
DynSQL: Stateful Fuzzing for Database Management Systems with
Complex and Valid SQL Query Generation

Zu-Ming Jiang
ETH Zurich

Jia-Ju Bai
Tsinghua University

Zhendong Su
ETH Zurich

Abstract
Database management systems (DBMSs) are essential parts
of modern software. To ensure the security of DBMSs, recent
approaches apply fuzzing to testing DBMSs by automatically
generating SQL queries. However, existing DBMS fuzzers
are limited in generating complex and valid queries, as they
heavily rely on their predefined grammar models and fixed
knowledge about DBMSs, but do not capture DBMS-specific
state information. As a result, these approaches miss many
deep bugs in DBMSs.

In this paper, we propose a novel stateful fuzzing approach
to effectively test DBMSs and find deep bugs. Our basic idea
is that after DBMSs process each SQL statement, there is
useful state information that can be dynamically collected to
facilitate later query generation. Based on this idea, our ap-
proach performs dynamic query interaction to incrementally
generate complex and valid SQL queries, using the captured
state information. To further improve the validity of generated
queries, our approach uses the error status of query processing
to filter out invalid test cases. We implement our approach
as a fully automatic fuzzing framework, DynSQL. DynSQL
is evaluated on 6 widely-used DBMSs (including SQLite,
MySQL, MariaDB, PostgreSQL, MonetDB, and ClickHouse)
and finds 40 unique bugs. Among these bugs, 38 have been
confirmed, 21 have been fixed, and 19 have been assigned
with CVE IDs. In our evaluation, DynSQL outperforms other
state-of-the-art DBMS fuzzers, achieving 41% higher code
coverage and finding many bugs missed by other fuzzers.

1 Introduction

Database management systems (DBMSs) play essential roles
in modern data-intensive applications [13, 22, 44], providing
fundamental functionalities of data storage and management.
Due to the large code size and complex logic of DBMSs,
bugs are inevitably introduced during development and main-
tenance. By exploiting DBMS bugs, attackers can introduce
malicious threats of paralyzing the system [1, 5, 7] or even
hacking secret data [14, 46].

Fuzzing is a promising technique for bug detection [2,4,15,
17, 26, 30, 47], and it is applied to testing DBMSs [18, 43, 45,
48] by generating SQL (Structured Query Language) queries
that contain a series of SQL statements [48]. Specifically,
some fuzzers [18, 43] utilize well-defined rules to randomly
generate SQL queries, feed these queries to target DBMSs,
and check whether bugs are triggered. To improve bug detec-
tion in DBMSs, several approaches [45, 48] further involve
feedback mechanisms. After the execution of each test case,
they collect the runtime information (e.g. code coverage) of
target DBMSs and check whether interesting behavior (e.g.
covering new branches) occurs. If so, the test case will be
stored as a seed for later test-case generation.

However, existing DBMS fuzzers are still limited in gener-
ating complex and valid queries to find deep bugs in DBMSs.
In general, a complex query contains multiple SQL statements
that involve various SQL features (e.g. multi-level nested sub-
queries), while a valid query satisfies the dependencies among
its statements (e.g., a subsequent statement references the el-
ements defined in an earlier statement) and guarantees both
syntactic and semantic correctness. Existing DBMS fuzzers
always make a trade-off between complexity and validity of
generated queries. For example, SQLsmith [43] generates
only one statement in each query, avoiding the analysis of
dependencies among statements, which sacrifices complexity
for validity; SQUIRREL [48] uses an intermediate represen-
tation (IR) model to infer dependencies and generate queries
that contain multiple statements, but it produces over 50%
invalid queries and tends to generate simple statements.

The contradiction between query complexity and query va-
lidity occurs because existing DBMS fuzzers heavily rely on
their predefined grammar models and fixed knowledge about
DBMSs, but do not capture runtime state information. They
either neglect state changes (e.g. SQLsmith [43]), or statically
infer the corresponding states (e.g. SQUIRREL [48]) but suf-
fer from soundness and completeness issues. Without accurate
state information, these fuzzers tend to build incorrect depen-
dencies among statements or misuse SQL features, causing
many invalid queries to be generated. To generate valid test



Table 1: Conceptual comparison of DBMS fuzzers

Features SQLsmith SQUIRREL DynSQL

Stateful Fuzzing None Partial Full
Query Generation Static Static Dynamic
Program Feedback None Code Cov Code Cov+Error
Query Validity High Middle High
Statement Number One Multiple Multiple
Statement Complexity High Low High

cases, these fuzzers have to limit the complexity of generated
queries to tolerate their inaccurate state information.

In fact, DBMSs process each query statement by statement,
and the states of manipulated databases change after each
statement is executed. In the interval of statement process-
ing, DBMS-specific state information, including the latest
database schema and status of statement processing, is avail-
able. However, existing DBMS fuzzers fail to capture such
information, as their query generation is finished before query
execution. To solve this problem, we propose a novel state-
ful fuzzing approach to perform dynamic query interaction
that merges query generation and query execution. This ap-
proach feeds each generated statement to the target DBMS
and then dynamically interacts with the DBMS to collect the
latest state information after the statement is executed. The
collected state information is used to guide the generation
of subsequent statements. Benefiting from dynamic query
interaction, our fuzzing approach transforms the complicated
process of query generation into several simple and indepen-
dent processes of statement generation, and thus can generate
complex and valid SQL queries effectively.

