
Guarding Serverless Applications with Kalium

Deepak Sirone Jegan
University of Wisconsin-Madison

dsirone@cs.wisc.edu

Liang Wang
Princeton University
lw19@princeton.edu

Siddhant Bhagat
Microsoft

sbhagat3@wisc.edu

Michael Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

Abstract
As an emerging application paradigm, serverless computing
attracts attention from more and more adversaries. Unfor-
tunately, security tools for conventional web applications
cannot be easily ported to serverless computing due to its
distributed nature, and existing serverless security solutions
focus on enforcing user specified information flow policies
which are unable to detect the manipulation of the order of
functions in application control flow paths. In this paper,
we present Kalium, an extensible security framework that
leverages local function state and global application state to
enforce control-flow integrity (CFI) in serverless applications.
We evaluate the performance overhead and security of Kalium
using realistic open-source applications; our results show that
Kalium mitigates several classes of attacks with relatively low
performance overhead and outperforms the state-of-the-art
serverless information flow protection systems.

1 Introduction
Serverless computing (or function-as-a-service, FaaS) is an
emerging application deployment architecture that completely
hides server management from tenants. Serverless has a
new programming model: an application is decomposed into
small components, called functions, each of which is a small
application dedicated to specific tasks that runs in a dedicated
function instance (a container or another kind of sandbox)
with restricted resources such as CPU time and memory. A
function instance, unlike a virtual machine (VM), will be
launched only when there are requests for the function to
process and is paused immediately after handling one request.
Serverless has been used as a general programming model for
a variety of applications [27, 38, 63].

The growing adoption of serverless computing gives rise to
new security challenges. Like conventional web applications,
vulnerabilities in the functions or third-party libraries being
used can be exploited by adversaries to subvert the control
flow and data flow of applications, in order to steal sensitive
data and perform stealthy operations, as demonstrated in [37,
44, 50]. Existing security tools for web applications have

been ported to serverless applications, such as vulnerability
scanning tools and log-based anomaly detection but they are
only useful for detecting known vulnerabilities, or for non
real-time attack detection [5, 49, 56].

Previous work leverages information flow control (IFC) [3,
16] to solve the problem of serverless data confidentiality
(See §2 for the definition) in serverless applications. However,
IFC based techniques has not been explored in the context of
serverless applications to solve the problem of serverless
data integrity (§2), i.e., preventing an unauthorized user
making changes to stored data. At a high level, existing
information flow control systems do not enforce the intended
order of execution of functions in the serverless application,
the violation of which causes the application as a whole to
be insecure and may allow an adversary to modify data in
an external store. For example, an adversary may bypass an
authentication function to directly invoke a function that has
write access to a datastore (see §3.1).

We would like to complement IFC based approaches
with our techniques for data integrity protection. Several
common design patterns of serverless applications can be
leveraged to improve serverless security: (1) Tenants need
to externalize the data produced by the function to other
services for later use, to avoid data loss due to the stateless
nature of serverless functions. Such externalization behaviors
can be monitored and used for anomaly detection. (2) As
complex applications are decomposed into dedicated task
functions with relatively simple logic, it is possible to
model each function individually and construct a global
view of the application. (3) Decomposition of an application
makes it easier to enforce customized policies for different
components, thereby facilitating more flexible and efficient
security monitors.

Inspired by the above insights, we design a novel serverless
security framework that we call Kalium. Kalium enforces
control-flow integrity (CFI) for each individual function
in the serverless application as well as for the application
(which may be composed of multiple functions) as a whole.
Kalium provides data integrity, which is complementary to

data confidentiality. Unlike conventional CFI (e.g., [1]) that
enforces a predetermined control flow graph of a program
based on the instruction pointer values, we treat the network
messages made by a serverless function (or the application as
a whole) as the edges in a per-function or application-wide
control flow graph. Each function in a serverless application
is modeled using a function control flow graph which captures
the order of various interactions of the function with external
services, ending with a control transfer to another function.
The serverless application as a whole is modeled using a
global control flow graph which captures the control flows
between different functions.

In Kalium, a function runs in a modified container runtime
environment called runsec that intercepts certain system
calls (e.g., SendMsg and Write) and passes current function
state to a guard module. The guard keeps track of the
local control flow graph of the function, checks whether a
network system call should be allowed or not and returns
the expected action that will be enforced by the runtime.
A per-application controller centralizes the tracking of the
application-wide (global) control flow. It coordinates and
collects function states from guards, and uses the global state
to help the guard make decisions during inter-function and
external control flow transfers. Control flow graphs (local and
global) are built using semi-automated analysis of the control
paths in the application.

The runsec runtime is built atop gVisor, a secure container
runtime [30]. We extend gVisor to support a set of APIs
that (1) allow the guard to block system calls based on
high-level information such as network request payload and
URL, and (2) allow functions to offload encrypting network
traffic (e.g., for TLS) to runsec to facilitate inspection and
modification of the payload before being sent out. Our
methodology not only reduces the attack surface of gVisor-
based containerized applications, but also facilitates the
flexible control of application behaviors, which can serve as
a building block for future gVisor-based security applications.
We will publicly release our extensions.

We implement a prototype of Kalium, and evaluate the
performance overheads of Kalium and the security of flow
tracking with various applications and workloads. Our
analysis shows that Kalium introduces relatively small
overhead while preventing attacks that are not handled by
existing serverless security tools.

The paper presents the following contributions:

• Design and open-source implementation of a flexible,
extensible serverless security framework called Kalium,
which allows for control flow protection in serverless
applications, with a novel encrypted traffic interception
technique achieved by offloading encryption into the
container runtime.

• Identification of serverless-specific challenges in control
flow monitoring, and design of mechanisms for control

flow modeling and enforcement that can track control
flows across services.

• Evaluation and comparison of performance overhead
with existing work.

2 Background
Kalium enforces control-flow integrity, and in this section, we
define the serverless application and function control graphs.
We also introduce information flow control which is used later
in §3 to show the strengths of Kalium in protecting serverless
data integrity.

2.1 Serverless data confidentiality and in-
tegrity

Data confidentiality for a serverless application means that all
data that are being used/computed during application runtime
shall not be leaked to an unauthorized output channel (e.g., a
remote party and database). Whether data computed from a
particular input source could be exposed to a particular output
source is specified by the application developer. In the context
of serverless applications, an input source to a function is
either an external service or another function. An output
channel could be an external service. An example of data
confidentiality policy is “data from the user database should
be exposed only to select external services”. The challenge in
maintaining data confidentiality is that each use of a sensitive
data item should be tracked throughout the runtime of the
serverless application.

The complementary problem to data confidentiality is data
integrity. Data integrity means that an unauthorized user
should not be able to modify data or alter the state stored in an
external data store, meaning that data should not be allowed
to flow from an inappropriate location. In the context of
serverless applications, an inappropriate location is a function
that does not satisfy a precondition before its execution. An
example is a function that writes to a database and is executed
without a preceding execution of its caller-authentication
precondition function. Enforcing data confidentiality does
not necessarily enforce data integrity as we explain in §3.

To summarize, serverless data confidentiality and integrity
are complementary goals. In our work, we show how Kalium
can be used to protect serverless data integrity.

2.2 Serverless control flow
For our work, we define two types of control flow
graph (CFG) for serverless applications: (1) application
control flow and (2) function control flow. We define the
application control flow graph of serverless applications as a
directed graph G = (V,E,s,F) where each of the vertices v∈
V is a function and s ∈V is the starting vertex. F represents
the set of ending vertices. A directed edge e ∈ E between two
vertices vi and v j represents a message passed between the two
nodes either directly or through an external service such as a

message queue. We call edges that represent messages passed
through an external service as indirect flows. An ending vertex
does not pass messages to another vertex. For our work, we
assume messages are passed in HTTP format.

We define the function control flow graph of a serverless
function f as a directed graph G f = (Vf ,E f ,s f ,e f) where
each of the vertices v ∈Vf is the internal function state right
before sending a message to an external service that does
not send its response to a different function f ′(̸= f). In other
words, the external service performs an action and returns its
result to the invoking function f and does not transfer control
to another function f ′ in the application. s f ∈V denotes the
start state while e f ∈ V denotes the end state. On reaching
state e f , the function (1) returns a value val or (2) calls
an external service that invokes another function f ′ in the
application or (3) directly calls another function f ′.

G f and G should be consistent to capture the actual
application behavior that is if e f transfers control to another
function f ′ (directly or through an external service) then there
must be an edge from v f to v f ′ in G.

An edge exists between two vertices where there is control
flow, and can also indicate the nature of the flow. For example,
the existence of an edge between two vertices may also
incorporate particular message metadata or contents (for ex.
a URL parameter or POST request data). The resulting CFG
should not yield false negatives, i.e, a violation of the true
application behavior should always be reported by the CFG.
The CFG may have false positives, i.e., expected application
behavior that is flagged as a violation. The elimination of
false negatives is a necessary condition for security because
no attack should go undetected, whereas the elimination of
false positives pertains to usability of the application.

2.3 Information flow control in serverless

Information flow control (IFC) labels the sources and sinks
of data in an application to prevent information leakage.
The labels form a lattice and represent security classes of
information in the application. The labels are propagated
during the application execution according to the rules of a
particular scheme. Information obtained from an input source
with a particular label l0 can only be exposed to an output
channel with label l1 iff l0 ⊑ l1,that is l0 is lesser than or equal
to l1 in the partial-order defined by the security lattice.

