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Abstract
Deploying machine learning models directly on the network
data plane enables intelligent traffic analysis at line-speed
using data-driven models rather than predefined protocols.
Such a capability, referred to as Intelligent Data Plane (IDP),
may potentially transform a wide range of networking de-
signs. The emerging programmable switches provide crucial
hardware support to realize IDP. Prior art in this regard is
divided into two major categories: (i) focusing on extracting
useful flow information from the data plane, while placing
the learning-based traffic analysis on the control plane; and
(ii) taking a step further to embed learning models into the
data plane, while failing to use flow-level features that are
critical to achieve high learning accuracies. In this paper, we
propose NetBeacon to advance the state-of-the-art in both
model accuracy and model deployment efficiency. In partic-
ular, NetBeacon proposes a multi-phase sequential model
architecture to perform dynamic packet analysis at different
phases of a flow as it proceeds, by incorporating flow-level
features that are computable at line-speed to boost learning
accuracies. Further, NetBeacon designs efficient model rep-
resentation mechanisms to address the table entry explosion
problem when deploying tree-based models on the network
data plane. Finally, NetBeacon hardens its scalability for han-
dling concurrent flows via multiple tightly-coupled designs
for managing stateful storage used to store per-flow state. We
implement a prototype of NetBeacon and extensively evaluate
its performance over multiple traffic analysis tasks.

1 Introduction

Artificial Intelligence (AI) experiences increasingly popu-
larity in various networking designs, such as video bitrate
adaption [34, 56], congestion control [1, 57], traffic optimiza-
tions [11], routing [29, 65], and network planning [66]. The
learned models are typically deployed either on end-hosts
[1, 34, 56, 66] or network control plane [11, 29, 57, 65] to
perform inference, which are equipped with flexible general-
purpose processors or GPUs.

Deploying the learned models for traffic analysis directly
on the network data plane, however, is a relatively less charted
area. The key merit of executing model inference on the net-
work data plane is that it enables intelligent traffic analysis

at line-speed (i.e., zero reduction to the network forwarding
speed) using data-driven models rather than predefined pro-
tocols. Such a capability, referred to as Intelligent Data Plane
(IDP), may potentially transform a wide range of networking
designs. For instance, the increasingly sophisticated network
attacks often bypass the empirically learned traffic filters [31],
motivating the community to design learning-based malicious
traffic detection mechanisms, such as [14, 37]. Unlike these
approaches, however, IDP achieves line-speed traffic analy-
sis, while the state-of-the-art that deploys learning models on
the network control plane can only process traffic at roughly
10 Gbps [14]. Further, placing the control plane on the criti-
cal path of traffic analysis introduces extra reaction time [2].
Besides the security domain, other networking designs (such
as differentiated routing [29], ECN threshold adjustment [57],
and buffer management [19]) may also benefit from IDP.

The design of IDP used to be “nearly impossible” due to
the difficulty of realizing dynamic and data-driven AI models
using the specialized and protocol-defined ASIC switching
chips on the network data plane. Fortunately, the advances
in programmable switches (e.g., P4 switch [8]) allow cus-
tomizable packet processing logic based on the Protocol-
Independent Switch Architecture (PISA). Under PISA, net-
work packets are processed, at line-speed, by a programmable
pipeline consisting of a parser, multiple match/action stages
and a deparser. Although the PISA architecture is not Tur-
ing Complete (yet) to execute arbitrary computation over
the packet bytes, the community has proposed significant
network-security related designs centering around the pro-
grammable switches.

The first category of prior art focuses on extracting useful
flow information from the data plane to support overarching
applications. For instance, NetWarden [53] and FlowLens [4]
rely on the programmable switches to collect flow distribution
information, based on which they perform covert channel
detection [53] and learning-based traffic classification [4],
respectively, in the control plane. Similarly, Poseidon [61]
and Jaqen [32] compare the collected flow information (e.g.,
flow rates) against predefined traffic filtering policies (e.g.,
threshold-based filters) to mitigate volumetric DDoS attacks.
The key difference between this category of designs and IDP
is that they do not directly embed the learning models into
the programmable data plane.

The second category of prior art takes a step further to



realize IDP. For instance, pForest [10] and SwitchTree [26]
propose to deploy decision tree models on programmable
switches, by mapping one match/action stage to one layer of a
decision tree. However, their designs, although verified using
software switch BMv2, are undeployable on actual hardware
(see § A for details). Planter [63] extends IIsy [55] and pro-
poses an architecture including both feature tables and code
tables to represent ensemble trees on the data plane. Although
promising, Planter lacks several critical designs: for instance,
it is unclear how Planter can simultaneously use one feature
multiple times (which is quite common in reality). The most
recent work Mousika [51] proposes a decision tree model,
namely Binary Decision Tree (BDT), designed specifically
for the programmable switch data plane. However, the num-
ber of table entries required to deploy BDT faces the problem
of combinatorial explosion (see details in § A). Crucially, all
these prior deployable art employs only per-packet features
in their models, fully ignoring flow-level features. As we will
show in § 2.2, flow-level features are necessary to boost the
learning accuracies for various traffic analysis tasks.

In this paper, we present NetBeacon, a novel IDP design that
advances state-of-the-art in both model accuracy and model
deployment efficiency. In particular, NetBeacon is empowered
by the following innovative designs:

(i) A data plane aware learning model design centering
around a multi-phase sequential model architecture. Since
packets at different phases of a flow carry different flow-
level states, our model performs dynamic analysis at different
phases of the flow as it proceeds, reducing the errors intro-
duced by making premature classification decisions based on
a single inference model. Meanwhile, our model uses care-
fully designed flow-level and per-packet features computable
at line-speed on the data plane to ensure deployability.

(ii) NetBeacon proposes an efficient model representation
mechanism to address the entry explosion problem when ex-
pressing decision tree or forest models into data plane match-
ing tables. Compared with the state-of-the-art, Mousika [51],
NetBeacon significantly reduces the table entry consumption
(up to 75% in some cases).

(iii) We further harden the scalability of NetBeacon for
handling concurrent flows, by differentiating the processing
logic for short flows and long flows, as well as allowing safe
storage multiplexing when observing storage index collisions.
This potentially allows NetBeacon to handle more concurrent
flows than the total number of registers used for maintaining
per-flow state.

We implement a prototype of NetBeacon using the Tofino
switch as the programmable data plane, and evaluate Net-
Beacon extensively with three use cases. The experimental
results show that NetBeacon outperforms the state-of-the-art
in both traffic analysis/classification accuracy and hardware
table consumption. We also quantitatively study how switch
hardware (e.g., the imperfection of hashing, and future hard-
ware upgrade) may affect NetBeacon.

Match Action Register

Stage 1 Stage 2 Stage N

…

Parser Match/Action Deparser

Figure 1: Protocol Independent Switch Architecture (PISA).

2 Background and Motivation

2.1 Programmable Data Plane

Traditional switches are equipped with ASIC chips cus-
tomized for packet processing to achieve high-speed forward-
ing. Implementing new network protocols on ASIC chips
therefore requires design, manufacturing, and rigorous test-
ing from the device manufacturers, which is an expensive
process. To enable agile protocol development, roughly two
decades ago, the community proposed Software-Defined Net-
working (SDN) to allow software controllers to install cus-
tomized flow entries on switches via OpenFlow protocols [36].
SDN is a tremendous success, experiencing wide deployment
over years, especially, in data centers [13, 20]. Recently, the
emerging programmable switch technology, centering around
Protocol-Independent Switch Architecture (PISA), boosts net-
work programmability to another level. Instead of fully rely-
ing on a software controller, the switching pipeline itself is
flexible enough to allow direct programming through domain-
specific programming languages, such as P4.

In PISA switching pipeline (Figure 1), a network packet
first enters the parser for packet header parsing, then enters
multiple match/action stages for packet manipulation, and fi-
nally reaches the deparser for packet serialization. The parser,
match/action, and deparser can all be programmed to im-
plement desired protocols. The match/action supports ex-
act matching, ternary matching, and longest prefix matching
(LPM). Each match corresponds to an action, where specific
computation and storage modification can be executed. Mutu-
ally dependent actions need to be placed on different stages.
Packet headers and metadata instances are stored using state-
less storage that is reinitialized as new packets arrive. PISA
also provides stateful and persistent storage, such as counters,
meters, and registers. Finally, PISA provides various mecha-
nisms (such as resubmit, recirculation, packet generation) to
further extend programming capabilities.

