. More specifically, for each crash observed from
a program, an SFL technique generates a set of test cases to
fuzz the target program, and uses the fuzzing outcome (ei-
ther leading to the crash or not) to estimate the statistical
correlation between each program entity encountered during
the fuzzing process and the crash; the entities found to be
highly correlated are then ranked and output as suspicious
root causes [12, 39, 52]. With its generality and effectiveness,
the approach is known to be heavyweight, incurring a mas-
sive overhead, due to the requirement to fuzz the program
on a large number of test cases for establishing the correla-
tion for each entity and also differentiating their contributions
to the crash. Indeed, prior research reports that analysis on
each crash through SFL could take 12 hours [12] or even a
week [52], rendering these techniques hard to scale in the
presence of a large number of crashes induced by fuzzing.

RCA with counterexample based RL. To move SFL closer
to practical use, its performance needs to be elevated. In our
research, we found that a fundamental weakness of existing
SFL approaches is their sole reliance on the guidance of
known inputs leading to the crash: by mutating these crash
inputs for new test cases, program entities potentially related
to the crash can be repeatedly sampled; however, these new
test cases tend to be biased toward the crash and cannot effec-
tively differentiate these entities in terms of their contributions
to the crash. As a result, a large number of random inputs
need to be produced and tested before enough distinguishing
outcomes (particularly those covering repeatedly sampled pro-
gram entities related to the crash but leading to non-crashing
results) are observed so the root-cause entity can stand out
of the crowd. This weakness can be addressed by sampling
around the differentiating test cases discovered, which we
call counterexamples – the test cases that cause a significant
change to an entity’s putative correlation with the crash or the
putative order of the entities (based upon their contributions)
estimated on the outcomes of previous fuzzing rounds. These
counterexamples balance the sampling strategy of the existing
approaches (e.g., Aurora [12]), which is biased toward crash
inputs, and therefore facilitate identification of the root cause.

Based upon the understanding, we designed and imple-
mented a high-performance, scalable SFL-based RCA tech-
nique, using reinforcement-learning (RL) to dynamically ad-
just the sampling (fuzzing) strategy based upon the estimates
of program predicates’ relations with a given crash. Our ap-
proach, called RACING (Root-cAuse-analysis on Counterex-
amples based reinforcement-learnING), utilizes the outcome
of each fuzzing round, including its impacts on each predi-
cate’s estimated contribution to the crash and the estimated
rankings of these predicates based upon their contributions, to
guide the next round of fuzzing. More specifically, given the

test cases known to cause a crash, our approach first performs
random mutations on them (as done in the prior work [51])
and fuzzes the target program using these mutations to gener-
ate a baseline estimate for each predicate’s correlation with
the crash and their relative order of correlation strengths. Then,
our approach runs RL on the follow-up fuzzing process, re-
warding the selection of the seeds (that are the inputs mutated
by the fuzzer to generate new inputs) and the mutations that
could lead to significant changes to the current estimates (the
correlation of each predicate and their order). By balancing
the exploitation of the selection strategy with a high expected
reward and exploration of a random strategy, this learning
process guides RACING toward a ranked list of the predicates,
with the root cause being top on the list.

Evaluation and findings. We implemented RACING and
evaluated it on 30 vulnerabilities found in 21 popular applica-
tions or libraries, including 19 also used in the prior research
(Aurora [12]). Our study shows that RACING significantly
outperforms the state-of-the-art, speeding up the RCA process
by 13.22 times on average, compared with Aurora: typically
an analysis that needs hours to complete by the prior approach
can be done within minutes, with more than 2/3 of the delay
being reduced even in the worst case. This performance gain
does not come at any quality cost. Comparing with Aurora,
RACING produces a high-quality ranked list of predicates,
with the root cause keeping its rank in Aurora’s report in
20.00% of the cases, slipping slightly below 33.33% of the
time, while going above in 46.67% of all the results. Our find-
ings provide strong evidence that indeed RACING enhances
both the scalability and the effectiveness of SFL.

Contributions. We outline our contributions below:

• New understanding. We analyzed how counterexamples
impact the discovery of the rank for a given crash’s root cause,
which has never been done before. Our analysis shows that
by sampling these counterexamples, an enhanced SFL ap-
proach can quickly identify the program entities most related
to the crash. This enables significant acceleration of the RCA
process through statistical SFL.

• New techniques. Based upon the new understanding, we
developed a novel RL-enhanced SFL technique that automati-
cally learns from the outcome of each fuzzing round to adjust
the seed selection and mutation strategy. This new technique
is shown to improve the performance of the state-of-the-art
SFL approach by over an order of magnitude and also elevate
its effectiveness in finding the root-cause vulnerability. We
have published the code of our approach online [5].

Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 provides the background of our research; Section 3
presents our analysis on the impact of counterexamples; Sec-
tion 4 describes the design and implementation of RACING;
Section 5 reports our experimental results; Section 6 discusses
the limitations and potential future research; Section 7 surveys
related prior work and Section 8 concludes the paper.

2 Background

Statistical RCA framework. As mentioned earlier, SFL is a
statistical RCA, which is known to be the state-of-the-art in
triaging the crashes of a program and identifying underlying
vulnerabilities [12, 39, 52]. This approach is based upon the
belief that the program entity fundamentally responsible for
crashes (the root cause) should be encountered when the pro-
gram is running on the inputs causing the crash (crash inputs),
rather than those leading to a normal exit (non-crash inputs).
Therefore, it requires a testing set with both crash inputs and
non-crash inputs, and estimates the statistical correlation be-
tween the program entity and the crash on both crash and non-
crash inputs. A higher estimated correlation indicates that the
program entity is more likely to be the root cause. A promi-
nent example of the estimation is mutual information, which
is represented by a matrix for measuring the contributions
of different program entities to the crashes [52]. Specifically,
the mutual information I between X (program entity) and Y
(crash or non-crash inputs) can be calculated as follows:

I(X ;Y) = H(Y)−H(Y |X)
H(Y |X) =−∑x∈{0,1}Pr(x)∑y∈{0,1}Pr(y|x) log2 Pr(y|x) (1)

where H(Y) is the marginal entropy and H(Y |X) is the condi-
tional entropy. Mutual information is also used in RACING,
to measure the correlation of a program entity to the crash.
Predicate. A root cause is a program entity serving as a
necessary condition for the crash, which depending on the
granularity of RCA, could be a predicate, statement, or block.
Following Aurora [12], our research focuses on the predicate-
level root causes including three types: (1) register and mem-
ory predicates, (2) flag predicates, and (3) control-flow pred-
icates. Specifically, predicates (1) and (2) are assertions on
an instruction, predicting the occurrence of the crash when
some conditions on the instruction’s destination operand and
the flag register are satisfied. For example, a predicate could
be eax<=z for the destination operand eax of an instruction
mov eax, ebx, indicating that an execution will crash when
eax<=z and exit normally otherwise. And, flag.ZF>0 is a
flag predicate that predicts a crash only when the zero flag
is set to 1. Predicate (3) evaluates the difference between
executions on the control-flow graph (CFG), including the
execution of certain edges and the number of successors for
nodes. For example, the predicate countx->y>0 is used to
predict a crash when the edge x->y has been executed for
at least once, while the predicate successorx>2 predicts a
crash when the number of executed successor nodes for x is
more than 2. All three types of predicates are expressed in a
union format Var op Thr, where Var represents the variable
of interest, op denotes an operator (<= or >), and Thr denotes
a threshold calculated during the fuzzing process. We follow
Aurora’s method to construct the predicates (see details at Ap-
pendix A.1). In particular, we use mutual information (Eq 1)
to estimate the correlation of the predicates with the crash.

Note that a predicate might change during a fuzz test, when
new observations have been made to affect the estimate of the
condition that leads to the crash. However, at any fuzz round, a
variable of interest is always associated with a predicate based
upon the best estimate so far. Therefore, throughout the paper,
we consider any execution of the instruction as a sample on its
predicate, which both affects the estimate of the predicate’s
correlation with the crash and could lead to the adjustment of
the predicate itself, and use the term “sample value” to refer
to the value assigned to the variable of a predicate during an
execution.
AFL in RCA. American Fuzzy Lop (AFL) [51] is a code-
coverage-based brute-force fuzzer, which is among the most
popular fuzzing tools. Given a set of seed inputs, AFL repeat-
edly selects and mutates seeds to generate new inputs to test
a target program and detect its exceptions (e.g., crashes). Any
mutation improving code coverage is added to a queue as a
new seed candidate. During this fuzzing process, AFL tends to
generate an enormous number of inputs, including both crash
and non-crash inputs. Existing statistical RCA techniques run
AFL for a predetermined period of time to produce a large
number of fuzzing outcomes on a test set, which serve as sam-
ples for estimating the correlations between program elements
and observed crashes [12, 52]. However, we found that this
testing set generation process is optimized for code coverage,
as AFL is supposed to do, rather than for efficient identifica-
tion of the root causes. Also it is biased towards crashes, since
all these RCA approaches enable the AFL’s crash exploration
mode, only selecting seeds from crash inputs (see Section 3).
Therefore, in our research, we modified AFL’s seed selection
and mutation strategies to incorporate our counterexample-
based RL, so as to make the fuzzing process more suitable
for efficient discovery of program vulnerabilities (Section 4).
Reinforcement learning. In this paper, we will utilize the al-
gorithm for a reinforcement learning problem, the Adversarial
Multi Armed Bandits (AMAB) problem. This problem de-
scribes a game of T rounds between a player and an adversary.
In each round t = 1, ...,T , the player selects a distribution dt
over the k-arms and the adversary selects a reward vector
gt ∈ Rk. An action at is sampled from dt and the player ob-
serves the reward gt(at). The player’s expected regret is

GT = E[max
i∈[k]

T
∑

i=1
gt(i)−

T
∑

i=1
gt(at)]. (2)

We assume that the reward vector gt depends only on the
player’s actions. So, the expectation above is calculated on
the distribution of the player’s actions. The goal of the player
is to select the distributions d1, ...,dT such that the regret GT
across the T rounds is minimized.

During RL, the player typically employs two important
strategies, exploitation and exploration. Exploitation refers to
the player using the knowledge it has already gained to make
the best decision in a given state. Exploration refers to the

player trying new actions that may have not been experienced
before (often via random sampling) to gather more informa-
tion and potentially uncover better strategies. In RACING, for
RL’s exploration mode, we adopt a random strategy.

3 Counterexamples for Root Cause Analysis

At the center of a statistical RCA is the estimate of accurate
predicate rankings according to these predicates’ contribu-
tions to a given crash. For this purpose, existing approaches,
such as Aurora [12], assess each predicate’s correlation with
the crash using a sampling strategy biased toward the crash,
which as mentioned earlier, is less differentiating and there-
fore requires a lot of samples (outcomes of fuzz tests). We
believe that by balancing the sampling around known crash
inputs (as the prior approaches do) and the sampling around
the test cases with the most differentiating power, the root
cause for the crash can be discovered much more efficiently,
on a small set of samples. In our research, we refer to such
testing cases, which are characterized by their outcomes’ dis-
agreement with the current estimates, as counterexamples.

