DynSQL: Stateful Fuzzing for Database Management Systems with
Complex and Valid SQL Query Generation

Zu-Ming Jiang Jia-Ju Bai Zhendong Su
ETH Zurich Tsinghua University ETH Zurich
Abstract Fuzzing is a promising technique for bug detection [2,4, 15,

Database management systems (DBMSs) are essential parts
of modern software. To ensure the security of DBMSs, recent
approaches apply fuzzing to testing DBMSs by automatically
generating SQL queries. However, existing DBMS fuzzers
are limited in generating complex and valid queries, as they
heavily rely on their predefined grammar models and fixed
knowledge about DBMSs, but do not capture DBMS-specific
state information. As a result, these approaches miss many
deep bugs in DBMSs.

In this paper, we propose a novel stateful fuzzing approach
to effectively test DBMSs and find deep bugs. Our basic idea
is that after DBMSs process each SQL statement, there is
useful state information that can be dynamically collected to
facilitate later query generation. Based on this idea, our ap-
proach performs dynamic query interaction to incrementally
generate complex and valid SQL queries, using the captured
state information. To further improve the validity of generated
queries, our approach uses the error status of query processing
to filter out invalid test cases. We implement our approach
as a fully automatic fuzzing framework, DynSQL. DynSQL
is evaluated on 6 widely-used DBMSs (including SQLite,
MySQL, MariaDB, PostgreSQL, MonetDB, and ClickHouse)
and finds 40 unique bugs. Among these bugs, 38 have been
confirmed, 21 have been fixed, and 19 have been assigned
with CVE IDs. In our evaluation, DynSQL outperforms other
state-of-the-art DBMS fuzzers, achieving 41% higher code
coverage and finding many bugs missed by other fuzzers.

1 Introduction

Database management systems (DBMSs) play essential roles
in modern data-intensive applications [13,22,44], providing
fundamental functionalities of data storage and management.
Due to the large code size and complex logic of DBMSs,
bugs are inevitably introduced during development and main-
tenance. By exploiting DBMS bugs, attackers can introduce
malicious threats of paralyzing the system [1, 5, 7] or even
hacking secret data [14,46].

17,26,30,47], and it is applied to testing DBMSs [18,43,45,
48] by generating SQL (Structured Query Language) queries
that contain a series of SQL statements [48]. Specifically,
some fuzzers [18,43] utilize well-defined rules to randomly
generate SQL queries, feed these queries to target DBMSs,
and check whether bugs are triggered. To improve bug detec-
tion in DBMSs, several approaches [45, 48] further involve
feedback mechanisms. After the execution of each test case,
they collect the runtime information (e.g. code coverage) of
target DBMSs and check whether interesting behavior (e.g.
covering new branches) occurs. If so, the test case will be
stored as a seed for later test-case generation.

However, existing DBMS fuzzers are still limited in gener-
ating complex and valid queries to find deep bugs in DBMSs.
In general, a complex query contains multiple SQL statements
that involve various SQL features (e.g. multi-level nested sub-
queries), while a valid query satisfies the dependencies among
its statements (e.g., a subsequent statement references the el-
ements defined in an earlier statement) and guarantees both
syntactic and semantic correctness. Existing DBMS fuzzers
always make a trade-off between complexity and validity of
generated queries. For example, SQLsmith [43] generates
only one statement in each query, avoiding the analysis of
dependencies among statements, which sacrifices complexity
for validity; SQUIRREL [48] uses an intermediate represen-
tation (IR) model to infer dependencies and generate queries
that contain multiple statements, but it produces over 50%
invalid queries and tends to generate simple statements.

The contradiction between query complexity and query va-
lidity occurs because existing DBMS fuzzers heavily rely on
their predefined grammar models and fixed knowledge about
DBMSs, but do not capture runtime state information. They
either neglect state changes (e.g. SQLsmith [43]), or statically
infer the corresponding states (e.g. SQUIRREL [48]) but suf-
fer from soundness and completeness issues. Without accurate
state information, these fuzzers tend to build incorrect depen-
dencies among statements or misuse SQL features, causing
many invalid queries to be generated. To generate valid test

Table 1: Conceptual comparison of DBMS fuzzers

Features SQLsmith SQUIRREL DynSQL
Stateful Fuzzing None Partial Full

Query Generation Static Static Dynamic
Program Feedback None Code Cov Code Cov+Error
Query Validity High Middle High

Statement Number One Multiple Multiple
Statement Complexity High Low High

cases, these fuzzers have to limit the complexity of generated
queries to tolerate their inaccurate state information.