Despite its flexibility, PISA has the following computation
and storage constraints. First, it supports boolean, shift, add
and subtract operations, but not multiplication and division.
Float operations, loop operations, and complex conditional
operations are not supported as well. The main calculation
logic is implemented using the match/action stages, which are
not unlimited (e.g., Tofino 1 has 12 stages). Similarly, the stor-
age resources are finite, e.g., on Tofino 1, the SRAM of each
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Figure 2: The necessity of flow-level features in traffic analy-
sis tasks. Features started with ∗ are per-packet features, such
as ∗proto and ∗size.

pipeline is 120MB and the TCAM is 6.2MB. Probably, the
most “surprising” storage limitation is that each register can
only be accessed once when a packet traverses the switching
pipeline. As a result, operations such as read-and-then-update
registers are not supported natively.

2.2 Motivation

The flexibility of PISA inspired significant research in real-
izing the potential of intelligent data plane (IDP). We divide
prior art into three subcategories, as summarized in Table 1.
First, NetWarden [53] and FlowLens [4] represent the designs
using programmable switches to collect useful flow informa-
tion, such as inter-packet delay distributions, and then perform
traffic analysis on the control plane. Due to the interaction
latency between the data plane and the control plane, traffic
is not analyzed at line-speed.

Poseidon [61] and Jaqen [32] share the similar designs of
NetWarden [53] and FlowLens [4], except that the collected
flow information can be used directly on the data plane to clas-
sify volumetric DDoS attacks at line-speed (note that some of
their actions still involve servers in the control plane). How-
ever, their classification logic is based on threshold-driven
traffic filters, instead of machine learning models. Therefore,
their approaches are not generalizable to the use cases where
the traffic analysis logic cannot be accurately represented as
hand-crafted filters.

Planter [63] and Mousika [51] take the initial steps to em-
bed decision tree models in the network data plane by repre-
senting decision tree branches using the match/action tables.
However, their designs have two major limitations: low effi-
ciency in representing learning models on the data plane as
demonstrated in § 7.3 and merely considering stateless per-
packet features while ignoring stateful flow-level features.

We experimentally show the necessity of flow-level fea-
tures (flow identified by its 5-tuple) for boosting the accuracy

Prior Works Line-Speed Accuracy / Generalization
Learning-Based Flow-Aware

NetWarden[53], FlowLens[4] % " "

Poseidon[61], Jaqen[32] " ¶ % "

Planter[63], Mousika[51] " " %

NetBeacon " " "

¶ Some defense/detection polices or logic of Poseidon and Jaqen require control plane
involvement. In such cases, they cannot be processed at line-speed.

Table 1: Comparison with prior art in IDP.
of learning-based traffic analysis. We first show that flow-
level features are, in general, more important than per-packet
features. To this end, we considered three scenarios: P2P ap-
plication fingerprinting, covert channel detection, and DDoS
attack detection. For each task, we train a decision tree model
using both per-packet features (e.g., ttl, packet size of n-th
packet) and flow-level features (e.g., the mean and variance
of packet size of the first n packets). Then we plot the feature
importance obtained based on the information gain of the
feature in the top half of Figure 2. Flow-level features clearly
show up with higher importance scores.

Second, we show flow-aware classifiers output more accu-
rate results than flow-agnostic classifiers. In particular, we
train two decision tree models: one flow-agnostic model that
uses only per-packet features as in Mousika [51], and one
flow-aware model that uses both flow-level and per-packet
features, sorted by their importance. Both models use the same
number of features. We report the classification accuracy re-
sults in the bottom half of Figure 2. The results demonstrate
that incorporating flow-level features significantly improves
accuracies: +11% in P2P application fingerprint, +43% in
covert channel detection, and +21% in DDoS attack detection
(the detailed descriptions about these tasks are given in § 7.1).
Design Goals. Compared with prior art (Table 1), we design
NetBeacon to advance the state-of-the-art by simultaneously
achieving line-speed and highly-accurate (learning-based)
traffic analysis on the network data plane. Other art [45, 50]
use SmartNICs instead of programmable switches as the data
plane. These two types of hardware have drastically different
characteristics: programmable switches have much higher
throughput, with much limited computation capability. We
focus on PISA-driven IDP design in this paper.
Assumptions, Threat Model, and Limitations. We assume
that NetBeacon has access to task-related training datasets.
Machine learning itself has security vulnerabilities, such as
data and model poisoning attacks, which is out of the scope.
We assume that the programmable switches hosting NetBea-
con are secure. Since flow-level features consume the stateful
storage on programmable switches, the number of concurrent
flows for which NetBeacon can simultaneously maintain per-
flow state is limited by hardware storage, although NetBeacon
has dedicated designs to improve scalability. Meanwhile, it
is possible to scale out traffic analysis capacity by deploying
multiple NetBeacon instances in parallel. NetBeacon does not
support flow-level features that are difficult to compute on the
data plane (e.g., percentile of packet sizes). We use the 5-tuple
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Figure 3: The architecture of NetBeacon.

(i.e., src/dst IP, src/dst port, and protocol) to identify a flow,
yet NetBeacon itself is not limited by any flow definition.

3 The Overview of NetBeacon

As shown in Figure 3, architecturally, NetBeacon is designed
around two major components: data-plane aware model de-
sign and efficient model deployment. Data plane aware model
design is a co-design approach to generate hardware-friendly
learning models. Towards this end, our feature engineering
relies on features that are extractable or computable at line-
speed on the switching pipeline. Further, considering that
flow-level features (e.g., the mean of packet sizes) are chang-
ing as a flow proceeds, NetBeacon proposes a multi-phase se-
quential model architecture that can make multiple inference
decisions as the flow proceeds, until the system is sufficiently
confident to make the final decision.

The key design of the model deployment is the model
representation module. It translates the learned models into
multiple feature tables and one model table on the data plane,
where the feature tables encode feature values as data struc-
tures named range marks, which are further mapped to the
inference results stored in the model table. NetBeacon designs
efficient coding mechanisms to greatly reduce the table entry
consumption when representing models.

In addition, NetBeacon designs a stateful storage manage-
ment module to achieve efficient per-flow state management
on the data plane. On the one hand, this module enables
NetBeacon to process short flows using purely per-packet
features (i.e., no per-flow state maintained for short flows),
where short flows are classified using a learning model. On
the other hand, NetBeacon exploits the hardware hashing to
achieve storage multiplexing. In particular, when the 5-tuple
of a new flow is hashed to occupied registers (i.e., storage
collision), the new flow can take this register if the stored flow
is class-determined or timeout; otherwise, NetBeacon falls
back to use stateless per-packet features for the new flow. If
the packet belongs to the stored flow, the registers are updated

Feature Type Definitions
Per-packet – packet size, ttl, protocol, etc

Flow-level Aggregate F = aggr(a,c,d)
Summary max/min, mean, variance, etc

Table 2: Features in NetBeacon.

and features are calculated for model inference, i.e., query
feature table and model table.

Once the inference results for a packet are determined,
users can design customized post-processing based on the
results, such as making a binary decision of drop or allow, or
assigning fine-grained different service priorities accordingly.

4 Data Plane Aware Model Design

4.1 Feature Engineering
The decision tree learning models in NetBeacon can use both
per-packet features and flow-level features. Per-packet fea-
tures can be obtained from individual packets, usually based
on the fields in the packet header, such as packet size and
Time To Live (TTL) values. Flow-level features are obtained
by combining attributes from other packets in the same flow.

We categorize flow-level features into aggregate features
and summary features. An aggregate feature is expressed
as F = aggr(a,c,d), where a denotes the attribute consid-
ered in F , c is the condition imposed on the attribute, and
d represents the predetermined rule to update the value
of F once a packet satisfies c. For example, feature F =
aggr(packet size, [96,112),+1) records the number of pack-
ets in a flow, whose packet sizes are within [96,112). Unlike
aggregate features, the computation of summary features can-
not be easily represented via predetermine update rules. Rep-
resentative summary features are maximum/minimum, mean,
and variance, which even involve multiplications or divisions
that are not natively supported on hardware. We specify how
summary features are computed in § 6.1.

We summarise the features considered in NetBeacon in
Table 2. For a specific task, we select top features based on
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Figure 4: The CDF of the deviation degree of summary fea-
tures at different flow phases. If the final feature value and
the value at current phase (i.e., first n packets) are a and b,
respectively, the deviation degree is abs(a−b)/max(a,b).

their importance calculated based on information gain.