Data integrity has been solved with IFC [53] for regular
programs. However, using IFC for serverless data integrity
has not been explored in previous work. Trapeze [3] is
an IFC framework for serverless applications. However, it
only provides the termination sensitive non interference
property (TSNI), which can leak secrets by observing whether
a function terminates or not. Valve [16] is a taint tracking
(IFC with a specific type of lattice of labels) framework
for serverless. Both Trapeze and Valve focus on protecting
serverless data confidentiality.

…

UpdatePhoto

S3:

user

bucket

ProcessPhoto

DynamoDB:
user table

Auth

CreateUser

Request

Upload

Thumbnail

Download

new photo

3

S3:

attacker

bucket

Credentials

1

2

Bitcoin

Figure 1: An example of serverless application. In the
application, the UpdatesPhoto function uploads the photo
sent by an authenticated user to AWS S3, which triggers the
ProcessPhoto function to generate a thumbnail and store the
thumbnail into AWS DynamoDB. The rectangle with dashed
lines represents compromised functions, and dashed lines are
flow injected by the adversary.

We show concrete attacks in §3.4.1 that demonstrate that
standard IFC as implemented does not solve the problem
of serverless data integrity. In contrast, Kalium provides
serverless data integrity, which is complementary to serverless
data confidentiality. We envision that Kalium can be used
along with IFC frameworks to provide protection against a
bigger class of attacks.

3 Motivation and Challenges
In this section, we introduce different types of attacks

against serverless applications, the limitations of existing
serverless security tools, common design patterns of
serverless applications that inspire our system design, and
the challenges in developing efficient security mechanisms.

3.1 Attacks against serverless applications
Serverless design has drawn attention from adversaries and
researchers, and several attacks, which mostly tamper with
control flow, have been proposed. We illustrate an example
application in Figure 1 and three types of control flow related
attacks that motivate our system design:

(a) The adversary manipulates function execution or-
der (i.e., application control flow) to subvert application logic,
while function control flow is not affected. For example,
the adversary directly invokes UpdatePhoto without being
authenticated by AUTH. These types of attacks are not
detected by existing IFC-based protections because they
do not take into account the order in which functions are
invoked, leading to the execution of the UpdatePhoto with
the correct security label. However, the security label carries
no information whether authentication succeeded in the AUTH
function or not. (see §3.4.1).

(b) The adversary tampers with function control flow
but does not affect application control flow by exploiting
legitimate execution paths of the application. In Figure 1 (3),
the adversary performs DoS attacks against ProcessPhoto
by uploading a large amount of data from UpdatesPhoto
to the S3 bucket. These types of attacks are not detected by
IFC-based protections as security labels have no concept of
counting the number of times an output channel is accessed.
Hence even if the UpdatesPhoto function executes with the
correct security label, it does not stop multiple messages from
being placed on the output channel when only one is expected.

(c) The adversary hijacks both application and function
control flow. Examples are data exfiltration attacks and
crypto-mining attacks [11, 44, 50]. In data exfiltration
attacks, the adversary exploits vulnerable functions, i.e.,
functions with vulnerabilities in the libraries or code, to steal
sensitive data stored in the function code or environment
variables. For example, in Figure 1 part (1), the adversary
extracts the AWS credentials from the UpdatesPhoto
function and sends them to her own S3 bucket. In crypto-
mining attacks, as in Figure 1 (2), the adversary performs
her activity stealthily at the cost of the tenant. A concrete
attack proposed by PureSec [50] shows that the adversary
can turn one single vulnerable function into a virtual crypto-
mining farm without being noticed by the tenant. Further, a
new malware sample called Denonia [11] that targets AWS
Lambda to launch a variant of the XMRig [62] crypto-mining
software has been discovered recently. SandTrap [2] shows
how the IFTTT rule sandbox run on AWS Lambda can be
bypassed to exfiltrate customer IoT event data. IFC-based
protections can detect such attacks as they involve deciding
whether information should flow to an adversary-controlled
output channel.

In this paper, we demonstrate that Kalium can defeat all
three of the above-mentioned attacks.

3.2 Common design patterns of serverless
applications

To guide our development of defenses against the afore-
mentioned attacks, we examined 50 open-source serverless
applications (86 functions) on GitHub1 to understand their
common design patterns. Below we highlight three patterns
that we believe should be considered when developing
security-enhancing mechanisms for serverless applications.

• No local storage. In general, no examined applications
store data (e.g., intermediate processing results) on local
disks due to the stateless nature of serverless. Serverless
providers do not guarantee that requests can always be
handled by the same function. So, storing stateful data
on local disk faces the risks of data loss. The common

1We conducted this survey before the release of the Wonderless serverless
application dataset [23].

practice for passing data across requests is to store data
on some storage service(s) and retrieve it later.

• No direct interactions between functions. There are
usually no direct information flows between functions.
Applications tend to rely on other services (e.g., event
queues and storage services) to transfer control from one
function to another function. Transferring data across
functions is the same as across requests, relying on storage
services. In fact, in AWS Lambda, the size of function
input is limited to 6 MB (for synchronous requests) or
256 KB (for asynchronous requests), which may not
be sufficient for some applications. To safely transfer
arbitrary data between functions or requests, applications
use storage services.

• Input-dependent functions are common. The number of
requests and their target URLs may depend on input
parameters. For instance, a weather application fetches
weather information for all the cities mentioned in the
input from an API service that uses different URLs
for different cities, and sends back an aggregated result.
Similarly, an application may only set up one serverless
function as an entry point, and performs different
operations based on user input (i.e., like a dispatcher or
switch statement); in fact, this is the fastest way to port
conventional web applications (e.g., Django-based web
applications) to serverless.

HTTPS requests from a function indicate either a data
transfer or a control transfer. By monitoring HTTPS requests
within an application, we can therefore monitor the control
flow of the application. For most of the functions, the
destinations of their requests are known, which means we
are able to model their behaviors. For some functions, we
can only know the requested URLs at runtime. However,
one useful observation is that the URLs requested by such
functions have a fixed pattern, mostly in the form of “common
prefix + variable”. We only consider this pattern in our project,
though there could be other patterns.

3.3 Challenges
To prevent the attacks discussed in §3.1 we need to accurately
track the control flow of an application. Existing information
flow protection mechanisms usually monitor system calls
of interest by modifying OS or system libraries [46, 64].
Such mechanisms often assume that an endpoint can be
identified by IP and port, which is not sufficient for serverless
functions. In serverless design, a function is associated with
dynamically assigned and ever-changing IPs, and a service
might have the same IP and port as other services (e.g.,
one can redirect requests to different services on the same
host based on the Server Name Indication field). So,
the URL is necessary for endpoint identification, but it is
difficult to directly extract high-level information such as
URL and HTTP header from the low-level information seen

by such mechanisms. Considering the limited resources in
function instances, we need to wisely choose the granularity
of monitoring to reduce monitoring overhead and capture
more meaningful information at the same time.

Furthermore, serverless functions may be input-dependent,
i.e., number of requests and endpoint URLs vary based on
input parameters, making them challenging to model.

Another challenge is tracking control flow across different
external services. As mentioned before, a serverless appli-
cation often relies on functionality provided by third-party
services, such as hosted databases. It is unrealistic to assume
that all the services are willing to upgrade their infrastructures
to support new security mechanisms.

Finally, for ease of development, a new security mechanism
should be application-independent and transparent to applica-
tions, i.e., application code does not need to be modified.

3.4 Limitations of existing approaches

3.4.1 Information flow control

IFC-based techniques for serverless data integrity have not
yet been explored in previous work. Currently, IFC-based
techniques [3, 16] can ensure data confidentiality, that is
information labeled as high security will never be leaked to an
output channel labeled with a lower security label. Consider a
sub-path in the application graph P = vi...v j...vk where node
v j authenticates the caller of node vi and the execution of
vk should be allowed only if the execution of v j succeeds.
Each node inherits the security label of its caller. If after the
execution of P (after successful authentication at v j), node
vk has label l1. Now suppose an adversary compromises vi
and directly calls vk, bypassing the authentication at node v j.
In this case let the label of v j be l0. Then l0 ⊑ l1 because
a label can only be higher up in the lattice as more labels
are accumulated. This implies that the adversary has enough
privileges to cause node vk to execute all the actions that it
would have (for example: modifying a user database), had
the authentication succeeded at node v j. This example can be
extended to cases where the single node v j can be replaced
with a series of nodes, v j1 ...v jn that need to be executed as a
precondition before the execution of node vk. In such cases,
it is hard to decide whether node vk should be executed or
not without tracking the exact path that was executed prior to
the node vk. Hence, current IFC-based techniques (and IAM
rules) do not suffice for ensuring serverless data integrity.

To the best of our knowledge, IFC-based techniques cannot
prevent multiple executions of the same sub-path in a program
due to the fact that security labels are not order preserving.
Consider a node vi in the serverless application graph that
has an edge to a node v j. If node vi is compromised, then the
adversary can issue multiple identical requests to node v j with
the same security label as that of node vi, potentially leading
to multiple executions of one or more application sub-paths
starting with node v j. If the execution of a particular sub-path

does not result in an idempotent operation being performed,
then the application semantics can be altered by multiple
executions of the same sub-path. A concrete example is a
banking application where the execution of a particular sub-
path results in the bank balance of an account to increase by
some amount. An adversary can leverage this to accumulate
funds in an account by executing that sub-path multiple times.