In fact, DBMSs process each query statement by statement,
and the states of manipulated databases change after each
statement is executed. In the interval of statement process-
ing, DBMS-specific state information, including the latest
database schema and status of statement processing, is avail-
able. However, existing DBMS fuzzers fail to capture such
information, as their query generation is finished before query
execution. To solve this problem, we propose a novel state-
ful fuzzing approach to perform dynamic query interaction
that merges query generation and query execution. This ap-
proach feeds each generated statement to the target DBMS
and then dynamically interacts with the DBMS to collect the
latest state information after the statement is executed. The
collected state information is used to guide the generation
of subsequent statements. Benefiting from dynamic query
interaction, our fuzzing approach transforms the complicated
process of query generation into several simple and indepen-
dent processes of statement generation, and thus can generate
complex and valid SQL queries effectively.

In addition, to further improve the validity of the gener-
ated queries, our fuzzing approach uses error feedback to
guide test-case generation with code coverage. It collects the
information on query execution and observes whether the
generated queries pass syntactic and semantic checks of the
target DBMS. If the generated queries trigger any syntactic or
semantic error, these queries are identified to be invalid and
are discarded directly. By using error feedback, our fuzzing
approach guarantees that all selected seeds are valid, which is
useful to generate valid test cases in subsequent mutations.

We implement our approach as a stateful DBMS fuzzing
framework, DynSQL. Table 1 concludes the conceptual dif-
ferences between DynSQL and two state-of-the-art DBMS
fuzzers, according to their design and our evaluation results.
Both DynSQL and SQUIRREL are aware of the state changes
caused by generated statements. However, SQUIRREL tends
to infer incorrect state information when it processes the se-
mantics of complex statements. DynSQL addresses these
problems by dynamically capturing the latest state informa-
tion for query generation. Besides the feedback of code cover-
age used by SQUIRREL, DynSQL also uses error information
to improve the validity of generated queries. Benefiting from
these improvements, DynSQL can effectively generate valid
queries containing multiple complex statements.

Overall, we make the following technical contributions:

* We propose a novel stateful fuzzing approach to address
the limitations of existing DBMS fuzzers. Our approach
performs dynamic query interaction that merges query gen-
eration and query execution to effectively generate complex
and valid SQL queries. In addition, it uses error feedback
to improve the validity of the generated queries.

* Based on our approach, we implement DynSQL, a practical
DBMS fuzzing framework that automatically detects deep
bugs in DBMSs, by generating complex and valid queries.

* We evaluate DynSQL on 6 widely-used DBMSs, includ-
ing SQLite, MySQL, MariaDB, PostgreSQL, MonetDB,
and ClickHouse. DynSQL finds 40 unique bugs among
which 38 have been confirmed, 21 have been fixed, and
19 have been assigned CVE IDs. We compare DynSQL to
state-of-the-art DBMS fuzzers, including SQLsmith and
SQUIRREL. Owing to its effectiveness in generating com-
plex and valid SQL queries, DynSQL achieves 41% higher
code coverage and finds many bugs missed by other fuzzers.

2 Background and Motivation

In this section, we first introduce how DBMSs process SQL
queries in brief, then illustrate the difficulty of generating
complex and valid queries, and finally reveal the limitations
of existing DBMS fuzzers.

SQL processing in DBMS. SQL queries are designed to per-
form the communication between users and DBMSs. To man-
age data, users often integrate multiple SQL statements (e.g.,
SELECT statement) into a query, and then send the query to
the DBMS, which manipulates databases. After receiving a
query, the DBMS first decomposes it into several statements
and then processes the statements in sequence.

DBMSs generally process each statement in four phases:
parsing, optimization, evaluation, and execution [38]. In the
parsing phase, DBMSs first check the syntactic correctness of
the statement according to their predefined grammar rules and
then check the semantic correctness according to the current
database schema. If any syntactic or semantic check fails, the
statement is discarded directly, and the whole query process-
ing may be terminated. In the later phases, DBMSs optimize
the low-level expression of the statement and generate several
possible execution plans. Then, DBMSs evaluate the cost of
each execution plan and finally execute the most efficient plan.
After the statement is executed, DBMSs update the states in-
cluding database schema and the execution status, and then
DBMSs process the following statement in the query.

Query generation. On the one hand, DBMS fuzzers should
guarantee both syntactic and semantic correctness of the gen-
erated queries, so that these queries can pass validation checks
without being discarded in earlier stages. However, doing so
is difficult, as DBMS fuzzers not only need to obey specific
SQL features and grammars, but also have to analyze possible

CREATE TABLE t1 (fL INTEGERY; Limitations of existing DBMS fuzzersExisting DBMS

1

2 |CREATE VIEW vl AS fuzzers are limited in generating complex and valid SQL

3 SELECT subg_0.c4 AS c2, subg_0.c4 AS c4 gueries (e.g. the malicious query in Figure 1), because they
;‘ FROSNI'_:L(ECT ref O.f1 AS o4 cannot accurately capture the DBMS state changes caused
6 FROM t1 AS 'ref_o by generated statements. Instead, they either generate only
7 WHERE (SELECT 1) one complex statement in each query to avoid the analysis of
8) AS subq 0 state changes [18, 43], or combine multiple relatively simple

9 ORDER BY ¢2, c4 DESC; .

10 |WITH cte 0 AS (statements where the state changes can be easily inferred [48].
11 SELECT subg_0.c4 as c6 SQLsmith [43], a popular grammar-based DBMS fuzzer,
12 FROM (can generate complex SQL statements using its well-de ned
13 SELECT 11 AS ¢4 abstract syntax tree (AST) rules; but it is stateless without con-
14 FROM v1 AS ref 0 . . .