In addition, to further improve the validity of the gener-
ated queries, our fuzzing approach uses error feedback to
guide test-case generation with code coverage. It collects the
information on query execution and observes whether the
generated queries pass syntactic and semantic checks of the
target DBMS. If the generated queries trigger any syntactic or
semantic error, these queries are identified to be invalid and
are discarded directly. By using error feedback, our fuzzing
approach guarantees that all selected seeds are valid, which is
useful to generate valid test cases in subsequent mutations.

We implement our approach as a stateful DBMS fuzzing
framework, DynSQL. Table 1 concludes the conceptual dif-
ferences between DynSQL and two state-of-the-art DBMS
fuzzers, according to their design and our evaluation results.
Both DynSQL and SQUIRREL are aware of the state changes
caused by generated statements. However, SQUIRREL tends
to infer incorrect state information when it processes the se-
mantics of complex statements. DynSQL addresses these
problems by dynamically capturing the latest state informa-
tion for query generation. Besides the feedback of code cover-
age used by SQUIRREL, DynSQL also uses error information
to improve the validity of generated queries. Benefiting from
these improvements, DynSQL can effectively generate valid
queries containing multiple complex statements.

Overall, we make the following technical contributions:

• We propose a novel stateful fuzzing approach to address
the limitations of existing DBMS fuzzers. Our approach
performs dynamic query interaction that merges query gen-
eration and query execution to effectively generate complex
and valid SQL queries. In addition, it uses error feedback
to improve the validity of the generated queries.

• Based on our approach, we implement DynSQL, a practical
DBMS fuzzing framework that automatically detects deep
bugs in DBMSs, by generating complex and valid queries.

• We evaluate DynSQL on 6 widely-used DBMSs, includ-
ing SQLite, MySQL, MariaDB, PostgreSQL, MonetDB,
and ClickHouse. DynSQL finds 40 unique bugs among
which 38 have been confirmed, 21 have been fixed, and
19 have been assigned CVE IDs. We compare DynSQL to
state-of-the-art DBMS fuzzers, including SQLsmith and
SQUIRREL. Owing to its effectiveness in generating com-
plex and valid SQL queries, DynSQL achieves 41% higher
code coverage and finds many bugs missed by other fuzzers.

2 Background and Motivation

In this section, we first introduce how DBMSs process SQL
queries in brief, then illustrate the difficulty of generating
complex and valid queries, and finally reveal the limitations
of existing DBMS fuzzers.
SQL processing in DBMS. SQL queries are designed to per-
form the communication between users and DBMSs. To man-
age data, users often integrate multiple SQL statements (e.g.,
SELECT statement) into a query, and then send the query to
the DBMS, which manipulates databases. After receiving a
query, the DBMS first decomposes it into several statements
and then processes the statements in sequence.

DBMSs generally process each statement in four phases:
parsing, optimization, evaluation, and execution [38]. In the
parsing phase, DBMSs first check the syntactic correctness of
the statement according to their predefined grammar rules and
then check the semantic correctness according to the current
database schema. If any syntactic or semantic check fails, the
statement is discarded directly, and the whole query process-
ing may be terminated. In the later phases, DBMSs optimize
the low-level expression of the statement and generate several
possible execution plans. Then, DBMSs evaluate the cost of
each execution plan and finally execute the most efficient plan.
After the statement is executed, DBMSs update the states in-
cluding database schema and the execution status, and then
DBMSs process the following statement in the query.
Query generation. On the one hand, DBMS fuzzers should
guarantee both syntactic and semantic correctness of the gen-
erated queries, so that these queries can pass validation checks
without being discarded in earlier stages. However, doing so
is difficult, as DBMS fuzzers not only need to obey specific
SQL features and grammars, but also have to analyze possible



1 CREATE TABLE t1 (f1 INTEGER);
2 CREATE VIEW v1 AS
3 SELECT subq_0.c4 AS c2, subq_0.c4 AS c4
4 FROM (
5 SELECT ref_0.f1 AS c4
6 FROM t1 AS ref_0
7 WHERE (SELECT 1)
8 ) AS subq_0
9 ORDER BY c2, c4 DESC;

10 WITH cte_0 AS (
11 SELECT subq_0.c4 as c6
12 FROM (
13 SELECT 11 AS c4
14 FROM v1 AS ref_0
15 ) AS subq_0
16 CROSS JOIN v1 AS ref_2)
17 SELECT 1;

Figure 1: A malicious query that crashes the MariaDB server.

DBMS state changes caused by the generated statements so as
to precisely build statement dependencies and correctly refer-
ence attributes. On the other hand, to explore infrequent states,
DBMS fuzzers should generate complex SQL queries to trig-
ger deep logic of optimization, evaluation, and execution in
DBMSs. However, increasing query complexity signi�cantly
increases the dif�culty of guaranteeing query validity. Thus,
it is important but very challenging to generate both complex
and valid SQL queries to detect deep bugs in DBMSs.