3.4.2 Allow list based policies

Allow list based tools [15,20,34,35,49,58] usually implement
simplified information flow control by running functions in
a sandbox and let tenants specify and control the resources a
function can or cannot access. However, such policies cannot
detect manipulation of legitimate control flows, e.g., out-of-
order or repeated control flows. In addition, they focus on
securing each individual function and ignore the specific
nature of serverless applications. The lack of visibility into the
entire application causes these tools to fail to detect attacks
that leverage incorrect function execution order (i.e., invalid
application execution paths) to subvert application logic and
violate data integrity.

To summarize, similar to IFC-based techniques, allow lists
do not keep track of the path of the serverless application
being executed, and so they cannot prevent the attacks
described in §3.4.1.

3.4.3 Log analysis techniques

Host-based intrusion detection systems (HIDS) detect
potential attacks by monitoring an application’s execu-
tion [18]. Model-based HIDS, a specific type of HIDS,
builds a model of the expected execution behavior (i.e.,
allowed sequences of system calls) of the monitored
application, and compares the system calls issued by the
application during its execution against the model to
detect anomalies [26]. The model is usually represented
by an automaton. There is model-based HIDS research,
focusing on model construction (dynamic analysis [24], static
code analysis [59], static binary analysis [29], etc.) and
model design (abstract stack model [59], Dyck model [36],
inlining model [31], etc.). ALASTOR [17] is a provenance
framework for serverless applications that provides fine-
grained tracking of application behavior using logs from
various sources, including system call tracing and network
profiling. Control-flow integrity (CFI) can be treated as a
special type of intrusion detection mechanism for enforcing
a nondeterministic finite automaton (control flow graph) to
prevent the application from deviating from normal execution
paths [1]. Our work is inspired by these works and applies
model-based intrusion detection and CFI to the new setting
of serverless applications. To the best of our knowledge,
serverless data integrity has not been a specific target so far
for HID systems.

4 Threat Model
We consider three major parties in our threat model: a target
application, an adversary, and third-party services. The target
application is deployed on a serverless computing platform by
a trustworthy tenant (the application owner). An application
might consist of multiple functions. Each function is assumed
to be implemented as a single-threaded process within its
container. Any services/applications/functions, other than the
functions in the target application, are considered to be third
parties, including services from the same cloud provider or
set up by the same tenant outside the serverless platform.

We treat a third-party service as a blackbox that takes
input from some sources and may output results to some
destinations. Both the input sources and output targets (if
any) of the service must be within the target application. We
currently cannot enforce control over flows if the destination
of the third-party service is not an in-application function.
The exact functions that generate an input and receive the
corresponding output might be different, though. For example,
as in Figure 1, UpdatePhoto uploads a picture (input) to S3,
and S3 will generate an “upload” event (output) to trigger
ProcessPhoto to process the picture.

The application may store sensitive authentication data
such as encryption keys or access tokens within the function’s
code and, therefore within each function instance.

Adversary capabilities We assume that the adversary
can compromise at least one function of the application,
leveraging bugs in the function code, vulnerable libraries
used in the functions, or inappropriate configurations. The
platform itself is assumed to be secure. By that we mean
that the adversary cannot compromise host VMs, serverless
runtime, third-party services or manipulate network traffic
within the deployment infrastructure. Attacks that leverage
side channels in network communication such as timing-
based attacks (e.g., [39]) are beyond the scope of this work.
An adversary may also attempt to exploit spurious flows in
the flow graph that is deployed for a compromised function.
We discuss more about flow graphs in §5.1.

Adversary goals The adversary seeks to perform any type
of control flow related attacks discussed in §3. We further
assume that all the operations the adversary can perform must
be done via the functions.

5 Design of Kalium
Motivated by the above discussion, we design a novel,
extensible system for protecting control flow in serverless
application that we call Kalium. As shown in Figure 2,
Kalium consists of two basic components: secure runtime and
controller. The secure runtime consists of a function runtime
and a guard module which tracks and enforces the local
function control flow graph. The controller tracks the global
(application-wide) control flow graph and helps the guard
to make decisions during function-to-function and external

Updater

Guard

functions

Guard

Container runtime (runsec)

Function

runtime

w/ modified

libs

Function

State

Table

Tenant

Controller

Control

functions Storage

Sync

events

Async

events

New event/

Decision

Management

Figure 2: An overview of Kalium architecture.

network requests. We discuss flow graph generation and the
guard and controller in this section.

5.1 Control flow tracking
All of the previously discussed attacks in §3 alter the control
flow of the application as a whole or an individual function.
To enforce Control-Flow Integrity (CFI) in serverless
applications, we borrow the ideas from model-based IDS for
web applications and the original CFI technique [1,29,36,59].
For application control flow, we treat an application as a single
program and each of its functions as a basic block in the
original CFI [1], and add checks when a function receives
requests and returns responses. For function control flow,
we built a model of the acceptable request sequences of a
function, and monitor the requests sent by the function. We
define a flow as one message exchange between a function
and another endpoint (a service or a function).

We introduce two types of flow graphs for an application:
global graph and local function graph. A global graph is a
directed graph, where a node represents a function, and an
edge from node A to node B (denoted by A→B) represents
that function A sends messages (directly or indirectly) to
function B from connections initialized by A. Each function
is associated with a local graph, wherein a node represents a
network operation performed (e.g., an HTTPS request) by the
function, and an edge points to the next expected operation.

Kalium can be extended with traditional CFI [1] in
conjunction with the local control flow graph. Since
traditional CFI is local to the function, the construction
of the global graph remains the same. Kalium does not
adopt traditional CFI directly because CFI for monolithic
programs does not take into account the arguments to network
function calls (e.g., URL).

Overview. We assume all the functions support Kalium while
services do not. Let f be a function, min be the message f
received from the standard function entry point, and mout be
the message f returns via the standard exit point. Note that f
can only receive one min and send one mout in an execution.

mreq is a message sent from f to another endpoint s, and
mresp is the response from s. mreq and mresp are sent over the
same connection. We currently are not aware of any serverless
platform that supports direct access to functions via their IP
addresses, so min and mresp correspond with the only two
ways for passing messages to functions. Similar to CFI for
regular programs [1], the serverless environment including
the runtime is responsible for adding an identifier, called the
tag to each message identifying the sender of the message.
External services are expected to propagate the tags in case
they call a function.

The semi-automated method that we describe in this section
can automatically generate flow graphs for a target application.
The generated flow graph is a variant of a flow-sensitive and
context-sensitive nondeterministic finite automaton (NFA)
that models the expected flow sequences of a function or valid
execution paths of an application. To construct such NFAs,
we trade off space for model accuracy by duplicating states
and removing cycles from NFAs as in the IAM model [31].
Next, we discuss how to generate these graphs.

5.1.1 Generating control flow graphs

Kalium collects execution traces of serverless application and
provides a tool to create the flow graphs from the collected
traces. A trace is the sequence of flows generated by all the
functions (in the application) in one application execution,
and records important information such as timestamps,
function names, destination URLs, and HTTP operations (GET,
POST, etc.). Generating accurate flow graphs that precisely
cover all control flows is a challenging problem. The user
could follow the best-effort strategy proposed by prior
work [16], i.e., running Kalium in logging-only mode to
collect traces under real workloads and then iteratively
refining the graphs manually. In our work, we focus on
defining and enforcing flow graphs, and leave automated
generation of precise flow graphs as future work.

Given a set of traces, Kalium leverages the method
proposed in Synoptic [10], which is originally designed for
building loop-free NFAs from syscall traces, to generate flow
graphs. In the local graph, each node is a ⟨URL, HTTP
operation⟩ tuple that indicates that the function sends a
message to an endpoint whose address is URL. A tag is an
identifier to track the caller of a function (similar to labels
in the original CFI) and has the format of ⟨function name,
guard ID, request ID⟩, while the request ID is just a random
16-byte string assigned to each request, generated by the entry
function of the application. The local graph has an entry node
indicating the endpoint from whom f receives min, and an
exit node indicating sending out mout . In a completed function
execution, f must follow one path from the entry node to the
exit node. For the local graph generation, one could run test
cases for each function individually to collect traces.

To have more strict policies, we maintain loop counters
for each graph to restrict the number of repetitions of given

flows or flow sequences. For a trace of length l, we look for
consecutive repeated subsequence(s) of length 1, ..., ⌊l/2⌋.
Such a subsequence indicates the function sending a set of
requests repeatedly. We treat such subsequences as a single
flow, or grouped flow, and use a loop counter to count the
repetition of the subsequence. We only need to maintain
counters for the nodes whose counter is greater than one.
An example is shown in Figure 3.