15) AS subg_0 - sidering state changes caused by its generated statements, as a
16 CROSS JOIN v1 AS ref_2) result of which it cannot build the dependencies among multi-
17 | SELECT 1, ple statements and thus generates only one statement in each

; . . ; guery. Using an intermediate representation (IR) to maintain
Figure 1: A malicious query that crashes the MariaDB server. query structures, SQUIRREL [48] is aware of state changes
DBMS state changes caused by the generated statements so £&used by its generated statements. It considers various SQL
to precisely build statement dependencies and correctly referféatures and maintains the scopes and lives of multiple vari-
ence attributes. On the other hand, to explore infrequent states2P!€s in statements, causing its IR mechanism to be compli-
DBMS fuzzers should generate complex SQL queries to trig- cated and error-prone when inferring state changes caused
ger deep logic of optimization, evaluation, and execution in PY complex statements. To mitigate this impact, SQUIR-
DBMSs. However, increasing query complexity signi cantly REL tends to generate simple statements in queries. Even
increases the dif culty of guaranteeing query validity. Thus, S0 SQUIRREL still generates over 50% invalid queries [48].
it is important but very challenging to generate both complex ~ Withoutaccurate DBMS state information, existing fuzzers
and valid SQL queries to detect deep bugs in DBMSs. are I.|m|ted in generating cqmplex and valid queries to ex-

Figure 1 shows a malicious query that crashes the Mari-tensively test DBM_SS, causing many de_zep bugs to still exist.
aDB server and enables denial-of-service (DoS) attacks. This ! N€refore, proposing a practical solution to address these
vulnerability affects a wide range of versions (10.2-10.5) of lImitations is necessary and important for DBMS fuzzing.
the MariaDB server and has existed for over 5 years until
DynSQL found it. The query triggering this bug has been 3 Stateful DBMS Fuzzing
simpli ed by us and developers, and it is considered as the
minimal test case. However, this query is still complex in DBMSs process each statement of queries in sequence. Af-
structures and semantics. It contains three SQL statementser each statement is executed, the content of manipulated
The rstone is a simpl€REATE TABdtBtementthat creates databases and the status of DBMSs are dynamically changed.
atabletl . The second statement iCREATE VIE@Etement In the interval between two statement execution, DBMSs
that involves three-level nested sBELECStatements to cre- record their latest state information, which accurately re ects
ate a view1. The sub statement at the rst level uses a sub their real-time situations, including the latest database schema
SELECTStatement in it ROMlause. The sub statement at and the status of statement processing. The state information
the second level references the created tiblend uses a is valuable for guiding query generation. However, such in-
sub SELECBtatement again in it8HER&8ause. The last formation is available only after each statement is executed,
statement in the query is a sSim@&LECStatement with a so existing DBMS fuzzers cannot capture it, because they
complexCOMMON TABLE EXPREEI®WNhe CTEUses perform static query generation before query execution.

a two-level sulSELECStatement. The sub statement atthe To solve this problem, we propose a novel stateful fuzzing
rst level uses a sulsELECStatement in it§ROMNlause, and approach, which captures accurate state information by dy-
it is joined with the created viewl that is referenced again namically interacting with target DBMSs, not statically in-
in the subSELECS$tatement at the second level. ferring state changes. Figure 2 shows the overview of our

In fact, generating this query is dif cult in DBMS fuzzing. approach. Its core dynamic query interactigrwhich merges
First, this query contains multiple statements that causequery generation and query execution into an interactive pro-
DBMS state changes. Fuzzers need to capture such changesess. During the interaction, our approach continuously cap-
so that the subsequent statements can correctly reference thires the latest DBMS states to incrementally generate com-
elements built by the earlier statements. Second, these statglex and valid queries where dependencies among statements

ments utilize various SQL features, such as SiiEC3tate-
ment,CTECROSS JQlbtc, which make it hard for fuzzers
to accurately infer possible state changes.

are satis ed with correct data references. To further improve
the validity of generated queries, our approach utilzesr
feedbacko Iter out invalid test cases in the seed pool.