In our research, we consider two kinds of counterexamples:
those correcting the current estimates of rankings (counterex-
amples for rankings, or CoRs) and those correcting the es-
timate of each predicate’s correlation (counterexamples for
predicates, CoPs). Our research shows that CoRs alone can
help determine accurate rankings of predicates on a small
number of inputs, while CoRs and CoPs together can further
cut down the required sample size for accurately estimating
the ranking of the root cause. Following we present our anal-
ysis on the efficacy of these two types of counterexamples.

3.1 Counterexample for Ranking
To understand the impacts of CoRs on learning of predicate
rankings, we first formalize the ranking problem, whose solu-
tion depends upon effectively distinguishing predicates from
each other based upon their contributions to a given crash.
Then, we show that CoRs are exactly such differentiating in-
puts and a sampling strategy leveraging them can speed up
the process to move the root-cause predicate up on the list,
due to the small sample size it requires.
Problem modeling. We model RCA as a ranking problem,
ranking predicates according to their associated statistics that
measure how likely each of them causes a given crash, based
upon its correlation with the crash. Formally, consider N pred-
icates {p1, p2, ..., pN} to be ranked and their associated statis-
tics {s1,s2, ...,sN}. We use s∗i to denote the true value of the
statistic si for the predicate pi and s̃i an estimate of s∗i . An
order of these N predicates is denoted by r, which is a permuta-
tion of the first N positive integers, i.e., r ∈Π([N]). We denote
the i-th element in r as ri, and the ranking of predicate pi as
r(i). Our purpose is to determine the true order (rankings)
r∗ of these N predicates according to the true values of their

statistics (in a descending order, i.e., s∗r∗1 > ... > s∗r∗N). In prac-
tice, however, we only know the estimates of these statistics
{s̃i}, which are calculated on ni samples ei = {ei1,ei2, ...,eini}
for the predicate pi. To highlight the importance of the sample
size, we use s̃i,ni to describe the estimate made on ni samples.
Note that each sample ei j is produced by running the pro-
gram under the RCA analysis on an input sample – a testing
case and each execution of the program can generate multiple
samples for different predicates. Since this fuzz process is
time-consuming, our objective is to minimize the number of
testing cases for determining the true order r∗.
Sampling strategies for ranking estimates. A direct way
to estimate the order r is to generate unbiased random inputs
so each predicate is adequately sampled, leading to the con-
vergence of their statistics (s̃i→ s∗i), according to the Law of
Large Numbers [36]; in this case, the estimated order r will
converge to r∗. This simple solution, however, is less practical
since it is hard to ensure that randomly generated inputs can
reach the predicates, so a large number of the input samples
need to be produced and tested, particularly for a complicated
program, to provide each predicate with adequate coverage.

To address this problem, prior SFL approaches, such as
Aurora [12], take advantage of a known input leading to the
crash, called Proof of Concept (PoC), to guide the generation
of other input samples. By mutating the PoC input and other
crash inputs mutated from the PoC, these approaches create
random samples around such an input, which are likely to go
through a similar instruction set as the crash input, to sample
the predicates on these instructions. This strategy enables
the generation of the test inputs that more effectively cover
the predicates than the unbiased random samples. However,
these input samples are biased toward the crash and their
related execution paths are less effective in distinguishing
different predicates’ contributions to the crash. Oftentimes,
a subset of the predicates tends to appear together on the
execution paths of the inputs leading to the crash, and are also
less likely to show up on a non-crash path. As a result, these
predicates become less distinguishable, rendering the root
cause hard to stand out. Only after a large number of random
trials around the crash inputs, would enough non-crash inputs
be identified, which carry some of these predicates (so their
contributions to the crash are sufficiently undermined), and
to a lesser extent, new crash inputs discovered involving a
small subset of the predicates (so their contributions to the
crash become sufficiently prominent). These input samples
could eventually move the root cause up the ladder, towards
its true rank. We consider some of these inputs CoRs when
they cause a significant change to the estimated order.

To speed up the convergence of the root-cause predicate’s
rank, we need to more efficiently differentiate different predi-
cates’ contributions to the crash. This purpose can be served
by sampling around the discovered CoRs. Specifically, these
inputs generated by mutating the CoR are likely to be differen-
tiating, since a CoR is characterized by its capability to distin-

guish among predicates, mostly through causing a normal-exit
result that is less observable under the PoC-guided approaches
like Aurora. By incorporating this approach, our sampling
strategy becomes more balanced between using the inputs
that likely go through predicate-related instructions and lever-
aging those that differentiate the predicates’ impacts on the
crash, potentially leading to quick discovery of a root cause.
Counterexamples and convergence. As mentioned earlier,
we consider a CoR to be an input sample that causes a big
change to the estimated order. Specifically, a program’s exe-
cution on a given input sample can hit multiple predicates to
generate either a crashing or a normal-exit sample for each
predicate, thereby inducing changes in ranks for some of them.
To measure the impact of such input, we simply sum up the
rank changes across all predicates encountered on its execu-
tion path in their absolute values, compared with the estimated
order before the execution: that is, ∑

N
i=1 |rt(i)−rt−1(i)|, where

rt is the estimated order after t fuzzing rounds. This measure-
ment is found to work well in our experiments (Section 5),
which is essentially twice of the Kendall Tau distance [19]
(KTD) between two orders.

By balancing between the sampling around crash inputs
and the sampling around CoRs, the estimate of the predicate
order will converge and tends to converge quickly (Section 5).
To avoid fuzzing the program even after the order estimate is
stabilized, we can monitor the variation of the rank change
measured between two consecutive fuzzing rounds, until the
measurement approaches zero (below a threshold used in
our research), indicating the convergence of the ranking list,
according to the Cauchy’s convergence theorem [13].

3.2 Counterexample for Predicate
As described earlier, the root-cause predicates can be more
efficiently identified with the help of CoRs. This process can
actually be further accelerated by seeking the counterexam-
ples for estimating individual predicates’ correlations with
a given crash, as discovered in our research. These CoPs
serve to amplify the distances between different predicates’
estimated statistics through their oversized impact on each
predicate’s error rate (for predicting the crash). As a result,
the number of samples required for ranking these predicates
(based on their contributions to the crash) can also be reduced.
Distance amplification. For a predicate, CoPs are testing
cases on which the execution disagrees with the predicate
(e.g., the normal-exit execution, however, makes the condition
associated with the predicate satisfied). Hence, if we increase
the sampling rate of CoPs for a predicate, the error rate of
the predicate should increase. We developed a method that
increases the sampling rate of CoPs for each predicate (see
Section 4.2) and, at the meantime, does not promote those
non-root-cause predicates be ahead of root-cause predicates.

Formally, for the predicate pi, s̃i could be seen as an esti-
mate of how accurate this predicate can predict the exit status

(crash or exit normally) of an execution of the program, and
thus the error rate of this predicate is 1− s̃i. If the error rates
of all predicates are amplified by a factor α > 1, the distance
between the estimated error rate of any two predicates in-
creases accordingly: for two predicates p1 and p2, if s̃1 and s̃2
are both amplified by α, their distance increases from (s̃1− s̃2)
to α(s̃1− s̃2).
Sample size reduction. Consider a simple task where we
want to rank two statistics according to their estimates. Intu-
itively, the larger the distance between true values of them,
the fewer samples are required to rank them. Formally, we
assume that there are two predicates p1 and p2 with the esti-
mates s̃1,n1 and s̃2,n2 respectively. The true value of s̃i,ni is s∗i
that represents how often the predicate pi correctly predicts
whether an execution triggers the given crash or not (i.e., the
error rate of the predicate is 1− s∗i). Thus, among the ni sam-
ples, the number of correct prediction based on the predicate
pi, referring as ci,ct , follows a binomial distribution with the
parameters ni and s∗i , a.k.a, ci,ct ∼ B(ni,s∗i), and an unbiased
estimate of s∗i on ni samples is s̃i =

ci,ct
ni

. According to the
Wald method [7], we obtain that s̃i approximately follows a
normal distribution with the mean of s∗i and the variance of
s∗i (1−s∗i)

ni
, a.k.a., s̃i ≈ N(s∗i ,

s∗i (1−s∗i)
ni

). If we further assume that
the predicate p1 and p2 were sampled the same number of
times, and their true values are ranked as s∗1 > s∗2, then we can
get s̃1− s̃2 ≈ N(s∗1− s∗2,

1
n1
[s∗1(1− s∗1)+ s∗2(1− s∗2)]). There-

fore, for a fixed distance between the two true values (s∗1−s∗2),
the greater number of samples (ni) are used, the less likely we
estimate s̃1− s̃2 < 0. Equivalently, at a given confidence level,
when the distance becomes larger, fewer number of samples
are required to confidently rank them.

The same argument applies to the scenario of more than two
predicates. If we increase the distance among true values of
statistics (without changing the rank), the number of samples
required to confidently rank the predicates decreases, and
thus the number of testing cases required for producing these
samples will also decrease. As shown in the beginning of this
section, using more CoPs in fuzzing will effectively increase
the distances of error rates between every pair of predicates.
Therefore, in general, oversampling CoPs can accelerate the
process of finding the correct rank r∗.

4 RACING: Design and Implementation

Our study (Section 3) shows that by leveraging counterex-
amples (CoRs and CoPs), statistical RCA can effectively de-
termine an accurate ranking list just based on a small set of
testing cases. This finding has been incorporated into RAC-
ING, which runs a reinforcement learning algorithm to guide
a fuzzer to generate the testing cases highly likely to be coun-
terexamples, which are more useful for identifying the root
cause of a given crash than the others, thereby accelerating the
RCA process. More specifically, RACING learns information

from prior fuzzing rounds, particularly the impacts of the test
cases on the order of predicates and their statistics, to itera-
tively approximate an optimal seed-selection and mutation
strategy, following the rewards for the strategies that make
a big difference to the rankings and the statistics estimated
so far (which are mostly counterexamples); these selected
strategies are then applied to the next fuzzing round.