Handling user-input via URL replacement. To identify
the URLs that may be constructed based on user input, we
group all the URLs extracted from the traces associated with
a function by their longest common prefix (LCP) with the
following restriction: given a set of URLs U = {u1, ...,un},
two URLs ui and u j are grouped only if their longest common
prefix LCP(ui,u j) is longer than LCP(ui,uk) and LCP(u j,uk)
for any uk ∈U (k ̸= i,k ̸= j). Then, if the number of unique
URLs in a group is more than a threshold tlcp, we replace
the URL in a flow with the LCP of the group the URL
belongs to, and append a “∗” to the LCP to distinguish it
from regular URLs. We call the resulting URLs the LCP
URLs. For example, the three URLs a.com, a.com/test/x,
and a.com/test/y will produce two LCP URLs (two groups)
a.com and a.com/test/*. We consider that the URLs in the
same group are more related with each other. See §7.3 for
more discussion.

Global graph generation. In the global graph, each node
represents a function. We say that if the execution of a
function f ′ depends on the output of another function f but no
explicit messages are exchanged between f and f ′, there is an
indirect flow from f to f ′. One such example is that f uploads
a file to AWS S3, which generates a message to trigger f ′ to
process the uploaded file. We assume that a function depends
on the function invoked immediately before it, and use the
global graph to capture indirect flows.

The global graph is constructed by observing the final
action of each of the functions when the application is made
to run different test cases. An edge from node vi to v j is added
if either (i) node vi calls node v j or (ii) vi initiates an indirect
flow to v j via an external service.

5.1.2 Enforcing policy

Policy enforcement for the local graph. The guard checks
the current function state against the generated local flow
graph. When a function sends a message, the guard proceeds
to the successor node (state) of the current node if the flow
matches the successor node, and otherwise blocks the flow.
If a node is associated with an LCP URL, the prefix of the
destination URL in a legitimate flow should match the LCP.
When it is at a node representing a grouped flow, the guard
expects to see all the subsequent flows from the function
match the flows associated with the grouped flow in order. The
enforcement of the local graph does not involve the controller.

ABBBCD

A

C

D

BABCD

B

C

D

A

F

D

AFD

A

B

A

C

D

B3

F
A

B

B

if cnt<=3

B

Begin

End

Figure 3: An example of the generated local flow graph for
three traces ABBBCD, BABCD, and AFD.

Policy enforcement for the global graph. We use tags, which
perform the same role as the labels in the original CFI, to
carry function identity information. The tags are carried in
the HTTP headers so guards can remove or add tags without
changing messages, and services that do not support Kalium
will simply ignore this header field and process the messages
as normal.

All guards run the following protocol:
(1) If min comes from another function in the application,

the guard extracts the tag t̄ from min and checks the function
name in t̄ to see if the source of min is legitimate, as specified
in its local flow graph. Otherwise, the guard checks with the
controller, which maintains the global flow graph and the
global state of the application, to see if its preceding function
f ′ in the global flow graph (f ′→s→ f) is at a legitimate state,
i.e., whether f ′ has sent messages to s. Recall that the guard
will forward received events asynchronously to the controller
so the controller is aware of the states of all functions (See
§5). The guard then gets the tag of f ′ from the controller and
saves it as t̄.

(2) The guard reuses the request ID in t̄ to generate its tag t.
(3) The guard adds t to mreq, and removes any tag t ′

from mresp (t ′ may not exist if mresp comes from third-party
services). The guard will check if t and t ′ (if it exists) are the
same to make sure mresp is sent for it.

(4) The guard adds t to mout . If mout is sent to a function,
the request ID in t will be propagated to that function.

Concurrent requests. During trace collection, we only send
one request at a time to the application. Likewise, our
enforcement mechanism does not support concurrent requests.

5.2 Secure runtime
The Kalium secure runtime consists of a modified container
runtime runsec which includes a function runtime with
instrumented system libraries and an event processing module

called the guard module. The container runtime runsec
provides an API for monitoring and manipulating function
execution. The guard module uses this API for performing
security tasks. runsec also provides a userspace hypercall
API for application code to facilitate encryption offloading.
Both APIs are shown in Table 4. For providing both the
runsec API and the userspace hypercall API, the unmodified
container runtime must provide a way to view and modify
system call events made by the containerized application at
a higher semantic level than viewing and modifying the raw
system call arguments (as provided by the ptrace system call).
To this end, the runtime must provide additional semantic
information of the state that is accessed by the system calls.

runsec API. The container runtime, runsec, provides a well-
defined API for guards to monitor and control function
execution. The constructEventHook function creates an
event hook for an event specified by the event_template
for a particular system call specified by the syscall_no and
returns an EventHandle object. The runtime adds function
invocation as a special event that can be hooked. The event
template specifies (1) a transformation (parser) from the
system call arguments to a serialized string format and
(2) the number of system calls whose arguments must be
examined for the transformation. Currently, runsec supports
event templates for (1) parsing HTTP and TLS traffic on the
SendMsg and Write system calls on sockets, and (2) function
invocation. The waitForEvent function blocks a guard until
an event specified by the EventHandle occurs and returns
an Event object that contains the parameters of the event.
The returnDecision function specifies the action to be
taken by runsec on an Event. The actions can include (1)
setting the return value of the system call (e.g., return an error
to deny the call), (2) allowing the call to proceed, and (3)
rewriting the arguments of the system call before running
the system call. runsec blocks system calls while the guard
processes the event. This generic API enables monitoring a
variety of function behavior, although Kalium uses it only for
network communication.

Encryption offloading. When functions communicate over
an encrypted channel, they pass encrypted data to network
system calls that precludes inspection. runsec provides
encryption offloading, which moves encryption out of the
userspace function and into the container runtime, to allow
monitoring of the cleartext data prior to encryption. runsec
implements a single userspace hypercall API encrypt, which
encrypts the provided payload using the specified cipher and
returns the ciphertext. The runtime caches the ciphertext as a
TLS record along with the corresponding plaintext in a queue.
Currently, runsec supports the ACM-GCM cipher suite widely
used in TLS.

When a function sends encrypted data over the net-
work (SendMsg or Write), runsec interposes on the system
call and compares the arguments against the first entry in the

constructEventHook(event_template, syscall_no) -> EventHandle Constructs a hook for the system call specified by syscall_no and the template which defines the Event type
waitForEvent(EventHandle) -> Event Blocks for an event specified by EventHandle and returns an Event object
returnDecision(Event, Decision) Return the decision for a particular event
encrypt(cipher, plaintext, key) -> CipherText Encrypts plaintext using the algorithm specified by cipher and returns the ciphertext

Table 4: runsec API and Userspace Hypercall API

cache for a match. If the record matches, the corresponding
cached plaintext is used to construct an event. A mismatch
indicates that the function either did not use the encrypt
hypercall or modified the result prior to sending it over the
network.

Finally, runsec provides instrumented system libraries to
the function runtime that adds calls to encrypt as part of
the TLS implementation. While we have only implemented
encryption offloading for TLS, this architecture can be
extended to other protocols such as SSH. Only an application
that does not use encryption for messages is allowed to
opt out of encryption offloading. If an application bypasses
encryption offload or implements its own encryption, the data
sent will not match the expected state and the guard will fail
the call.

Event processing. The runsec API generates events when
functions make system calls, and guards subscribe to these
events to monitor and limit behavior. Guard functions
execute in response to events to check if the system call is
legitimate. To do this, the guard maintains a state table that
implements the NFA for the local and global flow graphs.
Using the current state and the requested system call, the
guard determines the action to be taken for the operation
associated with an event, and returns the decision to the
runtime using the returnDecision function.

Some guard functions may require knowledge (i.e., global
state) from the controller. For instance, as we show in §5.1, the
guard may need to check whether an event “forwarded” by a
third-party service is generated by a legitimate function. Such
information can only be obtained by the controller, which has
the global view of the application. In this case, the guard will
communicate with the controller via an updater daemon to
check the application global state. To help the controller to
reconstruct the global state, the guard forwards any received
events to the controller asynchronously via the updater.

5.3 Controller
The controller provides a centralized interface for a tenant to
manage and distribute customized guard functions, policies,
and configurations. The controller distributes updates (local
flow graphs) to the different guards through the updater
daemon during function startup. It also serves as a centralized
logger and collects function states from all guards to maintain
the global state of the application. The global state is used
by the controller to facilitate decision making on function
operations which involve indirect flows, such as when storing
an object triggers a function to run. For example in Figure 1,

when the UpdatePhoto function sends a message to the
user’s S3 bucket, the guard module in the UpdatePhoto
function notifies and waits for a decision from the controller
on whether that particular message should be blocked or not.
The controller tracks the application’s state using the global
control flow graph and returns a decision based on whether
the current state is valid or not.

5.4 Extensions to Kalium
Kalium is designed as an extensible, flexible framework
that can be used to develop customized guard functions
for sophisticated security tasks. While we currently use
the framework only for monitoring network communication,
the runsec API can be used to monitor and manipulate
any system call, which also allows one to emulate an
arbitrary protocol’s state machine in the guard. Moreover,
runsec is a container runtime so it can be easily ported to
different serverless platforms that are built with different
containers. We demonstrate the use of Kalium for rate-
limiting in Appendix §A. However, in this paper we focus
on the enforcement of control-flow integrity over HTTP and
TLS requests.

6 Kalium Implementation

Secure runtime for serverless functions. The Kalium
container runtime runsec is built atop gVisor [30], a
lightweight container runtime developed by Google. The
gVisor runtime provides an emulation of the Linux kernel over
which a containerized application is traced either with a ptrace
system call or by running the container in a minimal virtual
machine using kvm. Briefly, whenever the containerized
application makes a system call, it is intercepted by the gVisor
runtime which then handles the call as Linux would. GVisor
has been integrated into Google Cloud and shows success in
mitigating security attacks [21].

