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Abstract

We introduce ABACuS, a new low-cost hardware-counter-
based RowHammer mitigation technique that performance-,
energy-, and area-efficiently scales with worsening RowHam-
mer vulnerability. We observe that both benign workloads
and RowHammer attacks tend to access DRAM rows with
the same row address in multiple DRAM banks at around the
same time. Based on this observation, ABACuS’s key idea
is to use a single shared row activation counter to track acti-
vations to the rows with the same row address in all DRAM
banks. Unlike state-of-the-art RowHammer mitigation mech-
anisms that implement a separate row activation counter for
each DRAM bank, ABACuS implements fewer counters (e.g.,
only one) to track an equal number of aggressor rows.

Our comprehensive evaluations show that ABACuS se-
curely prevents RowHammer bitflips at low performance/en-
ergy overhead and low area cost. We compare ABACuS
to four state-of-the-art mitigation mechanisms. At a near-
future RowHammer threshold of 1000, ABACuS incurs only
0.58% (0.77%) performance and 1.66% (2.12%) DRAM en-
ergy overheads, averaged across 62 single-core (8-core) work-
loads, requiring only 9.47 KiB of storage per DRAM rank.
At the RowHammer threshold of 1000, the best prior low-
area-cost mitigation mechanism incurs 1.80% higher aver-
age performance overhead than ABACuS, while ABACuS
requires 2.50× smaller chip area to implement. At a future
RowHammer threshold of 125, ABACuS performs very simi-
larly to (within 0.38% of the performance of) the best prior
performance- and energy-efficient RowHammer mitigation
mechanism while requiring 22.72× smaller chip area. We
show that ABACuS’s performance scales well with the num-
ber of DRAM banks. At the RowHammer threshold of 125,
ABACuS incurs 1.58%, 1.50%, and 2.60% performance over-
heads for 16-, 32-, and 64-bank systems across all single-core
workloads, respectively. ABACuS is freely and openly avail-
able at https://github.com/CMU-SAFARI/ABACuS.

1 Introduction

Modern DRAM chips are vulnerable to RowHammer [1–
13], where repeatedly opening and closing (i.e., activating and
precharging, or simply hammering) a DRAM row (aggressor
row) at a high enough rate can cause bitflips in physically
nearby rows (victim rows). DRAM chips become more
vulnerable to RowHammer as DRAM storage density in-
creases across DRAM generations [2, 4, 14–19]. The mini-
mum number of row activations needed to induce a RowHam-
mer bitflip, i.e., the RowHammer threshold (NRH), has re-
duced by more than an order of magnitude in less than a
decade [14].1 As many prior works demonstrate on real sys-
tems [1,2,4,15,20–83], RowHammer bitflips can lead to secu-
rity exploits that 1) take over a system, 2) leak security-critical
or private data, and 3) manipulate safety-critical applications’
behavior in undesirable ways. As a result, a large body of
work [1,15,19,38,44,55,84–88,88–135] proposes mitigation
mechanisms to prevent RowHammer bitflips.

Key Problem. Many prior works (e.g., [1,98,102,106,107,
110,112,116,117,125,134,135]) propose using a set of coun-
ters to track the activation counts of potential aggressor rows
(counter-based mechanisms). Using counters to determine
rows that reach close to RowHammer thresholds and taking
mitigating actions accordingly can prevent RowHammer bit-
flips at low performance and energy overheads. Unfortunately,
mitigation mechanisms that rely on counters face two scalabil-
ity challenges. First, they need to implement an increasingly
large number of counters to track all potential aggressor rows
as NRH reduces. This is because an attacker can concurrently
hammer more DRAM rows when NRH is smaller. Second,
the area overhead of these mechanisms linearly increases
with the number of DRAM banks in the system, and mod-
ern systems continue to use more banks to scale up both
DRAM capacity and bandwidth [136–152]. A small set of
prior works (e.g., [1, 97, 100, 106, 116, 133]) aim to mitigate

1For example, RowHammer threshold (NRH ) is only 4.8K and 10K for
some newer LPDDR4 and DDR4 DRAM chips (manufactured in 2019–
2020), which is 14.4× and 6.9× lower than the NRH of 69.2K for some older
DRAM chips (manufactured in 2010–2013) [14].
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RowHammer at low area overhead. Unfortunately, to achieve
low area overhead, these works cause (prohibitively) large
performance overheads as DRAM chips become more vulner-
able to RowHammer [2, 4, 14–19]. Therefore, it is important
to provide a scalable RowHammer solution whose area over-
head and performance overhead remain low as DRAM chips
become more vulnerable to RowHammer.

Our goal is to prevent RowHammer bitflips at low per-
formance, energy, and area overheads in modern and future
DRAM-based systems with high RowHammer vulnerability.
To this end, we propose a new low-cost and scalable counter-
based RowHammer mitigation mechanism, All-Bank Activa-
tion Counters for Scalable and low overhead RowHammer
mitigation (ABACuS). ABACuS leverages our key observa-
tion on benign workloads’ and RowHammer attacks’ mem-
ory access patterns. Many workloads (both benign workloads
and RowHammer attacks) tend to access DRAM rows with
the same row address in multiple DRAM banks at around
the same time because i) modern memory address mapping
schemes interleave consecutive cache blocks across different
banks (§2.1) and ii) workloads tend to access cache blocks
in close proximity around the same time due to the spatial
locality in their memory accesses (§3).

Leveraging this observation, ABACuS’s key idea is to
use a single shared activation counter to track activations
to the rows with the same row ID (i.e., same row address)
in all DRAM banks. By doing so, ABACuS i) retains the
performance- and energy-efficiency benefits of counter-based
RowHammer mitigation mechanisms (§9), and ii) incurs low
area cost, as it requires only a small number of counters to
keep track of many aggressor rows (e.g., 2720 counters in-
stead of 43520 [102] at an NRH of 1000).

Key Mechanism. At a high level, ABACuS maps DRAM
rows that have the same row ID in different banks (which
we call sibling rows) to the same ABACuS counter. In each
ABACuS counter, we store i) the sibling activation vector
that contains as many bits as the number of banks (e.g., 16
bits if there are 16 banks), and ii) the row activation count.
ABACuS tracks only the maximum (i.e., the worst) activa-
tion count of the activation counts of sibling rows. Before the
activation count value reaches NRH , ABACuS preventively
refreshes all potential victim rows of each sibling row and
thus prevents any potential RowHammer bitflips. ABACuS
tracks the maximum activation count of sibling rows without
unnecessarily incrementing the row activation count for each
sibling row. This way, ABACuS reduces the number of unnec-
essary preventive refresh operations, lowering its performance
and energy overheads. ABACuS is completely implemented
inside the memory controller and therefore does not require
any modifications to existing DRAM chips or software.

Key Results. We rigorously evaluate ABACuS’s i) im-
pact on system performance and energy consumption using
cycle-accurate memory system simulations (with Ramula-
tor [153–156]), executing a diverse set of 62 single-core

and 62 8-core multi-programmed workloads from SPEC
CPU2006, SPEC CPU2017, TPC, MediaBench, and YCSB
benchmark suites and memory-intensive microbenchmarks,
and ii) area overhead using CACTI [157]. We model ABA-
CuS’s hardware design (RTL) in Verilog and evaluate its
circuit area and latency overheads using modern ASIC design
tools. We compare ABACuS to four state-of-the-art RowHam-
mer mitigation mechanisms. We make four key observa-
tions from our evaluation. First, at a near-future RowHam-
mer threshold of 1K, ABACuS incurs only 1) 0.58% average
(32.00% maximum) performance and 1.66% average (2.02×
maximum) DRAM energy overheads across 62 single-core
workloads, and 2) 0.77% average (32.97% maximum) perfor-
mance and 2.12% average (2.17× maximum) DRAM energy
overheads across 62 8-core workload mixes compared to a sys-
tem without any RowHammer protection, while requiring only
18.93 KiB of storage. Second, ABACuS scales well into the fu-
ture for DRAM chips with extremely low RowHammer thresh-
olds: e.g., at a RowHammer threshold of only 125, ABACuS’s
performance and energy overheads are 1.45% and 1.27%, re-
spectively, on average for single-core workloads, while requir-
ing 151.41 KiB of storage. Third, at the NRH of 125, ABACuS
performs very similarly to the best prior performance- and
energy-efficient RowHammer mitigation mechanism while
requiring 22.72× smaller chip area. Fourth, ABACuS scales
well with the number of DRAM banks. At the NRH of 125,
ABACuS incurs 1.58%, 1.50%, and 2.60% performance over-
heads for 16-, 32-, and 64-bank systems across all 62 single-
core workloads, respectively. Our evaluation of ABACuS’s
circuit latency shows that ABACuS could be implemented off
the critical path in the memory controller. ABACuS’s latency
(1.22 ns) is easily overlapped with the latency (2.5 ns [158])
of issuing two successive DRAM row activation commands
(tRRD). We open source our simulation infrastructure and
all datasets at https://github.com/CMU-SAFARI/ABACuS
to enable reproducibility and help future research. Detailed
analyses and data, including memory intensity characteris-
tics of each evaluated workload, per-workload performance
and energy results, key configuration parameters of evalu-
ated state-of-the-art RowHammer mitigations, and security
analysis of some of the existing in-DRAM RowHammer miti-
gations, are in an extended version of this paper [159].