4.2 Multi-Phase Sequential Models

Similar to prior art [26, 51, 63], NetBeacon sticks to deci-
sion tree based learning models because their constructions
are more similar to the match/action operations on the data
plane, compared with the neural networks that involve signifi-
cant non-linear computations. We adopt the state-of-the-art
decision tree forest models, i.e., Random Forest (RF) and XG-
Boost (XGB). Considering that the number of table entries
on hardware is limited, we can control model size by limiting
the number of trees in the forest, the maximum tree depth, the
maximum number of leaves, and so on.

Unlike the per-packet analysis where all packets are treated
equally, packets in the flow-level analysis are located at differ-
ent phases of the flow and therefore carry different flow-level
states. Therefore, the flow-level features are dynamic as a
flow proceeds. In Figure 4, we quantitatively visualize the dy-
namism of two flow-level features (i.e., mean of inter-packet
delay IPD, and variance of packet sizes) at different phases of
flows, using two datasets. Clearly, both features experience
significant changes over time. As a result, using a single model
to perform inference based on flow-level features yields low
accuracies, as shown in Figure 5.

The above observation motivates us to design a multi-
phase model architecture to apply different models at different
phases of flows. At each phase, NetBeacon uses the features
computed at that phase for both training and inference, i.e.,
flow-level features at the n-th packet are computed based
on the first n packets. The packets where our model makes
inference decisions are referred to as inference points. The
exact arrangement of inference points is task-dependent. In
particular, each inference-point essentially represents an anal-
ysis result for a flow after our model processes the n packets
before the inference point. Thus, the inference points could
be placed either uniformly or specifically, according to the
task. For instance, if a model uses variance as features, the
inference points should be placed at power-of-2 positions due
to hardware limits (as detailed in § 6.1). The packets not
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Figure 5: Single model vs. multi-phase sequential model.

selected as inference points use the inference result of its pre-
vious and closest inference point. Thus, the interval between
two inference points should not be too large.

NetBeacon sets a determination threshold for each infer-
ence phase. When the classification probability at a specific
inference point is above the corresponding determination
threshold, it indicates that the multi-phase sequential model
is confident to pre-decide the flow’s class without using the
subsequent inference points. This design facilitates the state-
ful storage management on the data plane (as described in
§ 5.2). In addition to flow-aware learning models, NetBeacon
employs a flow-agnostic model to classify packets that cannot
be analyzed using flow-level features, as detailed in § 5.2.

5 Model Deployment

5.1 Data Plane Model Representation

The individual models in our multi-phase sequential model
architecture and the flow-agnostic tree model are represented
in the same way. In this section, unless otherwise noted, we
present how to represent a single model (i.e., either a single
decision tree model or a forest model with multiple decision
trees) on the data plane. In § 6.2, we show how to merge the
model representations of multi-phase sequential models.

We start with the data plane representation of a single de-
cision tree. In a decision tree, the leaf nodes represent the
classification results, and a path from the root node to a leaf
node represents the matching rules for that leaf node, which
is typically a concatenation of multiple feature ranges. For
example, the path to leaf node 1 in Figure 6 is f 1 ∈ [0,25),
f 2 ∈ [0,46) and f 3 ∈ [0,10). For features that do not appear
on the path, its range is the maximum allowed range. For
example, the path to node 5 is f 1 ∈ [65,103), f 2 ∈ [0,256)
and f 3 ∈ [10,256). Therefore, if range matching were sup-
ported on programmable switches, a decision tree model can
be easily implemented as the Model Table (1) in the Figure 6,
where the key is a concatenation of multiple feature ranges,
and the value is the leaf node.

Unfortunately, range matching is not universally supported
on programmable switches, and it has to be coded into ternary
matching (bits in a ternary entry are 0, 1, or ∗). Based on
the classic prefix method [46], [65,103) requires 8 ternary
entries, range [0,256) requires 1 ternary entries, and range
[10,256) requires 6 ternary entries. As a result, in order to
simultaneously satisfy all three ranges, it takes 48 (8× 1× 6)
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Figure 6: An example of model representation in NetBeacon. From range matching (1) to ternary matching (2), the number of
table entries to represent leaf 5 increases from 1 to 48 (8 × 1 × 6). In NetBeacon, each leaf only consumes 1 entry in the model
table. The feature tables are shared by all leaves and their entries are reduced by our novel range coding algorithm (CRC).

ternary entries, as shown in the Model Table (2) of Figure 6.
Range Marking. NetBeacon solves the above entry combi-
natorial explosion problem by introducing a novel mechanism
named range marking. As introduced in § 3, a decision tree
model is represented as multiple features tables (one for each
feature) and one model table. The range marking mechanism
ensures that each leaf node only consumes a single ternary
entry in the model table, regardless of how many feature table
entries are related with this leaf node.

In a decision tree model, each feature typically has multi-
ple thresholds. For instance, in Figure 6, feature f1 has three
thresholds: 25, 65 and 103, which divides the entire possi-
ble value range (i.e., [0,256)) into four consecutive and non-
overlapping basis ranges, i.e., [0,25), [25,65), [65,103) and
[103,256). The goal of our range marking is to represent
these ranges using ternary bit strings (i.e., 0, 1, and ∗ match-
ing both 0 and 1), such that (i) each basis range is mapped to a
unique bit string and (ii) any new range obtained by combining
multiple consecutive basis ranges, referred to as associative
ranges, is also mapped to a unique bit string. The reason for
the second condition is that one node in the decision tree
could span multiple basis ranges. For instance, the parent of
node 4 in Figure 6 has an associative range ([0,65)) spanning
two consecutive basis ranges ([0,25) and [25,65)).

Formally, we define our range marking as follows. Consider
there are n thresholds {ri}, i ∈ [1,n] diving a range [0,R )
into a set of n+ 1 consecutive and non-overlapping basis
ranges S = {[0,r1), [r1,r2), ..., [rn,R )}. Our range marking
algorithm F defines a mapping from a range (either a basis

range or an associative range) to a ternary bit string satisfying

• ∀ i ∈ [1,n],F
(
[ri,ri+1)

)
= {0,1}k;

• ∀ i, i+m ∈ [1,n],F
(
[ri,ri+m)

)
= {0,1,∗}k;

• ∀ i, j, l, l+m ∈ [1,n],F
(
[ri,ri+1)

)
̸= F

(
[r j,r j+1)

)
̸=

F
(
[rl ,rl+m)

)

Range Range Mark

Feature Table
[0,r1) (1)n

[ri,ri+1) (0)i(1)n−i

[rn,R ) (0)n

Model Table
[0,ri) (∗)i−1(1)n−i+1

[ri,ri+ j) (0)i(∗) j−1(1)n−i− j+1

[r j,R ) (0)i(∗)n−i

Table 3: One range marking algorithm.

Table 3 shows one range marking algorithm designed based
on a intuition that give a basis range [ri,ri+1), set the j-th bit
in its range mark as 1 (default 0) if the basis range is within
[0,r j). In model table, however, its keys are associative ranges.
We therefore include wild matching bit ∗ so that multiple keys
in a feature table (i.e., basis ranges) are collapsed into a single
range mark in the model table. Consider the leaf node 4 in
the Figure 6 as an example. The value of f1 on its path span
two basis ranges (i.e., [0,65) spans [0,25) and [25,65)) in
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f1’s feature table, which are concisely represented as a single
ternary bit string (∗11) in the model table.
Range Coding in Feature Tables. The keys in feature tables
are still feature value ranges (e.g., [0,25)). Although existing
range coding designs (such as Prefix [46], SRGE [9], OPT
[43]), Bit-Map [30], DIRPE [24]) can translate value ranges
into ternary entries, they are not as efficient as our consecutive
range coding (CRC) algorithm, as described below.

In our scenario, the ranges to be coded in each feature
table are consecutive and cover all possible values of the
feature. Based on this characteristic, we propose the follow-
ing CRC algorithm. CRC starts coding from the lower basis
ranges (i.e., from [0,r1) to [rn,R )). Specifically, given a basis
range [ri−1,ri), CRC tries to find an optimal parent range
[pstart,pend) (i.e., pstart ∈ [0,ri−1] and pend ∈ [ri,ri+1)) so that
it takes a minimal number of prefixes to represent the parent
range on the data plane. CRC divides prefixes for representing
[pstart,pend) into three parts: the acceptance prefixes represent-
ing [pstart,pend) (i.e., a in Figure 7), and the denial prefixes
for representing [pstart,ri−1) and [ri,pend), respectively (i.e.,
b and c in Figure 7). The denial prefixes should be prioritized
over the acceptance prefixes to ensure that the [ri−1,ri] and
[pstart,pend) accept the same range.