Kalium leverages this capability of gVisor to interpose on
system calls made by the function to enforce various policies.
We modify the gVisor runtime to implement the runsec API.

Inspecting encrypted payloads. We focus on TLS with AES-
GCM in our prototype but our method can be applied to
other encrypted protocols as well. For HTTPS requests, we
restrict the function to use an instrumented version of the
OpenSSL library (i.e., libSSL) that passes the plaintext data
to runsec (before it is encrypted) using the encrypt hypercall.
Other encryption parameters such as initialization vector and
additional data will also be sent along with the plaintext. After
returning the ciphertext, runsec encapsulates the ciphertext in

a TLS record to get the expected TLS record of the ciphertext,
and caches it in a queue. Later runsec will check whether
a given TLS record (possibly reconstructed from multiple
packets) sent from the function matches the expected record
to be sent next.

Guard and controller. The guard is implemented as a
module in the gVisor secure runtime. The gVisor routine (i.e.,
runsc-sandbox) that intercepts system calls constructs the
event based on the constructed hook (made by calling the
createEventHook function) and passes it to the guard. The
guard launches the updater in a goroutine during instance
startup. The updater serves as the interface between the guard
and controller, and communicates with the controller via
the updater using zeromq [65]. The updater maintains two
long-lived zeromq connections with the controller, one for
sending synchronous events that require the decisions from
the controller, and one for sending all events asynchronously
to the controller for logging purposes. One can analyze the
collected logs to detect abnormal behaviors or to model
function control flows (§5.1).

The controller is implemented in C/C++ and the other
components are implemented in GO, totaling about 1 K lines
of C/C++ code, and 2.5 K lines of GO code. We are in the
process of developing a full set APIs that can be used for
developing guard functions and the management interface.

AWS-based prototype. Many serverless applications are
written for AWS and depend heavily on their proprietary
services, such as AWS Step Functions. We cannot fully
implement Kalium for AWS, as it requires replacing the
serverless runtime. To assist in evaluating Kalium on
applications that cannot easily be ported other platforms, we
implement a version of Kalium for AWS. This prototype
launches guards in a separate process and modifies the
Python and Node.js modules used by many applications to
send events to the guard, and instrument the functions to
use the modified modules. We only need to modify the ssl
module (ssl.py) in Python, and the aws-sdk modules (only
aws-sdk/libs/http/node.js) in Node.js. The guard is
compiled as a binary, and we instrument every function to
launch the guard asynchronously in a background process
before processing events. This prototype can run in a realistic
environment and helps us to more accurately evaluate the
accuracy of auto-generated flow graphs.

7 Evaluation
We evaluate the security and performance overhead of Kalium.
We run our implementation of Kalium in a local testbed
running OpenFaas [43] to measure the runtime overhead
under various workloads. OpenFaas is a FaaS (Function as
a Service) platform that runs on Kubernetes. In addition,
we expand the set of complex applications available for
testing by evaluating flow graph generation only using the
AWS prototype.

7.1 Workloads

We evaluate Kalium on three sets of workloads:

Wonderless serverless application dataset. We started with
the Wonderless Dataset for Serverless Computing [23], which
comprises all open source applications scraped from all
public GitHub repositories. As there were no OpenFaaS-based
applications in the dataset, we port the OpenWhisk-based
applications to OpenFaaS. Of the 14 OpenWhisk applications,
we evaluate all applications that make network requests: AWS-
Text, SMSBot, TwilioTransc and Weather. AWS-Text sends a
text message to a number in the request body, SMSBot is a
single function application that relays a message to a Slack
workspace, TwilioTransc stores a string from the input into an
IBM Cloudant database, and Weather returns the weather at a
location after querying the OpenWeatherMap API.

Open-source AWS Lambda-based applications. All the
applications in the Wonderless dataset comprise a single
function, resulting in simple flow graphs. We therefore
include other more complicated applications in the evaluation.
we study three open-source AWS Lambda-based serverless
applications using the AWS-based Kalium prototype:
HelloRetail [42], CodePipeline [6], and MapReduce [7].
HelloRetail is a retail platform developed by Nordstrom, and
is the most sophisticated open-source serverless application
we have seen. CodePipeline is an application from AWS
for automatically updating the deployment script of software
after its source code or configuration has been modified.
MapReduce is a serverless-based MapReduce framework.
The three applications demonstrate the use of different
features of serverless: HelloRetail takes advantage of the
event sourcing mechanism and AWS Step Functions to pass
messages among functions and invoke function automatically,
CodePipeline purely leverages AWS Step Functions to
automatically execute functions in order, and MapReduce
relies on the auto-scaling feature to run functions in parallel.
Table 6 and Figure 5 show an overview of the three
applications and flow graphs.

Valve benchmark suite. Finally, we compare the perfor-
mance of Kalium with other serverless security frameworks
using benchmark suite provided by Valve [16]. The
application in the benchmark suite is a reduced version of the
HelloRetail (ported to OpenFaaS), that lacks core AWS Step
Function and KMS components of the original application.

7.2 Efficiency of flow tracking

Local testbed setup. We set up a single control plane
Kubernetes cluster of five nodes in CloudLab [19], with
each node running on a machine of an Intel Xeon E5-2630
2.40GHz CPU and 64 GB RAM. Each machine is connected
to a star topology LAN network with a speed of 25 Gbps. The
Kalium controller runs on a separate identical node outside

AWS Kinesis

Processor

Add Product

Catalog

Assign

Photographer

Send

Assignment

DynamoDB

Step
Functions

Product

Get Product

Record

Assignment
Await Photo

KMS Twilio

Start Task

Step

Functions

Check
Stack Exist

Create

Change Set

Get Creation

Status

Inspect

Change Set

Apply

Change Set
Create

Stack

Get Stack

Status

Code commit

S3

CloudFor

mation

Mapper

Coordinator

Reducer

S3

(a) HelloRetail (partial) (b) CodePipeline (c) MapReduce

EventWriter
Run

Figure 5: Flow graphs of the target applications. Rectangles, rounded rectangles and dotted lines represent function, third-party
services, and implicit flows, respectively. The entry functions that accept user requests are highlighted.

LOC #Func #Lib Language
HelloRetail 5,127 12 158 Node.js
CodePipeline 2068 9 112 Node.js
MapReduce 747 3 1 Python

Table 6: An overview of the lines of code, number of functions
and third-party modules, and the languages of the target
applications.

the LAN but on the same datacenter. The version of OpenFaas
that we used was 8.0.7.

Flow graph generation (training stage). For AWS-Text,
SMSBot, TwilioTransc and Weather, we ran the Wfuzz
web application fuzzer [61] with the appropriate JSON
input templates. We choose fuzzing because the individual
functions were simple and had few (< 20) execution paths.
Note that fuzzing is just one of many possible ways to
generate traces, and we use it strictly for evaluation purposes.

The input parameters in all of these programs are single
strings and were generated using a short (< 10 character)
permutation of the printable ASCII charset. For HelloRetail,
CodePipeline, and MapReduce we started with writing a
minimum set of test cases that cover all the execution paths of
the target applications. Based on their documentation and state
machines (provided by Step Functions), we created 4, 3, and
1 test cases for HelloRetail, CodePipeline, and MapReduce,
respectively. Several functions are triggered only when there
are errors during request processing. In one round of tests,
we run all the test cases once with random user input.
In HelloRetail, user requests are for creating products, to
register photographers, and to query products, so we generate
random product/photographer information and query strings.
CodePipeline will be triggered automatically when there are

changes to the monitored repository, and we add 1–5 random
files (1 KB) in the monitored repository. For MapReduce, the
job is fixed as word count, and user requests specify the dataset
and number of files to be processed. We randomly choose
one dataset from the text/tiny/rankings and text/tiny/uservisits
datasets in the Big Data Benchmark from AMPLab [47], and
process 1–9 files in a request (the datasets only have 9 files).
All the other settings remain default.

We obey the limits (request rate, input size, etc.) of all
the APIs when constructing the requests, because violating
these limits will not generate any new paths, but may cause
Step Functions to be stuck for minutes, which unnecessarily
prolongs the experiment time.

We ran the test for 1,000 rounds. After analyzing the
collected traces, we find that the control flows of all the
functions (except for the two that do not make any network
requests) differ somewhat from the anticipated flows we get
from manual code analysis, even for those simple functions.
The reason is uncontrollable factors that are not related to
function source code, meaning that they cannot be handled
via static code analysis and may introduce unexpected flows.
We identify three causes:

(1) API library implementation: API libraries may add
randomness to endpoints’ URLs. For instance, the AWS
API for sending data to AWS Codepipeline (used by
the CreateChangeSet function in CodePipeline) will
automatically append a short, random string to the URL
of AWS Codepipeline to distinguish different requests.

(2) Service configuration: Server-side configuration such as
HTTP redirection will introduce extra flows that cannot
be inferred from code. To be concrete, a single HTTP
present in the function code may translate to two or
more requests depending on the configuration of the
server.