This work makes the following key contributions:

• We show that it is possible to leverage benign workload
access patterns to prevent RowHammer bitflips at low
overhead in terms of performance, energy, and area, even
for DRAM chips with very high RowHammer vulnera-
bility.

• We develop ABACuS, a new low-cost and scalable
RowHammer mitigation mechanism. ABACuS pre-
vents RowHammer bitflips with small average perfor-
mance and energy overheads while using significantly
smaller in-processor-chip storage compared to state-of-
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the-art RowHammer mitigation mechanisms at very low
RowHammer thresholds (i.e., 1K to 125).

• We evaluate the performance, energy, and area overheads
of four state-of-the-art RowHammer mitigation mecha-
nisms. We show that ABACuS performs very similarly to
the best-performing mechanism at a much smaller (e.g.,
22.72×) chip area overhead. We model ABACuS’s hard-
ware design (RTL) in Verilog and evaluate its hardware
complexity using modern ASIC design tools.

2 Background

2.1 DRAM Organization and Operation
DRAM Organization (Fig. 1a). A memory channel connects
the processor (CPU) to a DRAM rank, a set of DRAM chips
working in lockstep. A DRAM chip has multiple banks each
of which containing a 2D DRAM cell array in the form of
rows and columns. The DRAM cell stores one bit of data
in the form of electrical charge in a capacitor. The access
transistor, controlled by the wordline, connects the cell to the
bitline which is connected to the row buffer.

Figure 1: DRAM organization (a), timing parameters (b), and
RowHammer (c)

Operation. The memory controller issues DRAM commands,
e.g., row activation (ACT ), bank precharge (PRE), data read
(RD), data write (WR), and refresh (REF) to serve memory
requests. To do so, the memory controller first issues an ACT
command with the bank address (i.e., bank ID) and row ad-
dress (i.e., row ID) corresponding to the memory request’s
address, activating the row. When a row is activated, its data
is copied to the row buffer. The memory controller can read-
/write data at cache block (512 bits) granularity from/to the
row buffer using a sequence of RD/WR commands. A subse-
quent access to the same row (i.e., a row hit) can be served
quickly without issuing another ACT . To access another row
(i.e., to serve a row conflict), the memory controller must issue
a precharge command and close the open row.
Periodic Refresh. DRAM cells are inherently leaky and
thus lose the stored electrical charge over time. To main-
tain data integrity, a DRAM cell is periodically refreshed
every refresh window (tREFW ), which is typically 64 ms
(e.g., [158, 160, 161]) or 32 ms (e.g., [162–164]). To timely
refresh all cells, the memory controller periodically issues
a refresh (REF) command every refresh interval (tREFI),
which is typically 7.8 µs (e.g., [158, 160, 161]) or 3.9 µs

(e.g., [162–164]). Upon receiving a REF command, the
DRAM chip internally refreshes multiple DRAM rows for a
refresh latency (tRFC) amount of time.
DRAM Timing Parameters. The memory controller sched-
ules DRAM commands according to certain timing parame-
ters to guarantee correct operation [136, 143, 148, 158, 160,
162–166]. In addition to tREFW , tREFI , and tRFC, two other tim-
ing parameters are relevant for this work: i) the minimum time
between two consecutive row activations targeting the same
bank (tRC) and ii) the minimum time between two consecutive
row activations targeting the same rank (tRRD) (Fig. 1b).
Bank-Level Parallelism. Main memory accesses that target
different banks can proceed concurrently [136]. Modern ad-
dress mapping schemes (e.g., [167–171]) aim to interleave
consequently addressed cache blocks across different banks
to exploit bank-level parallelism [136, 138].

2.2 RowHammer Mitigation Techniques

To prevent RowHammer bitflips and protect computing
systems against RowHammer attacks, prior works propose
different RowHammer mitigation mechanisms [1, 15, 19, 38,
44, 55, 84–88, 88–135]. These works trigger their counter-
measure (e.g., refreshing potential victim rows or throttling
accesses to potential aggressor rows) based on either i) the re-
sult of a probabilistic procedure or ii) tracking the number of
times DRAM rows are activated (i.e., row activation counts).
While probabilistic procedures can be implemented at low
chip area cost, they incur prohibitively large performance
overheads when configured for sub-1K RowHammer thresh-
old (NRH ) values [14, 104, 116]. Prior works propose several
different row activation tracking mechanisms that detect the
frequently-activated set of rows. Unfortunately, while provid-
ing better performance than the probabilistic mechanisms,
the chip area overhead of these row-activation-count-tracking
mechanisms significantly increases as DRAM chips become
more vulnerable to RowHammer [13, 106].2

Frequent Item Counting. A naïve, area-inefficient tracking
method to detect possible aggressor rows is to store the acti-
vation count of each DRAM row in a dedicated counter. How-
ever, this method leads to impractical on-chip area overheads
when used to protect modern, high-density DRAM modules.
For example, 8-bit counters for a modern DDR4 rank with
221 rows [158] would require 2 MiB on-chip storage and a
newer and denser DDR5 rank with 223 rows [163] would re-
quire an even larger 8 MiB on-chip storage. Fortunately, the
problem of tracking the frequently activated DRAM rows can
be interpreted as a frequent item counting problem and can be
solved using more area-efficient algorithms. For example, the
Misra-Gries algorithm [172] can be implemented in hardware
to accurately track aggressor rows using a relatively small

2Hydra [106] is an exception in this classification as it incurs a low chip
area overhead while tracking row activation counts. Hydra achieves this by
storing the counters in the DRAM array and caching them in the memory
controller. §3 discusses Hydra’s scalability limitations.



number of counters to detect potential aggressor rows, and its
variants are adopted by several prior RowHammer mitigation
mechanisms [102, 107, 110, 112, 117].

3 Motivation
Repeatedly activating and precharging (hammering) a

DRAM row at least NRH times in a refresh window induces
one or multiple bitflips in that row. As DRAM chips become
more vulnerable to RowHammer (i.e., the chip’s rows have
smaller NRH values), fewer hammers can induce bitflips. Even
though the number of activate and precharge commands that
the memory controller can issue in a refresh window remains
the same, more rows can be concurrently hammered NRH
times at a smaller NRH . As RowHammer vulnerability in-
creases, state-of-the-art counter-based RowHammer mitiga-
tion mechanisms need to track more DRAM rows and imple-
ment more activation counters.

A common method of increasing memory bandwidth and
capacity is to increase the number of DRAM banks [136–141].
However, as the number of banks increases, counter-based
mechanisms incur increasing chip area overhead.
Limitations of Prior Work. Several prior works [1, 98, 100,
105, 106, 126, 173] aim to mitigate RowHammer at low area
overhead by implementing a limited set of row activation
counters (i.e., fewer counters than there are rows in the DRAM
module) at the cost of reduced tracking accuracy. However, a
RowHammer mitigation countermeasure (e.g., preventively
refreshing potential victim rows or throttling accesses to po-
tential aggressor rows) fundamentally consumes memory
bandwidth and reduced tracking accuracy exacerbates the
number of countermeasures deployed by the mitigation mech-
anism. Thus, these mechanisms occupy a significant portion
of main memory bandwidth and incur large system perfor-
mance and DRAM energy overheads at small NRH values.
To provide more insight into this problem, we describe the
key drawback of one such state-of-the-art mechanism, Hy-
dra [106], as a concrete example. Hydra [106] maintains the
activation count of each DRAM row in a physical location
in main memory (i.e., in the DRAM chips). To minimize the
overheads of fetching the counters from the main memory,
Hydra implements a filtering and caching logic. The filtering
logic groups a number of (e.g., 125) DRAM rows into row
groups and assigns a counter to each row group called the
group counter. DRAM row activations update only the corre-
sponding group counters at the beginning of a refresh window.
When a group counter exceeds a predetermined group count
threshold (e.g., 400), the group counter’s value is copied to
the activation counters of rows in that group, such that Hydra
can track each row’s activation count individually and de-
ploy its countermeasure (preventively refreshing victim rows)
more accurately (e.g., instead of preventively refreshing all
125 rows in a group, Hydra can refresh one or several DRAM
rows that are activated frequently in the group of 125 rows,
depending on workload memory access patterns), and the
group counter is no longer queried.