To find the optimal [pstart,pend), CRC solves the optimiza-
tion problem in Equation (1), where Prefix(R) is the number
of prefixes required to represent range R under [46]. Note that
Prefix([pstart,ri−1)) is not considered in the equation. This is
because that the prefixes for representing any of the lower-
rank basis ranges (i.e., [r0,r1), ..., [ri−2,ri−1)) are always pri-
oritized over the prefixes for [ri−1,ri). As a result, we can
safely discard the prefixes for [pstart,ri−1) since they are over-
shadowed anyway by those representing the lower-ranked
basis ranges.

min
pstart∈[0,ri−1 ]
pend∈[ri ,ri+1)

Prefix([pstart,pend))+Prefix([ri,pend)) (1)

The intuition why CRC can reduce the total number of pre-
fixes for representing [ri−1,ri) although it actually considers
a larger range [pstart,pend) is that some prefixes in [ri−1,ri)
can actually be merged into one larger prefix when expand-
ing [ri−1,ri) into [pstart,pend). For instance, as shown in Fig-
ure 6, several smaller prefixes for [65,103) (i.e., 01000001,
0100001*, etc.) are merged to two larger prefixes 010*****
and 01100*** after expanding [65,103) into [64,104).

The above optimization problem can be straightforwardly
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Figure 8: Comparisons between Prefix [46] and CRC.

solved by enumerating all possible values of pstart and pend,
with complexity O(R 2). We provide a faster solver with com-
plexity O((lgR )2), deferred to § B.

Another optimization is that CRC does not need to encode
the last basis range (i.e., [rn,R )). Note that our range marking
mechanism always assigns 0 to [rn,R ). As a result, if a feature
is not matched by the feature table, its range mark will take
the default value 0, which is the same as the value assigned
by our range marking mechanism. Thus, it is unnecessary to
represent [rn,R ) in the feature table.

In Figure 8, we quantitatively show that our CRC algorithm
CRC greatly reduces entry usage compared with Prefix [46].
Handling Forest Models. One way to deploy a forest model
is to represent each tree separately and aggregate the inference
result of each tree to get the final result. This approach is
suitable for forest models (e.g., random forest models) where
the final result is the plurality of the inference classes given
by individual trees. In particular, a plurality matching table is
appended after the model tables of individual trees. The key
of each row in the plurality table is the concatenation of the
inference classes of individual trees, and its corresponding
value is the majority of individual inference classes. The
“combinatorial explosion” problem in this case is minor as
the number of individual trees and the number of inference
classes of each tree are much smaller.

However, the above design is inapplicable to gradient boost-
ing tree models (e.g., GBDT, XGBoost, LightGBM). Because
the final inference probability is obtained by aggregating the
results from individual trees via a non-linear function (e.g.,
Sigmoid), which is difficult to execute on the data plane.

Therefore, instead of representing individual trees sepa-
rately, NetBeacon merges their model representations. Specif-
ically, given a feature f1, each individual tree may have a
feature table for it. Merging these feature tables is the same as
creating a new feature table considering all the feature value
ranges that appeared in these tables, using our range marking
algorithm. As for the model table, each entry represents one
combination of the leaves from individual trees. Thus, the key
of a model table entry is the range mark obtained by consider-
ing all the nodes (representing feature ranges) on the paths to
the leaves associated with this entry, and the corresponding
value is the aggregate (e.g., Sigmoid) of these leaves, which
can be computed offline. For instance, the combination of
leaf 1-2 and leaf 2-1 in Figure 9 merges the f1 ∈ [25,256)
and f1 ∈ [0,35) forming f1 ∈ [25,35). And the value of the
combination is Sigmoid(-0.01+0.5).
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Figure 9: An example of merged representations of a forest
model with two decision trees.

When exploring leaf combinations in the model table, Net-
Beacon removes the conflicting combinations. (i) Feature
value conflict: the leaf 1-1 in Figure 9 has f1 < 25 on its
path and leaf 2-2 has f1 ≥ 35 on its path, so the combination
of the above two leaves is excluded. (ii) Features semantic
conflict: if one node with Max(packet_size) < 10 on one leaf
path and one node with Avg(packet_size)> 20 on another leaf
path, the combination of the above two leaves is excluded.
By preserving all compatible leaf combinations, the above
mechanism retains the accuracy of the original forest model.

5.2 Stateful Storage Management
In order to leverage flow-level features, NetBeacon relies on
stateful storage to maintain the per-flow state. Prior art [4, 53]
involves the control plane to allocate a non-conflicting storage
index upon receiving new flows. To achieve line-speed traffic
analysis, NetBeacon instead relies on hardware hashing read-
ily available on the data plane to allocate storage indices. In
particular, assume that there are N stateful registers available
for storing flow state, NetBeacon computes the storage index
for a flow as H (5-tuple) % N, where H is a hash function.

Hash-based storage index allocation, however, has the prob-
lem of allocation collisions, i.e., two different flows (with dif-
ferent 5-tuples) may receive the same storage index. So it is
necessary to store the true flow ID (e.g., the 5-tuple) alongside
the storage index so that NetBeacon is aware of collisions.

Once a storage collision occurs, the per-flow states of both
the original and new flows will become dirty if the new flow
overwrites the storage. Therefore, NetBeacon proposes two
designs to mitigate this problem: one design to reduce the
overall chance of collision, and the second design to enable
safe storage overwrites.
Differentiating Short and Long Flows. As introduced in
§ 2.2, the reason to incorporate flow-level features on top of
per-packet features is to boost classification accuracy. Since
the primary goal of traffic analysis is to improve the overall
packet classification accuracy across all flows, maintaining
per-flow states for shorter flows with fewer packets has lower
marginal returns than maintaining per-flow states for longer
flows. We quantitatively demonstrate this observation using
the P2P application fingerprinting task. In particular, we con-
sider five cases: incorporating flow-level features only for
flows with more than 8 (16, 1024, 2048) packets (i.e., cut-
off 8, cutoff 16, etc.), and considering flow-level features for
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Figure 10: The packet classification accuracy across all flows
in five cases where we use flow-level features for all flows
and only flows with more than 8 (16, 1024, 2048) packets.

all flows. We plot the overall packet classification accuracy
across all flows in Figure 10. Clearly, the overall accuracies
in the first three cases are very close.

Given this observation, NetBeacon proposes to maintain
per-flow states only for long flows. This greatly reduces the
number of flows that are competing for the limited stateful
storage. In reality, it is difficult to know the flow length in
advance. Thus, NetBeacon introduces a long-short flow binary
classification model using only per-packet features to decide
whether a packet belongs to a long flow or not. Specifically,
we divide the long and short flows according to the 80th
percentile of the flow length in the training set. The first N
packets in the long (short) flows are taken as long (short) flow
samples. Then per-packet features are used for training and
classification. The long-short flow binary classification model
is task-specific. For instance, N = 7 and the accuracy is 82%
in the P2P application fingerprinting task.
Handling Storage Index Collisions. When storage indices
do collide, NetBeacon allows the new flow to use the occupied
register if the inference class of the existing flow is determined
or the flow has been finished (i.e., its last packet arrival time
exceeds a predefined timeout). Otherwise, NetBeacon falls
back to use per-packet stateless features for the new flow.

A flow’s inference class/result is determined if it has passed
the last inference point defined in the multi-phase sequential
model (§ 4.2) or the model is confident enough about the
flow’s inference result at an intermediate inference point. If so,
NetBeacon saves the inference result of the flow in a flow class
table, keyed by the flow’s 5-tuple to match subsequent packets
from this flow. Meanwhile, it updates the flow’s storage to
mark that its inference result is determined, indicating the
occupied register is ready to be overwritten by future flows
upon storage index collision. New entries are dynamically
inserted into the flow class table by the control plane after
receiving messages from the data plane indicating that a flow’s
class is determined. Meanwhile, some entries from the flow
class table need to be regularly removed (based on either the
FIFO or LRU principle) to prevent table overflow.