Algorithm 1. Dynamic Query Interaction
input : le, DBMS
output: query, cov, status
1 Function Scheduler(le, DBMS):
le_size GetFileSize(le);
DBMS INITIAL_STATE;
rb O;query [J;cov {}
for rb < le_sizedo
schema QueryDBMSBMS);
stmt, rb Translator(schema, le, r;
query [query, stnit
status, cov ExeStmt(stmt, DBM$;
if CheckStatus(status, query then
| break;
return query, cov, statys
unction Translator(schema, le, rf):
tmp_le le[rb, GetFileSize(le) - 1];
StmtGenerator.RandomSourcefmp_le) ;
stmt, tmp_rb StmtGenerator.Gen(schema,;
return stmt, rb + tmp_rb

© o N o O A W N

PR R R B R =
I T N TR O S
T

. . . 18 Function CheckStatus(status, query:
Figure 2: Overview of stateful DBMS fuzzing. 19 if status ==CRASH then
20 ‘ ReportCrash(query);
. . 21 return TRUE;
3.1 Dynamic Query Interaction 5 | if status? ERROR then

23 if statusZ SynErr and status SemErr then

Overview Before generating each statement, dynamic query ,, | ReportAbnormalError(query);

interaction rst queries the target DBMS to capture state 2s return TRUE;

information, including database schema and status of state return FALSE;

ment processing. Then, this technique uses such information

to generate a statement and feeds it to the DBMS. After the

statement is executed, this technique interacts with the DBMSto the target DBMS. After the DBMS processes the statement,

again for the latest state information and uses it to generateScheduler collects the covered branches iy, and checks

subsequent statements. In this way, dynamic query interactionthe statusof statement processing. If tlstatusindicates that

can accurately capture the state changes caused by the exa-crash or an error is triggereScheduler exits the loop.

cuted statements, and thus it can effectively generate complexhen the loop endScheduler returns the generategliery,

and valid queries. the code coverageovof the DBMS execution, and the nal
Dynamic query interaction mainly consists of two parts, statusof the query processing.

Scheduler andTranslator . Scheduler is used to interact Translator. Receiving the parameters froi@cheduler,

with the target DBMS to capture the latest DBMS states, Translator rst extracts the fresh part ofe , which has

transfer the database schem&tanslator , and manage the not been read yet, intonp_ le. Translator uses an internal

whole interaction proces3ranslator is used to translate SQL statement generatB8tmtGenerator to generate a state-

an input le into an SQL statement based on the received ment according to the providetthemandtmp__le. Finally,

database schema. The work ow of dynamic query interaction Translator returns the generated statemsimitand updates

is described in Algorithm 1. Given an input le and the tar- the number of bytes that have been reakmtGenerator.

get DBMS, dynamic query interaction outputs the generated The internalStmtGenerator deploys AST models to gen-

query, the code coverage of the target DBMS, and the statuserate SQL statements. Typically, AST-based tools [39, 41, 43]

of query processing. The following discusses the details of generate random SQL statements according to their random

dynamic query interaction. seed (e.g. system clock), which makes the generation inef -

Scheduler First, Scheduler initializes the used variables, cient and dif cult to guide [30, 32]. In contrast to these tools,

including le_sizeof the input le, the target DBMS, the read StmtGenerator usestmp__le as its random seed, which

bytesrb, thequery, and the coverageov. Then,Scheduler means that wheBtmtGenerator traverses its AST tree to

enters a loop, which will end if all bytes in the input e generate SQL statements, it decides which paths should be

have been read. In this lodpcheduler rstqueriesthetarget chosen according to the value read fronp__le. Speci cally,

DBMS to obtain its latest database schema (e.g. the attributest makes a decision by calculating the resulvafiodn, where

of tables, columns, views, indexes) and then sends the queried is the value read from the input le andis the number of

schemathe le, and read bytesb to Translator , which available choices. In this wagtmtGenerator determinis-

will return a generated statemestmtand the updatedb. tically generates SQL statements according to the provided

Scheduler storesstmtto the end of thgueryand feedstmt input le le and the current database schesnhema

Figure 3: Generating the third SQL statement in Figure 1.