Hydra’s mechanism has two key drawbacks. First, Hydra
overestimates the activation counts of DRAM rows, causing
a large number of unnecessary refresh operations. According
to our system-level simulations (in §9), approximately half of
Hydra’s preventive refresh operations are unnecessary for 62
single-core workloads at a very low RowHammer threshold of
125. Hydra overestimates activation counts of DRAM rows
because modern memory-intensive workloads can rapidly
increase the group counter value to the group count threshold
value with only a few activations to each DRAM row in the
group. Such workloads can cause the activation counters to
overestimate the actual activation count of each row in the
group by up to 396 (in Hydra’s default configuration for an
NRH of 1K). Therefore, Hydra often mistakenly refreshes the
neighbors of many rows that will not be activated as many as
NRH times. Second, suppose the counter of an accessed row
is not cached in the memory controller. In that case, Hydra
needs to fetch the counter from the main memory, which
incurs additional memory latency for writing back the evicted
counter and fetching the new counter. Both of these drawbacks
incur significant performance and energy overheads as Hydra
increases the memory latency (i.e., the time it takes to serve
a memory demand request) by 23.67% on average at NRH =
125 (as we show in detail in §9).

3.1 Motivational Analysis for ABACuS
We investigate memory access patterns of modern memory-

intensive workloads and existing RowHammer attacks. We
observe that they activate DRAM rows with the same row ad-
dress in multiple DRAM banks (i.e., sibling rows) at around
the same time. This observation motivates us to design a
performance-, energy, and area-efficient DRAM row activa-
tion count tracking mechanism by implementing one shared
activation counter for all sibling rows. Implementing one
shared activation counter reduces the number of counters re-
quired to track aggressor rows (and thus the area cost) by a
factor of the number of banks (e.g., 16 in DDR4 [158]) com-
pared to the aggressor row tracking mechanisms used by the
state-of-the-art performance- and energy-efficient RowHam-
mer mitigations (e.g., Graphene [102], Panopticon [134], and
PRHT [135]). However, the shared counter may not accurately
represent the activation counts of multiple sibling rows be-
cause the shared counter can store only one activation count.
Misrepresenting the activation counts of sibling rows may
induce performance and energy overheads due to unnecessary
victim row refresh operations. In the remainder of this sec-
tion, we show that 1) sibling rows are activated at around the
same time, and 2) a shared activation counter can accurately
represent the activation counts of multiple sibling rows.

We simulate 34 memory-intensive workloads, each hav-
ing more than two row buffer misses per kilo instructions
(RBMPKI), and three variations of the double-sided (ds) [14,
17, 28, 31, 32, 39, 41] and many-sided (ms) [15, 54–56, 58, 62]
on a 32-bank system using the simulation methodology that



we explain in §8. We carefully create memory traces (load
and store requests that arrive at main memory) of double- and
many-sided attacks 1) without prefetching, 2) with a simple
prefetcher that prefetches the next cache line (p1) [174, 175],
3) the next eight cache lines (p8), 4) and the next 32 cache
lines (p32) for every load request. We name a RowHammer
attack trace as the concatenation of its type (ds or ms) and the
prefetcher configuration used in creating the trace (p1, p8, or
p32). For example, ds-p32 is the double-sided RowHammer
attack with the next 32 cache line prefetcher. Fig. 2 shows
how many sibling rows get activated before one of the sibling
rows is activated again, on average across all DRAM row
activations (y-axis) for each simulated workload (x-axis).3

Benign workloads are ordered from left to right in increas-
ing memory intensity (in terms of row buffer misses per kilo
instructions) in the figure. We highlight the highest possible
y-axis value (31) with a red line on the plot. A workload with
a bar closer to this line indicates that the workload accesses
all sibling rows at around the same time.

Figure 2: Number of sibling rows activated before one sibling
row is activated again

In the upper extreme case (at y= 31)4, the workload always
activates all sibling rows once before activating any sibling
row for the second time. This property of the workload makes
it a good fit for using a single activation counter shared be-
tween sibling rows. For us to know when an aggressor sibling
row has been activated NRH times, the shared counter stores
the highest activation count across all sibling rows. Because
the workload activates all sibling rows once before activating
any other for the second time, the shared counter accurately
represents the activation count of every sibling row. In the
lower extreme case (at y = 0), the workload never activates
two or more sibling rows. For this type of a workload, the
single shared activation counter’s value misrepresents almost
all of the sibling rows’ activation counts (which are 0).

We make three key observations from Fig. 2. First, on
average across all workloads, 12.8 sibling rows get activated
before any sibling receives another activation. We observe
that some workloads activate at least three sibling rows once,

3The box is lower-bounded by the first quartile (i.e., the median of the
first half of the ordered set of data points) and upper-bounded by the third
quartile (i.e., the median of the second half of the ordered set of data points).
The inter-quartile range (IQR) is the distance between the first and third
quartiles (i.e., box size). Whiskers show the central 90th percentile of the
distribution.

4A DRAM row has 31 sibling rows in a system with 32 banks.

while some activate up to 25 sibling rows (out of 31), before
activating any sibling row again. Second, the average sibling
row activation count does not significantly correlate with the
memory intensity of the workload. Third, the RowHammer
attacks can activate up to 31 sibling rows before activating any
sibling row again due to the prefetch requests generated by the
simple next cache line prefetcher. From these observations,
we conclude that after accessing a row with the address R in a
bank, the rows at address R in other banks (i.e., sibling rows)
are also likely to be activated. We hypothesize that this access
pattern occurs due to two properties: i) the memory address
mapping schemes that aim to increase memory bank-level
parallelism to improve system performance (§2.1)5 and ii) the
intrinsic spatial locality in workloads’ main memory accesses.

To strengthen our motivation for sharing an activation
counter between sibling rows, we plot the distribution of the
activation count of each sibling row when at least one sibling
row gets activated NRH times. In other words, one point in
the distribution is an activation count of a row. One of this
row’s siblings has been activated NRH times. Fig. 3 shows how
many times a sibling row gets activated (y-axis) before one
of the sibling rows gets activated NRH times for NRH = 500,
250, and 125 (different subplots) across benign workloads
and RowHammer attacks (x-axis). We highlight the highest
possible y-axis values for each NRH value.
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Figure 3: The distribution of the number of activations a
sibling row receives before any sibling row gets activated
NRH times

We make two observations from Fig. 3. First, a sibling
row gets activated 99, 194, and 370 times for NRH values
of 125, 250, and 500, on average across all workloads. This
indicates that when any sibling row gets activated NRH times,
the activation counts of all sibling rows are (very) close to
NRH . Second, as NRH reduces, the gap between the average
activation count of a sibling row and the sibling row with
the highest activation count becomes smaller in proportion.
For example, the bfs_cm203 workload, on average, activates

5Our extended version [159] describes these schemes in more detail.



sibling rows 272 (54.4% of the NRH of 500) and 108 (86.4%
of the NRH of 125) times for NRH = 500 and 125, respectively.6

From our analysis, we conclude that a single shared activa-
tion counter, which stores the highest activation count among
the activation counts of all sibling rows, can reasonably accu-
rately represent the activation count of all sibling rows. This
property of the shared activation counter becomes stronger as
NRH reduces from 500 to 125.

4 Mechanism

Overview. ABACuS is designed to prevent RowHammer bit-
flips at low performance, energy, and area overhead. Achiev-
ing low performance and energy overheads requires accu-
rately identifying aggressor rows and preventively refresh-
ing victim rows only when necessary. To this end, ABACuS
adopts the Misra-Gries algorithm [172] (§2) to track aggressor
rows, similar to prior work [102,107,110,112,117]. However,
Misra-Gries alone cannot prevent RowHammer bitflips at low
area cost (§7.1). Thus, ABACuS performs Misra-Gries track-
ing using shared activation counters to significantly reduce
the area overhead of implementing many counters.

ABACuS’s key idea is to share a row activation counter
among rows that have the same row ID across all banks (which
we call sibling rows). The shared row activation counter tracks
the maximum activation count among the sibling rows. ABA-
CuS preventively refreshes all the neighboring rows of all the
sibling rows tracked by the same row activation counter just
enough before the row activation counter’s value reaches NRH
within a tREFW to prevent RowHammer bitflips (i.e., none of
the sibling rows’ activation count reaches NRH within tREFW ).

While ABACuS tracks the maximum activation count
among sibling rows, it does not unnecessarily increment the
shared row activation counter with each sibling row activation.
For example, when a workload activates multiple sibling rows
only once (which is a common behavior we observe in §3),
it is sufficient for ABACuS to increment the shared activa-
tion counter by only one. After a sibling row is activated and
ABACuS increments the shared row activation counter, other
sibling rows can be activated at most once before the shared
counter is incremented again. To allow for multiple sibling
rows to be activated without unnecessarily incrementing the
shared row activation counter, ABACuS maintains a bit vector
for the counter, sibling activation vector, that stores which
sibling rows were activated since the shared counter was last
incremented. ABACuS increments the shared row activation
counter only when the bit corresponding to the activated sib-

6The gups workload cannot activate any same row 125 times because a
workload is limited in the number of DRAM row activations it can issue to a
DRAM chip by DRAM timing parameters (e.g., four row activation window,
tFAW [158]) and gups’ row activations are randomly and evenly distributed to
all 128K DRAM rows. A workload that fully exercises the available DRAM
row activation bandwidth can only issue 12’190’476 activate commands
in a refresh window (64 ms) due to tFAW (21 ns) timing constraint [158].
Therefore, randomly and evenly distributing 12’190’476 activate commands
to 128K rows would activate a row at most 94 times.

ling row is already set (i.e., the sibling row was activated once
since the shared counter was last incremented).