5.3 Integrated Data Plane Processing Logic

We now present the integrated data plane processing logic.
When a packet P arrives, its flow hash H1 is computed by
hashing over the packet’s 5-tuple (line 1 in Alg. 1). Then the
last IndexSize bits of the hash value are used as the storage



Algorithm 1 Data Plane Processing Logic

1: H1← Hash(P .5t) ▷ Derive flow hash from packet 5-tuple
2: Sid← H1[IndexSize : 0] ▷ Derive storage index
3: if not P .IsResubmit then
4: if P .5t hit TClass then ▷ TClass table stores flow class
5: C← ReadTClass(P .5t) ▷ Derive packet class
6: else
7: IDstored ← ReadRegID(Sid)
8: Cstored ← ReadRegClass(Sid)
9: if P .ID = IDstored then ▷ packet belongs to the flow

10: UpdateAllRegs(Sid) ▷ Update all registers
11: if P is an inference point then
12: Ff ← CalF() ▷ Calculate flow-level features
13: C,P← InferClass(Fp,Ff ) ▷ P is probability
14: if P≥ dt then ▷ dt is determination threshold
15: UpdateRegsure(Sid,True)
16: RecordTClass(P .5t,C)

17: Resubmit(C) ▷ Update class by resubmit
18: else
19: C←Cstored

20: else ▷ packet from a new flow
21: C← InferClass(Fp) ▷ Fp is per-packet features
22: S← InferFlowSize(Fp) ▷ S is flow size
23: if S > Lth then ▷ Lth is the long flow threshold
24: sure← ReadRegsure(Sid)
25: if timeout or sure then ▷ Reusable
26: InitAllRegs(Sid) ▷ Initialize all registers
27: Resubmit(C) ▷ Initialize class by resubmit

28: else
29: UpdateRegClass(Sid,C)
30: UpdateRegID(Sid,P .ID)

31: User-defined processing according to the packet class C

index Sid (line 2 in Alg. 1). If P is a normal packet (i.e., not a
resubmit packet, described below), it is matched by the flow
class table TClass (line 4 in Alg. 1). If matched, the packet’s
inference result/class is assigned directly as the matched class.

Otherwise, NetBeacon checks whether a per-flow state stor-
age has been allocated for packet P in the stateful storage.
Towards this end, it retrieves the stored true flow ID (e.g.,
5-tuple) using Sid and compares it with P ’s flow ID. If they
are equal, NetBeacon identifies a new packet for the flow
stored at Sid, and then updates the flow’s state accordingly.
Meanwhile, if P happens to be an inference point, NetBeacon
calculates the flow-level features Ff , based on which NetBea-
con performs model inference, together with the per-packet
Fp extracted from P . If the classification probability is greater
than a predefined threshold dt, the flow’s class is determined.
Afterwards, the data plane first updates the flow’s storage
Regsure to indicate that its class is determined, and then sig-
nals the control plane to insert the flow into the flow class
table. If P is not an inference point, it uses the stored inference

result (i.e., the result obtained at the most recent inference
point) as its own classification result.

On the contrary, if P belongs to a flow without existing
storage, NetBeacon obtain its classification result using only
per-packet features of P . If P is classified as a long-flow
packet, NetBeacon checks whether the storage on Sid is empty
or is ready to be overwritten. If so, NetBeacon initiates the
per-flow state for P ’s flow using the storage indexed by Sid.
Therefore, a storage register is lazily released when the stored
flow is class-determined (or timeout), and meanwhile a new
flow is hashed to the register.

Throughout the traffic analysis process, NetBeacon uses
the resubmitted packets to (i) update the new inference result
for an existing flow or (ii) initiate storage for a new flow.
Since the purpose of Resubmit is to trigger the modification
of the registers in previous stages (not modifying the packet
itself), we could trigger modifications by mirroring the packet
to the loopback port, instead of Resubmit or Recirculation,
so that the original packet is not delayed. Further, only the
inference-point-packets that trigger inference result updates
are mirrored, counting for a very small fraction of packets, as
measured in § 7.4.

5.4 Control Plane Logic

In NetBeacon, the control plane is responsible for (i) installing
the feature tables and model table on the data plane at the very
beginning, (ii) updating the flow class table upon receiving re-
quests (digest in Tofino switch) from the data plane when the
flow class is determined. Note that the latency for updating
the flow class table does not impact traffic analysis, because
the packets that are not matched by the flow class table will in-
stead traverse the regular model inference pipeline. Therefore,
the control plane is off the critical path of packet classification
in NetBeacon, ensuring line-speed traffic analysis.

6 Implementation

We implement a prototype1 of NetBeacon on Barefoot Tofino
1 programmable switch, including 12 MAU stages, 120MB
SRAM and 6.2MB TCAM per pipeline. The development
effort on the switch includes about 1300 lines of P416 code
for the data plane and 300 lines of Python code for the control
plane. We introduce two key implementations here, i.e., the
computation of flow-level features and multi-phase model
inference. More implementations are deferred to § C.

6.1 Computing Flow-level Features

As described in § 4.1, flow-level features are divided into
aggregate features and summary features.

1Source code: https://github.com/IDP-code/NetBeacon



1 action UpdateAggF1(d){ig_md.AggF1 = ig_md.AggF1 + d;}
2  table AggF1{
3 key = {a:ternary;}
4 actions = {UpdateAggF1;}
5  }

……
6  ig_md.total_packets = Update_total_packets.execute(ig_md.ind); //1st stage
7  ig_md.total_size = Update_total_size.execute(ig_md.ind); //1st stage
8  ig_md.size_square_sum = Update_size_square_sum.execute(ig_md.ind); //1st stage
9  if(ig_md.total_packets == 8){
10 ig_md.size_mean = ig_md.total_size>>3; //2nd stage
11 ig_md.size_square_sum_mean = ig_md.size_square_sum>>3; //2nd stage
12    ig_md.size_mean_square = Update_size_mean_square.execute(0); //3rd stage
13  ig_md.size_var = ig_md.size_square_sum-ig_md.size_mean_square; //4th stage
14  }

Figure 11: P4 pseudocode for computing flow-level features.

Aggregate Features. One aggregate feature is formalized
as F = aggr(a,c,d). As shown in Figure 11 (line 1 to line 5),
NetBeacon creates a table for each aggregate feature, where
attribute a is the key, condition c is the table entry, and the
feature value updates d upon matching.
Summary Features. Summary features include the maxi-
mum, minimum, variance and mean of certain attributes, e.g.,
packet size and inter-packet delay (IPD). For maximum and
minimum, NetBeacon compares the stored value in the corre-
sponding register with the new value and then updates the reg-
ister accordingly. Computing mean involves division, which
is not supported on the data plane. One way to work around
this limitation is to multiply the threshold by the position of
the corresponding inference point, which can be done offline,
after obtaining the multi-phase sequential models. An alter-
native way is to rely on the shift operation, which, however,
requires the positions of inference points to be a power of 2.

The calculation of variance Var(X) = E(X2)−E(X)2 in-
volves both division and square. The data plane supports an
approximate square calculation which only considers the first
4 bits of the value. For instance, the square of 0b101000001
(320) and square of 0b101011111 (351) are the same. Division
in variance is only solvable via shift operations. This essen-
tially requires the positions of inference points to be a power
of 2 if the variance feature is used in the learning model.

As shown in Figure 11, NetBeacon uses two registers to cal-
culate the variance: one is total_bytes to record the flow size
in bytes (line 7), and the other is size_square_sum to record
the sum of the squared packet sizes (line 8). When the number
of packets is a power of 2 (e.g., 8 in line 9), the mean packet
size is calculated from total_bytes first (line 10), and then
size_square_sum is averaged (line 11). Afterwards, the square
of the mean packet size is calculated (line 12). Finally, the sub-
traction of the two returns the variance (line 13). Due to com-
putational dependencies, the variance calculation requires 4
stages, where total_size and size_square_sum are calculated
on the first stage, size_mean and size_square_sum_mean on
the second stage, size_mean_square on the third stage and
size_var on the fourth stage.