4.1 RL on Counterexamples
Our solution to the RCA problem is based upon a reinforce-
ment learning technique designed to address the Adversarial
Multi Armed Bandits (AMAB) problem. AMAB is a T -round
game where the player intends to maximize her expected re-
ward. In each round, the player selects an action to perform: in
the context of RCA, such an action includes the selection of a
seed or a method to mutate the seed to produce input samples.
After running the target program on these inputs, we use the
outcomes of the execution to determine the reward for the cur-
rent round, and further estimate an expectation for the action
based upon all the rewards it has received so far. In the rest
of the section, we report our design of the reward mechanism
and actions for selecting seeds and mutation methods.
Reward. The classical AMAB game (Eq 2) generates a re-
ward for each round in the form of regret increment, for the
purpose of minimizing the accumulated regret. For RACING,
the reward is designed to guide the selection of the action that
maximizes the differentiating power on predetermined predi-
cates: that is, the seed selection or the mutation method that
maximizes the difference among these predicates’ estimated
contributions to the crash. To this end, our RL technique re-
wards the action that maximizes the combined effect of CoR
that changes the estimated order of the predicates, and CoP
that causes the violation of the predicates on the instructions
encountered, based upon our analysis in Section 3. Specifi-
cally, our reward Gt for the round t is defined as follows:

gt = gorder
t +gcount

t (3)

where gorder
t is the order change measured by the normalized

KTD [28] between the estimated order before and after the
round t, and gcount

t is the ratio of the predicates being violated
during the program’s executions in that round.
Action for seed selection. An action of our RL technique is
selection of a seed for fuzzing the target program. The seed
here is an input to the program, which is used to produce
other input samples through mutating the input. To choose
the input that stands the best chance to help maximize the
reward for the next fuzzing round, we first organize all the
input samples that have been evaluated so far into groups,
according to the predicate-carrying instructions the execution
on each input has encountered: each group corresponds to one
such instruction, including all the inputs whose executions
go through the instruction; every input tends to be affiliated

0

0

0

0

0

1

0 10 20 30 40 50 60 70 80Pe
rc

en
ta

ge
 o

f s
ee

ds
(%

)

Distance between values

1

10!"

10!#

10!$

10!%

10!&

Figure 1: Distribution of distance.

with multiple such groups. Each group is associated with a
value that is the average of all the rewards generated by its
members. To select a seed, our approach first chooses the
group with the highest value, and then picks from the group
an input most likely to produce a CoP violating the predicate
of the instruction associated with the group (see Section 4.2).
This input is then used as the seed for generating other input
samples.
Action for mutation selection. After selecting a seed, our ap-
proach takes further actions to choose a location (which byte
on the input) and an operator for mutation, which are then
applied to the seed to generate other input samples. Again,
both the location and the operator are selected based upon
their values – the average reward they have generated so far.
For locations, we only gather rewards gained by mutating the
top 2,000 bytes of an input and use RL to determine the prob-
ability of choosing them. For the bytes after the first 2,000,
they might be selected only when the RL is in the exploration
mode (random sampling). Here, 2,000 is selected experimen-
tally (see details in Appendix A.2). For operators, RACING
utilizes 16 different operators in 3 categories: insertion, modi-
fication, and deletion of some bytes on the seed. For instance,
we may flip one bit on the seed, insert bytes with pre-defined
tokens into the seed, etc. The full list of these operators can
be found in Table 6 (see Appendix A.3).

4.2 Optimizing CoP Generation
Based on our analysis in Section 3.2, RCA could be accel-
erated by increasing the probability of generating CoPs that
amplify the distance between the true values of the statistic for
a root-cause predicate and that for a non-root-cause predicate.
For a predicate eax<=z, CoPs are testing inputs on which
non-crashing executions would assign eax values no more
than z while crashing executions would assign eax values
larger than z. Thus, to find CoPs, we need to generate the
input sample whose execution causes the value of eax to fall
within or beyond a boundary. To study how to generate such
inputs with a high probability, we look into the relationship
between a seed and the inputs generated from it.
The nearer the better. Comparing the value generated by
the execution on a seed for a predicate and that produced on
the input mutated from the seed, we found that they tend to
be similar. Figure 1 shows the distribution of the distance

Table 1: Transferabilities between crash and non-crash inputs.

Crash (to) Non-Crash (to)

Crash (from) 54.73% 45.27%
Non-Crash (from) 0.01% 99.99%

between such sample values (defined in Section 2) of predi-
cate, across all predicates within all programs (Table 2) we
analyzed. As we can see, such a distance is very likely to be
small: actually the probability becomes higher when the val-
ues become more similar. As a result, to generate the test cases
more likely to produce the target value for a predicate, we
should use the seed that leads to the predicate value as close
to the target as possible. Based on the analysis, we can obtain
the CoPs effectively from those “in-range” seeds: taking the
predicate eax<=z as the example, those non-crash inputs but
making eax<=z satisfied are more likely to generate CoPs of
this predicate.
Transferability between crash and non-crash input. Be-
sides the distance, we also look into the relationship between
crash inputs and non-crash inputs. Table 1 illustrates the
transferabilities between these two kinds, which are averaged
among values gained from all programs we studied. From
the table, we can see that, compared with crash inputs, the
non-crash inputs, once used as seeds, are more likely to gen-
erate non-crash inputs with almost negligible probability to
produce crash inputs. Besides from non-crash inputs, there
are about half-to-half probabilities to produce crash and non-
crash inputs respectively from crash inputs.
Optimizing seed selection. Considering both the distance
and transferability, to generate CoPs for the predicate eax<=z,
a good choice of seeds is the non-crash inputs making eax<=z
satisfied. If no such non-crash inputs, a crash input making
eax<=z satisfied would be also a good choice. In practice, to
generate CoPs of a “<=z” predicate, we utilized the above
strategy to set the seed as an available (not being chosen
before) non-crash input, or a crash input if no such non-crash
inputs, on which the execution will assign the smallest value
to the operand of this predicate. Similar strategy is used to
choose the seed for generating >z predicates’ CoPs.
Root cause towards end. Our strategy increases the prob-
ability of generating CoPs for predicates. However, it is un-
clear whether our strategy would promote those non-root-
cause predicates wrongly be ahead of root-cause predicates.
To understand that, we investigate the relationship between
thresholds of root-cause predicates and that of non-root-cause
predicates. Respectively for <=z and >z predicates (see defi-
nitions in Section 2), we draw their thresholds’ distributions
on Figure 2a and Figure 2b. Figure 2a demonstrates that the
thresholds of those <=z predicates crowd on small values,
and the smaller the value, the greater the likelihood that it is
the threshold of <=z predicates, regardless of root-cause or
non-root-cause. Specially, the thresholds of root-cause predi-

20 220 240

Threshold

0

5

10

Pe
rc

en
ta

ge
s

(%
) non-root cause

root cause

(a) <= z predicates.

20 220 240

Threshold

0

1

2

Pe
rc

en
ta

ge
s

(%
) non-root cause

root cause

(b) > z predicates.

Figure 2: Distribution of predicates’ threshold.

cates are more likely to be small values compared with that of
non-root-cause predicates. Figure 2b demonstrates that there
are two crowds (peaks) of threshold’s values: one nears 232

and another is bigger than 250, in the distribution of >z predi-
cates’ thresholds. We attribute the present of the first crowd
(nears 232) to 32-bit operands used in a part of predicates, and
similarly attribute the present of the second crowd (> 250)
to 64-bit operands used in the rest predicates. In both two
crowds, root-cause predicates exhibit a greater preference for
using a large value as their threshold than non-root-cause pred-
icates (where the red solid line is above the blue dash line).
Based on the above results, we conclude that the thresholds
of root-cause predicates are more likely extreme values (the
smallest or the largest values) compared with that of non-root-
cause predicates. Therefore, for <=z predicates, the thresholds
of the root-cause predicates are, with high probability, smaller
than that of non-root-cause predicates, and the probability
of generating a CoP, on which executions would assign the
operand with values smaller than the threshold, for the root-
cause predicate is smaller than the probability of generating
such CoPs for non-root-cause predicates, even though these
probabilities all has been amplified by our strategy. And a
consistent conclusion could be drawn for >z predicates.

4.3 RACING Algorithm
Algorithm 1 illustrates RACING, which takes a program Prog
and a PoC leading to a crash as inputs to generate top-50
predicates mostly related to the crash and the order of their
contributions r∗. Here we describe each RACING function:
Select_Action. This function returns a distribution dt over all
possible actions. Since there are two types of actions, selection
of seed and selection of mutation, as mentioned earlier, this
function outputs a pair of distributions dt = (dt,seed ,dt,mutate)
over Na = (Na,seed ,Na,mutate) number of actions. Specifically,
the distribution for seed selection dt,seed is built upon the
average rewards for all Na,seed groups:

dt,seed(i) =
exp(avg(i))

Na,seed
∑

j=1
exp(avg(j))

,
(4)

where dt,seed(i) is the probability of choosing the group i, and
avg(j) is the average reward for the group j. This distribution

Algorithm 1: RACING algorithm
Input: Program Prog, and a Proof of Concept PoC.
Result: Top-50 predicates and their true order r∗.

1 begin
2 S0 = [],γ0 = 0.5, t = 1
3 do
4 dt ← Select_Action(St−1)
5 at ← Sample_Action(dt ,γt)
6 {input}← Generate_Input(at)
7 {(ei, pi)}← Run(Prog,{input})
8 rt ← Rank({(ei, pi)})
9 gt ← Compute_Reward({(ei, pi)},St−1)

10 St ← Update_State(St−1,rt ,gt ,{(ei, pi)})
11 γt ← Update_Gamma({gi},{di},{ai})
12 while (! Converge(St))
13 {pi}50,r∗← select top-50 pi according to rt
14 return {pi}50,r∗

15 end

is biased toward the groups with high average rewards. The
distributions for mutation selection dt,mutate are constructed in
a similar way, based upon the average rewards of the mutation
locations and 16 mutation operations.
Sample_Action. This function randomly draws an action at
from the distribution dt , according to an exploration probabil-
ity γt . The γt is used to balance exploitation and exploration,
with a probability of 1-γt for exploitation and γt for explo-
ration. Similar to dt , γt = (γt,seed ,γt,mutate). Specifically, for
selecting a seed in each round, the probability of choosing the
i-th input group as the seed is d′t,seed(i), formally, it is:

d′t,seed(i) = (1− γt,seed)dt,seed(i)+
γt,seed
Na,seed

, (5)

and the probability of choosing the mutation i is d′t,mutate(i),
which is adjusted under the exploration probability γt,mutate
using the similar equation to Eq 5. Within the chosen input
group (seed), we further identify the input sample most likely
to produce a CoP, as mentioned earlier (Section 4.2). In this
way, RACING identifies for the round t the joint action at =
(at,seed ,{at,mutate}), where at,seed is the seed and {at,mutate} is
a set of the mutations sampled according to d′t,mutate.
Generate_Input. This function returns a set of input samples
{input} by applying sampled mutations {at,mutate} on the
seed at,seed .
Run. This function executes the program on the selected
test-case inputs and updates the statistics for each predicate
encountered by the execution. Also based upon the statistics,
our approach further adjusts the predicate as Aurora does [12]
(also see Algorithm 2 in Appendix A.1). This update process
has a time complexity O(ni) if there are ni samples in total
for the predicate pi. In general, this function updates each
predicate pi and gathers all samples on pi throughout all
fuzzing rounds to form the set ei.
Rank. This function returns the order rt of all current esti-
mates {s̃i}. Each s̃i is updated concurrently with the predicate
pi based on the sample set ei obtained in the round t.