4.1 ABACuS’s Hardware Design
Fig. 4 presents ABACuS’s key components. ABACuS is

placed inside the memory controller. The ABACuS counter
table contains (❶) multiple ABACuS counters, each mapped
to a row ID. There are exactly Nentries ABACuS counters in
the ABACuS counter table. An ABACuS counter (❷) consists
of a row activation counter (RAC) of size SRAC bits and a
sibling activation (bit) vector (SAV) of size SSAV bits. The
ABACuS controller (❸) dynamically maps (not shown in
the figure) a row ID to a counter during runtime and uses a
spillover counter (❹) to track the maximum activation count
of all DRAM rows that do not have an ABACuS counter
assigned (§4.2). We explain how we determine the sizes of
each key component (SRAC, SSAV , and Nentries) in §4.3.
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Figure 4: Key components of ABACuS

The row activation counter (RAC) in an ABACuS counter
(❷) stores the maximum activation count across all sibling
rows’ activation counts. The sibling activation vector (SAV)
stores the sibling activation bits used by ABACuS to incre-
ment the RAC only when necessary (see §4). The ABACuS
controller updates RAC and SAV to ensure the maximum
activation count among all sibling rows is tracked in the RAC.

4.2 Operation of ABACuS
We describe ABACuS’s operation in five key steps.

(1) Initialization and Reset. Initially (at system power on)
and after periodic ABACuS counter table reset (Step 5), no
DRAM row is activated for the last tREFW . Thus, row activa-
tion counters (RACs) and sibling activation vectors (SAVs)
in all ABACuS counters and the spillover counter all store 0.
(2) ABACuS Counter Table Search. The memory controller
issues an ACT command to a row ID in a bank. Consequently,
the ABACuS controller searches all row ID mappings to find
if the activated row is already tracked by an ABACuS counter.
No row is tracked immediately after initialization and reset.
Thus, the ABACuS controller needs to map a row ID to an
ABACuS counter. To find the counter that will be mapped to
the activated row’s ID, the ABACuS controller looks for an
ABACuS counter whose RAC stores the same value as the
spillover counter’s value. If a RAC and the spillover counter
have the same value, the RAC’s row ID is replaced with
the activated row’s ID (Step 3). In contrast, if an ABACuS
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Figure 5: ABACuS workflow using four activate (ACT ) commands. We highlight state changes using black boxes and red text.

counter already tracks the row ID, the ABACuS controller
updates the matching counter (Step 4). In case no RAC value
equals the spillover counter’s value (i.e., the activated row’s
ID cannot be mapped to an ABACuS counter) and there is no
ABACuS counter that already tracks the activated row’s ID,
the ABACuS controller increments the spillover counter value.
When the spillover counter reaches a predefined value of the
refresh cycle threshold (RCT), ABACuS issues tREFW /tREFI
refresh (REF) commands to refresh all DRAM rows in the
DRAM rank and resets all counters. We call the time when
the memory controller refreshes all DRAM rows due to the
spillover counter reaching the RCT a refresh cycle.
(3) ABACuS Counter Mapping and Replacement. The
ABACuS controller maps the newly-activated row ID to the
matching ABACuS counter. To correctly track the maximum
activation count, the ABACuS controller i) initializes RAC
with spillover counter value + 1, and ii) sets the bit in the SAV
that corresponds to the bank ID of the activated row.
(4) ABACuS Counter Update. The ABACuS controller
checks the SAV bit value corresponding to the activated row’s
bank ID. If the SAV bit is not set (i.e., stores logic-0), i.e.,
the activated row is activated for the first time since the RAC
was last incremented, the ABACuS controller sets the SAV
bit. If the SAV bit is set (i.e., stores logic-1), i.e., the activated
row is activated again since the RAC was last incremented,
the ABACuS controller increments the RAC by 1. After in-
crementing the RAC, the ABACuS controller sets the SAV
bit corresponding to the bank ID of the activated row and
resets all other bits. This way, a set bit corresponding to the
bank ID of the activated row in the SAV still indicates that
the corresponding row was activated once since the RAC was
last incremented. If the RAC’s value is a multiple of the pre-
ventive refresh threshold (PRT), i.e., one of the sibling rows
tracked by the RAC was activated PRT times since all the
sibling rows’ victims were preventively refreshed, ABACuS
performs preventive refresh operations to all the victim rows
(the neighbors of the activated row) in all banks.
(5) Reset Period. It is sufficient for ABACuS to track the
activation counts within a tREFW , after which all DRAM rows
are refreshed. Therefore, we reset the ABACuS counters and
the spillover counter after every tREFW (i.e., ABACuS’s re-
set period is tREFW ). After periodic reset, ABACuS’s state
becomes as described in Step 1.
Determining the Preventive Refresh Threshold (PRT).
ABACuS’s preventive refresh threshold is set accordingly to

prevent aggressor rows from being activated NRH/2 times in a
reset period. ABACuS is configured in this way because ABA-
CuS does not precisely know when each row is periodically
refreshed: A potential aggressor row might be hammered for
PRT −1 times before its neighbors are refreshed and ABA-
CuS is reset. After ABACuS is reset, an attacker can hammer
the same aggressor row for 2 ∗PRT times, accumulating a
total activation count of 2 ∗PRT − 1 on the aggressor row.
Thus, we set PRT to NRH/2.

4.3 Configuring ABACuS
Depending on the system’s RowHammer vulnerability (typ-

ically measured using NRH ), ABACuS has three key parame-
ters that are configured at design time. First, the number of
entries (Nentries) in the ABACuS counter table. Second, the
size of each row activation counter (SRAC). Third, the size of
each sibling activation vector (SSAV ).
Configuring the Number of Entries (Nentries). We deter-
mine the number of entries based on how many rows can
be hammered in one DRAM bank during one ABACuS re-
set period (64 ms) given i) the preventive refresh threshold
(PRT ), ii) tRC, and iii) tRFC as described in a prior work that
adopts Misra-Gries tracking [102]. We first calculate how
many ACT commands can be issued by the memory con-
troller in a reset period when the bank is not unavailable due
to periodic refresh (NACT ) as tREFW ∗ (1− tRFC/tREFI)/tRC.
Thus, at most NACT/PRT rows can be activated PRT times
in an ABACuS reset period in a bank. Setting the number of
entries to NACT/PRT is sufficient to ensure that all hammered
rows in an ABACuS reset period in one bank are tracked in
one of the counters.
Configuring the Size of Row Activation Counters (SRAC).
The number of activations that the memory controller can
issue in a tREFW determines the row activation counter’s
size. Thus, a row activation counter should be SRAC =
⌈log2((NACT ∗ tRC)/tRRD)⌉ bits large. However, we can re-
duce SRAC to ⌈log2(PRT )⌉ by adding an overflow bit [102] to
each ABACuS counter. Using the overflow bit, we make sure
that ABACuS preventively refreshes rows according to the
Misra-Gries tracking algorithm [102]: When a RAC reaches
PRT , ABACuS sets the overflow bit of the RAC and resets
the RAC’s value. The set overflow bit in a RAC indicates
that ABACuS should not replace the row ID tracked by this
RAC, even if the RAC’s value equals the value of the spillover
counter. The overflow bit is reset after each reset period.



Configuring the size of sibling activation vectors (SSAV ). A
SAV contains as many bits as there are banks. Thus SSAV =
Nbanks bits. For example, there are 32 banks in a dual-rank
DDR4-based system [158], making SSAV 32-bit large.

4.4 Example ABACuS Workflow

Fig. 5 shows an example ABACuS workflow with three
ABACuS counters and four sibling rows. We show how four
ACT commands cause state changes in the three ABACuS
counters. The first ACT command (❶) updates the sibling
activation vector (SAV) of its ABACuS counter as the bank
ID corresponds to a zero bit in the SAV. The second ACT
command (❷) increments the row activation counter of its
ABACuS counter as the bank ID corresponds to a non-zero bit
in the SAV. The third ACT command (❸) replaces the second
ABACuS counter with row ID 20 because i) row ID 20 is
not tracked by any counter, and ii) the spillover counter value
is equal to the second ABACuS counter’s RAC value. The
fourth ACT command (❹) increments the spillover counter
as i) row ID 7 is not tracked by any ABACuS counter, and ii)
the spillover counter value is smaller than all RAC values.

5 Security Analysis

ABACuS preventively refreshes the victim rows of a poten-
tial aggressor row before the aggressor row is activated NRH
times in a tREFW . Assuming ABACuS accurately stores the
maximum activation count across all sibling rows, the Misra-
Gries-based tracking technique guarantees that no aggressor
row is activated more than the preventive refresh threshold in
a tREFW [102]. ABACuS accurately maintains the maximum
activation count in the row activation counters because the
row activation counter’s value is incremented 1) when any
sibling row is activated for the first time, and 2) when a sibling
row whose sibling activation vector bit is set (i.e., the sibling
row was activated after the row activation counter’s value was
last incremented) is activated. Appendix A formally analyzes
and shows that the row activation counter always stores the
maximum activation count.