Figure 1 shows a malicious query that crashes the Mari-
aDB server and enables denial-of-service (DoS) attacks. This
vulnerability affects a wide range of versions (10.2-10.5) of
the MariaDB server and has existed for over 5 years until
DynSQL found it. The query triggering this bug has been
simpli�ed by us and developers, and it is considered as the
minimal test case. However, this query is still complex in
structures and semantics. It contains three SQL statements.
The �rst one is a simpleCREATE TABLEstatement that creates
a tablet1 . The second statement is aCREATE VIEWstatement
that involves three-level nested subSELECTstatements to cre-
ate a viewv1. The sub statement at the �rst level uses a sub
SELECTstatement in itsFROMclause. The sub statement at
the second level references the created tablet1 and uses a
subSELECTstatement again in itsWHEREclause. The last
statement in the query is a simpleSELECTstatement with a
complexCOMMON TABLE EXPRESSION(CTE). TheCTEuses
a two-level subSELECTstatement. The sub statement at the
�rst level uses a subSELECTstatement in itsFROMclause, and
it is joined with the created viewv1 that is referenced again
in the subSELECTstatement at the second level.

In fact, generating this query is dif�cult in DBMS fuzzing.
First, this query contains multiple statements that cause
DBMS state changes. Fuzzers need to capture such changes
so that the subsequent statements can correctly reference the
elements built by the earlier statements. Second, these state-
ments utilize various SQL features, such as subSELECTstate-
ment,CTE, CROSS JOIN, etc, which make it hard for fuzzers
to accurately infer possible state changes.

Limitations of existing DBMS fuzzers.Existing DBMS
fuzzers are limited in generating complex and valid SQL
queries (e.g. the malicious query in Figure 1), because they
cannot accurately capture the DBMS state changes caused
by generated statements. Instead, they either generate only
one complex statement in each query to avoid the analysis of
state changes [18,43], or combine multiple relatively simple
statements where the state changes can be easily inferred [48].

SQLsmith [43], a popular grammar-based DBMS fuzzer,
can generate complex SQL statements using its well-de�ned
abstract syntax tree (AST) rules; but it is stateless without con-
sidering state changes caused by its generated statements, as a
result of which it cannot build the dependencies among multi-
ple statements and thus generates only one statement in each
query. Using an intermediate representation (IR) to maintain
query structures, SQUIRREL [48] is aware of state changes
caused by its generated statements. It considers various SQL
features and maintains the scopes and lives of multiple vari-
ables in statements, causing its IR mechanism to be compli-
cated and error-prone when inferring state changes caused
by complex statements. To mitigate this impact, SQUIR-
REL tends to generate simple statements in queries. Even
so, SQUIRREL still generates over 50% invalid queries [48].

Without accurate DBMS state information, existing fuzzers
are limited in generating complex and valid queries to ex-
tensively test DBMSs, causing many deep bugs to still exist.
Therefore, proposing a practical solution to address these
limitations is necessary and important for DBMS fuzzing.

3 Stateful DBMS Fuzzing

DBMSs process each statement of queries in sequence. Af-
ter each statement is executed, the content of manipulated
databases and the status of DBMSs are dynamically changed.
In the interval between two statement execution, DBMSs
record their latest state information, which accurately re�ects
their real-time situations, including the latest database schema
and the status of statement processing. The state information
is valuable for guiding query generation. However, such in-
formation is available only after each statement is executed,
so existing DBMS fuzzers cannot capture it, because they
perform static query generation before query execution.

To solve this problem, we propose a novel stateful fuzzing
approach, which captures accurate state information by dy-
namically interacting with target DBMSs, not statically in-
ferring state changes. Figure 2 shows the overview of our
approach. Its core isdynamic query interaction, which merges
query generation and query execution into an interactive pro-
cess. During the interaction, our approach continuously cap-
tures the latest DBMS states to incrementally generate com-
plex and valid queries where dependencies among statements
are satis�ed with correct data references. To further improve
the validity of generated queries, our approach utilizeserror
feedbackto �lter out invalid test cases in the seed pool.



Figure 2: Overview of stateful DBMS fuzzing.

3.1 Dynamic Query Interaction

Overview. Before generating each statement, dynamic query
interaction �rst queries the target DBMS to capture state
information, including database schema and status of state-
ment processing. Then, this technique uses such information
to generate a statement and feeds it to the DBMS. After the
statement is executed, this technique interacts with the DBMS
again for the latest state information and uses it to generate
subsequent statements. In this way, dynamic query interaction
can accurately capture the state changes caused by the exe-
cuted statements, and thus it can effectively generate complex
and valid queries.