Figure 3 shows the generation process of the third state-
ment in Figure 1. After receiving the fresh part of the input Figure 4: Dynamic query interaction for the query in Figure 1.
le from Translator , StmtGenerator starts traversing its
AST model to generate a SQL statement. When it needs tothe target DBMS (i.e. MariaDB) to obtain its database schema.
determine the type of the statement, it reads a byte from theThe schema is empty as no statement has been processed yet.
le and gets value 5, which indicates that it should generate a Scheduler sends the empty schemaTeaanslator . Then,
SELECStatement wittCTEThen,StmtGenerator reads the ~ Translator traverses its AST model and generat€&REATE
le again and gets value 1, which indicates that it should use TABLEstatement according to the read value from the le.
CROSS JOtN construcCTEIt needs to further determine Scheduler feeds the statement to the DBMS and collects
the right table and the left table used@ROSS JQIEnd the code coverage and the status of statement processing. As
decides to use existing tables or views for the right table after there is no crash or errdgcheduler enters the next round
getting the value 3 from the le. As there are two available of interaction. In the second roun8Bicheduler queries the
candidates (i.e. tabld. and viewvl), StmtGenerator reads DBMS for the latest schema again and then sends the schema
the le and gets value 9. According to the calculated result to Translator . AstheCREATE TABitBtement has been ex-
of 9 mod 2, it uses the second candidate (i.e. wé)v The ecuted, the schema contains a created tdhl@ranslator
subsequent generation process follows a similar procedure. rst removes the part of the le that has been read and then
Status checkingScheduler checks the execution status af- uses the processed le to generate a new statement, according
ter each statement is fed to the target DBMS. Speci cally, to the updated schema. It reads some bytes from the le and
Scheduler checks whether any crash of the DBMS or its generates €REATE VIBftement, which references the ta-
manipulated databases is triggered. If so, it reports the crasholetl. The generated statement is fed to the DBMS again and
with the query, including the crash-triggering statement and is processed normally, sScheduler enters the third round.
the earlier statements generated in the previous interactionln the third roundScheduler queries the DBMS and gets the
Similar to SQLancer [37]Scheduler also checks whether latest schema that is extended with a vielacontaining two
the target DBMS reports any error. If so, it performs a fur- columnsc2 andc4. This schema is sent firanslator , and
ther check and reports an abnormal error if the error is not Translator accordingly generates2ELECStatement with
a syntactic or semantic error. For example, "Subquery resultCTEwhere the view1 in the schema is referenced. When
missing" in MonetDB is an abnormal error that indicates the Scheduler feeds the generated statement to the DBMS, a
DBMS has lost the data of calculated results. These checkscrash is triggered, sBcheduler terminates the interaction
enable our dynamic query interaction to report suspicious and reports a bug with the bug-triggering query that contains
bugs that make the target DBMS alert but do not cause it to the 3 generated statements.
crash directly. Note that if any crash or any error is triggered,
Scheduler will terminate the interaction loop because the
target DBMS has entered a problematic state. 3.2 Error Feedback
Example Figure 4 illustrates how our dynamic query interac- The input le of dynamic query interaction controls the pro-
tion generates the malicious query in Figure 1 and detects thecess of query generation. Proper les can guide the approach
vulnerability. When the test beginScheduler rst queries to generate complex and valid SQL queries, while useless

Figure 5: Work ow of error feedback.

les can result in repeated and trivial queries. Thus, our state-
ful DBMS fuzzing needs to produce effective input les.
Coverage-guided fuzzers [2, 6, 15, 26, 30] for general les
seem useful to achieve this goal, with the program feedback
of code coverage. In DBMS fuzzing, when an invalid query
triggers a new syntactic or semantic error, code coverage is in-
deed increased. In this case, existing coverage-guided fuzzers
save this invalid query into the seed pool, and use it as a,
seed to perform mutation for generating other similar queries.

Figure 6: Overall architecture of DynSQL.

Runtime analyzerlt analyzes the collected runtime infor-
mation, identi es seeds according to error feedback, and

However, these generated queries are very likely to trigger the
same syntactic or semantic error with the seed query, without.
increasing code coverage.

To tackle this problem and further improve the validity
of generated queries, we propayeor feedbacko Iter out
the input les of invalid queries in the seed pool. Figure 5
shows the work ow of error feedback. For each input le of
SQL query, our approach checks whether the query increases The following discusses the important details of DynSQL.
the code coverage during execution. If the query causes thd?BMS supporting DBMSs often provide interfaces for ex-
DBMS to cover new branches at runtime, our fuzzing ap- ternal programs to operate and query their databases. These
proach merges these branches into the global coverage. Fainterfaces are used iyynSQLto set up the testing process.
each input le of SQL query that increases the coverage, our Speci cally, DynSQL needs interfaces to start the DBMS,
approach further checks whether the query makes the targegonnect to the DBMS, stop the DBMS, send SQL state-
DBMS execute abnormally. If the DBMS reports any error, ments, get results of statement processing, and query database
the input le will be discarded for seed mutation. In this way, Schema. DBMSs often have well-de ned interfaces for these
our fuzzing approach guarantees that all the identi ed seedsoperations, so it is convenient for users to adophSQL in
can produce valid SQL queries when they are used as inputdifferent DBMSs. In our experience, it took one of our authors
les in dynamic query interaction. Using these valid seeds, less than one hour to make DynSQL support a DBMS.
our seed mutation achieves a high possibility of generating SQL statement generationWe implement our AST-based
valid queries during fuzzing. statement generator referring to SQLsmith [43], and addition-
ally support some SQL features, suchGROUP BYNION
etc. Because many DBMSs use their own SQL dialects and
the common core of their SQL features is small [37,39], itis
dif cult to use one grammar template to test all DBMSs effec-
Based on our stateful DBMS fuzzing approach, we develop tively. To address this problem, we x the general parts of the
a new fuzzing frameworkDynSQL, to detect deep bugs in supported SQL features according to SQL standard [40] and
DBMSs by generating complex and valid queriegnSQL make other parts optional. When testing a speci c DBMS, we
uses Clang [8] to compile and instrument target DBMSs for enable the optional SQL features supported by this DBMS
collecting coverage information. Figure 6 shows the architec- according to its of cial documents.
ture of DynSQL, which consists of six modules: Bug detection DynSQL uses ASan [3] as its default checker
+ Code instrumentorlt compiles and instruments the code to detect critical memory bugs. In additiddynSQLanalyzes

of the target DBMS, and generates an executable programthe abnormal errors collected in dynamic query interaction

that receives and processes SQL queries. (Section 3.1) to detect bugs that lead DBMSSs to report strange
* Query interactor.It receives input les from the le fuzzer error messages.