Compute_Reward. This function generates the reward for
this round according to Eq 3. Particularly, our approach uti-
lizes the normalized KTD to calculate gorder

t , which is also
normalized to a value in [0,1] (simply dividing it by 2).
Update_State. This function updates the information for
action selection, particularly the average reward avg(i) for
each seed group and the average award for each mutation,
based upon the new award received.
Update_Gamma. This function adjusts γt = (γt,seed ,γt,mutate)
to balance exploration and exploitation efforts. Specifically,
we update γt,seed as follows (γt,mutate is updated similarly):

γt,seed =
Na,seed

2Na,seed+
t
Σ

i=1
Γi(γi−1,seed)

,

where Γi(γ) =
γ∗gi

(1−γ)∗di,seed(ai)+γ/Na,seed
.

(6)

Here Γi function computes the contribution of the current
exploration strategy to the reward received in the round i. In
our research, we utilized a monotonously decreasing function
to let γt decline with the growth of the information gathered
from prior rounds: the higher the rewards in the prior rounds
can be attributed to exploitation, the faster the γt decreases.
Converge. This function checks whether the ranking list [ri]
estimated in each round converges. Specifically, our approach
calculates the KTD between the orders in two consecutive
rounds to get a distance list [KT D(r1,r2), ...,KT D(rt−1,rt)].
Then, we measure the variance of the last several (min(10, t))
distances on the list. If this variance is smaller than a threshold
(0.01), we conclude that the order list has converged and exit
the loop. Here, 10 is a value found in our experiments that
can improve analysis performance. Additionally, we only
calculate the distance for the top-k (k = 100) predicates in
the list. As Table 3 column Ttop100 shows, all root causes
we studied have been elevated to the top-100, and the vast
majority of them are moved up within a short period of time
(in 3 minutes for 26 out 30 root causes).

4.4 Implementation

To implement RACING, we combine our reinforcement learn-
ing algorithm with AFL [51] algorithm that is customized
accordingly, as well as cooperate with the code instrumenta-
tion techniques to record values (samples) produced for each
instruction (predicate) during fuzzing the given program.
AFL customization. In RACING, the fuzzer is modified from
AFL through replacing its strategies for seed selection and
mutation with our own (Section 4.3).
Code instrumentation. Since the root cause of a vulnera-
bility is inherently linked to the instructions executed by the
Proof of Concept (PoC), to reduce the unnecessary cost, we
only instrumented a code fragment following each instruction
in the PoC’s execution trace to record the assigned values and
the control-flow transitions during the execution of test cases.

Table 2: Vulnerability information for evaluating RACING.

ID Program Version Vulnerability ID Vulnerability Type Sanitizer # lines of
source code

lines of PoC
execution trace Root Cause

V1 readelf binutils-2.32 CVE-2019-9077 heap buffer overflow ASAN 62,754 2,625 readelf.c:16197
V2 nm binutils-2.28 Bugzilla-21670 stack buffer overflow ASAN 10,882 2,781 tekhex.c:276
V3 lua lua-5.0 bug #5.0-2 heap buffer overflow ASAN 11,260 5,767 ldo.c:325
V4 nasm nasm-2.14rc15 bugzilla-3392556 use after free - 37,527 3,235 preproc.c:3821
V5 tcpdump tcpdump-4.9.2 CVE-2017-16808 heap buffer overflow ASAN 77,256 2,056 print-aoe.c:328
V6 sleuthkit commit 3e2332a issue-905 double free - 215,149 25,272 ext2fs.c:807
V7 patch commit dce4683 bug #54558 heap buffer overflow ASAN 509,743 2,255 pch.c:1332
V8 bash commit 6444760 msg00042 integer overflow - 113,807 6,341 braces.c:421
V9 nasm nasm-2.14rc15 CVE-2018-16517 nullptr dereference - 37,527 4,274 nasm.c:1477

V10 libzip libzip-1.2.0 CVE-2017-12858 use after free - 14,184 1,727 zip_dirent.c:580
V11 perl commit dca9f61 issue-17384 heap buffer overflow ASAN 980,019 46,755 regcomp.c:23690
V12 objdump commit 561bf3e CVE-2017-9746 heap buffer overflow ASAN 33,499 5,268 objdump.c:1932
V13 mruby commit 7483753 issue-3947 uninitialized variable MSAN 117,108 15,649 pack.c:802
V14 mruby commit aa5c5de CVE-2018-12248 heap buffer overflow ASAN 117,248 19,093 fiber.c:208
V15 mruby commit 88604e3 hackerone-185041 type confusion - 109,979 14,867 error.c:277
V16 mruby commit fabc460 CVE-2018-10199 use after free ASAN 117,118 20,747 object.c:401
V17 python python-2.7.11 CVE-2016-5636 heap buffer overflow - 443,641 49,689 zipimport.c:898
V18 screen screen-4.7.0 oss-sec-2020/q1/65 heap buffer overflow - 42,466 3,840 ansi.c:1578
V19 mruby commit e9ddb59 CVE-2018-10191 integer overflow ASAN 117,128 21,190 vm.c:1200
V20 matio commit bcf0447 CVE-2020-19497 integer overflow - 21,032 692 mat5.c:4975
V21 ezXML ezxml-0.8.6 CVE-2021-30485 nullptr dereference - 857 453 ezxml.c:362
V22 libpng libpng-1.6.34 CVE-2018-13785 divide-by-zero - 56,923 1,714 pngrutil.c:3152
V23 libjpeg 2.0.90 (2.1 beta1) CVE-2021-20205 divide-by-zero - 56,840 3,023 rdgif.c:447
V24 libtiff tiff-4.0.7 CVE-2017-7595 divide-by-zero - 65,104 5,160 tif_jpeg.c:1628
V25 libjpeg commit f4b8a5c CVE-2018-14498 heap buffer overflow ASAN 48,682 4,812 rdbmp.c:209
V26 libxml2 commit 362b322 CVE-2017-5969 nullptr dereference - 231,069 10,237 valid.c:1181
V27 libtiff tiff-4.0.6 CVE-2016-5321 heap buffer overflow ASAN 67,869 4,278 tiffcrop.c:992
V28 libsixel sixel-1.8.4 CVE-2021-45340 nullptr dereference - 22,643 1,402 stb_image.h:6110
V29 nm binutils-2.32 CVE-2019-17451 integer overflow - 11,340 8,241 dwarf2.c:4429
V30 objdump binutils-2.32 CVE-2019-9074 heap buffer overflow ASAN 36,271 15,001 pei-x86_64.c:727

Existing binary instrumentation tools have limited capabili-
ties, such as instrumenting limited lines of code or taking a
considerable amount of time. Hence, we instrumented code
using the following way: we execute the PoC with the help of
IntelPIN [24] to obtain the binary code addresses of the PoC’s
execution trace at first; then, we use add2line [1] to locate
source code corresponding to those addresses; finally, we cre-
ate a custom LLVM Pass, an LLVM plugin, to insert a logging
handler (triggering the recording of the assigned values to
the target operand in an instruction as well as control-flow
transitions) after each LLVM instruction in the Intermediate
Representation of those located source code. In this way, the
instrumented binary code has been included in the executable
program compiled by the LLVM.

5 Evaluation

5.1 Setting

Environment. All experiments were conducted on a 64-bit
Ubuntu 20.04 server with 32 Intel Xeon(R) Silver 4110@2.10
GHz CPU cores, 128 GB memory, and a 22 TB hard drive.

Vulnerability. We use 30 vulnerabilities to evaluate RAC-
ING, as illustrated in Table 2, including 191 from Aurora [12]
(V1-V19) and 11 more collected ourselves in the real world
(V20-V30). The 30 vulnerabilities were found in 21 programs
varying in volumes, ranging from 857 to 980,019 lines of
source code. These vulnerabilities cover 9 distinct types of
common software vulnerabilities, including integer overflow,
heap buffer overflow, stack buffer overflow, use after free, dou-
ble free, divided-by-zero, nullptr dereference, type confusion,
and uninitialized variable. Moreover, the level of complexity
for each vulnerability is also diverse, which can be approx-
imated by its number of distinct instructions of each PoC’s
execution trace, as illustrated in Table 2. The simplest vulnera-
bility V21 in an XML parsing library, named ezXML, contains
453 distinct instructions in its PoC’s execution trace, while
the most complex one V17 of Python contains 49,689. No-
tably, when a program cannot be directly crashed by the PoC,
we leverage the Address Sanitizer (ASAN) [38] or Memory
Sanitizer (MSAN) [40] to compile the program and capture
the exceptions to trigger a crash.

1The remaining 6 vulnerabilities in Aurora data set cannot be reproduced,
so we only consider the 19.

Table 3: Evaluation result of RACING

Note: The time duration is given in the format hours:minutes:seconds.
blue: better result, red: worse result, green: equal result.

RACING AuroraID Ranking Tall Tranking Ttop100 Ranking Tall Tranking Tfuzzing Tanalysis Ranking* Speedup