6 Accounting for RowHammer Blast Radius

An aggressor row can cause bitflips in victim rows that are
not physically adjacent [1, 14]. The impact of RowHammer
on a victim row decreases and eventually disappears as the
physical distance between the victim and the aggressor rows
increases. To account for this characteristic, prior works define
blast radius as the distance between an aggressor row and its
furthest victim row [1, 14, 15, 17, 50, 54–56, 58, 102–104, 123,
126,176]. A recent RowHammer attack, Half Double [58], ex-
ploits blast radius to induce bitflips with a significantly lower
activation count. To account for blast radius and address Half
Double, ABACuS 1) preventively refreshes all potential vic-
tim rows within the blast radius and 2) counts each preventive
refresh as an additional activation. We configure ABACuS

and other state-of-the-art mechanisms with a blast radius of
one in our performance and energy evaluation (§8).

7 Hardware Implementation

ABACuS is implemented in the memory controller. It does
not require any modifications to existing DRAM chips.
Key Components. ABACuS’s hardware implementation con-
sists of two components: i) the ABACuS counter table, and
ii) the spillover counter. The ABACuS counter table contains:
i) the Row ID Table (RIT), ii) the RAC Table (RACT), and
iii) the SAV Table (SAVT). To efficiently track the number of
activations, ABACuS searches and updates the RIT and the
RACT. Thus, we implement RIT and RACT using content-
addressable memory (CAM) arrays. We implement SAVT as
an SRAM array since ABACuS does not search SAVT entries.
A register stores the spillover counter’s value.
Performing Preventive Refresh. Since the standard REF
command is row-address-agnostic in DRAM standards [147,
158, 163], ABACuS cannot use standard refresh commands
to refresh detected victim rows. To remain compatible with
existing DRAM chips and interface standards, ABACuS per-
forms a preventive refresh operation by accessing a victim
row once using ACT and PRE commands. When a tracked
row’s RAC value reaches PRT, ABACuS performs preventive
refresh operations to victim rows in all banks. ABACuS pri-
oritizes preventive refreshes over other memory requests: the
memory controller does not serve any memory request to the
same bank until the victim rows are preventively refreshed.

7.1 Area Overhead

We evaluate ABACuS’ and four other state-of-the-art miti-
gation mechanisms’ [1, 102, 106, 177] (their configuration de-
tails are explained in §8) chip area, static power, and memory
array access energy using CACTI [157]. Table 1 summarizes
our results. We perform this analysis at NRH values of 1000
and 125. Table 2 shows ABACuS’ key parameters.

All three ABACuS hardware structures (Row ID Table,
RACT, and SAVT) contain Nentries entries. At a near future
NRH of 1000, we estimate ABACuS’s overall area overhead
to be 0.04mm2 per DRAM channel for a dual-rank system.
ABACuS consumes approximately 0.02% of the chip area
of a high-end Intel Xeon processor with four memory chan-
nels [178]. At a low NRH of 125, ABACuS’s estimated chip
area cost increases to 0.25mm2, taking up only approximately
0.11% of the same processor’s area.
Area Comparison. At an NRH of 1000, ABACuS takes up
20.25× and 2.50× smaller chip area than Graphene [102] and
Hydra [106], respectively. Graphene’s area overhead is larger
than other mechanisms because it implements a large number
of counters (e.g., 2720 per bank, 87040 in total for a dual-rank
DDR4 system). REGA [177] takes 2.06% DRAM chip area
to implement. Compared to ABACuS’s memory controller
chip area requirement, REGA requires a larger DRAM chip



Table 1: Area, energy, power of ABACuS vs. state-of-the-art RowHammer mitigation mechanisms for a 2-rank memory system

Mitigation Mechanism
NRH = 1000 NRH = 125

SRAM CAM Area Access Energy Static Power SRAM CAM Area Access Energy Static Power
KB KB mm2 % CPU % DRAM (pJ) (mW) KB KB mm2 % CPU % DRAM (pJ) (mW)

ABACuS 10.63 8.30 0.04 0.02 - 24.36 12.19 85.00 66.41 0.25 0.11 - 36.87 50.39
Row ID Table - 5.64 0.01 < 0.01 - 11.23 6.59 - 45.16 0.12 0.05 - 20.64 27.42
Row Activation Counter Table - 2.66 0.02 < 0.01 - 11.13 4.66 - 21.25 0.06 0.03 - 11.66 15.53
Sibling Activation Vector 10.63 - 0.01 < 0.01 - 1.99 0.95 85.00 - 0.07 0.03 - 4.57 7.44

PARA [1] - - - < 0.01 - - - - - - < 0.01 - - -
Graphene [102] - 286.51 0.81 0.35 - 876.85 188.64 - 2037.09 5.68 2.43 - 1042.49 1385.52
Hydra [106] 61.56 - 0.10 0.04 - 43.07 24.23 56.5 - 0.07 0.03 - 40.25 23.14
REGA [177] - - - - 2.06 - - - - - - 2.06 - -

Table 2: ABACuS Parameters

Term Definition Value

NRH RowHammer threshold 1000 500 250 125
PRT Preventive refresh threshold 500 250 125 62
RCT Refresh cycle threshold 498 248 123 60

Nentries Number of table entries 2720 5440 10880 21760
SSAV Bit-length of a SAV entry 32 32 32 32
SRID Bit-length of a Row ID entry 17 17 17 17
SRAC Bit-length of a RAC entry 10 9 8 7

area. PARA [1] does not maintain any state, thus it has no
significant area overhead.

We repeat our area overhead analysis for future DRAM
chips by scaling the RowHammer threshold down to 125. Al-
though ABACuS’s area overhead increases as it implements a
larger number of ABACuS counters at the lower NRH , ABA-
CuS still consumes a relatively small 0.11% processor chip
area at an NRH of 125. ABACuS requires 22.72× less chip
area to implement than Graphene. ABACuS’s area overhead
at this very low NRH is 3.57× that of Hydra’s, however, Hydra
incurs up to a very large 85.42% performance overhead for 8-
core memory-intensive workloads at the same NRH (see §9.1).
Hydra’s chip area overhead reduces with decreasing NRH as
it requires counters with fewer bits of storage each. We con-
clude that ABACuS’s chip area requirement scales better than
Graphene’s and that ABACuS’s area requirement at low NRH
is closer to the most area-efficient state-of-the-art mitigation
mechanism, Hydra.

Energy and Static Power Comparison. For NRH = 1000,
ABACuS has 36.00× and 1.77× smaller access energy
than Graphene and Hydra, respectively. ABACuS consumes
12.19mW of static power, which is 15.47×and 1.99× smaller
than Graphene and Hydra’s static power consumptions. As
NRH reduces to 125, ABACuS’s static power and access en-
ergy scale more efficiently (similarly to Hydra) compared to
Graphene, where Graphene has 28.27×and 27.50× the access
energy and static power of ABACuS, respectively.

7.2 Latency Analysis

We implement ABACuS in Verilog and use Synopsys
DC [179] to evaluate ABACuS’s latency impact on mem-
ory accesses. ABACuS needs 1.22 ns to update the ABACuS
counter of an activated DRAM row. This latency overlaps
with the latency of regular memory controller operations as it
is smaller than tRRD (e.g., 2.5 ns in DDR4 [158, 161]).

8 Evaluation Methodology
We evaluate ABACuS’s performance and energy consump-

tion with Ramulator [153, 154], a cycle-accurate DRAM sim-
ulator, and DRAMPower [180]. We specify our simulated
system’s configuration in Table 3.

Table 3: Simulated System Configuration

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window

DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank, 3200 MT/s

Memory Ctrl.

64-entry read and write requests queues,
Scheduling policy: FR-FCFS [181, 182]
with a column cap of 16 [183],
Address mapping: MOP [167, 169]
45 ns tRC, 7.9 µs tREFI, 64 ms tREFW
64 ms ABACuS reset period

Last-Level Cache 2 MiB per core

Address Mapping. Fig. 6 depicts our address mapping
scheme. We use an address mapping scheme that interleaves
consecutive cache blocks in the physical address space be-
tween different DRAM banks.