6.2 Multi-phase Model Inference
Our multi-phase sequential model architecture applies differ-
ent models at different inference points. Intuitively, we rep-
resent each individual model at each phase separately, with

1   action Mark_Feature1(mark){ig_md.feat1_range_mark = mark;}
2 action Mark_Feature2(mark){ig_md.feat2_range_mark = mark;} 
3 action Set_Result(result){ig_md.result = result;}
4 table Feature1{
5 key = {ig_md.total_packets:exact;
6 ig_md.size_var:ternary;}
7 actions = {Mark_Feature1;}}
8 table Feature2{
9 key = {ig_md.total_packets:exact;
10 ig_md.size_mean:ternary;}
11 actions = {Mark_Feature2;}}
12  table Model{
13 key={ig_md.total_packets:exact;
14           ig_md.feat1_range_mark:ternary;
15 ig_md.feat2_range_mark:ternary;}
16 actions={Set_Result;}}
……
17 Feature1.apply(); Feature2.apply(); //1st stage
18 Model.apply(); //2nd stage

Figure 12: P4 pseudocode for multi-phase model inference.

its own feature tables and model table. Alternatively, we can
merge their representations. As shown in Figure 12, both
the feature tables and model table has an extra key named
total_packets, which is used to distinguish models in differ-
ent phases. Considering that these models may use different
features, if one feature is not used by a specific model, the
range mark for this feature is set as ∗ to represent any range
marks. In general, model inference takes two stages: one
stage for matching feature tables in parallel and one stage for
matching the (aggregate) model table.

7 Evaluation

We evaluate NetBeacon extensively to demonstrate: (i) End-
to-end performance improvement: NetBeacon achieves signif-
icant improvements on traffic analysis accuracies compared
with baseline methods, and our results are comparable with the
ideal cases with unlimited stateful storage; (ii) Efficient model
representation on the data plane: NetBeacon achieves higher
classification accuracy, and meanwhile consumes fewer data
plane table entries compared with the baselines; (iii) We study
various moving pieces in NetBeacon.

7.1 Experiment Setup
Testbed Setup. For the end-to-end experiments, we connect
the programmable switch to two Linux servers. One server re-
plays the pcap file via tcpreplay, and the other server captures
the packets received from the programmable switch.
Metric and Features. We use packet-level macro-accuracy
(defined as the average of Recalls for different classes) as the
metric. When the dataset is balanced, macro-accuracy equals
to accuracy. Unless otherwise stated, we use macro-accuracy
and accuracy interchangeably when reporting evaluation re-
sults. The full set of per-packet features is the same as in [51].
The full set of flow-level features is the aggregate features
and summary features of IPD and packet sizes. For different
tasks, we select the most important features from them. Model
training utilizes Python’s sklearn library.
Tasks. We evaluate NetBeacon using the following tasks.
• P2P application fingerprinting. This task classifies P2P ap-

plication traffic. We use traffic from three P2P applications
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Figure 13: End-to-end performance of NetBeacon on three tasks. Compared to Mousika, NetBeacon has a significant accuracy
improvement, i.e., 14% in P2P application fingerprinting, 38% in covert channel detection and 20% in DDoS attack detection.

(eMule, uTorrent, and Vuze) in the PeerRush dataset [41].
Thus, it is a three-class classification task.

• Covert channel detection. The task identifies covert channel
traffic encoded by censorship resistance tool Facet [28]
from benign Skype traffic. We use the FacetTraffic dataset
[3], and choose the 12.5% type as the covert channel traffic.

• DDoS attack detection. The task identifies DDoS traffic
from benign traffic. We collect eight advanced DDoS traf-
fic, including amplification attacks (i.e., RIPv1, CLDAP,
NTP, DNS, and Memcached disclosed by a real-world mea-
surement [22]) and pulsing DDoS attacks (according to the
three original settings in [33]). To avoid real-world damage,
we perform the attacks in a virtual private cloud with 650
VMs. We use a MAWI dataset [49] collected in a backbone
network (15th Jan. 2020) as benign background traffic.

7.2 End-to-end System Performance
In this section, we demonstrate the performance of NetBea-
con under various network loads. Similar to [53], we use the
media number of new flows arrived per second to represent
network loads. The IndexSize is 16, meaning the system can
simultaneously maintain up to 65536 per-flow states. We sum-
mary the main setting in the Table 4 and more details are
deferred to § D. We compare NetBeacon with the follow-
ing five methods. We use the same number of features in
NetBeacon and these methods for fair comparisons.
• Mousika [51]: a reproduced version of Mousika. We select

the model with the higher accuracy among BDT and post-
distillation BDT.

• NetBeacon(Pkt). a trimmed version of NetBeacon that uses
only per-packet features.

• NetBeacon(Flow&Pkt) w/o Optimization. a trimmed ver-
sion of NetBeacon that uses both flow-level and per-packet
features, yet without proper management of stateful stor-
age (i.e., without short/long flow differentiation and storage
index collision management).

• NetBeacon(Flow&Pkt) Full Version: a full version of Net-
Beacon.

Tasks P2P App Fgpt. Covert Channel DDoS Detection

Model RandomForest XGBoost XGBoost
Training (flows) 2565270 1600 47752
Testing (flows) 246278 400 191009

Class Ratio 3:6:2 1:1 6:1(DDoS)
Network load § 1555 3144 ¶ 13357

§ The media number of new flows arrived per second in the high network load case.
¶ Including Skype traffic and background traffic.

Table 4: Experimental settings.

• Ideal(Flow&Pkt): the ideal case (simulated). We use pure
software code in Python to simulate the match/action based
packet processing and allocate storage for each flow.

P2P Application Fingerprinting. Each pcap file in the Peer-
Rush dataset is one hour of traffic. In order to create varying
network load (i.e., the media number of new flows per sec-
ond), we control the number of simultaneously replayed flows.
The medium (high) network load is roughly 2 (3) times higher
than the normal network load. The seven most important fea-
tures used are the maximum, minimum, mean, and variance
of the packet size, the minimum of IPD, and the numbers
of packets with packet size within [48,64) and [80,96). The
inference points are located at the {2nd, 4th, 8th, 32th, 256th,
512th, 2048th} packet.

We plot the results in the leftmost subfigure in Figure 13.
(i) Even the trimmed version of NetBeacon using only per-
packet features outperforms Mousika. We provide further
explanations in § 7.3. With flow-level features used, the op-
timized NetBeacon significantly outperforms Mousika. (ii)
The full version of NetBeacon has comparable performance
with the ideal solutions, demonstrating the effectiveness of
stateful storage management. The minor accuracy loss is be-
cause a small fraction flows (e.g., 0.85% in the high network
load case) fall back to per-packet features due to hardware
limitations. (iii) In this task, NetBeacon uses 12 stages, along
with 17.29% of SRAM and 31.25% of TCAM. Our experi-
ments were conducted with the 1st generation Tofino chip.
The amount of stage, TCAM and SRAM resources have al-
most doubled in the latest Tofino chips, so the resources con-
sumed by NetBeacon are acceptable.
Covert Channel Detection. There are only 2000 flows in the
covert channel detection task, of which 1000 are benign and
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(c) DDoS Attack Detection
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Figure 14: The comparison of model representation efficiency. On the one hand, NetBeacon achieves higher accuracies when
consuming the same number of table entries; on the other hand, to represent two similarly-performing models, NetBeacon uses
much fewer table entries on the data plane.

the rest 1000 are malicious. Since the dataset is Skype traffic,
all flows are very long. Therefore, we add background traffic
from the Univ2 dataset [6] so the entire traffic includes a
more balanced distribution of short and long flows. We adjust
the pcap file replay rate to control the network load. The
features used in NetBeacon are the numbers of packets with
packet size in in [96,112), [112,128), [128,144), [144,160),
[160,176) and [176,192) respectively. The inference points
are located at the {512th, 1024th, 1500th, 2048th, 3000th,
4096th, 6000th, 8192th, 10000th} packet.

We show the experimental results in the middle subfigure
of Figure 13. (i) Because the covert channel is constructed
based on flow-level information, per-packet features have very
limited contributions in the covert channel detection. (ii) Both
versions of NetBeacon with flow-level features achieve simi-
lar classification performance as the ideal method. We notice
that storage index collisions in this task are not frequent since
the number of relevant long flows is relatively small. Thus,
the quantitative benefits of stateful storage management are
not significant in this task. (iii) The full version of NetBea-
con consumes 12 stages, along with 13.44% of SRAM and
34.03% of TCAM, for this task.
DDoS Attack Detection. We merge both benign traffic and
DDoS traffic to create network traffic and control the net-
work load by adjusting the number of simultaneously replayed
flows. The features used in this task are the minimum IPD
and packet sizes. The inference points are located at the {2nd,
5th, 8th, 16th} packet.