Dynamic query interaction mainly consists of two parts,
Scheduler andTranslator . Scheduler is used to interact
with the target DBMS to capture the latest DBMS states,
transfer the database schema toTranslator , and manage the
whole interaction process.Translator is used to translate
an input �le into an SQL statement based on the received
database schema. The work�ow of dynamic query interaction
is described in Algorithm 1. Given an input �le and the tar-
get DBMS, dynamic query interaction outputs the generated
query, the code coverage of the target DBMS, and the status
of query processing. The following discusses the details of
dynamic query interaction.
Scheduler. First,Scheduler initializes the used variables,
including�le_sizeof the input �le, the target DBMS, the read
bytesrb, thequery, and the coveragecov. Then,Scheduler
enters a loop, which will end if all bytes in the input �le�le
have been read. In this loop,Scheduler �rst queries the target
DBMS to obtain its latest database schema (e.g. the attributes
of tables, columns, views, indexes) and then sends the queried
schema, the �le , and read bytesrb to Translator , which
will return a generated statementstmtand the updatedrb.
Scheduler storesstmtto the end of thequeryand feedsstmt

Algorithm 1: Dynamic Query Interaction
input : �le, DBMS
output : query, cov, status

1 Function Scheduler( �le, DBMS) :
2 �le_size GetFileSize( �le ) ;
3 DBMS INITIAL_STATE;
4 rb  0; query []; cov {};
5 for rb < �le_sizedo
6 schema QueryDBMS(DBMS) ;
7 stmt, rb Translator( schema, �le, rb) ;
8 query [query, stmt];
9 status, cov ExeStmt(stmt, DBMS) ;

10 if CheckStatus(status, query) then
11 break;
12 return query, cov, status;
13 Function Translator( schema, �le, rb) :
14 tmp_�le  �le [rb, GetFileSize( �le ) - 1];
15 StmtGenerator.RandomSource(tmp_�le) ;
16 stmt, tmp_rb StmtGenerator.Gen(schema) ;
17 return stmt, rb + tmp_rb;
18 Function CheckStatus(status, query) :
19 if status ==CRASH then
20 ReportCrash(query) ;
21 return TRUE;
22 if status2 ERROR then
23 if status=2 SynErr and status=2 SemErr then
24 ReportAbnormalError( query) ;
25 return TRUE;
26 return FALSE;

to the target DBMS. After the DBMS processes the statement,
Scheduler collects the covered branches intocov, and checks
thestatusof statement processing. If thestatusindicates that
a crash or an error is triggered,Scheduler exits the loop.
When the loop ends,Scheduler returns the generatedquery,
the code coveragecovof the DBMS execution, and the �nal
statusof the query processing.
Translator. Receiving the parameters fromScheduler,
Translator �rst extracts the fresh part of�le , which has
not been read yet, intotmp_�le. Translator uses an internal
SQL statement generatorStmtGenerator to generate a state-
ment according to the providedschemaandtmp_�le. Finally,
Translator returns the generated statementstmtand updates
the number of bytes that have been read byStmtGenerator.

The internalStmtGenerator deploys AST models to gen-
erate SQL statements. Typically, AST-based tools [39,41,43]
generate random SQL statements according to their random
seed (e.g. system clock), which makes the generation inef�-
cient and dif�cult to guide [30,32]. In contrast to these tools,
StmtGenerator usestmp_�le as its random seed, which
means that whenStmtGenerator traverses its AST tree to
generate SQL statements, it decides which paths should be
chosen according to the value read fromtmp_�le. Speci�cally,
it makes a decision by calculating the result ofv modn, where
v is the value read from the input �le andn is the number of
available choices. In this way,StmtGenerator determinis-
tically generates SQL statements according to the provided
input �le �le and the current database schemaschema.



Figure 3: Generating the third SQL statement in Figure 1.

Figure 3 shows the generation process of the third state-
ment in Figure 1. After receiving the fresh part of the input
�le from Translator , StmtGenerator starts traversing its
AST model to generate a SQL statement. When it needs to
determine the type of the statement, it reads a byte from the
�le and gets value 5, which indicates that it should generate a
SELECTstatement withCTE. Then,StmtGenerator reads the
�le again and gets value 1, which indicates that it should use
CROSS JOINto constructCTE. It needs to further determine
the right table and the left table used inCROSS JOIN, and
decides to use existing tables or views for the right table after
getting the value 3 from the �le. As there are two available
candidates (i.e. tablet1 and viewv1), StmtGenerator reads
the �le and gets value 9. According to the calculated result
of 9 mod 2, it uses the second candidate (i.e. viewv1). The
subsequent generation process follows a similar procedure.
Status checking. Scheduler checks the execution status af-
ter each statement is fed to the target DBMS. Speci�cally,
Scheduler checks whether any crash of the DBMS or its
manipulated databases is triggered. If so, it reports the crash
with the query, including the crash-triggering statement and
the earlier statements generated in the previous interaction.
Similar to SQLancer [37],Scheduler also checks whether
the target DBMS reports any error. If so, it performs a fur-
ther check and reports an abnormal error if the error is not
a syntactic or semantic error. For example, "Subquery result
missing" in MonetDB is an abnormal error that indicates the
DBMS has lost the data of calculated results. These checks
enable our dynamic query interaction to report suspicious
bugs that make the target DBMS alert but do not cause it to
crash directly. Note that if any crash or any error is triggered,
Scheduler will terminate the interaction loop because the
target DBMS has entered a problematic state.
Example. Figure 4 illustrates how our dynamic query interac-
tion generates the malicious query in Figure 1 and detects the
vulnerability. When the test begins,Scheduler �rst queries