Figure 6: Simulated address mapping

Comparison Points. We compare ABACuS to a baseline sys-
tem with no RowHammer mitigation and to four state-of-the-
art RowHammer mitigation mechanisms: (1) Graphene [102]
implements per bank counters to track the possible aggressor
rows using Misra-Gries algorithm [172]. When a counter
value exceeds a threshold value, Graphene issues preventive
refreshes to the victim rows. (2) Hydra [106] implements
a group count table to track activations for a group of rows
and a row count table to track per row activations. We config-
ure Hydra such that all rows in a row group have their row
count table entries reside in two consecutive cache blocks (64
bytes each). The row count table is stored in the DRAM and
cached in the memory controller. Hydra performs preventive
refresh operations when a counter exceeds a threshold value.
(3) REGA [177] augments DRAM design such that one or
more victim rows can be refreshed when a DRAM row is
activated. REGA tunes its protection guarantees by changing
the default tRC value. A smaller tRC allows REGA to refresh



more rows concurrently with a DRAM row activation, at the
cost of increased access latency. To simulate REGA, we mod-
ify tRC as described in [177]. (4) PARA [1] protects against
RowHammer by performing probabilistic adjacent row activa-
tion. When a row is closed (i.e., when the memory controller
issues a precharge (PRE)), PARA issues preventive refreshes
to the adjacent rows based on a probability threshold. We
tune the probability threshold of PARA for a target failure
probability of 10−15 within a 64 ms as in prior work [104].
Workloads. We evaluate 62 single-core and 62 homoge-
neous multi-programmed 8-core workloads from five bench-
mark suites: SPEC CPU2006 [184], SPEC CPU2017 [185],
TPC [186], MediaBench [187], and YCSB [188]. Based on
the row buffer misses-per-kilo-instruction (RBMPKI), we
group the applications into three categories, which Table 4
describes: (1) L (low memory-intensity, RBMPKI ∈ [0,2)),
(2) M (medium memory-intensity, RBMPKI ∈ [2,10)), (3)
H (high memory-intensity, RBMPKI ∈ [10+)). To do so, we
obtain the RBMPKI values of the applications by analyzing
each application’s SimPoint [189] traces (200M instructions).
All of these traces are open-sourced [190].

Table 4: Evaluated single-core workloads
RBMPKI Workloads

[10+)
(High)

519.lbm, 459.GemsFDTD, 450.soplex, h264_decode,
520.omnetpp, 433.milc, 434.zeusmp, bfs_dblp,
429.mcf, 549.fotonik3d, 470.lbm, bfs_ny,
bfs_cm2003, 437.leslie3d, gups

[2,10)
(Medium)

510.parest, 462.libquantum, tpch2, wc_8443,
ycsb_aserver, 473.astar, jp2_decode, 436.cactusADM,
557.xz, ycsb_cserver, ycsb_eserver, 471.omnetpp,
483.xalancbmk, 505.mcf, wc_map0, jp2_encode,
tpch17, ycsb_bserver, tpcc64, 482.sphinx3

[0,2)
(Low)

502.gcc, 544.nab, h264_encode, 507.cactuBSSN,
525.x264, ycsb_dserver, 531.deepsjeng, 526.blender,
435.gromacs, 523.xalancbmk, 447.dealII, 508.namd,
538.imagick, 445.gobmk, 444.namd, 464.h264ref,
ycsb_abgsave, 458.sjeng, 541.leela, tpch6,
511.povray, 456.hmmer, 481.wrf, grep_map0,
500.perlbench, 403.gcc, 401.bzip2

9 Evaluation
We 1) analyze ABACuS’s system performance and DRAM

energy overheads and compare ABACuS’s system perfor-
mance and DRAM energy overheads to state-of-the-art miti-
gation mechanisms (§9.1), 2) show the effect of the number
of banks in the system on ABACuS’s performance, and 3)
analyze ABACuS’s performance under RowHammer attacks.

9.1 System Performance and DRAM Energy
System Performance Overhead. Fig. 7 presents the per-
formance (in instructions per cycle) of all single-core work-
loads (grouped into three categories and sorted based on
RBMPKI; see Table 4) for four different near-future and very
low RowHammer thresholds when executed on a system that
uses ABACuS, normalized to a baseline system that does not
employ any RowHammer mitigation mechanism.
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Figure 7: Performance of single-core applications for four
different RowHammer thresholds (higher is better)

We make two major observations from Fig. 7. First, ABA-
CuS induces minor system performance overhead for all eval-
uated single-core workloads at a near-future NRH of 1000. At
such NRH , ABACuS incurs only 0.58% (32.00%) slowdown
on average (at maximum) across all workloads. ABACuS
increases the average memory latency experienced by ap-
plication memory requests by 1.87% on average across all
workloads (not shown) due to preventive refreshes. Second,
ABACuS can efficiently prevent RowHammer bitflips even
at very low NRH . At such a future NRH of 125, ABACuS in-
duces 1.45% (12.37%) slowdown on average (at maximum)
across all workloads. At this NRH , the average memory la-
tency increases by 2.72% across all workloads on average due
to preventive refresh operations. We attribute the increasing
trend in ABACuS’s average slowdown to the larger number of
preventive refresh operations performed by ABACuS at lower
NRH values. More workloads hammer more rows more times
in a refresh window as NRH reduces, which leads to both i)
ABACuS row activation counters (RACs) incrementing faster
and ii) more ABACuS RACs reaching the preventive refresh
threshold earlier (and ABACuS performing costly preventive
refresh operations). In contrast to the trend in the average
slowdown, we observe that ABACuS induces a smaller max-
imum slowdown as NRH reduces. This is because ABACuS
implements more row activation counters at lower NRH val-
ues and a very memory-intensive random access workload
(e.g., gups) cannot quickly exhaust all ABACuS RACs and in-
creases the spillover counter value to the refresh cycle thresh-
old slower (than at higher NRH values) such that ABACuS
less frequently performs refresh cycles (§4.2).
DRAM Energy Overhead. Fig. 8 presents the DRAM energy
consumption for all single-core workloads for four different
RowHammer thresholds when executed on a system that uses
ABACuS, normalized to a baseline system that does not em-
ploy any RowHammer mitigation mechanism.

low (<2) medium (<10) high (>10)
Row buffer misses per kilo instructions (RBMPKI)

1.0

1.5

2.0

No
rm

al
ize

d
DR

AM
 e

ne
rg

y
di

st
rib

ut
io

n

Baseline DRAM energy

gups

NRH = 1000 (leftmost box)
NRH = 500
NRH = 250
NRH = 125 (rightmost box)

Figure 8: DRAM energy for single-core applications for four
different RowHammer thresholds (lower is better)



We make two key observations from Fig. 8. First, ABACuS
induces minor DRAM energy overhead at NRH = 1000. ABA-
CuS increases DRAM energy consumption by only 1.66%
(2.02×) on average (at maximum) across all evaluated work-
loads. Second, ABACuS increases DRAM energy consump-
tion by 1.27% (30.46%) on average (maximum) across all
workloads at NRH=125. We attribute the DRAM energy over-
heads to i) increased DRAM activation, precharge, and com-
mand bus energy induced by the preventive refresh operations,
and ii) increased DRAM background (standby) energy con-
sumption due to increased execution time for applications.
Performance Comparison. Fig. 9 presents the performance
impact of ABACuS and four state-of-the-art mechanisms on a
single-core system for four different RowHammer thresholds,
normalized to the baseline system.
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Figure 9: Performance comparison of ABACuS vs. state-of-
the-art mitigation techniques for single-core workloads at four
different RowHammer thresholds

We make six key observations based on Fig. 9. First, ABA-
CuS outperforms Hydra, REGA, and PARA at RowHammer
thresholds below 1000 and performs similarly to Graphene
at all tested RowHammer thresholds on average across all
workloads. Second, ABACuS outperforms Hydra and PARA
at NRH = 1000. Third, REGA [177] at NRH = 1000 does not
incur any performance overhead. At NRH = 1000, REGA can
hide the latency of a preventive refresh behind the latency of
a DRAM row access (i.e., preventive refresh happens concur-
rently with a DRAM row access at the nominal tRC defined in
the DDR4 standard [158]). However, REGA incurs increas-
ingly higher overheads as NRH reduces because REGA needs
to perform multiple preventive refreshes on each DRAM row
access. To perform 8 preventive refreshes on each DRAM
row access at an NRH of 125, REGA increases tRC from the
nominal value of 45.0 ns [158] to 167.5 ns,where REGA in-
duces 16.65% performance overhead on average across all
workloads as the average memory access latency increases.

Fourth, PARA [1] performs the worst among all evaluated
mechanisms. PARA incurs 5.47% and 31.08% performance
overheads on average across all workloads at NRH = 1000
and 125, respectively, because it performs many unnecessary
refresh operations [14, 104].

Fifth, Hydra [106] incurs 1.80%, 3.33%, 5.70%, and 9.75%
higher performance overheads than ABACuS for NRH of 1000,
500, 250, and 125, respectively, on average across all work-
loads. In addition to performing preventive refresh operations,
Hydra also performs i) an ACT and a write (WR) command

when a counter in its row count cache (RCC) needs to be
evicted to the row count table (RCT) in DRAM, and ii) an
ACT and a read (RD) command when a counter needs to be
retrieved from the RCT and placed in the RCC. These oper-
ations incur additional performance overheads due to i) row
buffer misses that interfere with application memory requests,
and ii) DRAM banks being unavailable during RCC eviction
and RCT access operations, on top of the overheads caused
by preventive refresh operations. For example, at an NRH of
125, the Hydra-based system has i) a row buffer miss rate
6.22% larger than that of ABACuS and ii) an average memory
latency experienced by application memory requests 20.94%
higher than that of ABACuS on average across all workloads.