and performs dynamic query interaction to generate com-Query minimization To reproduce and locate DBMS bugs

plex and valid queries. It also collects necessary runtime more conveniently, we perform minimization for each gener-

information of the target DBMS for dynamic analysis. ated query that triggers a new bug. Our minimization process

» Statement generatolit uses an internal AST model to gen- mainly refers to APOLLO [18] and C-Reduce [33]. In some
erate syntactically correct SQL statements that only refer-cases, developers help us further minimize the bug-triggering
ence the data claimed in the given database schema. queries with their professional knowledge.

selects a seed for the next round of fuzzing.

File fuzzer.It performs conventional le fuzzing to generate
les based on the given seeds. We implement this module
by mainly referring to AFL [2].

« Bug checkerlt detects bugs based on the collected runtime
information and generates corresponding bug reports.

4 Framework and Implementation

Table 2: Basic information of the target DBMSs Table 3: Detailed results of DBMS fuzzing

DBMS Mode Version LOC DBMS Bug Validity
SQLite Serverless v3.33.0 165K Found Con rmed Fixed Statement Query
MySQL Client/Server ~ v8.0.22 3.25M :
MériSDB Client/Server ~ v10.5.9 3.45M SQLite 4 3 3 279K/286K 24K/30K
: MySQL 12 12 6 91K/96K 9.4K/13K
PostgreSQL Client/Server v13.2 1.05M >
f MariaDB 13 13 6 170K/175K 17K/21K
MonetDB Client/Server ~ Oct2020_17 307K
ClickHouse ~ Client/Server ~ v21.5.6.6 640K PostgreSQL 0 0 0 154K/160K 14K/18K
MonetDB 5 5 5 70K/72K 7.0K/8.6K
ClickHouse 6 5 1 T4KITTK 7.5K/10K

5 Evaluation Total 40 38 21 838K/866K 79K/101K

To understand the effectiveness@fnSQL, we evaluate it
on real-world and production-level DBMSs. Speci cally, our
evaluation aims to answer the following questions:
Q1 CanDynSQL nd bugs in real-world DBMSs by gener-

ating complex and valid queries? (Section 5.2)
Q2 How about the security impact of the bugs found by

DynSQL? (Section 5.3)
Q3 How do dynamic query interaction and error feedback

contribute to DynSQL in DBMS fuzzing? (Section 5.4) Figure 7: Number of SQL statements that trigger DBMS bugs.
Q4 CanDynSQL outperform other state-of-the-art DBMS

fuzzers? (Section 5.5) SQL statements, and 838K of them are valid. The percentage
of valid statements is 97%. The average number of statements
contained by each valid query is 8.6. These results indicate
thatDynSQL can effectively generate valid queries that con-
We evaluateDynSQL on 6 open-source and widely-used tain multiple statements. We investigate the invalid statements,
DBMSs of the latest versions as of our evaluation, including and nd that they fail to pass validation checks as they use
SQLite [42], MySQL [29], MariaDB [27], PostgreSQL [31], complex expressions, whose results dissatisfy the constraints
MonetDB [28], and ClickHouse [9]. We choose these DBMSs of their data type or the integrity constraints of the databases.
because they are widely used according to DB-Engines RankFound bugs.DynSQL nds 40 unique bugs, including 4 in
ing [12] and extensively tested [18,24,41, 43, 48]. The basic SQLite, 12 in MySQL, 13 in MariaDB, 5 in MonetDB, and
information of these DBMSs is listed in Table 2 (The lines 6 in ClickHouse. Among these bugs, 31 are memory bugs,
of the source code are counted by CLOC [10]). We run the and 9 are semantic bugs that cause DBMSs to report strange
evaluation on a regular PC with eight Intel processors and errors. The details of these bugs are discussed in Section 5.3.
16GB physical memory, and the OS used is Ubuntu 18.04. We reported these bugs to related developers. Among them,
38 bugs have been con rmed, 21 bugs have been xed, and
19 have been assigned CVE IDs. For the 17 un xed bugs (e.g.
two heap-buffer-over ow bugs in MySQL), the developers
Following the evaluation setup of SQUIRREL [48] and the have not gured out exact root causes due to the complex logic
recommendations of Klees et al. [21], we UI3gnSQL to of DBMSs, or they have not built proper xing patches that
fuzz each target DBMS ve times and calculate the average do not degrade DBMS performance. For the 2 uncon rmed
to get sound results. We use 24 hours as the fuzzing timeoutbugs, we are still waiting for the response from developers.
because we observe that the branch coverage and the foun8tatements in bug-triggering querie$Ve analyze the num-
bugs of 6 target DBMSs converge and hardly change after 24ber of statements in the queries triggering DBMS bugs. Note
hours, which is consistent with SQUIRREL. that all the analyzed queries have been simpli ed. The re-