Figure 4: Dynamic query interaction for the query in Figure 1.

the target DBMS (i.e. MariaDB) to obtain its database schema.
The schema is empty as no statement has been processed yet.
Scheduler sends the empty schema toTranslator . Then,
Translator traverses its AST model and generates aCREATE
TABLEstatement according to the read value from the �le.
Scheduler feeds the statement to the DBMS and collects
the code coverage and the status of statement processing. As
there is no crash or error,Scheduler enters the next round
of interaction. In the second round,Scheduler queries the
DBMS for the latest schema again and then sends the schema
to Translator . As theCREATE TABLEstatement has been ex-
ecuted, the schema contains a created tablet1 . Translator
�rst removes the part of the �le that has been read and then
uses the processed �le to generate a new statement, according
to the updated schema. It reads some bytes from the �le and
generates aCREATE VIEWstatement, which references the ta-
blet1 . The generated statement is fed to the DBMS again and
is processed normally, soScheduler enters the third round.
In the third round,Scheduler queries the DBMS and gets the
latest schema that is extended with a viewv1 containing two
columnsc2 andc4. This schema is sent toTranslator , and
Translator accordingly generates aSELECTstatement with
CTEwhere the viewv1 in the schema is referenced. When
Scheduler feeds the generated statement to the DBMS, a
crash is triggered, soScheduler terminates the interaction
and reports a bug with the bug-triggering query that contains
the 3 generated statements.

3.2 Error Feedback

The input �le of dynamic query interaction controls the pro-
cess of query generation. Proper �les can guide the approach
to generate complex and valid SQL queries, while useless



Figure 5: Work�ow of error feedback.

�les can result in repeated and trivial queries. Thus, our state-
ful DBMS fuzzing needs to produce effective input �les.
Coverage-guided fuzzers [2, 6, 15, 26, 30] for general �les
seem useful to achieve this goal, with the program feedback
of code coverage. In DBMS fuzzing, when an invalid query
triggers a new syntactic or semantic error, code coverage is in-
deed increased. In this case, existing coverage-guided fuzzers
save this invalid query into the seed pool, and use it as a
seed to perform mutation for generating other similar queries.
However, these generated queries are very likely to trigger the
same syntactic or semantic error with the seed query, without
increasing code coverage.

To tackle this problem and further improve the validity
of generated queries, we proposeerror feedbackto �lter out
the input �les of invalid queries in the seed pool. Figure 5
shows the work�ow of error feedback. For each input �le of
SQL query, our approach checks whether the query increases
the code coverage during execution. If the query causes the
DBMS to cover new branches at runtime, our fuzzing ap-
proach merges these branches into the global coverage. For
each input �le of SQL query that increases the coverage, our
approach further checks whether the query makes the target
DBMS execute abnormally. If the DBMS reports any error,
the input �le will be discarded for seed mutation. In this way,
our fuzzing approach guarantees that all the identi�ed seeds
can produce valid SQL queries when they are used as input
�les in dynamic query interaction. Using these valid seeds,
our seed mutation achieves a high possibility of generating
valid queries during fuzzing.

4 Framework and Implementation

Based on our stateful DBMS fuzzing approach, we develop
a new fuzzing framework,DynSQL, to detect deep bugs in
DBMSs by generating complex and valid queries.DynSQL
uses Clang [8] to compile and instrument target DBMSs for
collecting coverage information. Figure 6 shows the architec-
ture of DynSQL, which consists of six modules:

• Code instrumentor.It compiles and instruments the code
of the target DBMS, and generates an executable program
that receives and processes SQL queries.

• Query interactor.It receives input �les from the �le fuzzer
and performs dynamic query interaction to generate com-
plex and valid queries. It also collects necessary runtime
information of the target DBMS for dynamic analysis.

• Statement generator.It uses an internal AST model to gen-
erate syntactically correct SQL statements that only refer-
ence the data claimed in the given database schema.

Figure 6: Overall architecture of DynSQL.

• Runtime analyzer.It analyzes the collected runtime infor-
mation, identi�es seeds according to error feedback, and
selects a seed for the next round of fuzzing.

• File fuzzer.It performs conventional �le fuzzing to generate
�les based on the given seeds. We implement this module
by mainly referring to AFL [2].

• Bug checker.It detects bugs based on the collected runtime
information and generates corresponding bug reports.