V1 10 00:00:40 00:00:14 00:00:12 6 02:06:52 00:08:00 2:00:00 0:06:52 14 190.30×
V2 1 00:01:36 00:00:51 00:00:01 1 12:00:50 00:15:00 12:00:00 0:00:50 8 450.52×
V3 28 00:04:38 00:01:41 00:00:03 21 12:14:49 08:00:00 12:00:00 0:14:49 84 158.59×
V4 8 00:03:06 00:02:44 00:00:01 14 02:24:13 00:20:00 2:00:00 0:24:13 37 46.52×
V5 4 00:02:12 00:00:21 00:00:10 4 02:02:04 00:09:00 2:00:00 0:02:04 9 55.48×
V6 9 00:01:57 00:01:24 00:00:18 10 02:02:05 00:06:00 2:00:00 0:02:05 24 62.61×
V7 1 00:02:38 00:00:03 00:00:01 1 02:04:17 00:00:20 2:00:00 0:04:17 1 47.20×
V8 20 00:03:25 00:03:19 00:00:02 29 03:10:46 02:00:00 2:00:00 1:10:46 1720 55.83×
V9 20 00:12:07 00:02:44 00:00:03 58 02:39:57 01:20:00 2:00:00 0:39:57 45 13.20×
V10 2 00:14:33 00:10:15 00:10:15 4 12:01:13 06:00:00 12:00:00 0:01:13 6 49.57×
V11 16 00:16:46 00:13:01 00:00:30 9 06:15:05 01:30:00 2:00:00 4:15:05 138 22.37×
V12 4 00:23:17 00:05:04 00:02:26 6 02:12:15 02:00:00 2:00:00 0:12:15 84 5.68×
V13 3 00:19:22 00:01:45 00:00:27 1 12:57:01 00:09:00 12:00:00 0:57:01 1 40.12×
V14 10 00:24:12 00:02:05 00:01:12 1 12:42:09 00:03:00 12:00:00 0:42:09 1 31.49×
V15 39 00:46:52 00:46:52 00:00:13 47 14:00:14 08:00:00 12:00:00 2:00:14 74 17.93×
V16 3 01:05:21 00:01:33 00:00:36 3 15:03:16 04:00:00 12:00:00 3:03:16 7 13.82×
V17 33 01:32:38 00:34:00 00:08:10 28 18:08:53 10:00:00 12:00:00 6:08:53 510 11.75×
V18 9 01:55:19 00:27:50 00:01:44 41 02:12:10 01:10:00 2:00:00 0:12:10 41 1.15×
V19 18 04:29:23 03:46:20 03:46:20 9 14:05:54 10:00:00 12:00:00 2:05:54 16 3.14×
V20 3 00:00:15 00:00:07 00:00:00 1 02:00:04 00:30:00 2:00:00 0:00:04 18 480.27×
V21 3 00:00:12 00:00:01 00:00:00 3 02:00:29 00:20:00 2:00:00 0:00:29 31 602.42×
V22 1 00:00:40 00:00:30 00:00:11 9 02:00:43 00:20:00 2:00:00 0:00:43 4 181.08×
V23 9 00:01:56 00:00:07 00:00:00 14 02:11:49 00:10:00 2:00:00 0:11:49 19 68.18×
V24 3 00:02:20 00:00:06 00:00:03 10 02:07:27 00:04:00 2:00:00 0:07:27 7 54.62×
V25 1 00:02:32 00:00:12 00:00:12 1 02:01:43 00:00:20 2:00:00 0:01:43 1 48.05×
V26 6 00:05:04 00:03:16 00:00:03 11 02:07:15 01:00:00 2:00:00 0:07:15 15 25.12×
V27 14 00:05:37 00:01:41 00:00:07 7 02:07:06 00:10:00 2:00:00 0:07:06 18 22.63×
V28 8 00:09:01 00:01:31 00:01:17 2 12:05:43 07:00:00 12:00:00 0:05:43 12 80.49×
V29 7 00:25:58 00:14:57 00:00:40 47 02:03:17 00:20:00 2:00:00 0:03:17 47 4.75×
V30 4 00:53:21 00:15:08 00:01:51 13 02:01:48 00:04:00 2:00:00 0:01:48 13 2.28×
Avg. 9.90 00:27:34 00:13:59 00:08:34 13.70 06:04:26 02:10:17 5:20:00 0:44:26 100.17 13.22×

Ground truth. In order to obtain the ground truth, we found
it from the vulnerability’s patch. Specifically, we manually
studied the 30 vulnerabilities’ patches. The vast majority of
patches (76.67%) consist of no more than ten lines of modified
code, and even 11 patches are within three lines of modified
code, making it easy to determine the root cause. For the
remaining complex patches, which may be related to multiple
files and contain a large number of modified lines, we referred
to the vulnerability report, if any, and manually inspected
the vulnerability with a debugger to determine a reasonable
ground truth. Table 2 illustrates the file name and the number
of line in which the root cause is located. Additionally, we
provide an example in the appendix to illustrate how the
ground truth is determined (see details at Appendix A.5).

5.2 Results
RACING is designed based on the classic statistics-based RCA
framework, but uses counterexamples for RCA acceleration.
In the evaluation, we answer the following research questions:
• RQ1: How does the effectiveness of RACING compare

to current works for locating root causes?
• RQ2: How much does RACING improve efficiency?
To answer these questions, we compared our result to Au-

rora [12], the state-of-the-art work for identifying predicate-

level root causes. Table 3 presents the evaluation result. As
illustrated in Table 3, all 30 root causes were identified within
top-50 by RACING, including 73.33% (22) in the top 10,
33.33% (10) in the top 3, and 4 even at the top spot. Com-
paratively to Aurora, we have 6 root causes of vulnerabilities
(colored in green in the Ranking column of Table 3) receiving
the same rankings as Aurora, yet, 14 (46.67%) root causes
are ranked even higher by RACING than Aurora (colored in
blue in Table 3). For instance, V9 was identified by RACING
with a ranking of 20, whereas Aurora gave it a ranking of 58,
which is not only significantly lower but also outside the top
50, meaning an expert has to put in much more effort to check
the actual root cause. On average, the rankings obtained by
RACING for these vulnerabilities’ root causes are 3.80 po-
sitions higher than those obtained by Aurora. This result is
reasonable. Even though Aurora spends a large amount of
time (e.g., 12 hours) to generate testing set, nobody knows
whether the randomly generated data set is statistically ade-
quate. Our approach, RACING, not only attempts to generate
counterexamples to aid in the accurate ranking of predicates,
but also uses a termination strategy to determine whether the
testing set is sufficient to identify the root cause. Therefore,
we have better rankings than Aurora for some vulnerabilities’
root causes. Of course, due to the random nature of fuzzing
in practice, 10 root causes are ranked lower than Aurora by

0 10,000 20,000 30,000 40,000
of generated inputs

0
1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
ds

(a) V24

0 3,000 6,000 9,000 12,000
of generated inputs

0
4
8

12
16
20
24
28
32

C
um

ul
at

iv
e

R
ew

ar
ds

(b) V12

0 8,000 16,000 24,000 32,000
of generated inputs

0

1

2

C
um

ul
at

iv
e

R
ew

ar
ds

(c) V15

Racing: CoP Racing: CoR Aurora: CoP Aurora: CoR

Figure 3: Comparison between RACING and Aurora on CoP and CoR generation.

RACING (colored in red in Table 3). However, the maximum
ranking difference for the same root cause is 9 positions, with
an average difference of 5.80 positions. Considering, except
V3 with a ranking of 28 and V17 with a ranking of 33, all of
them are in the top 20, we deem these lower rankings accept-
able. Overall, RACING possesses the same efficacy as existing
works for locating root causes, which concludes RQ1.

To evaluate the efficiency improvement of RACING, we
first compare the total time cost (Tall) by RACING and Aurora
to perform RCA. Notably, Aurora includes two separate steps
to analyze root causes. It uses AFL to generate the testing
set with Tf uzzing time and then Tanalysis time to determine each
predicate’s ranking. Particularly, when Aurora generates less
than 100 test cases in 2 hours, it will take an additional 10
hours to collect a larger testing set. Unlike Aurora, in RAC-
ING, the test case generation and the ranking computation
are performed successively in each round (see Algorithm 1).
As shown in the Speedup column in Table 3, RACING iden-
tified each root cause significantly faster than Aurora, with
a minimum increase of 1.15x for V18 and a maximum in-
crease of 602.42x for V21. Specifically, RACING identified
86.67% (26) root causes in 1 hour, 80.00% (24) in 30 minutes,
56.67% (17) in 10 minutes, and 13.33% (4) even in 1 minute
(e.g., 15 seconds for V20 and 12 seconds for V21). On average,
RACING required approximately 27 minutes to identify the
root cause, whereas Aurora required approximately 6 hours, a
13.22x reduction. Figure 4 illustrates the detailed distribution
of RACING over Aurora based on speed multiples. One may
question whether Aurora wastes time in the later period gener-
ating test cases. To figure it out, we examined the earliest time
the root cause received the same ranking as its final ranking
(denoted by Tranking) during the test case generation in Aurora.
The results indicate that Aurora did waste a great deal of time
generating more test cases even though the root causes could
be identified with a relatively high ranking. For instance, V2
ranked first in the data set generated in 15 minutes by Aurora,
but Aurora used 12 hours to collect more test cases to analyze
it. Nevertheless, RACING performs better. It takes only 51
seconds to rank the root cause of V2 number one. On aver-

age, the root causes obtained the same ranking as their final
rankings in about 2 hours in the Aurora-generated testing set,
whereas RACING could allow the root causes to receive the
same ranking as their final rankings in around 14 minutes.
This comparative study demonstrates that RACING can expe-
dite the process of predicates obtaining their final rankings.
Moreover, we checked the rankings of root causes in Aurora
at the end time of RACING (see Ranking∗ in Table 3). 83.33%
(25) root causes are ranked lower than those computed by
RACING, which once again demonstrates the efficiency of
RACING. Therefore, we conclude RQ2 that RACING has sig-
nificantly improved efficiency compared with existing works
on root cause analysis.

0

2

4

6

8

[2⁰, 2¹) [2¹, 2²) [2², 2³) [2³, 2⁴) [2⁴, 2⁵) [2⁵, 2⁶) [2⁶, 2⁷) [2⁷, 2⁸) [2⁸, 2⁹) [2⁹, ∞)

of

 v
ul

ne
ra

bi
lit

ie
s

RACING speed multiples over Aurora

[Revision]

Figure 4: RACING speed multiples’ distribution over Aurora.

In addition, to evaluate whether RACING actually generates
counterexamples, i.e., whether a counterexample affects more
predicates and whether an input results in a larger change in
order, we compare RACING to Aurora using three selected
vulnerabilities whose root cause was identified within 10 min-
utes (V24 in 2 minutes and 20 seconds), 30 minutes (V12 in
23 minutes and 17 seconds), and more than 30 minutes (V15
in 46 minutes and 52 seconds). Specifically, for each gener-
ated input, we counted what is the percentage of predicates
this input is the counterexample (CoP) for and how much
KTD (see Section 4) this input causes, which indicates the
change in the order (CoR). As shown in Figure 3, the lines
for CoPs and CoRs in the Aurora testing set rise very slowly,
except at the beginning, demonstrating that fewer CoPs and
CoRs have been generated by Aurora due to their blind test
case generation method as we analyzed in Section 3. How-

Table 4: Result of ablation studies.
Note: The time duration is given in the format hours:minutes:seconds

V24 V12 V15

Time Ranking Time Ranking Time Ranking

RACING (reward: CoR + CoP) 00:02:20 3 00:23:17 4 00:46:52 39
RACING (reward: CoR) 00:14:14 3 00:33:43 4 01:51:03 39
Aurora 02:07:27 10 02:12:15 6 14:00:14 47

RL + top 100 00:09:02 3 00:40:35 4 01:10:21 39
RL + optimizing + top 100 00:02:20 3 00:23:17 4 00:46:52 39
RL + optimizing + top 300 00:45:47 3 01:07:48 4 01:23:25 39
RL + optimizing + top 500 01:57:15 4 02:07:39 5 04:57:22 39

ever, the lines for CoPs and CoRs in the testing set generated
by RACING rise rapidly and continuously, indicating that
the inputs are successfully generated by RACING, resulting
in more predicates affected and greater order changes than
Aurora. Especially, for V15, RACING generates significantly
more CoPs and CoRs from the beginning to the end. Com-
bining the Ranking∗ of V24, V12, and V15 in Table 3, which are
all lower than the rankings computed by RACING at the end
of RACING’s analysis time, this result again demonstrates
the effectiveness of counterexamples (CoPs and CoRs) for
estimating the accurate rankings of predicates.