We show the experimental results in the rightmost subfig-
ure of Figure 13. (i) The accuracies of flow-agnostic version
of NetBeacon are 6% to 9% higher than those of Mousika in
various network loads. (ii) After incorporating flow-level fea-
tures, the detection accuracies are 20% higher and very close
to the ideal method. We notice that the quantitative benefits
of the stateful storage management are not significant in this
task. This is because the accurate flow class can be obtained
at an earlier phase before a storage collision happens. (iii)
NetBeacon occupied 9 stages, along with 11.11% of SRAM
and 1.85% of TCAM, for this task.
Caveats. In the Table 5, we further report the FPR/FNR in
each task. In general, due to hardware constraint, the ML

Tasks P2P App Fgpt. Covert Channel DDoS Detection
FPR/FNR 7.6%/12%/14.7%* 8.8%/10.9% 0.7%/0.05%
* The multi-class FPRs are defined under 1 v.s. all.

Table 5: The FPRs/FNRs in the three tasks.

models designed in the area of IDP are limited in features,
model sizes (e.g., tree depth) and the locations of inference
points. Deeper investigation of the results reveals that the
flow-level macro-accuracy is fairly decent. For instance, if
we consider a covert channel flow is detected when at least
five of the inference points correctly identify its packets, then
flow-level FPR and FNR are 5.3% and 7.3%. Interpreting
flow-level macro-accuracy is particularly useful for malicious
flow detection in intrusion detection/prevention systems. Nev-
ertheless, further improving inference accuracies for traffic
analysis tasks that require complex model and features is an
active research direction in IDP for both the networking and
vendor communities.

7.3 Model Representation Performance
In this section, we show that the data plane model representa-
tion of NetBeacon is more efficient compared with other IDP
works. We use Mousika and Mousika (RF Distilled) [51] as
two baselines. Mousika represents the directly trained BDT
model. Mousika(RF Distilled) represents the BDT model
obtained by distillation of the trained RandomForest model.
Experiment Setup. In addition to the three tasks above, i.e.,
P2P application fingerprinting, covert channel detection, and
DDoS attack detection, we further add a traffic type classifi-
cation task in this part. We use the ISCXVPN dataset [12] for
this task, including six traffic types: chat, P2P, email, VoIP,
streaming, and file transfer. The RandomForest is selected for
the traffic type classification task. To ensure a fair comparison,
NetBeacon and Mousika use the same training data. We first
extract the features from the original packets as the training
data for NetBeacon. Since the model in Mousika is binary
decision tree (BDT), we transformed the features into binary
as the training data for Mousika.

The evaluation metrics are the classification accuracy and
the number of data plane table entries required to represent the
model. For NetBeacon, the number of table entries is the sum
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Figure 15: The impact of different factors on NetBeacon performance. The tasks in (b) and (c) are covert channel detection and
P2P application fingerprinting, respectively. The experimental configuration in (d) is 58000 flows and 8192 registers.

of the number of entries in all feature tables and model table.
The models in Mousika are represented using a single giant
table. For NetBeacon, we adjust the number of trees and the
maximum tree depth to obtain different learning accuracies
and different numbers of table entries. Mousika does not have
a similar mechanism to balance the accuracy and number of
table entries, so we adjust the size of training data to produce
different models for Mousika.
Experimental Results. We present the results in Figure
14. (i) When consuming the same number of table entries,
NetBeacon achieves higher accuracies on all four tasks com-
pared with Mousika. Two possible reasons may contribute
to this performance gain. The first one is that the features
used by BDT itself are binary features which may not be
expressive. The second is that the design of BDT itself may
be less efficient than the state-of-the-art tree-based models
used by NetBeacon, i.e., RF and XGB. (ii) To represent two
similarly-performing models, NetBeacon uses much fewer
table entries on the data plane (e.g., 75% reduction in covert
channel detection). This demonstrates the effectiveness of our
range marking and range coding mechanisms introduced in
§ 5.1. In fact, we realize that the design of BDT itself tends to
generate a large number of table entries; we provide a detailed
discussion in § A.

7.4 NetBeacon Deep Dive
We explore the factors affecting NetBeacon performance.
Throughput. The PISA pipeline on programmable switches
ensures that any compiled program will run at line-speed.
The measured throughput for P2P application fingerprint-
ing, covert channel detection, and DDoS attack detection are
99.12 Gbps, 99.13 Gbps and 99.18 Gbps, respectively, on a
100Gb forwarding port. Since one 100Gb loopback port is
shared by 16 forwarding ports in a pipeline, the ratio of mir-
rored packets in each forwarding port should be, on average,
smaller than 1/16 to ensure that the loopback port will not
become the bottleneck. The packet-mirroring ratios are 3.8%,
0.09% and 1.28%, respectively, in our tasks.
The Number of Inference Points. The number of inference
points/phases employed in the multi-phase sequential model
is an important factor affecting performance. As presented in
§ 4.2, the flow-level information could be premature at earlier

phases, which may affect classification accuracy. As we can
see from Figure 15a, the accuracy increases as we append
additional inference points.
Determination Thresholds. As presented in § 4.2, we set
a determination threshold for each inference point. In Fig-
ure 15b, we explore two determination thresholds. A lower
determination threshold allows earlier classification and re-
lease of storage registers, but may lead to misclassifications.
As we can see, when the number of available registers is small
(i.e., small IndexSize), the smaller lower determination thresh-
old allows the registers to be released earlier, which compen-
sates for the accuracy losses of making inference decisions at
earlier phases. As a result, the lower determination threshold
achieves better accuracy results than the higher determination
threshold. On the contrary, when the number of storage regis-
ters is larger, using a higher determination threshold is more
beneficial. Therefore, the determination thresholds should be
decided considering the available hardware resources.
The Size of Stateful Storage (i.e., IndexSize). Stateful stor-
age is necessary to maintain per-flow states and compute
flow-level features. Thus, it is critical to mitigate the problem
of storage index collisions caused by different flows. In Figure
15c, we show that the size of stateful storage and classification
accuracy are positively correlated. Meanwhile, our stateful
storage management improves packet classification accuracy
by non-trivial margins upon the limited stateful storage.
Imperfection of Hardware Hashing. We obtain the number
flows hashed to each storage register, and plot the distribution
in Figure 15d. Ideally, all registers should have the same
number of hits, i.e., the red dashed line in the Figure 15d. The
actual distribution does deviate from the ideal distribution,
which could introduce extra storage index collisions.

8 Discussion

Addressable Market Analysis. Prior art on learning-based
traffic analysis [4, 14, 37] places feature engineering and/or
ML model inference on the control plane (e.g., an auxiliary
server). Thus, they can use rather sophisticated features and
models, yet yielding much smaller analysis throughput than
the line-speed. Another category of art [2, 32, 61] primar-
ily considers DDoS mitigation by encoding defense rules



on programmable switches, achieving line-speed traffic fil-
tering. Yet their approaches are not generalizable to realize
other learning-based traffic analysis. In contrast, NetBeacon
advocates IDP that directly embeds general-purpose learning
models into the network data plane to empower intelligent traf-
fic analysis at line-speed. Compared with existing IDP-related
designs [10, 26, 51, 55, 63], NetBeacon surpasses them in
both analysis accuracy and model representation efficiency.
However, due to the constraints of the PISA pipeline, both
features and model architectures are limited in NetBeacon,
which might affect the analysis accuracies in case of com-
plex tasks, as quantified in Table 5. Besides programmable
switches, prior art also consider SmartNICs [45, 50] and
DPDK-driven host networking [35] as the intelligent data
plane to enable more flexible computation and storage, at the
expense of much lower throughput (for instance, NetFPGA-
PLUS has 200 Gbps while the Tofino 1 programmable switch
in aggregate has 6.4 Tbps).
Scalability Analysis. NetBeacon has the following traffic
analysis hierarchy: the flow class table stores flows whose
classification classes have been determined (line 4-5 in Alg.
1). When matched by the flow class table, a packet will not be
re-analyzed by the ML model deployed after the flow class
table. Otherwise, the packet enters the typical ML inference.
If NetBeacon maintains the per-flow state in registers (SRAM)
for the packet (line 11-19 in Alg. 1), the ML inference will use
flow-level features; otherwise, the inference is purely based on
per-packet features (line21 in Alg. 1). Thus, there is no hard-
limit on the number of concurrent flows that can be processed
by NetBeacon, since it can fall back to use per-packet features
whenever necessary.