The following discusses the important details of DynSQL.
DBMS supporting. DBMSs often provide interfaces for ex-
ternal programs to operate and query their databases. These
interfaces are used byDynSQLto set up the testing process.
Speci�cally, DynSQL needs interfaces to start the DBMS,
connect to the DBMS, stop the DBMS, send SQL state-
ments, get results of statement processing, and query database
schema. DBMSs often have well-de�ned interfaces for these
operations, so it is convenient for users to adoptDynSQLin
different DBMSs. In our experience, it took one of our authors
less than one hour to make DynSQL support a DBMS.
SQL statement generation. We implement our AST-based
statement generator referring to SQLsmith [43], and addition-
ally support some SQL features, such asGROUP BY, UNION,
etc. Because many DBMSs use their own SQL dialects and
the common core of their SQL features is small [37,39], it is
dif�cult to use one grammar template to test all DBMSs effec-
tively. To address this problem, we �x the general parts of the
supported SQL features according to SQL standard [40] and
make other parts optional. When testing a speci�c DBMS, we
enable the optional SQL features supported by this DBMS
according to its of�cial documents.
Bug detection. DynSQLuses ASan [3] as its default checker
to detect critical memory bugs. In addition,DynSQLanalyzes
the abnormal errors collected in dynamic query interaction
(Section 3.1) to detect bugs that lead DBMSs to report strange
error messages.
Query minimization. To reproduce and locate DBMS bugs
more conveniently, we perform minimization for each gener-
ated query that triggers a new bug. Our minimization process
mainly refers to APOLLO [18] and C-Reduce [33]. In some
cases, developers help us further minimize the bug-triggering
queries with their professional knowledge.



Table 2: Basic information of the target DBMSs

DBMS Mode Version LOC

SQLite Serverless v3.33.0 165K
MySQL Client/Server v8.0.22 3.25M
MariaDB Client/Server v10.5.9 3.45M
PostgreSQL Client/Server v13.2 1.05M
MonetDB Client/Server Oct2020_17 307K
ClickHouse Client/Server v21.5.6.6 640K

5 Evaluation

To understand the effectiveness ofDynSQL, we evaluate it
on real-world and production-level DBMSs. Speci�cally, our
evaluation aims to answer the following questions:
Q1 CanDynSQL�nd bugs in real-world DBMSs by gener-

ating complex and valid queries? (Section 5.2)
Q2 How about the security impact of the bugs found by

DynSQL? (Section 5.3)
Q3 How do dynamic query interaction and error feedback

contribute to DynSQL in DBMS fuzzing? (Section 5.4)
Q4 CanDynSQLoutperform other state-of-the-art DBMS

fuzzers? (Section 5.5)

5.1 Experimental Setup

We evaluateDynSQL on 6 open-source and widely-used
DBMSs of the latest versions as of our evaluation, including
SQLite [42], MySQL [29], MariaDB [27], PostgreSQL [31],
MonetDB [28], and ClickHouse [9]. We choose these DBMSs
because they are widely used according to DB-Engines Rank-
ing [12] and extensively tested [18,24,41,43,48]. The basic
information of these DBMSs is listed in Table 2 (The lines
of the source code are counted by CLOC [10]). We run the
evaluation on a regular PC with eight Intel processors and
16GB physical memory, and the OS used is Ubuntu 18.04.

5.2 Runtime Testing

Following the evaluation setup of SQUIRREL [48] and the
recommendations of Klees et al. [21], we useDynSQL to
fuzz each target DBMS �ve times and calculate the average
to get sound results. We use 24 hours as the fuzzing timeout
because we observe that the branch coverage and the found
bugs of 6 target DBMSs converge and hardly change after 24
hours, which is consistent with SQUIRREL.

Table 3 shows the results of runtime testing. The columns
"Found", "Con�rmed" and "Fixed" show the number of bugs
that are found byDynSQL, con�rmed and �xed by developers,
respectively. The columns "Statement" and "Query" show the
numbers of SQL statements and queries, respectively, which
are valid and generated (valid/generated).
Generated queries and statements.DynSQLgenerates 101K
SQL queries, and 79K of them are valid. The percentage of
valid queries is 78%. These generated queries contain 866K

Table 3: Detailed results of DBMS fuzzing

DBMS
Bug Validity

Found Con�rmed Fixed Statement Query

SQLite 4 3 3 279K/286K 24K/30K
MySQL 12 12 6 91K/96K 9.4K/13K
MariaDB 13 13 6 170K/175K 17K/21K
PostgreSQL 0 0 0 154K/160K 14K/18K
MonetDB 5 5 5 70K/72K 7.0K/8.6K
ClickHouse 6 5 1 74K/77K 7.5K/10K

Total 40 38 21 838K/866K 79K/101K

Figure 7: Number of SQL statements that trigger DBMS bugs.