5.3 Ablation Study

As stated in Section 4.1, the reward is comprised of the com-
bined effect of CoRs and CoPs. To evaluate their utilities in
the reward, we conducted an ablation study by removing the
CoP from the reward and setting gt = gorder

t in RL, based on
three selected vulnerabilities in the evaluation (V24, V12, V15).
As shown in Table 4, the result demonstrates that CoRs alone
can assist in identifying the root cause with a higher ranking
in a shorter time, increasing 8.95x for V24, 3.92x for V12, and
7.57x for V15 in comparison to Aurora. Furthermore, CoRs
and CoPs together can further cut down the analysis time.

Besides using reinforcement learning to guide the fuzzer,
RACING also includes an optimizing method to generate
CoPs (Section 4.2), and always focuses on top 100 predicates
to avoid wasting time on those ranked below 100. Therefore,
we conducted additional ablation studies to evaluate their utili-
ties in RACING, again based on V24, V12, V15. The result is pre-
sented in Table 4. The 5th row labeled “RL+optimizing+top
100” indicates the result of RACING.

To evaluate the optimizing method, we replace it with a
random method selecting an input on which execution goes
through a given instruction at random. The result demon-
strates that the optimizing method enables the order to be
converged more rapidly to locate the root cause. Specifically,
the optimizing method is around 17 and 23 minutes faster
than the random selection when analyzing V12 and V15, re-
spectively. And for analyzing V24, the optimizing method
takes only 2 minutes and 20 seconds, whereas the random

selection takes 9 minutes and 2 seconds, which is nearly 4
times longer. Moreover, to figure out whether the optimizing
method generates the CoPs as anticipated, with a higher prob-
ability of generating counterexamples for a given predicate
than random selection, we compared the average percentage
of successfully generated CoPs for both methods. We found
that with the help of the optimizing method, we generated
CoPs with an average probability of 0.35% (=158/44,266) on
V24, 3.99% (=461/11,554) on V12, and 0.18% (=58/31,614)
on V15 while generating inputs, whereas using the random
selection, the probability reduces to 0.09% (=227/253,062)
on V24, 1.37% (=388/28,364) on V12, and 0.09% (=84/89,837)
on V15. This result indicates that our optimizing method is
more likely to produce counterexamples for given predicates.

To evaluate how well the k is configured, we set two more
values 300 and 500 to k. As illustrated in Table 4, as the
value of k increases, the ranking of the root cause almost does
not change, but the termination time increases significantly.
Taking V24 as an example, RACING (k = 100) has spent 2
minutes and 20 seconds locating the root cause, whereas the
time cost multiplies 20fold (45 minutes and 47 seconds) when
k = 300 and even 50fold (1 hour and 57 minutes) when k =
500. This result is reasonable, because a larger k indicates that
more time is needed to generate counterexamples for more
predicates. Also, this result demonstrates that setting k = 100
is sufficient, since RACING can locate the root cause with the
same ranking as when k is set with a larger value.

6 Discussion

Limitation. Below, we illustrate the limitations of RACING
that managed to rank the root cause of vulnerabilities, as
demonstrated in our experiments, at the very top in a short
time. There are still some root causes failed to be ranked
at the first by our RACING due to two reasons: 1) RACING
failed to generate counterexamples that can lower the ranks of
those predicates falsely ranked at the top. 2) some executions
(coincidentally correctness) making the root-cause predicate
satisfied however exit normally. These two reasons reveal the
limitations of RACING in discovering a comprehensive set of
counterexamples and dealing with coincidentally correctness.

Also, our current implementation of RACING relies on the
program’s source code for code instrumentation, limiting the
application of our tool on those programs without the source
code. However, this implementation (our code) is readily
expandable if a more comprehensive and potent binary code
instrumentation tool becomes available in the future.

Additionally, predicates could be classified into atomic
predicates (e.g., x<=10) and compound predicates (e.g., x<10
AND y>=8). Currently, RACING only takes the first step to
deal with atomic predicates. It lacks the support for compound
predicates, which account for less than half of the vulnera-
bilities2. However, the idea of RACING can be straightfor-
wardly extended to handle compound predicates because they
still have counterexamples like x>=10 OR y<8 for x<10 AND
y>=8, and RL can be used to generate such counterexam-
ples. Specifically, the design of RACING’s reward mechanism
(Eq 3) as well as the actions for seed and mutation selection
(Eqs 4,5,6) can be directly used, with non-trivial adjustments
to the construction of (compound) predicates and customiza-
tion on the optimization strategy for CoP generation. To esti-
mate the likely cost of RACING to support compound predi-
cates, we developed a prototype called RACING+ to support a
simple type of compound predicate by combining two atomic
predicates using the logical operator “AND” (A AND B) and
tested it on two vulnerabilities (see details at Appendix A.4).
In order to understand RACING+’s ability, we additionally
modified the computational component of Aurora (called
Aurora+) to handle the same type of compound predicate. As
shown in Table 7 in Appendix A.4, RACING+ accelerates over
Aurora+ by an average of 6.58x, while still identifying the
compound root causes within its top-50, surpassing Aurora+

in terms of ranking. These preliminary results indicate the
potential of RACING for effectively supporting compound
predicates in future endeavors.
Future work. We attribute the sluggishness of current RCA
techniques to their employed biased sampling method raised
from the crash centered fuzzing. Our research steps forward to
overcoming this bias through incorporating with counterexam-
ples. Along this path, further efficient RCA methods working
with balanced sampling methods are anticipated in the future.
Especially, working with an unbiased fuzzer is promisingly
effective for RCA.

7 Related Work

Spectrum-based fault localization. Spectrum-based fault lo-
calization (SFL) technique is a statistically-based automated
cause analysis method. Based on a testing set containing both
crash and non-crash inputs, the SFL technique estimates the

2Since no previous studies have investigated this specific proportion, we
randomly selected 20 vulnerabilities from Defects4J [26], a real-world fault
dataset widely used for benchmarking fault localization, and found that 45%
of the root causes were compound predicates.

statistical correlation between each program entity (such as
a statement, block, or predicate) and crash, and outputs the
highly correlated entities in rank order as potential root causes.
The majority of SFL research focused on designing statistical
quantities, including ranking metrics [6,15,25,34,37,43] and
distribution statistics [8, 10, 31, 32]. Different from them, our
work is not focused on the improvement of statistics metrics.
We are concentrating on the generation of the testing set. The
metric we used in RACING is mutual information, which is
proposed by DeFault [52], one of the most recent SFL stud-
ies. There are some SFLs that have provided strategies to
improve the testing suite [6, 11, 22, 49]. To evaluate a test
case, Baudry et al. proposed a testing criterion called Dy-
namic Basic Block [11]. Hao et al. proposed three strategies
for reducing the number of test cases based on their capa-
bility [22]. Abreu et al. contend, based on an experimental
study, that a greater number of crash inputs results in greater
effectiveness [6]. Yu et al. eliminates the test cases that have
no impact on the ranking performance [49]. All of them, how-
ever, improve the testing suite on an existing data set. In
contrast to them, we generate test cases dynamically based on
our strategies to construct the testing set, and our evaluation
demonstrates the efficacy and efficiency of the test generation
method.
Non-statistical RCA. Non-statistical RCA strives to identify
the root cause of certain vulnerability types through detailed
and precisely formulated rules. Typical non-statistical RCA
solutions [14, 23, 46, 47] employ program analysis techniques
(e.g., data flow analysis, symbolic execution) to verify the
program entities against manually crafted rules and uncover
potential root causes. However, such analysis rules are often
specific to certain vulnerability types, limiting their broader
use. Among these solutions, FreeWill [23] can diagnose only
1 vulnerability type (use after free), while Bunkerbuster [46]
supports the most with 6 vulnerability types, but it still can-
not handle types such as uninitialized variables, type confu-
sion and nullptr dereference in our dataset. Moreover, most
non-statistical RCA faces inherent limitations associated with
program analysis techniques, such as the high computational
overhead of data flow analysis and program slicing [14], as
well as scalability issues in symbolic execution [46,47]. Given
that Bunkerbuster [46] supports the most vulnerability types,
we ran it on 21 vulnerabilities it covers in our dataset. We
found that 20 out of 21 aborted early due to problems like
memory exhaustion, with only 1 successful case taking nearly
13 hours, which is almost 300 times longer than the execution
time of RACING or 6 times longer than that of Aurora. Over-
all, compared to non-statistical RCA methods, statistical RCA
methods have broader applicability and better efficiency.
Fuzzing. Fuzzing techniques have led to a tsunami of security
vulnerability discovery and elimination through automatically
and quickly funding abundant crashes. In the early days of
fuzzing, random selection and mutation of seed were used to
generate new inputs for testing programs [20, 35]. In order

to conduct more exhaustive testing, modern fuzzing typically
employs heuristic strategies to guide exploration [29, 33, 51].
The coverage-guided fuzzing is one of the most popular tech-
niques, such as AFL [51], which increases the likelihood of
discovering more vulnerabilities by increasing code cover-
age. Current statistics-based RCA works, such as Aurora [12],
DeFault [52], directly employed AFL to generate a testing
set. However, as we analyzed in Section 3, such a generation
process is time-consuming. Our approach, RACING, modi-
fied AFL’s seed selection and mutation strategies to make the
fuzzing process more suitable for efficient root cause analy-
sis. In addition, recently, many researchers use reinforcement
learning to enhance the fuzzing process. For example, Woo et
al. [44] use the number of crashes as a reward function to find
the greatest number of unique bugs in a fuzzing campaign.
Yue et al. [50] proposed EcoFuzz, which uses the adversarial
MAB algorithm to solve the seed energy allocation prob-
lem. AFL-HIER [41] chooses UCB1 [9], one of the MAB
algorithms, to solve the seed scheduling problem under fine-
grained coverage metrics. These works have demonstrated
the effectiveness of reinforcement learning applied in fuzzing.
However, the purpose of these works is to find more vulnera-
bilities, whereas the reinforcement learning in RACING is to
learn how to generate more CoPs and CoRs for efficient root
cause analysis.