Sixth, Graphene [102] incurs slightly higher performance
overhead than ABACuS on average across all workloads at an
NRH of 125. Even though ABACuS, compared to Graphene,
performs 2.06×more preventive refresh operations as ABA-
CuS’s shared activation counters reach the preventive refresh
threshold faster, the amount of time where at least one DRAM
bank is unavailable (for serving application memory requests)
because of preventive refresh is an estimated 7.73×higher in
Graphene compared to ABACuS. Once an ABACuS activa-
tion counter reaches NRH , ABACuS performs 64 preventive
refresh operations (to all 64 victim rows in 32 banks of the
rank) in quick succession. The memory controller takes ap-
proximately 170 ns7 to issue all activate and precharge com-
mands that make up a preventive refresh operation, leveraging
bank-level parallelism. In contrast, issuing two preventive re-
fresh operations to a single bank takes approximately 90 ns, an
already large fraction of 170 ns. Keeping at least one DRAM
bank unavailable for a longer total time increases the critical
path for application memory requests in Graphene by a larger
amount than in ABACuS. As such, the amount of time in
which the processor cannot execute instructions due to the
re-order buffer being full is higher by 1.87% in Graphene
compared to ABACuS on average across all workloads.

Fig. 10 shows ABACuS and four state-of-the-art
mechanisms’ performance impact in terms of weighted
speedup [191–193] for four different NRH values on an eight-
core system, normalized to the baseline system.
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Figure 10: Performance comparison for multi-programmed
(8 core) workloads at four different RowHammer thresholds

7Calculated as the time it takes to activate and precharge two rows in the
same bank (2∗ tRC) plus the number of banks multiplied by the minimum
time between two successive ACT commands to different banks in the same
rank (32∗ tRRD).



We make three key observations from Fig. 10. First, ABA-
CuS induces small system performance overhead across all
evaluated workloads and RowHammer thresholds. ABACuS
has 0.77%, 1.19%, 2.29%, and 4.48% performance overhead
on average across all workloads for NRH of 1000, 500, 250,
and 125, respectively. Second, Hydra incurs 2.56% higher
performance overhead than ABACuS at an NRH of 1K. Third,
ABACuS outperforms Hydra, REGA, and PARA at an ex-
treme RowHammer threshold of 125. At such NRH , ABACuS
incurs only 4.48% performance overhead, whereas Hydra,
REGA, and PARA incur 16.49%, 29.31%, and 40.16% per-
formance overhead on average across all workloads.
Energy Comparison. Fig. 11 presents the DRAM energy
consumption of ABACuS and four state-of-the-art mecha-
nisms on a single-core system for four different RowHammer
thresholds, normalized to the baseline system.
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Figure 11: DRAM energy comparison for single-core work-
loads at four different RowHammer thresholds

From Fig. 11, we make two observations. First, ABACuS
induces smaller DRAM energy overhead than other evalu-
ated mitigation mechanisms (except Graphene) on average
across all workloads for NRH < 1000. Second, at an NRH =
1000, ABACuS induces 1.34% and 1.36% smaller DRAM en-
ergy overheads than REGA and PARA, respectively, because
REGA preventively refreshes one row with every DRAM
row activation (at NRH = 1000) and PARA performs many
unnecessary refresh operations. ABACuS induces 1.66% av-
erage (2.02×maximum) DRAM energy overhead at this NRH ,
which is close to Hydra’s 0.73% average (1.11×maximum)
DRAM energy overhead.

Fig. 12 shows the DRAM energy consumption of ABACuS
and four state-of-the-art mechanisms for four different NRH
on an eight-core system, normalized to the baseline system.
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Figure 12: DRAM energy comparison for multi-programmed
(8 core) workloads at four different RowHammer thresholds

From Fig. 12, we observe that ABACuS induces 2.12%,
2.44%, 3.25%, and 4.76% DRAM energy overhead at NRH =

1000, 500, 250, and 125, respectively. At a very low NRH =
125, ABACuS’s DRAM energy overhead is 19.64%, 70.41%,
and 33.99% smaller than Hydra, REGA, and PARA, on aver-
age across all evaluated workloads. Graphene induces 3.95%
lower DRAM energy overhead than ABACuS at NRH = 125.
Summary. We conclude that ABACuS induces small system
performance and DRAM energy overheads on average across
all tested single-core and multi-core workloads for NRH =
1000, 500, 250, and 125. ABACuS’s performance and DRAM
energy overheads are closer to the most-performance-efficient
state-of-the-art mechanism ( [102]). ABACuS outperforms
and consumes less DRAM energy than the most-area-efficient
state-of-the-art (counter-based) mechanism ( [106]).

9.2 Sensitivity to Number of Banks
We run 16-, 32-, and 64-bank (1-, 2-, and 4-rank) simula-

tions using ABACuS and the baseline system. We observe
that ABACuS can prevent RowHammer bitflips with low over-
head in systems that use memory modules with different num-
bers of banks (ranks). At NRH = 125, ABACuS incurs 1.58%,
1.50%, and 2.60% performance overheads for 16-, 32-, and
64-bank configurations, respectively, on average (geometric
mean) across all evaluated single-core workloads.

9.3 Adversarial Workloads
ABACuS securely prevents bitflips under RowHammer

attacks (§5). We demonstrate that, in a dual-core system,
ABACuS incurs smaller performance overheads than Hydra,
REGA, and PARA for the evaluated single-core workloads on
average, while one core in the system executes a traditional
RowHammer access pattern (RowHammer Attack) that re-
peatedly activates 32 rows in each bank in a bank-interleaved
manner. We also develop two specialized RowHammer access
patterns (which are open source [190]): Hydra-Adversarial
and ABACuS-Adversarial. 1) Hydra-Adversarial exacerbates
Hydra’s Row Count Cache eviction rate to significantly in-
crease the throughput of Hydra’s DRAM read and write
requests. 2) ABACuS-Adversarial rapidly increments the
spillover counter value to cause frequent refresh cycles
(§4.2). All three access patterns (RowHammer Attack, Hydra-
Adversarial, and ABACuS-Adversarial) incur the same, sub-
stantially high rate of ACT commands in the memory con-
troller. The memory controller issues an ACT command every
20 ns while executing each access pattern. Fig. 13 shows
the performance impact of ABACuS and the state-of-the-art
mechanisms on all evaluated single-core workloads in a dual-
core system when the second core executes one of the three
RowHammer access patterns.

We make three major observations. First, ABACuS in-
duces only 0.88% performance overhead on average across
all workloads when one core executes the RowHammer at-
tack, whereas Graphene, Hydra, REGA, and PARA induce
0.61%, 3.03%, 4.43%, and 14.62%, respectively. Second, Hy-
dra induces a large 73.96% average slowdown when one core
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Figure 13: Performance comparison for single-core workloads
with three different RowHammer access patterns (NRH = 500)

executes the Hydra-Adversarial access pattern. We attribute
this overhead to the high rate of Row Count Cache (RCC)
evictions the Hydra-Adversarial access pattern incurs. Hydra
evicts 1.13 RCC entries per last level cache miss on average
across all workloads. The memory controller serves an RCC
eviction by issuing high-priority WR and RD DRAM requests
(i.e., WR and RD requests caused by RCC evictions are on
the critical path of workload main memory requests). For the
same access pattern, ABACuS incurs only 0.79% on average
across all workloads. Third, ABACuS induces 9.20% perfor-
mance overhead, on average across all workloads when one
core executes the ABACuS-Adversarial access pattern. This
is because the ABACuS-Adversarial access pattern triggers
multiple ABACuS refresh cycles, during which no memory
request can be serviced, while the single-core workload exe-
cutes. The same access pattern incurs 48.08% performance
overhead on average across all workloads for Hydra.

We conclude that ABACuS incurs almost-negligible ad-
ditional performance overhead for benign workloads when
another core executes a traditional RowHammer attack. Spe-
cialized adversarial access patterns can exacerbate such over-
heads by frequently triggering ABACuS refresh cycles.