0 200 400 600 800 1,000

0

20

40

60

No. of rounds of traces for modeling

Fa
ls

e-
po

st
iv

e
ra

te
(%

) HelloRetail
CodePipeline
MapReduce
AWS-Text
SMSBot

TwilioTransc
Weather

Figure 7: False-positive rates when using the traces collected
from different numbers of rounds for building flow graphs.

(3) Network failures or other unknown service behaviors:
In some cases, the function will retry a request if the
request failed due to unstable network conditions or
received duplicated messages from services.

Using static analysis may not be able to capture the
dynamic behaviors during runtime. For example, if in its code
the function only invokes the HTTP GET method once, a
static analyzer may assume only one GET request is allowed,
while multiple GET request can be sent due to redirection or
network failures.

As expected, flows may vary according to user input: In
MapReduce, the Mapper function will download data from S3
multiple times depending on the size of user data. Similarly,
the Coordinator function will create different numbers of
reducers based on user data. Besides, the exact URLs for the
files in S3 will also vary.

The flow graphs of the Wonderless applications comprise
a single node representing the least common prefix of the
URL of the API endpoint that the function contacts. For
the AWS applications, the final local graphs contain only
1–9 nodes (excluding the begin and end nodes). The median
size (i.e., number of nodes) of the local graphs for HelloRetail,
CodePipeline, and MapReduce are 3, 2, and 7, respectively.
The global graphs generated are consistent with the state
machines in Step Functions or the expected graph got from
manual inspection. Maintaining these graphs in memory
incurs negligible memory overhead.

Graph accuracy. Intuitively, more rounds of tests during the
training stage will produce more accurate flow graphs. We
estimate the false-positive – guards incorrectly block flows
and cause function failures – rates of flows graphs over 1,000
rounds of tests, when the flow graphs are built with traces
collected from the first n rounds of tests in training. As shown
in Figure 7, false-positive rates are about 40%, 80%, 65%, 0%,
0%, 0%, 45% and when using traces from only one round, and
no false positives when using 583, 7, 463, 1, 1, 1, 2 rounds of

traces in HelloRetail, CodePipeline, MapReduce, AWS-Text,
SMSBot, TwilioTransc and Weather respectively.

7.3 Security analysis

Altering control flows. The flow graphs generated by our flow
graph generation represent relatively tight security policies.
Even with a slight difference between the expected URL
and the event URL, a flow will be considered as invalid
and be blocked. The generated flow graphs do not contain
cycles or loops, and any given path in a graph represents a
legitimate order of flows or function executions. Therefore,
the flow tracking function can prevent an adversary from
generating arbitrary flows from the compromised function,
and reduces the risk of data leakage by restricting the ways
for the adversary to externalize data.

Exploiting legitimate function control flows. The adversary
may try to exploit legitimate execution paths, e.g., using a
compromised function to send requests repeatedly to DoS a
server. The loop counter associated with a node indicates how
many times the flow can occur in a normal function execution.
If it occurs more than the expected times, the flow will be
blocked to prevent potential attacks.

The adversary may try to bypass some functions (e.g.,
authentication) to invoke a target function directly. Though
the resulting flows are legitimate, with a global view of the
application the guard can still block such attempts: if the
requests come from invalid sources or do not carry correct
tags, or the preceding function of the target function is not at
a correct state, the execution will be blocked. Basically, we do
not allow an application execution to begin from the middle
of an execution path.

Control flow injection via race condition. The adversary
may try to exploit the race condition between function
executions to perform a type of flow injection attacks. For
example, the adversary leverages some vulnerabilities in
Step Functions to execute CreateChangeSet just before a
normal execution of CreateChangeSet begins. In this case,
the controller will assume the adversary-launched execution
is legitimate, currently we do not support tracking concurrent
requests and leave it for future work.

Attacks against runsec. The payload caching mechanism
forces the adversary to use the encrypt hypercall in order
to send an encrypted request. If a function uses a plaintext
protocol, then using an encrypted protocol instead will be
detected as a violation of the expected request. If a function
uses an encrypted protocol but bypasses the offload, runsec
will not have cached the expected payload, and will not find a
match in the cached expected payloads when the request is
sent out. The request, therefore, will be blocked by runsec.
Some system call interposition frameworks [28, 60] may be
vulnerable to TOCTOU attacks that exploit multithreading. In
runsec, since system call arguments are checked after copying

them onto separate buffers which are subsequently used for
further processing, such TOCTOU attacks do not occur.

Discussion As we discussed in §7.2, static analysis may
not be sufficient for understanding the flows generated
under realistic workloads. Using dynamic analysis, security
depends on the quality of test cases. The flow graphs will
be more accurate with test cases that can cover more paths.
However, we may still encounter uncovered cases during
normal application executions, which could cause execution
failures. One possible option is to switch from fail closed to
fail open, i.e., the system records suspicious flows rather than
block them.

The nodes with the LCP URLs allow the flows whose
destination URLs share the same prefix, which may cause
security issues. However, without them the resulting graphs
could be too restrictive so that they cannot handle change in
user input. For example in MapReduce, without using LCP
URLs, the flows for fetching different files (that are in the
format of “prefix0000”,...,“prefix000n”) will produce distinct
nodes and any future requests that are not for fetching these
files will be blocked. We believe manual inspection of flow
graphs is a reasonable way to solve this issue. The tenant can
adjust the threshold being used to produce the optimal flow
graphs and examine whether the nodes with the LCP URLs
are appropriate.

The guard cannot prevent attacks that exploit both
legitimate function and application control flows, and data-
related attacks (e.g., modify the data sent by a compromised
function). However, it is feasible to extend our framework and
develop more sophisticated guard functions to achieve finer-
grained information flow control for serverless applications.

7.4 Performance overhead of Kalium
We evaluate performance of Kalium on the local testbed using
the benchmark from Valve [16].

Performance overhead comparison of Kalium, Valve and
Trapeze. We first run the benchmark suite used by Valve [16]
to compare performance against prior systems seeking to
protect serverless functions. Since our work targets serverless
platforms that prioritize security and use gVisor as the default
runtime, we assure a fair comparison by replacing the default
container runtime of Valve and Trapeze with gVisor.

The benchmark suite provides modified versions of
HelloRetail that are integrated with Valve and Trapeze and can
run locally. The storage and event queue services used by the
originally HelloRetail are emulated with MySQL. For each of
14 functions (16 execution paths) in the modified HelloRetail,
we run a curl request 100 times with appropriate JSON
inputs (≤ 1 KB) and record the average request completion
time. Additionally, in order to compare the average time taken
to run encryption within runsec and the time taken to proxy
TLS requests by Valve, we add a microbenchmark function
which does a GET request to receive an image of size 120K

over TLS. The MySQL and image servers are running on
Kubernetes nodes in the same datacenter. As the flow graphs
for the benchmark are simple, we also measure the worst-case
cost of checking a large graph by checking a single-node
graph 1,000 times; we believe 1,000 is a reasonably large
size for a local flow graph so the corresponding lookup time
represents the upper bound of lookup overhead.

The workloads are:

• product-photos: The workflow involves 8 functions that
perform tasks ranging from assigning products to various
photographers, to storing the final photographs in the
database. The application entry points are the master-
request and master-photos functions, which chains 3
functions. The completion times for these two functions
are the user-perceived completion times.

• product-purchase: The workflow involves 4 functions
that authenticate a user and authorize a credit card
payment. None of the functions writes to the database.

• product-catalog: The workflow involves 2 functions that
allow products to be added to and queried from the
database. Each function has two execution paths.

In Figure 8, we show the relative performance overheads
of Kalium, Valve and Trapeze with respect to gVisor. The
overhead of Kalium consists of the encryption offload
overhead and the per-syscall-inspection overhead (§5.2). The
encryption offload overhead depends on the size of the
arguments and the number of times the encrypt hypercall is
called. The time taken for one encrypt hypercall ranges from
314 µs to 434 µs , with an average of 361 µs . For functions that
offload encryption, the per-syscall-inspection overhead ranges
from 33 µs to 2.4 ms (with global graph query), averaging
1.66 ms. For functions that do not offload encryption, the
overhead ranges from 30 µs to 1.81 ms, averaging 606 µs . We
can clearly see in most of the cases Kalium has less or similar
overhead than Valve and Trapeze. Recall that Valve uses a
MITM proxy to intercept only HTTPS calls. Therefore, Valve
only performs proxying or security checks for the functions
with an asterisk (i.e., functions that involve HTTP or HTTPS
traffic). In contrast, Kalium constructs events for database
requests and other protocols (such as DNS and SMTP) for
these functions and simulates a dummy policy lookup (similar
to HTTP) for each event. Even with the extra security checks,
the overhead of Kalium is similar to Valve. The result also
suggests MITM-based interception is much less efficient than
encryption offloading.