8 Conclusion

In this paper, we introduced our reinforcement learning (RL)
based approach, RACING, to elevate the scalability and accu-
racy of today’s statistical RCA. Compared to previous works
that generate the input samples more likely causing the crash,
RACING harnesses our new observation that by sampling
around “counterexamples” causing significant changes to the
current estimates of correlations, suspicious program elements
can be more effectively differentiated, thereby accelerating
the RCA performance. Our evaluation on 30 real-world vul-
nerabilities demonstrates the efficiency and effectiveness of
RACING: it successfully elevated all 30 root causes to the top
(within the top-50) within half an hour in average, which is sig-
nificantly faster than the state-of-the-art method of SFL that
could take more than twelve hours for RCA, thereby speed-
ing up the RCA process by more than an order of magnitude
and elevating its effectiveness in locating the root-cause of
vulnerabilities.

9 Acknowledgments

We thank the shepherd and all the anonymous reviewers for
their constructive feedback. The IIE authors are supported
in part by NSFC (92270204), Youth Innovation Promotion
Association CAS.

References

[1] addr2line(1) - Linux manual page. https://man7.or
g/linux/man-pages/man1/addr2line.1.html.

[2] CVE-2017-5380. https://nvd.nist.gov/vuln/de
tail/CVE-2017-5380.

[3] CVE-2018-4145. https://nvd.nist.gov/vuln/de
tail/CVE-2018-4145.

[4] CVE-2022-36320. https://nvd.nist.gov/vuln/
detail/CVE-2022-36320.

[5] RACING’s source code. https://github.com/Rac
ingN4th/Racing.git, 2023.

[6] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC
Van Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software,
82(11):1780–1792, 2009.

[7] Alan Agresti and Brent A Coull. Approximate is better
than “exact” for interval estimation of binomial propor-
tions. The American Statistician, 52(2):119–126, 1998.

[8] Piramanayagam Arumuga Nainar, Ting Chen, Jake
Rosin, and Ben Liblit. Statistical debugging using com-
pound boolean predicates. In Proceedings of the 2007
international symposium on Software testing and analy-
sis, pages 5–15, 2007.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47:235–256, 2002.

[10] George K Baah, Andy Podgurski, and Mary Jean Har-
rold. Causal inference for statistical fault localization.
In Proceedings of the 19th international symposium on
Software testing and analysis, pages 73–84, 2010.

[11] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Im-
proving test suites for efficient fault localization. In
Proceedings of the 28th international conference on
Software engineering, pages 82–91, 2006.

[12] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann,
Ali Abbasi, Joel Frank, Simon Wörner, and Thorsten
Holz. Aurora: Statistical crash analysis for automated
root cause explanation. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 235–252, 2020.

[13] Arlen Brown and Carl Pearcy. An introduction to analy-
sis, volume 154. Springer Science & Business Media,
2012.

[14] Yue Chen, Mustakimur Khandaker, and Zhi Wang. Pin-
pointing vulnerabilities. In Proceedings of the 2017
ACM on Asia conference on computer and communica-
tions security, pages 334–345, 2017.

https://man7.org/linux/man-pages/man1/addr2line.1.html
https://man7.org/linux/man-pages/man1/addr2line.1.html
https://nvd.nist.gov/vuln/detail/CVE-2017-5380
https://nvd.nist.gov/vuln/detail/CVE-2017-5380
https://nvd.nist.gov/vuln/detail/CVE-2018-4145
https://nvd.nist.gov/vuln/detail/CVE-2018-4145
https://nvd.nist.gov/vuln/detail/CVE-2022-36320
https://nvd.nist.gov/vuln/detail/CVE-2022-36320
 https://github.com/RacingN4th/Racing.git
 https://github.com/RacingN4th/Racing.git

[15] Yu-Min Chung, Chin-Yu Huang, and Yu-Chi Huang.
A study of modified testing-based fault localization
method. In 2008 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pages 168–175.
IEEE, 2008.

[16] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. {REPT}:
Reverse debugging of failures in deployed software. In
13th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 18), pages 17–32,
2018.

[17] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick
Fratantonio, and Vasileios P Kemerlis. Retracer: Triag-
ing crashes by reverse execution from partial memory
dumps. In Proceedings of the 38th International Con-
ference on Software Engineering, pages 820–831, 2016.

[18] Higor A de Souza, Marcos L Chaim, and Fabio Kon.
Spectrum-based software fault localization: A survey of
techniques, advances, and challenges. arXiv preprint
arXiv:1607.04347, 2016.

[19] Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivaku-
mar. Comparing top k lists. SIAM Journal on discrete
mathematics, 17(1):134–160, 2003.

[20] Justin E. Forrester and Barton P. Miller. An empirical
study of the robustness of windows nt applications using
random testing. In Proceedings of the 4th Conference
on USENIX Windows Systems Symposium - Volume 4,
WSS’00, page 6. USENIX Association, 2000.

[21] Hackerone. Type confusion in mrb_exc_set leading to
memory corruption. https://hackerone.com/repo
rts/185041.

[22] Dan Hao, Tao Xie, Lu Zhang, Xiaoyin Wang, Jiasu Sun,
and Hong Mei. Test input reduction for result inspec-
tion to facilitate fault localization. Automated software
engineering, 17:5–31, 2010.

[23] Liang He, Hong Hu, Purui Su, Yan Cai, and Zhenkai
Liang. {FreeWill}: Automatically diagnosing use-after-
free bugs via reference miscounting detection on bina-
ries. In 31st USENIX Security Symposium (USENIX
Security 22), pages 2497–2512, 2022.

[24] Intel. Pin - A Dynamic Binary Instrumentation Tool.
https://www.intel.com/content/www/us/en/de

veloper/articles/tool/pin-a-dynamic-binar
y-instrumentation-tool.html.

[25] James A Jones, Mary Jean Harrold, and John Stasko. Vi-
sualization of test information to assist fault localization.
In Proceedings of the 24th international conference on
Software engineering, pages 467–477, 2002.

[26] René Just, Darioush Jalali, and Michael D Ernst. De-
fects4j: A database of existing faults to enable controlled
testing studies for java programs. In Proceedings of the
2014 international symposium on software testing and
analysis, pages 437–440, 2014.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 2123–2138, 2018.

[28] Ravi Kumar and Sergei Vassilvitskii. Generalized dis-
tances between rankings. In Proceedings of the 19th
international conference on World wide web, pages 571–
580, 2010.

[29] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475–485, 2018.

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability
detection. arXiv preprint arXiv:1801.01681, 2018.

[31] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken,
and Michael I Jordan. Scalable statistical bug isolation.
Acm Sigplan Notices, 40(6):15–26, 2005.

[32] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and
Samuel P Midkiff. Statistical debugging: A hypothesis
testing-based approach. IEEE Transactions on software
engineering, 32(10):831–848, 2006.

[33] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. {MOPT}: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949–
1966, 2019.

[34] Wes Masri. Fault localization based on information flow
coverage. Software Testing, Verification and Reliability,
20(2):121–147, 2010.

[35] Barton P Miller, Lars Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities. Com-
munications of the ACM, 33(12):32–44, 1990.

[36] Pál Révész. The laws of large numbers, volume 4. Aca-
demic Press, 2014.

[37] Raul Santelices, James A Jones, Yanbing Yu, and
Mary Jean Harrold. Lightweight fault-localization us-
ing multiple coverage types. In 2009 IEEE 31st Inter-
national Conference on Software Engineering, pages
56–66. IEEE, 2009.

https://hackerone.com/reports/185041
https://hackerone.com/reports/185041
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

[38] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. 2012.

[39] Shiqi Shen, Aashish Kolluri, Zhen Dong, Prateek Sax-
ena, and Abhik Roychoudhury. Localizing vulnerabili-
ties statistically from one exploit. In Proceedings of the
2021 ACM Asia Conference on Computer and Commu-
nications Security, pages 537–549, 2021.

[40] Evgeniy Stepanov and Konstantin Serebryany. Mem-
orysanitizer: fast detector of uninitialized memory use
in c++. In 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages
46–55. IEEE, 2015.

[41] Jinghan Wang, Chengyu Song, and Heng Yin. Rein-
forcement learning-based hierarchical seed scheduling
for greybox fuzzing. 2021.

[42] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou.
Intscope: Automatically detecting integer overflow vul-
nerability in x86 binary using symbolic execution. In
NDSS. Citeseer, 2009.

[43] Xinping Wang, Qing Gu, Xin Zhang, Xiang Chen, and
Daoxu Chen. Fault localization based on multi-level sim-
ilarity of execution traces. In 2009 16th Asia-Pacific Soft-
ware Engineering Conference, pages 399–405. IEEE,
2009.

[44] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 511–522, 2013.

[45] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping
Chen, and Bing Mao. Postmortem program analy-
sis with hardware-enhanced post-crash artifacts. In
USENIX Security Symposium, pages 17–32, 2017.

[46] Carter Yagemann, Simon P Chung, Brendan Saltafor-
maggio, and Wenke Lee. Automated bug hunting with
data-driven symbolic root cause analysis. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 320–336, 2021.

[47] Carter Yagemann, Matthew Pruett, Simon P Chung, Ken-
non Bittick, Brendan Saltaformaggio, and Wenke Lee.
{ARCUS}: Symbolic root cause analysis of exploits in
production systems. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 1989–2006, 2021.

[48] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic inference of search patterns
for taint-style vulnerabilities. In 2015 IEEE Symposium
on Security and Privacy, pages 797–812. IEEE, 2015.

[49] Yanbing Yu, James A Jones, and Mary Jean Harrold.
An empirical study of the effects of test-suite reduction
on fault localization. In Proceedings of the 30th in-
ternational conference on Software engineering, pages
201–210, 2008.

[50] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-saving
greybox fuzzing as a variant of the adversarial multi-
armed bandit. In Proceedings of the 29th USENIX Con-
ference on Security Symposium, pages 2307–2324, 2020.

[51] Michał Zalewski. American fuzzy lop. https://lc
amtuf.coredump.cx/afl/, 2017.

[52] Xing Zhang, Jiongyi Chen, Chao Feng, Ruilin Li, Wen-
rui Diao, Kehuan Zhang, Jing Lei, and Chaojing Tang.
Default: mutual information-based crash triage for mas-
sive crashes. In Proceedings of the 44th International
Conference on Software Engineering, pages 635–646,
2022.