SQL statements, and 838K of them are valid. The percentage
of valid statements is 97%. The average number of statements
contained by each valid query is 8.6. These results indicate
thatDynSQLcan effectively generate valid queries that con-
tain multiple statements. We investigate the invalid statements,
and �nd that they fail to pass validation checks as they use
complex expressions, whose results dissatisfy the constraints
of their data type or the integrity constraints of the databases.
Found bugs.DynSQL�nds 40 unique bugs, including 4 in
SQLite, 12 in MySQL, 13 in MariaDB, 5 in MonetDB, and
6 in ClickHouse. Among these bugs, 31 are memory bugs,
and 9 are semantic bugs that cause DBMSs to report strange
errors. The details of these bugs are discussed in Section 5.3.
We reported these bugs to related developers. Among them,
38 bugs have been con�rmed, 21 bugs have been �xed, and
19 have been assigned CVE IDs. For the 17 un�xed bugs (e.g.
two heap-buffer-over�ow bugs in MySQL), the developers
have not �gured out exact root causes due to the complex logic
of DBMSs, or they have not built proper �xing patches that
do not degrade DBMS performance. For the 2 uncon�rmed
bugs, we are still waiting for the response from developers.
Statements in bug-triggering queries.We analyze the num-
ber of statements in the queries triggering DBMS bugs. Note
that all the analyzed queries have been simpli�ed. The re-
sults in Figure 7 indicate that only 2 bugs can be triggered by
using 1 statement. These 2 bugs are triggered by aSELECT
statement and aCREATE TABLEstatement, respectively. 19
bugs can be triggered using queries with 2 statements. These
queries all use aCREATE TABLEstatement and aSELECTstate-
ment. For the 19 remaining bugs, the bug-triggering queries
contain at least 3 statements. These queries often use different
kinds of statements with various SQL features. Listings 1-6
of Appendix A show some examples of these queries.



Figure 8: Bytes of SQL queries that trigger DBMS bugs.

Figure 9: Percentage of queries including speci�c statements
that trigger DBMS bugs.

Size of bug-triggering queries.Figure 8 shows the size of the
bug-triggering queries. Among the 40 found bugs, 35 bugs are
triggered by queries whose sizes are smaller than 1000 bytes.
As query size increases from 0 to 600 bytes, the number of
triggered bugs increases almost linearly. When query size
increases up to 600 bytes, 30 bugs are found. The queries in
Listing 1-4 of Appendix A are the examples. When query size
increases from 600 to 1000 bytes, only 5 additional bugs (e.g.
Listing 6 of Appendix A) are found. For the 5 remaining bugs
(e.g. Listing 5 of Appendix A), their bug-triggering queries
are very complex and hard to simplify. The biggest query is
over 300K bytes, triggering an integer over�ow in MariaDB.
Validity of bug-triggering queries.We tried to check the va-
lidity of all 40 bug-triggering queries, but they caused DBMSs
to abnormally abort due to ASan alerts (for the 31 memory
bugs) or strange errors (for the 9 semantic bugs), and thus we
cannot clearly perform validity checking. Therefore, we focus
on the queries triggering the 21 �xed bugs. We �rst apply
the developers' patches to �x corresponding bugs and then
check whether these queries work normally. We �nd that all
these queries are valid, without syntactic or semantic errors.
Indeed, many of these bugs are related to the deep logic of
query processing, and thus they are never triggered by invalid
queries discarded by earlier validation checks.
Statement distribution of bug-triggering queries.Figure 9
shows the statement distribution of the 40 bug-triggering
queries. TheCREATE TABLEandSELECTstatements are the
most common statements in these queries. In most cases, the
CREATE TABLEstatement is used to create a basic table for
the subsequent statements to access and manipulate, and thus
most generated queries contain this statement. The majority
(32/34) ofSELECTstatements are used as the last statements

Figure 10: Integer over�ow in MariaDB.

in the queries, which trigger 80% of the found bugs. The re-
maining bugs are triggered byCREATE TABLE(10%),ALTER
(2.5%),DROP(2.5%),UPDATE(2.5%) andDELETE(2.5%)
statements, respectively. TheINSERT, ALTERand CREATE
VIEWstatements are often used as intermediate statements
that cause DBMSs into speci�c states tending to trigger bugs.

5.3 Security Impact

We classify the 40 found bugs by their security impact, and
show the results in Table 4. 18 bugs found byDynSQL
are null-pointer dereferences that can be exploited to per-
form denial-of-service (DoS) attacks by repeatedly crashing
DBMSs. DynSQL �nds 7 critical memory bugs, including
2 use-after-free bugs, 2 stack-buffer-over�ow bugs, 2 heap-
buffer-over�ow bugs, and 1 integer-over�ow bug. These 7
bugs can cause severe security problems like privilege esca-
lation and information leaks.DynSQLalso �nds 6 assertion
failures, indicating target DBMSs reach unexpected states. By
analyzing abnormal error reports,DynSQLadditionally �nds
9 semantic bugs. Among these 40 bugs, 19 have been assigned
with CVE IDs. The details of these CVEs are shown in Ta-
ble 8 of Appendix B. To better understand the security impact
of bugs found byDynSQL, we explain three con�rmed bugs:
Case study 1: integer over�ow in MariaDB.This bug is iden-
ti�ed as a critical vulnerability and was assigned CVE-2021-
46667. It allows attackers to write and read arbitrary data
in the memory space. By exploiting this bug, attackers can
overwrite the data of other users, escalate their privileges and
even perform remote code execution (RCE). The related code
of this bug is shown in Figure 10. The MariaDB server cal-
culates the number of items in aSELECTstatement and then
stores the result in an unsigned integern_elems. After that,