Breakdown of per-syscall-inspection overhead. The worst-
case per-syscall-inspection overhead of the order of 2.4 ms
occurs when all the critical paths of Kalium are executed.
This worst-case overhead includes: (a) parsing TLS records
from the raw data passed to the system calls (SendMsg
and Write), (b) TLS record cache lookup (§5.2), (c) event

microbenchmark*

product-photos-receive*

product-master-photos*

product-master-request

product-photos-assign

product-photos-message

product-photos-record

product-photos-success

product-photos-report

product-purchase-authenticate

product-purchase-getprice

product-purchase-authorize-cc

product-purchase-publish

product-catalog-api-categories

product-catalog-api-products

product-catalog-builder-image

product-catalog-builder-product
0
1
2
3
4
5

R
el

at
iv

e
O

ve
rh

ea
d Kalium Valve(gVisor) Trapeze(gVisor)

Figure 8: The relative latency overhead of the functions in HelloRetail and the microbenchmark function. Valve proxies network
requests only in functions marked with an asterisk. Y-axis is truncated at 5.

construction, (d) guard local graph lookup, and (e) controller
global graph query. The breakdown of the overheads is
as follows:

• TLS records parsing: The overhead ranges from 6.73 µs
to 10.18 µs with an average of 8.16 µs .

• TLS record cache lookup: The overhead ranges from
569 µs to 443 µs with an average of 478 µs .

• Event construction: The overhead ranges from 10 µs to
38 µs with an average of 14 µs .

• Guard local policy lookup: The time of 1,000 lookups
ranges from 41 µs to 111 µs with an average of 77 µs .

• Controller global graph query: The overhead ranges from
1.4 ms to 1.9 ms with an average of 1.6 ms.

In the worst-case scenario, the majority of the overhead
comes from the communication with the controller, which
varies depending on network condition. We envision that this
part of overhead can be eliminated by moving the global graph
check inside runsec (§8).

8 Limitations of Kalium
In this section, we detail the limitations of Kalium and
directions for future research.

Policy generation. Our work primarily focuses on using
dynamic analysis. A takeaway is that using static analysis
or dynamic analysis alone is not sufficient for generating
accurate flow graphs (§7.2, §7.3). One future work is to
combine static and dynamic analysis to improve flow graph
accuracy. We also plan on exploring automata learning
techniques [4] to yield more accurate flow graphs.

Concurrent requests. As mentioned earlier (§5.1.2), Kalium
does not handle concurrent requests currently. One way to
support concurrent requests is to move the global graph
checking inside runsec by propagating the ordered set of
tags along each edge in the global control flow graph. In
this design, tag propagation must be explicitly supported by

external services. An additional benefit of this design is to
eliminate the communication overhead introduced by global
graph query.

Control flow bending. Control flow bending in regular
programs [12] is a technique by which control flow attacks
can be mounted even when adhering to the CFG generated
in accordance with the strictest CFI policy possible. One
possible attack is to manipulate the arguments to functions
that are capable of Turing complete computations by
themselves, thereby achieving arbitrary computation.

Similarly, in the context of serverless applications, control-
flow integrity cannot protect against data integrity attacks in
the presence of functions that require no authentication and
have unrestricted write access to the datastore. To prevent
such attacks either (i) along with the tracking of messages
that are passed, the data in each of the messages should also
be subject to a dataflow analysis that determines the integrity
of data passed to these powerful functions or (ii) all functions
that write to a datastore need to be subjected to authentication.

In Kalium, we have only considered the passing of network
messages for the presence of an edge between two functions
and do not consider the integrity of the message body.

9 Related Work
Information flow control (IFC) can track and restrict
information flow in a system, and enforce fine-grained
security policies. It has been applied to conventional
distributed systems (e.g., DIFC) and cloud applications [8,
45, 46, 52, 64], so, naturally, it can be used for improving
serverless security. Trapeze [3] requires modifying all the
services being used by the application to support IFC. The
requirement of modified infrastructure may make it difficult
to apply Trapeze and other similar IFC mechanisms in real
serverless applications, which heavily interact with third-party
services. Other useful security tools such as event tracing
provenance face the same issue in a serverless environment [9,
13,14,22,25,32,33,40,41,51,55]. Compared to Trapeze, Valve
provides application transparency, and usability. However,
like Trapeze, Valve also requires cooperation from third-party

services to propagate taint labels when handling implicit flows
through external services. Also, Valve intercepts HTTP(S)
requests with a MITM proxy, which may introduce more
overhead compared to directly intercepting system calls as in
Kalium. Will.IAM [54] introduces network request proxying
by explicitly developing applications which route all requests
through a proxy. It does not provide any protection in case
of a compromised container, where the adversary can bypass
the proxy entirely. SCIFFS [48] protects security analytics
platforms from information leaks and is complementary to
control-flow integrity. Valve, SCIFFS and Will.IAM share
common themes of profiling and intercepting system calls
as Kalium. Clemmys [57] is a framework that provides
confidentiality and integrity of function code and data that
is deployed by the users by running functions within SGX
enclaves. Similar to Kalium, Clemmys provides protection
against the manipulation of the order of function execution.
However, Clemmys only supports linear function chains
without branches or loops and has a different threat model
as compared to Kalium. In Clemmys, the cloud provider is
untrusted, but the function code is trusted and assumed to be
bug free.

10 Conclusion
Kalium enforces control-flow integrity in serverless appli-
cations, both across function instances and within a single
function execution. Functions runs in a modified runtime
that reports communication events to a guard, which checks
whether the communication should be allowed or not based
on a function local control flow graph. Complementing the
enforcement of local flow policies, a centralized controller
collects the states of all functions comprising an application
and helps the guard make a decision in the case of implicit
flows. We showcase how Kalium can be used to model and
monitor application behavior, to prevent flow injection that
can lead to data corruption and DoS attacks with minimal
overhead.

Acknowledgement
We would like to thank Tom Ristenpart, Somesh Jha, Earlence
Fernandes, and the anonymous shepherd and reviewers for
very useful feedback and comments. We would also like to
thank all the members of the SCAIL group at the University
of Wisconsin Madison and Sambhav Satija for feedback on
earlier drafts of the paper. This work was supported by NSF
grant CNS 1763810.

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay

Ligatti. Control-flow integrity. In CCS ’05, pages 340–
353. ACM, 2005.

[2] Mohammad M. Ahmadpanah, Daniel Hedin, Musard
Balliu, Lars Eric Olsson, and Andrei Sabelfeld. Sand-

trap: Securing javascript-driven trigger-action platforms.
In USENIX Security ’21, pages 2899–2916, 2021.

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi,
Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and
Keith Winstein. Secure serverless computing using
dynamic information flow control. arXiv preprint
arXiv:1802.08984, 2018.

[4] Dana Angluin. Learning regular sets from queries
and counterexamples. Inf. Comput., 75(2):87–106, nov
1987.

[5] AquaSec. Security for serverless
functions. https://snyk.io/blog/
launching-snyk-for-serverless/, 2017.

[6] AWS. Aws-codepipeline-stepfunctions.
https://github.com/aws-samples/
aws-codepipeline-stepfunctions, 2018.

[7] AWS Lab. Lambda reference architecture for
mapreduce. https://github.com/awslabs/
lambda-refarch-mapreduce, 2018.

[8] Jean Bacon, David Eyers, Thomas FJ-M Pasquier,
Jatinder Singh, Ioannis Papagiannis, and Peter Pietzuch.
Information flow control for secure cloud computing.
IEEE Transactions on Network and Service Manage-
ment, 11(1):76–89, 2014.

[9] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using magpie for request extraction
and workload modelling. In OSDI ’04, volume 4, pages
18–18, 2004.

[10] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider,
Michael Sloan, and Michael D Ernst. Leveraging
existing instrumentation to automatically infer invariant-
constrained models. In FSE ’11, pages 267–277, 2011.

[11] Cadosecurity. Denonia: Crypto mining malware.
https://tinyurl.com/cadosecurity/, 2022.

[12] Nicolas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-Flow Bending:
On the Effectiveness of Control-Flow Integrity. In
USENIX Security ’15, page 161–176, 2015.

[13] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In DSN, page 595.
IEEE, 2002.

[14] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and
Paramvir Bahl. Automating network application
dependency discovery: Experiences, limitations, and
new solutions. In OSDI ’08, volume 8, pages 117–130,
2008.

https://snyk.io/blog/launching-snyk-for-serverless/
https://snyk.io/blog/launching-snyk-for-serverless/
https://github.com/aws-samples/aws-codepipeline-stepfunctions
https://github.com/aws-samples/aws-codepipeline-stepfunctions
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://tinyurl.com/cadosecurity/

[15] Cilium. Cilium: Container observability using ebpf.
https://cilium.io/, 2019.

[16] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael
Grace, Amir Rahmati, and Adam Bates. Valve:
Securing Function Workflows on Serverless Computing
Platforms. In WWW ’20, pages 939–950, 2020.

[17] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam,
Adam Bates, and William Enck. ALASTOR:
Reconstructing the provenance of serverless intrusions.
In USENIX Security ’22, pages 2443–2460, 2022.

[18] Dorothy E Denning. An intrusion-detection model.
IEEE Transactions on Software Engineering, SE-
13(2):222–232, 1987.

[19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of cloudlab. In USENIX ATC ’19,
pages 1–14, 2019.

[20] Epsagon. Epsagon. https://epsagon.com/, 2018.

[21] Eric Brewer. gvisor: Protecting gke and serverless users
in the real world. https://tinyurl.com/gvisorsec,
2021.

[22] Robert Escriva, Ayush Dubey, Bernard Wong, and
Emin Gün Sirer. Kronos: The design and implementa-
tion of an event ordering service. In EuroSys ’14, page 3.
ACM, 2014.

[23] Nafise Eskandani and Guido Salvaneschi. The
wonderless dataset for serverless computing. In MSR
’21, pages 565–569, 2021.