Table 3 shows the results of runtime testing. The columns sults in Figure 7 indicate that only 2 bugs can be triggered by

"Found", "Con rmed" and "Fixed" show the number of bugs using 1 statement. These 2 bugs are triggered 8leECT
that are found b{pynSQL, con rmed and xed by developers, statement and EREATE TAB&tatement, respectively. 19
respectively. The columns "Statement" and "Query" show the bugs can be triggered using queries with 2 statements. These
numbers of SQL statements and queries, respectively, whichqueries all use EREATE TABitBtement and SELECState-
are valid and generated (valid/generated). ment. For the 19 remaining bugs, the bug-triggering queries
Generated queries and statemenBynSQLgenerates 101K contain at least 3 statements. These queries often use different
SQL queries, and 79K of them are valid. The percentage of kinds of statements with various SQL features. Listings 1-6
valid queries is 78%. These generated queries contain 866Kof Appendix A show some examples of these queries.

5.1 Experimental Setup

5.2 Runtime Testing

Figure 8: Bytes of SQL queries that trigger DBMS bugs.

Figure 9: Percentage of queries including speci ¢ statements Figure 10: Integer over ow in MariaDB.

that trigger DBMS bugs.
in the queries, which trigger 80% of the found bugs. The re-

Size of bug-triggering queriessigure 8 shows the size ofthe ~Maining bugs are triggered KYREATE TAB(IB%),ALTER
bug-triggering queries. Among the 40 found bugs, 35 bugs are (2-5%), DROR2.5%), UPDATE2.5%) andDELETHE2.5%)
triggered by queries whose sizes are smaller than 1000 bytesStatements, respectively. THNSERTALTERand CREATE

As query size increases from 0 to 600 bytes, the number of VIEWstatements are often used as intermediate statements
triggered bugs increases almost linearly. When query sjzethat cause DBMSs into speci ¢ states tending to trigger bugs.

increases up to 600 bytes, 30 bugs are found. The queries in

Listing 1-4 of Appendix A are the examples. When query size 5.3 Security Impact

increases from 600 to 1000 bytes, only 5 additional bugs (e.g.

Listing 6 of Appendix A) are found. For the 5 remaining bugs We classify the 40 found bugs by their security impact, and
(e.g. Listing 5 of Appendix A), their bug-triggering queries show the results in Table 4. 18 bugs found BynSQL

are very complex and hard to simplify. The biggest query is are null-pointer dereferences that can be exploited to per-
over 300K bytes, triggering an integer over ow in MariaDB. form denial-of-service (DoS) attacks by repeatedly crashing
Validity of bug-triggering queriesWe tried to check the va- DBMSs. DynSQL nds 7 critical memory bugs, including
lidity of all 40 bug-triggering queries, but they caused DBMSs 2 use-after-free bugs, 2 stack-buffer-over ow bugs, 2 heap-
to abnormally abort due to ASan alerts (for the 31 memory buffer-over ow bugs, and 1 integer-over ow bug. These 7
bugs) or strange errors (for the 9 semantic bugs), and thus webugs can cause severe security problems like privilege esca-
cannot clearly perform validity checking. Therefore, we focus lation and information leak®ynSQLalso nds 6 assertion

on the queries triggering the 21 xed bugs. We rst apply failures, indicating target DBMSs reach unexpected states. By
the developers' patches to x corresponding bugs and then analyzing abnormal error reporBynSQL additionally nds
check whether these queries work normally. We nd that all 9 semantic bugs. Among these 40 bugs, 19 have been assigned
these queries are valid, without syntactic or semantic errorswith CVE IDs. The details of these CVEs are shown in Ta-
Indeed, many of these bugs are related to the deep logic ofble 8 of Appendix B. To better understand the security impact
guery processing, and thus they are never triggered by invalidof bugs found byDynSQL, we explain three con rmed bugs:
queries discarded by earlier validation checks. Case study 1: integer over ow in MariaDBThis bug is iden-
Statement distribution of bug-triggering querieszigure 9 ti ed as a critical vulnerability and was assigned CVE-2021-
shows the statement distribution of the 40 bug-triggering 46667. It allows attackers to write and read arbitrary data
queries. TheCREATE TABaRJSELECS$tatements are the in the memory space. By exploiting this bug, attackers can
most common statements in these queries. In most cases, theverwrite the data of other users, escalate their privileges and
CREATE TABstatement is used to create a basic table for even perform remote code execution (RCE). The related code
the subsequent statements to access and manipulate, and thas this bug is shown in Figure 10. The MariaDB server cal-
most generated queries contain this statement. The majorityculates the number of items inSELECStatement and then
(32/34) of SELECStatements are used as the last statementsstores the result in an unsigned integeelems After that,