Table 4: Types of the found bugs

Bug type SQLite MySQL MariaDB PostgreSQL MonetDB ClickHouse Total

Null-pointer dereference 0 8 9 0 1 0 18
Use-after-free 0 0 2 0 0 0 2
Stack buffer over�ow 1 1 0 0 0 0 2
Heap buffer over�ow 0 2 0 0 0 0 2
Integer over�ow 0 0 1 0 0 0 1
Assertion failure 1 0 1 0 3 1 6
Abnormal error 2 1 0 0 2 5 9

Figure 11: Use after free in MariaDB.

the server usesn_elemsas a parameter to allocate a memory
array that is later used to store and fetch items in theSELECT
statement. However, if the processedSELECTstatement has
speci�c complex structures, the calculated result of its items
may be greater than the maximum value (i.e.232 � 1 in Linux
64 bit) ofn_elems. As a result, an integer over�ow happens in
n_elemsthat can become very small. In this case, the server
allocates a memory area ofarray that is much smaller than
needed. When the server stores or fetches items inarray with
big indexes, a heap buffer over�ow will be further triggered,
and attackers can exploit it to write or read arbitrary data in
the memory space. This bug is actually hard to �nd.DynSQL
uses aSELECTstatement larger than 300K bytes to trigger the
integer over�ow ofn_elems. To �x this bug, the developers
usesize_t to de�ne n_elemsin order to increase its max-
imum value (264 � 1 in Linux 64 bit). The developers also
insert an assertion to prevent the integer over�ow.
Case study 2: use after free in MariaDB.This bug is caused
by misusing rollback mechanism and was assigned CVE-
2021-46669. When processing a statement, the MariaDB
server stores each change caused by this statement into a
list and deletes the changes if the statement is processed suc-
cessfully. At subsequent stages, the server checks the change
list. If the list is not empty, indicating a failure of statement
execution, the server rolls back the changes. When processing
a speci�c query generated byDynSQL, the server frees the
content of changes but forgets to delete these changes in the
list, which triggers the rollback mechanism, causing the freed
changes in the list to be dereferenced. Figure 11 shows the
code where the bug is triggered. This bug can be exploited to
overwrite the data in arbitrary addresses with the freed data.
Case study 3: missing subquery result in MonetDB.This
bug is found due to capturing abnormal errors collected in
dynamic query interaction. The bug-triggering query contains

a CREATE TABLEstatement and aSELECTstatement with a
CTE. When the bug is triggered, the MonetDB server reports
an error message that indicates "Subquery result missing".
Literally, this error is not a syntactic or semantic error caused
by invalid queries. We report it as a bug that affects the avail-
ability of supported SQL features. The MonetDB developers
con�rmed that this bug was caused by incorrect optimization
and �xed it by modifying optimization-related code.

5.4 Sensitivity Analysis

To understand the contribution of dynamic query interaction
and error feedback, we perform sensitivity analysis by dis-
abling these techniques. Speci�cally, we designDynSQL!DQI ,
DynSQL!EF andDynSQL!DQI

!EF . In DynSQL!DQI , we disable
only dynamic query interaction; inDynSQL!EF, we disable
only error feedback; inDynSQL!DQI

!EF , we disable both dy-
namic query interaction and error feedback. In the cases of
disabling dynamic query interaction, because our statement
generator relies on database schema to work, we provide the
schema only when the �rst table is created, and do not update
the schema in subsequent statement generation. We evalu-
ateDynSQL!DQI , DynSQL!EF andDynSQL!DQI

!EF on the six
DBMSs in Table 2. Similar to Section 5.2, we use each fuzzer
to test each DBMS �ve times and set the time limit of each
fuzzing to 24 hours. Table 5 shows the average results. In Ta-
ble 5, the columns "Statement" and "Query" show the number
of SQL statements and queries, respectively, which are valid
and generated (valid/generated).
Validity of queries and statements.The percentages of valid
statements and queries generated byDynSQL!DQI

!EF are only
62% and 36%, respectively. By enabling error feedback (i.e.
DynSQL!DQI), these percentages are increased to 71% and
55%, respectively. It indicates that error feedback can improve
the validity of generated statements and queries by �ltering
out invalid seeds in the fuzzing process. By enabling dynamic
query interaction (i.e.DynSQL!EF), the percentages of valid
statements and queries are dramatically increased to 95%
and 68%, respectively, because dynamic query interaction
involves state information (i.e. the latest database schema and
status of statement processing) to boost query generation. By
enabling both dynamic query interaction and error feedback
(i.e.DynSQL), the percentages of valid statements and queries
are increased to 97% and 78%, respectively.


	Introduction
	Background and Motivation
	Stateful DBMS Fuzzing
	Dynamic Query Interaction
	Error Feedback

	Framework and Implementation
	Evaluation
	Experimental Setup
	Runtime Testing
	Security Impact
	Sensitivity Analysis
	Comparison to Existing DBMS Fuzzers

	Limitations and Future Work
	Related Work
	DBMS Testing
	Fuzzing

	Conclusion
	Examples of Bug-Triggering Queries
	CVE details