[24] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad
Fogla, Wenke Lee, and Weibo Gong. Anomaly detection
using call stack information. In IEEE S&P ’03, pages
62–75. IEEE, 2003.

[25] Rodrigo Fonseca, George Porter, Randy H Katz, Scott
Shenker, and Ion Stoica. X-Trace: A pervasive network
tracing framework. In NSDI ’07, pages 20–20. USENIX
Association, 2007.

[26] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji,
and Thomas A Longstaff. A sense of self for unix
processes. In IEEE S&P ’96, pages 120–128. IEEE,
1996.

[27] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Balasubramaniam, William Zeng, Rahul
Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads. In NSDI ’17,
pages 363–376, 2017.

[28] Tal Garfinkel. Traps and pitfalls: Practical problems in
system call interposition based security tools. In NDSS

’03, 2003.

[29] Jonathon T Giffin, Somesh Jha, and Barton P Miller.
Detecting manipulated remote call streams. In USENIX
Security ’02, pages 61–79, 2002.

[30] Google. gvisor. https://gvisor.dev/, 2021.

[31] Rajeev Gopalakrishna, Eugene H Spafford, and Jan
Vitek. Efficient intrusion detection using automaton
inlining. In IEEE S&P ’05, pages 18–31. IEEE, 2005.

[32] Xueyuan Han, Thomas Pasquier, and Margo Seltzer.
Provenance-based intrusion detection: Opportunities
and challenges. arXiv preprint arXiv:1806.00934, 2018.

[33] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar,
Daniel Genkin, Boyuan He, Scott D Stoller, Gan Fang,
Frank Piessens, Evan Downing, et al. Dependence-
preserving data compaction for scalable forensic
analysis. In USENIX Security 2018, pages 1723–1740,
2018.

[34] Intrinsic. Intrinsic. https://intrinsic.com/, 2018.

[35] Istio. Istio service mesh for kubernetes. https://
istio.io/, 2019.

[36] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-
sensitive intrusion detection. In NDSS ’04, 2004.

[37] Jeremy Daly. Event injection: Protecting your
serverless applications. https://tinyurl.com/
4udrdhmu, 2019.

[38] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion
Stoica, and Benjamin Recht. Occupy the cloud:
Distributed computing for the 99%. In SoCC ’17, pages
445–451. ACM, 2017.

[39] Zhen Ling, Junzhou Luo, Yang Zhang, Ming Yang,
Xinwen Fu, and Wei Yu. A novel network delay based
side-channel attack: Modeling and defense. In IEEE
INFOCOM 2012, pages 2390–2398, 2012.

[40] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun
Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal.
Towards a timely causality analysis for enterprise
security. In NDSS ’18, 2018.

[41] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In SOSP ’15, pages 378–393. ACM, 2015.

[42] Nordstrom. Hello, retail! https://github.com/
Nordstrom/hello-retail, 2018.

https://cilium.io/
https://epsagon.com/
https://tinyurl.com/gvisorsec
https://gvisor.dev/
https://intrinsic.com/
https://istio.io/
https://istio.io/
https://tinyurl.com/4udrdhmu
https://tinyurl.com/4udrdhmu
https://github.com/Nordstrom/hello-retail
https://github.com/Nordstrom/hello-retail

[43] OpenFaas. Openfaas. https://www.openfaas.com/,
2019.

[44] Ory Segal. Securing serverless: Attacking an aws
account via a lambda function. https://ubm.io/
2FIrKq2, 2018.

[45] Thomas FJ-M Pasquier, Jatinder Singh, Jean Bacon, and
David Eyers. Information flow audit for paas clouds. In
IC2E ’16, pages 42–51. IEEE, 2016.

[46] Thomas FJ-M Pasquier, Jatinder Singh, David Eyers,
and Jean Bacon. Camflow: Managed data-sharing for
cloud services. IEEE Transactions on Cloud Computing,
5(3):472–484, 2017.

[47] Patrick Wendell. Big data benchmark. https://
amplab.cs.berkeley.edu/benchmark/, 2019.

[48] Isaac Polinsky, Pubali Datta, Adam Bates, and William
Enck. SCIFFS : Enabling secure third-party security
analytics using serverless computing. In SACMAT ’21,
page 175–186, 2021.

[49] Puresec. Functionshield. https://www.puresec.io/
function-shield, 2018.

[50] Puresec. New attack vector: Serverless
crypto mining. https://www.puresec.io/
serverless-crypto-mining-resource-download,
2018.

[51] Patrick Reynolds, Charles Edwin Killian, Janet L
Wiener, Jeffrey C Mogul, Mehul A Shah, and Amin
Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. In NSDI ’16, volume 6, pages 9–9, 2006.

[52] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security and
Privacy for MapReduce. In NSDI ’10, volume 10, pages
297–312, 2010.

[53] A. Sabelfeld and A.C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

[54] Arnav Sankaran, Pubali Datta, and Adam Bates.
Workflow integration alleviates identity and access
management in serverless computing. In ACSAC ’20,
pages 496–509, 2020.

[55] Benjamin H Sigelman, Luiz Andre Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure.
Technical report, Technical Report, Google Inc., 2010.

[56] Snyk. Snyk for serverless. https://snyk.io/blog/
launching-snyk-for-serverless/, 2017.

[57] Bohdan Trach, Oleksii Oleksenko, Franz Gregor,
Pramod Bhatotia, and Christof Fetzer. Clemmys:
Towards Secure Remote Execution in FaaS. In SYSTOR
’19, page 44–54, 2019.

[58] Vandium Software. Vandium. https://github.com/
vandium-io, 2018.

[59] David Wagner and R Dean. Intrusion detection via static
analysis. In IEEE S&P ’01, pages 156–168. IEEE, 2001.

[60] David A Wagner. Janus: an approach for confinement
of untrusted applications. Master’s thesis, University of
California, Berkeley, 1999.

[61] xmendez. Wfuzz. https://wfuzz.io/, 2021.

[62] XMRig. Xmrig crypto mining software. https://
xmrig.com/, 2017.

[63] Mengting Yan, Paul Castro, Perry Cheng, and Vatche
Ishakian. Building a chatbot with serverless computing.
In MOTA ’16, page 5. ACM, 2016.

[64] Nickolai Zeldovich, Silas Boyd-Wickizer, and David
Mazieres. Securing distributed systems with informa-
tion flow control. In NSDI ’08, page 293–308, 2008.

[65] zmq. Distributed messaging - zeromq. http://zeromq.
org/, 2019.

A Rate-limiting functions
We use Kalium to develop another function for a conventional
security task to demonstrate it’s flexibility: The rate limiting
function restricts the number of instances of a given function
running in a certain time period and the rates of given API
requests generated from a function to mitigate DoS attacks
against the application and prevent the application from being
used for DoS.

We consider two types of rate limiting tasks: (1) limiting
the fan-out (i.e., the number of running instances) of a given
function, and (2) limiting requests to a given API. For (1),
since every guard will register with the controller during
startup, it is easy for the controller to maintain a per-function
counter to track the number of launched instances for a given
function. However, the provider might launch new instances
to execute functions, and discard the existing instances. The
controller may see a large number of new instances over
time but only a portion of them are active. To handle this
case, the controller will check if the instances are active by
periodically (i.e., every second) sending heartbeat messages,
and decrease the corresponding counters for those instances
that are no longer active.

Using the controller as a centralized state store, we can
restrict the frequency of requests sent to a given URL for a
given operation from a function of interest. A rate limiting
policy is a list of entries <function name, target URL, HTTP

https://www.openfaas.com/
https://ubm.io/2FIrKq2
https://ubm.io/2FIrKq2
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://www.puresec.io/function-shield
https://www.puresec.io/function-shield
https://www.puresec.io/serverless-crypto-mining-resource-download
https://www.puresec.io/serverless-crypto-mining-resource-download
https://snyk.io/blog/launching-snyk-for-serverless/
https://snyk.io/blog/launching-snyk-for-serverless/
https://github.com/vandium-io
https://github.com/vandium-io
https://wfuzz.io/
https://xmrig.com/
https://xmrig.com/
http://zeromq.org/
http://zeromq.org/

operation, rate>. Once a tenant deploys the rate limiting
functions and policies on the guard and the controller, the
controller will keep track of the events from functions, and
calculate the rate of a given type of flow. If the rate of the
flow exceeds the allowed rate, the controller will broadcast
a STOP event to all the guards that are responsible for the
functions generating the flow. Then, the guards will simply
drop the flow, whose type is specified in the STOP event, until
receiving a RESUME event from the controller.

	Introduction
	Background
	Serverless data confidentiality and integrity
	Serverless control flow
	Information flow control in serverless

	Motivation and Challenges
	Attacks against serverless applications
	Common design patterns of serverless applications
	Challenges
	Limitations of existing approaches
	Information flow control
	Allow list based policies
	Log analysis techniques

	Threat Model
	Design of Kalium
	Control flow tracking
	Generating control flow graphs
	Enforcing policy

	Secure runtime
	Controller
	Extensions to Kalium

	Kalium Implementation
	Evaluation
	Workloads
	Efficiency of flow tracking
	Security analysis
	Performance overhead of Kalium

	Limitations of Kalium
	Related Work
	Conclusion
	Rate-limiting functions