Table 4: Types of the found bugs

Bug type SQLite MySQL MariaDB PostgreSQL MonetDB ClickHouse Total

[e)

Null-pointer dereference
Use-after-free

Stack buffer over ow
Heap buffer over ow
Integer over ow
Assertion failure
Abnormal error

I\JHOOHOO
HOOI\)HOCO
orPFoOoN
ooOoooo
NMOOOOH
U‘II—\(DOO<3O
@@l—‘l\)r\z,\,l—'

a CREATE TABs&fatement and SELECSEtatement with a
CTEWhen the bug is triggered, the MonetDB server reports
an error message that indicates "Subquery result missing".
Literally, this error is not a syntactic or semantic error caused
by invalid queries. We report it as a bug that affects the avail-
ability of supported SQL features. The MonetDB developers
con rmed that this bug was caused by incorrect optimization
and xed it by modifying optimization-related code.

Figure 11: Use after free in MariaDB.

5.4 Sensitivity Analysis
the server uses_elemsas a parameter to allocate a memory
array thatis later used to store and fetch items in8®.ECT To understand the contribution of dynamic query interaction
statement. However, if the processlLEC$tatement has and error feedback, we perform sensitivity analysis by dis-
speci ¢ complex structures, the calculated result of its items abling these techniques. Speci cally, we desigynSQLpg),
may be greater than the maximum value @& 1 in Linux DynSQLer and DynSQL:gS'. In DynSQLpg, we disable
64 bit) ofn_elems As aresult, an integer over ow happensin only dynamic query interaction; iBP/nSQL;E,:, we disable
n_elemsthat can become very small. In this case, the server only error feedback; iDynSQLp2, we disable both dy-
allocates a memory area afray that is much smallerthan namic query interaction and error feedback. In the cases of
needed. When the server stores or fetches iteragay with disabling dynamic query interaction, because our statement
big indexes, a heap buffer over ow will be further triggered, generator relies on database schema to work, we provide the
and attackers can exploit it to write or read arbitrary data in schema only when the rst table is created, and do not update
the memory space. This bug is actually hard to BynSQL the schema in subsequent statement generation. We evalu-
uses SSELECStatement larger than 300K bytes to trigger the ate DynSQLpor, DynSQLer andDynSQLE?' on the six
integer over ow ofn_elems To x this bug, the developers DBMSs in Table 2. Similar to Section 5.2, we use each fuzzer
usesize_t to de ne n_elemsin order to increase its max- to test each DBMS ve times and set the time limit of each
imum value 2% 1 in Linux 64 bit). The developers also fuzzing to 24 hours. Table 5 shows the average results. In Ta-
insert an assertion to prevent the integer over ow. ble 5, the columns "Statement" and "Query" show the number
Case study 2: use after free in MariaDBlhis bug is caused of SQL statements and queries, respectively, which are valid
by misusing rollback mechanism and was assigned CVE-and generated (valid/generated).
2021-46669. When processing a statement, the MariaDBValidity of queries and statement3he percentaPes of valid
server stores each change caused by this statement into gtatements and queries generatedypSQL2e are only
list and deletes the changes if the statement is processed su62% and 36%, respectively. By enabling error feedback (i.e.
cessfully. At subsequent stages, the server checks the changBynSQLpq), these percentages are increased to 71% and
list. If the list is not empty, indicating a failure of statement 55%, respectively. Itindicates that error feedback can improve
execution, the server rolls back the changes. When processinghe validity of generated statements and queries by Itering
a speci c query generated iyynSQL, the server frees the out invalid seeds in the fuzzing process. By enabling dynamic
content of changes but forgets to delete these changes in thejuery interaction (i.eDynSQLgg), the percentages of valid
list, which triggers the rollback mechanism, causing the freed statements and queries are dramatically increased to 95%
changes in the list to be dereferenced. Figure 11 shows theand 68%, respectively, because dynamic query interaction
code where the bug is triggered. This bug can be exploited toinvolves state information (i.e. the latest database schema and
overwrite the data in arbitrary addresses with the freed data. status of statement processing) to boost query generation. By
Case study 3: missing subquery result in MonetDBhis enabling both dynamic query interaction and error feedback
bug is found due to capturing abnormal errors collected in (i.e. DynSQL), the percentages of valid statements and queries
dynamic query interaction. The bug-triggering query contains are increased to 97% and 78%, respectively.

	Introduction
	Background and Motivation
	Stateful DBMS Fuzzing
	Dynamic Query Interaction
	Error Feedback

	Framework and Implementation
	Evaluation
	Experimental Setup
	Runtime Testing
	Security Impact
	Sensitivity Analysis
	Comparison to Existing DBMS Fuzzers

	Limitations and Future Work
	Related Work
	DBMS Testing
	Fuzzing

	Conclusion
	Examples of Bug-Triggering Queries
	CVE details