A APPENDIX

A.1 Predicate Construction
Following Aurora [12], our research focuses on three types of
predicates. Below we elaborate on the details of their union
form transformation and threshold selection.
Union form transformation. All three predicate types follow
a union form Var op Thr. For register and memory predi-
cates, Var is the destination operand of an instruction, op
could be <= or > and Thr is an integer chosen dynamically
(see below). For flag predicates, Var is the flag bit of interest,
op is > and Thr is 0. For control-flow predicates, there are
two primary types: the execution of an edge and the num-
ber of executed successors for nodes. For each edge x->y
connecting the node x and y in the CFG, an additional vari-
able countx->y is maintained to track the number of times the
edge has been executed during one execution of the program.
In this scenario, Var is the variable countx->y, op is > and
Thr is 0. Similarly, for each node x, an additional variable
successorx is created to store the number of its successors
that have been executed during one execution of the program.
In this scenario, Var is the variable successorx, op is > and
Thr is either 0, 1 or 2.
Threshold selection algorithm. Both flag predicates and
control-flow predicates have a limited number of predefined
thresholds. Conversely, the threshold of register and mem-
ory predicate can encompass tens of thousands of possible
values. Evaluating each potential value is computationally
impractical in real-world scenarios. To address this challenge,
Algorithm 2 is employed to dynamically update the thresh-
old, ensuring it is linked to the best estimate of the mutual
information so far.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Algorithm 2: Threshold selection
Input: mi sample values {v1,v2, . . . ,vmi} in ascending order

for a predicate pi on ni inputs {ei1,ei2 . . . ,eini}.
Result: The updated predicate p′i and its statistic s̃i.

1 begin
2 s̃i = 0,Ct = 0,N f = 0
3 for j← 1 to mi do
4 Ct =Ct +CrashSamples(v j)
5 N f = N f +NonCrashSamples(v j)
6 s̃i

′ = Compute_MutInf(Ct ,N f ,Ca,Na)
7 if s̃i

′ > s̃i then
8 s̃i = s̃i

′

9 if Ct >Ca−Ct then
10 p′i← Var<=vj
11 else
12 p′i← Var>vj
13 return (p′i, s̃i)

Concretely, given mi sample values {v1,v2, . . . ,vmi} for a
predicate, it tries to use each v j in ascending order (line 3-12)
as the threshold, computes its mutual information with the
crash (line 6), and updates the predicate’s threshold Thr if a
new value v j yields higher statistic than previous ones (line
7-12). To evaluate the predicate’s mutual information on the
fly, we maintain two counters, Ct and N f , which represent the
number of crash inputs that satisfy the current predicate at v j,
and the number of non-crash inputs that violate the predicate
at v j, respectively. In each step, we increment Ct with the
number of crash samples for v j, and N f with the number of
non-crash samples for v j (lines 4-5). With Ct ,N f , Ca (the total
number of crash inputs), and Na (the total number of non-
crash inputs), we can obtain the number of crash inputs that
violate the predicate via C f = Ca−Ct , and the number of
non-crash inputs that satisfy the predicate via Nt = Na−N f .
We then evaluate the mutual information I (Eq 7) between X
(predicates) and Y (crash or non-crash) using Eq 8.

I(X ;Y) =H(Y)−H(Y |X)

=− ∑
y∈{0,1}

Pr(y) log2 Pr(y)

+ ∑
x∈{0,1}

Pr(x) ∑
y∈{0,1}

Pr(y|x) log2 Pr(y|x)
(7)

Pr(x = 1) =
Ct +N f

Ca +Na
, Pr(x = 0) =

C f +Nt

Ca +Na

Pr(y = 1) =
Ca

Ca +Na
, Pr(y = 0) =

Na

Ca +Na

Pr(y = 0|x = 0) =
Nt

C f +Nt
, Pr(y = 1|x = 0) =

C f

C f +Nt

Pr(y = 0|x = 1) =
N f

Ct +N f
, Pr(y = 1|x = 1) =

Ct

Ct +N f
(8)

Ultimately, the value v j with the highest statistic is chosen
as the predicate’s threshold Thr (line 13). Note that when <=

covers more crash inputs than >, the predicate’s op is <= (line
9-12). Otherwise, it is >.

A.2 Determination of exploitation set of loca-
tion for mutation

In our dataset, the inputs of several vulnerabilities are ex-
tremely long. Such inputs require a more extensive payoff
table for determining the optimal locations in RL, thereby in-
creasing computational costs. To minimize the cost to obtain
higher rankings for the root causes, we only exploit a certain
number of head bytes of an input with RL with the remaining
bytes randomly selected. Testing values from 500 to 3,000 on
three vulnerabilities with long inputs (V22 with 2,036 bytes,
V25 with 4,170 bytes, V29 with 31,248 bytes), we found that
2,000 bytes allow RACING to achieve the highest rankings
with the lowest time costs, as shown in Table 5. Therefore, we
only gather rewards for the top 2,000 bytes of an input (see
Section 4.1).

Table 5: Evaluation of varying byte numbers.
Note: The time duration is given in the format hours:minutes:seconds

#Bytes V22 V25 V29

Ranking Time Ranking Time Ranking Time

500 3 00:00:30 1 00:03:54 9 01:08:18
1,000 2 00:00:33 1 00:03:16 8 00:43:36
2,000 1 00:00:40 1 00:02:32 7 00:25:58
3,000 1 00:00:45 1 00:02:59 7 00:36:36

A.3 Mutation operators
RACING uses the mutation operators defined by AFL, as
shown in Table 6.

A.4 RACING’s extension for compound predi-
cates

Below we detail our adjustments to RACING+ to support
compound predicate of type A AND B (Section 6). Concretely,
we make the following adjustments:
The construction of compound predicates: We constructed
A AND B by joining two atomic predicates like x<10 and
y>=8, each of them associated with a variable of interest (e.g.,
x, y). To achieve this, we modified our implementation to enu-
merate all combinations of any two variables associated with
atomic predicates. Meanwhile, based on the same threshold
adjustment method, we slightly modified the implementation
to iterate over all possible combinations of sample values
for the two variables and select the pair that maximizes the
mutual information between the compound predicate and the
crash as the thresholds.

Table 6: Mutation operators defined by AFL.

ID Operators Name Meaning

1 bitflip 1/1 Randomly flip 1 bit.
2 interest 8/8 Randomly replace byte to hard-coded in-

teresting values.
3 interest 16/8 Randomly replace word to hard-coded

interesting value.
4 interest 32/8 Randomly replace dword to hard-coded

interesting value.
5 arith-sub 8/8 Randomly subtract from byte.
6 arith-add 8/8 Randomly add to byte.
7 arith-sub 16/8 Randomly subtract from word.
8 arith-add 16/8 Randomly add to word.
9 arith-sub 32/8 Randomly subtract from dword, random

endian.
10 arith-add 32/8 Randomly add to dword, random endian.
11 random bytes Randomly select one byte and set the

byte to a random value.
12 delete bytes Randomly select several consecutive

bytes and delete them.
13 insert bytes Randomly copy some bytes from a test

case and insert them to another location
in this test case.

14 overwrite bytes Randomly overwrite several consecutive
bytes.

15 user extras (over) Randomly overwrite bytes with user-
provided tokens.

16 user extras (insert) Randomly insert bytes with user-
provided tokens.

Table 7: Evaluation on RACING+ for compound predicates.
Note: The time duration is given in the format hours:minutes:seconds

Vulnerability RACING+ Aurora+

Ranking Time Ranking Time

CVE-2017-7962 40 00:11:50 116 02:04:29
CVE-2018-19209 47 01:07:55 261 02:58:47

Optimization strategy for CoP generation: We also cus-
tomized the optimization strategy for CoP generation to
choose the inputs most likely to generate new inputs that
violate the compound predicate. For example, for a predi-
cate x<10 AND y>=8, we prioritize the selection of non-crash
inputs that satisfy x<10 AND y>=8.

A.5 Ground truth analysis
We use V1 as an example to illustrate how to deter-
mine the ground truth for a vulnerability. Listing 1 dis-
plays the patched code of V1, where the developer adds
a check at lines 16,177–16,181 to fix a heap buffer over-
flow vulnerability at line 16,204. This patch explicitly re-
veals that the vulnerability is related to the relative sizes
of sect->sh_size and sizeof(*eopt). To further inves-
tigate the root cause, we dynamically analyze the unpatched
code (line 16,182–16,384) with a Proof of Concept (PoC)
and find that during execution, the value of sect->sh_size
is 1, and the value of sizeof(eopt) is 8, which results
in the value of sect->sh_size / sizeof(eopt) being 0.

In this case, the code attempts to request a buffer of size
0 through cmalloc (line 16,187). However, the allocator
actually returns a buffer of size one, which is stored in
iopt, and later assigned to option (line 16,195). Since
offset is 0, sizeof(*eopt) is 8, and sect->sh_size -
sizeof(*eopt) equals 0xfffffffffffffff9, the program
satisfies the loop condition (the unsigned comparison at line
16,197) and enters the loop, attempting to write to option
(line 16,203–16,204). Here a buffer overflow occurs because
the program tries to write to option->size (line 16,204),
which is the second byte of option, exceeding the bound-
ary of the buffer. Therefore, the fundamental reason be-
hind V1 is the entering of the loop when sect->sh_size <
sizeof(*eopt). Since the result of sizeof(*eopt) is fixed
at 8, we identify the root cause as sect->sh_size < 8 at
line 16,197.

16177 + if (sect ->sh_size < sizeof (* eopt))
16178 + {
16179 + error ("The MIPS options section is too small.\n");
16180 + return FALSE;
16181 + }
16182 eopt = get_data (NULL , filedata , options_offset , 1,
16183 sect ->sh_size , _("options"));
16184 if (eopt)
16185 {
16186 iopt = (Elf_Internal_Options *)
16187 cmalloc ((sect ->sh_size / sizeof (eopt)),

sizeof (* iopt));
16188

· · ·
16194 offset = 0;
16195 option = iopt;
16196

16197 while (offset <= sect ->sh_size - sizeof (* eopt))
16198 {
16199 Elf_External_Options * option;
16200

16201 eoption = (Elf_External_Options *)((char *) eopt +
offset);

16202

16203 option ->kind = BYTE_GET (eoption ->kind);
16204 option->size = BYTE_GET (eoption->size);
16205

· · ·
16216 offset += option ->size;
16217 ++option;
16218 }
16219

· · ·
16384 }

Listing 1: Patched code snippet of V1

To map the root cause from the source code to the instruc-
tion level, we further analyze the assembly code of line 16,197
and find that the subtraction expression sect->sh_size -
sizeof(*eopt) corresponds to two instructions, (1) mov
rax, qword ptr [rax + 0x20] and (2) sub rax, 8. The
first instruction loads the variable sect->sh_size (stored at
address rax+0x20) into the register rax, while the second in-
struction subtracts rax by 8. Since we have identified the root
cause as sect->sh_size < 8, we use the predicate rax<=7
on the destination operand of the first instruction mov rax,
qword ptr [rax + 0x20] as the ground truth of V1.

	Introduction
	Background
	Counterexamples for Root Cause Analysis
	Counterexample for Ranking
	Counterexample for Predicate

	RaCing: Design and Implementation
	RL on Counterexamples
	Optimizing CoP Generation
	RaCing Algorithm
	Implementation

	Evaluation
	Setting
	Results
	Ablation Study

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	APPENDIX
	Predicate Construction
	Determination of exploitation set of location for mutation
	Mutation operators
	RaCing's extension for compound predicates
	Ground truth analysis