9.3.1 Improving ABACuS’s Performance

A workload may, intentionally (e.g., ABACuS-Adversarial)
or unintentionally (e.g., gups), rapidly increment the spillover
counter’s value, frequently triggering refresh cycles where
ABACuS issues a refresh command to each DRAM row ID
in a rank, and cause substantial performance overheads in
an ABACuS-based system. To prevent such overheads, a
less-area-constrained version of ABACuS can remove the
spillover counter and implement one shared activation counter
(ABACuS counter) per DRAM row ID (i.e., ABACuS-Big’s
Nentries (Table 2) is equal to the number of rows in a DRAM
bank). We design and evaluate ABACuS-Big, which imple-
ments one ABACuS counter per DRAM row ID. The ABA-
CuS counter in ABACuS-Big is updated in the same way as
in ABACuS. ABACuS-Big implements as many ABACuS
counters as there are rows in a bank (i.e., there is a 1-1 map-
ping between ABACuS counters and DRAM row IDs) to
keep precise track of every sibling row’s maximum activa-
tion count and ABACuS-Big does not need to use a spillover
counter. Fig. 14 shows the performance impact of ABACuS
and ABACuS-Big on all evaluated single-core workloads in a

dual-core system with the three RowHammer access patterns
described earlier in this section.
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Figure 14: Performance of ABACuS&-Big (NRH = 500)

We observe that ABACuS-Big incurs only 0.28% per-
formance overhead on average across all workloads for
the ABACuS-Adversarial pattern, whereas ABACuS incurs
9.20% because ABACuS-Big does not perform any refresh
cycles where the memory controller is busy rapidly issuing
REF commands. We evaluate ABACuS-Big’s chip area using
the methodology described in §7.1. ABACuS-Big requires
40 bits (8 bits for row activation counter, 32 bits for sibling
activation vector) of storage per DRAM row, amounting to
640 KiB on-chip storage at an NRH of 500 for 128K DRAM
rows. ABACuS-Big takes up 0.48 mm2 chip area (0.20% of
a high-end Intel Xeon processor’s area [178]). We conclude
that ABACuS-Big is a high-performance implementation of
the ABACuS design, which system designers that have fewer
chip area constraints can choose to implement, that improves
system performance under adversarial workloads and some
benign workloads (e.g., gups) compared to ABACuS.

10 Related Work
To our knowledge, ABACuS is the first work that mitigates

RowHammer efficiently and scalably at very low RowHam-
mer thresholds (e.g., 125) without incurring large area, perfor-
mance, or energy overheads. Sections 7 and 9 already qual-
itatively and quantitatively compare ABACuS to the most
relevant state-of-the-art mechanisms [1, 102, 106, 177]. This
section discusses other RowHammer mitigation mechanisms.
Hardware-based Mitigation Mechanisms. Many prior
works [1, 87, 88, 97, 98, 100–102, 104–107, 110–112, 114,
116, 117, 122, 123, 126, 131, 133, 134, 173, 194–196] pro-
pose hardware-based mitigation mechanisms to prevent
RowHammer bitflips. We classify these into three main cat-
egories. 1) Probabilistic preventive refresh (PPR) mecha-
nisms [1, 97, 100, 114, 116, 122, 133, 194] preventively refresh
victim rows based on a probability. PPR mechanisms incur
impractical performance overheads at very low RowHam-
mer thresholds as they perform many unnecessary preven-
tive refresh operations. A recent work [195] proposes a new
methodology for configuring PPRs. 2) Deterministic preven-
tive refresh (DPR) mechanisms [88, 98, 101, 102, 105, 107,
110–112, 117, 123, 126, 131, 134, 173, 196] track activation
counts of aggressor rows and preventively refresh victim
rows. DPR mechanisms incur less performance overhead
than PPR mechanisms (from fewer unnecessary preventive
refresh operations) at the cost of larger chip area overhead to
store aggressor row activation counters. and 3) Deterministic
aggressor row access throttling (DAT) mechanisms [1,87,104]
track activation counts of aggressor rows and preventively



block memory accesses to aggressor rows. DAT mechanisms
incur average system performance and total chip area over-
heads similar to DPR mechanisms [104]. However, exist-
ing DAT mechanisms can incur delays in the order of mi-
croseconds on memory demand requests (e.g., load instruc-
tions) [104, 106, 117].
Software-based Mitigation Mechanisms. Many works [38,
44, 93, 108, 113, 118, 132] propose software-based mitigation
mechanisms to avoid hardware modifications. Unfortunately,
it is not possible for these mechanisms to monitor all memory
requests, and thus most of these mechanisms have already
been defeated by recent attacks [30, 37, 42, 46, 49, 52, 197].
Integrity-based Mitigation Mechanisms. Several
works [115, 119, 127, 198] propose integrity check mech-
anisms to detect and correct bitflips that may have been
induced by RowHammer. Unfortunately, it is either not
possible, difficult, or prohibitively expensive to correct all
possible RowHammer bitflips using these mechanisms.
However, these mechanisms can be combined with ABACuS
to improve overall system reliability and future work could
demonstrate the benefits of combining them with ABACuS.
RowHammer Mitigation in Commodity Chips. DRAM
manufacturers employ RowHammer mitigation mechanisms,
commonly referred to as target row refresh (TRR), in com-
modity DRAM chips [158,163] without publicly documenting
their detailed designs. These mechanisms typically do not in-
duce any performance overhead because they take action (e.g.,
refresh a victim row) when the DRAM chip is busy perform-
ing a periodic refresh operation (i.e., their victim row refresh
latency is hidden by the latency of performing a periodic
refresh operation). However, recent studies experimentally
demonstrate that specialized adversarial access patterns can
defeat some of these mechanisms [15, 29, 54–56, 128]. A re-
cent work [121] develops a tool that can automatically infer
parameters of TRR mechanisms. More recent works from in-
dustry design new in-DRAM RowHammer mitigation mecha-
nisms [135, 199]. Unfortunately, these mechanisms cannot or
are not proven to deterministically prevent all RowHammer
bitflips.
Device-level Mechanisms for Mitigating RowHammer.
Several prior works [8,9,130,200] design new DRAM cells or
arrays with improved RowHammer resilience. Unfortunately,
these works alone cannot completely prevent RowHammer
bitflips (but could effectively increase the RowHammer thresh-
olds). They can be used with other hardware-/software-based
mitigation techniques to mitigate RowHammer.

11 Conclusion
We introduced a new RowHammer mitigation mechanism

that prevents RowHammer bitflips at low area, performance,
and energy overheads for modern and future DRAM chips that
are very vulnerable to RowHammer (e.g., with RowHammer
thresholds as low as 125). Compared to existing RowHam-
mer mitigation mechanisms, our technique, all-bank activa-
tion counters for scalable RowHammer mitigation (ABACuS)

technique incurs significantly smaller area, performance, and
DRAM energy overheads for modern and future DRAM chips.
Our technique achieves this by sharing activation counters of
rows that has the same row ID in different banks. While ABA-
CuS efficiently and securely prevents RowHammer bitflips, it
also scales well with worsening RowHammer vulnerability
down to RowHammer threshold (NRH ) = 125.
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Appendix
A ABACuS Security Analysis

We explain how ABACuS maintains the maximum activa-
tion count among all sibling rows (§4) in RACs by showing
that Invariant 1 holds after a RAC update upon a DRAM row
activation.

Analysis Overview. Invariant 1 formally defines the prop-
erty of the value stored in a row activation counter in terms of
the actual activation count of sibling DRAM rows (i.e., each
sibling row’s true activation count, regardless of the RAC’s
value) in a refresh window (tREFW ). The spillover counter’s
value is already greater than or equal to a row’s activation
count for DRAM rows that are not tracked by any ABACuS
counter [102].8

Invariant 1

Let ACT _COUNT (bankID,rowID) denote the actual activation
count of a row with row ID in a bank. If a row is tracked by an
ABACuS counter, the row activation counter (RAC) corresponding
to this row is always greater than or equal to the actual activation
count of the row with the same row ID in any of the banks. That is,
∀(b,r) ∈ (Banks,SiblingRows); RAC(r)≥ ACT _COUNT (b,r)

Proof: By induction on the actual activation count of row r
in bank b, tracked by RAC(r).
Base Case: When the RAC starts tracking a row r in bank b
for the first time, the following holds:

• RAC(r)≥ ACT _COUNT (b,r)

• SAV (b,r) is set. Other SAV bits are zero.

Induction Hypothesis: Assume that invariant holds for any
row r′ in bank b′ which are tracked by an ABACuS counter.
Step Case: Let r′ be an arbitrary sibling of r in bank b′. Note
that RAC(r′) = RAC(r) by definition of RAC. Assume that
such an r′ is activated. We distinguish between two cases.
Case 1: SSSAAAVVV (((bbb′′′,,,rrr′′′))) is not set. In this subcase, before acti-
vating r′, we have RAC(r′)> ACT _COUNT (b′,r′) because
SAV (b′,r′) is not set. Therefore, after activating r′ we have
RAC(r′)≥ ACT _COUNT (b′,r′) and SAV (b′,r′) is set.
Case 2: SSSAAAVVV (((bbb′′′,,,rrr′′′))) is set. In this subcase, before activat-
ing r′, we have RAC(r′) ≥ ACT _COUNT (b′,r′). Hence, af-
ter activating r′, the actual activation count of r′ increases
by one, and RAC(r′) is incremented. The SAV (b′,r′) re-
mains set, while other SAV bits are reset. Thus, RAC(r′) ≥
ACT _COUNT (b′,r′) still holds, satisfying the invariant.

Based on the proof of the correctness of Invariant 1, we con-
clude that ABACuS accurately stores the maximum activation
count across all sibling rows.

8Our extended version [159] provides a simple explanation for why the
spillover counter’s value is greater than or equal to a non-tracked row’s
activation count.
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