The theoretically maximum number of per-flow states that
NetBeacon can simultaneously maintain is determined by the
size of registers (SRAM) and the flow-level features being
used. In the DDoS task where scalability matters the most,
one pipeline on Tofino 1 switch (with 4 pipelines in total)
can support up to 140,000 flow indices in registers (SRAM).
The SRAM size in Tofino 3 increases by 80% and the total
number of pipelines doubles. Architecturally, we can deploy
multiple NetBeacon instances in parallel and load balance
flows across these instances. Each NetBeacon instance inde-
pendently processes traffic at line-speed.
Security Analysis. We discuss several adaptive (or white-
box) attacks against NetBeacon. The first type is resource
exhausting attack where the adversary generates numerous
concurrent bogus flows to overflow the available SRAM on
a switch. This is essentially a form of Denial-of-Capability
(DoC) attack [38]. Fortunately, DoC attacks will not fully
break down NetBeacon since it can fall back to use per-packet
features. The probably-secure defense against DoC attacks
is through dedicated set-up protocols (e.g., Portcullis [40]).
Practically, DoC attacks are mitigated by either aggregating
flows or deploying multiple NetBeacon instances in parallel.

The second category of attacks aims at exploiting the de-

tailed system parameters in NetBeacon. Two representative
examples are: (i) the stealth attack where the attacker sends
benign packets first, and then transmits malicious packets
after NetBeacon determines the flow class; (ii) the low-rate-
long-flow attack where the attacker forces the flow to timeout.
In general, these types of attacks have entry barriers since the
adversary needs to probe the parameter setting. To mitigate
the stealth attack, NetBeacon can enforce a maximum flow
length limit on the entries in the flow class table. To miti-
gate the low-rate-long-flow-attack, NetBeacon can determine
a flow-specific timeout (e.g., twice the maximum observed
IPD) for each flow.

9 Related Work

ML-powered Traffic Analysis. Learning-based traffic has
been studied for a long time [7, 38]. Recently, the devel-
opment of AI and the enrichment of network scenarios en-
courage studies in this area. Some works focus on feature
design. [5, 14, 15, 42] perform matrix transformation, com-
pression and frequency transformation respectively for feature.
Some works focus on classification under encrypted traffic.
[16, 27, 47, 59] build different models according to the sce-
nario for encrypted traffic. Some works address the common
problem of traffic classification by employing the latest tech-
niques in AI, such as deep learning [42], autoencoder [37],
data augmentation [21], automated machine learning [17], etc.
These art, however, does not primarily focus on IDP.
Applications for programmable switches. Programmable
switches are applied for a wide range of fields due to its
flexibility, including switch function optimization [18, 39, 60],
network measurement and monitoring [48, 58, 62], network
security [23, 52, 54, 64], distributed systems [25, 44], etc.

10 Conclusion

Intelligent Data Plane (IDP) may potentially enable a new
paradigm of networking designs, by achieving intelligent traf-
fic analysis at line-speed using data-driven models rather than
predefined protocols. In this paper, we present NetBeacon,
the most advanced IDP design that outperforms prior art in
both learning model accuracy and model representation ef-
ficiency. At its core, NetBeacon is empowered by (i) a data
plane aware model design centering around a multi-phase se-
quential model architecture, (ii) efficient model representation
mechanisms, and (iii) stateful storage management designs.
We implement a prototype of NetBeacon and extensively eval-
uate its performance over multiple traffic analysis tasks.
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action CheckFeature1(next_node, threshold){
ig_md.prev_node = next_node; 
ig_md.is_True = 0;
if (hdr.ipv4.total_len < threshold){

ig_md.is_True = 1;}
}

action CheckFeature2(next_node, threshold){
ig_md.prev_node = next_node; 
ig_md.is_True = 0;
if (hdr.ipv4.ttl < threshold){

ig_md.is_True = 1;}
}

table tree1_level_i{
key={ig_md.prev_node: exact;

ig_md.is_True: exact;}
actions={

CheckFeature1;
CheckFeature2;
SetResult1;

}
}

Tree1_level_1.apply();
……

Tree1_level_n.apply();

SwitchTree

action Feature1_Code(code1,code2){
ig_md.tree1_feat1_code = code1;
ig_md.tree2_feat1_code = code2; }

action Feature2_Code(code1,code2){
ig_md.tree1_feat2_code = code1;
ig_md.tree2_feat2_code = code2; } 

action Set_Result1(result){ig_md.result1 = result;}
action Set_Result2(result){ig_md.result2 = result;}
table Feature1{

key = {hdr.ipv4.total_len:exact;}
actions = {Feature1_Code;}}

table Feature2{
key = {hdr.ipv4.ttl:exact;}
actions = {Feature2_Code;}}

table tree_1{
key={ig_md.tree1_feat1_code:exact;

ig_md.tree1_feat2_code:exact;}
actions={Set_Result1;}}

table tree_2{
key={ig_md.tree2_feat1_code:exact;

ig_md.tree2_feat2_code:exact;}
actions={Set_Result2;}}

Feature1.apply(); Feature2.apply();
Tree1.apply(); Tree2.apply();

Planter

Figure 16: The main P4 pseudocodes of SwitchTree and Planter.
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Figure 17: An example of BDT structure.

The appendix is divided into four parts. Appendix A is an
additional description of state-of-the-art IDP works. Appendix
B gives a faster solver of CRC algorithm. Appendix C gives
more detail of NetBeacon’s implementation. Appendix D
provides a more detailed description of the experiments.

A Supplements for IDP Works

pForest and SwitchTree. In pForest [10] and SwitchTree
[26], the stages from left to right correspond to each layer
of the decision tree from top to bottom. The table key in
each stage is the node of the corresponding layer of the de-
cision tree and the next branch. The parameter of action is
the information of the node on the branch, including feature
and threshold. After matching, the comparison between the
current feature value and the feature threshold is executed in
action. The number of switch stages limits the depth of the
decision tree model in this way. The main P4 pseudocode of
SwitchTree is shown in Figure 16. And table tree1_level_i
represents the nodes at level i of the decision tree 1. We cre-
ate a check action for each feature, eliminating the need to
determine which feature is currently to be compared as the
open source code does. Unfortunately, complex conditions
are not allowed in the action, and both sides of the comparison
operation cannot be variables in production-grade switches.
We show the compilation error (compiler version: 9.1.0) in
red in Figure 16. These factors result in the above two works
being unfeasible in production grade switches.
IIsy and Planter. In IIsy [55] and Planter [63], the features
are first encoded and then the decision tree is encoded. Specif-
ically, feature encoding maps feature values to decision tree
branches, and decision tree encoding maps branches to leaf
nodes. As shown in Figure 16, ig_md.tree1_ f eat1_code rep-
resents the branch of feature 1 in tree 1. Planter only gives a
simple example, and is unclear how to support complex de-
cision tree models, e.g., how Planter encodes branches when
using one feature multiple times in a tree.

Mousika. Mousika [51] proposed a data plane friendly de-
cision tree model, binary decision tree (BDT), that uses the
binary bits of features as tree nodes. As shown in Figure 17,
feature f 1 is converted into 4 binary features in the BDT,
denoted f 1-n, corresponding to the four bits of f 1. The rule
1≤ f 1≤ 7 in traditional DT needs to be covered by three leaf
nodes together in the BDT, where a leaf node corresponds to
a table entry in the data plane. The three nodes are exactly the
three prefixes of the range [1,7]. Further, if both 1≤ f 1≤ 7
and 1 ≤ f 2 ≤ 7 need to be satisfied, 3∗3 leaf nodes will be
needed, which means 9 table entries on the data plane. In
brief, the number of leaves of BDT and table entries on the
data plane will face a combination explosion issue as the
number of features to be combined increases. Instead of trans-
forming directly from DT, Mousika obtains BDT by training
binary features, which somewhat alleviates the combination
explosion issue of BDT.

B CRC Algorithm Optimization

As described in §5.1, the CRC algorithm needs to solve the
optimization problem in Equation (1). We introduce a solver
here. The intuition of our solver is gradually merging the first
two prefixes in the prefix list of range into one prefix. For
instance, the first two prefixes of [68,103) are 010001** and
01001*** as shown in Figure 6. To merge the two prefixes, the
Pstart needs to be moved to the left by 4. Because the merged
prefix needs to have more covers than the existing prefixes,
i.e., twice the maximum of the existing prefixes’ covers. In
the first two prefixes of [68,103), 01001*** has the maximum
covers, i.e., 8, so the merged prefix needs to have 16 covers.
The moved steps is 4, i.e., 16 (covers of merged prefix) - 8
(covers of 01001***) - 4 (covers of 010001**) = 8 - 4. We
show the operation in line 14 of Alg. 2. When only one prefix
in the prefix list of range (line 12) or the di f f is negative (line
15), it means the Pstart cannot be moved to merge prefixes.
In this way, the number of moves of Pstart does not exceed



Algorithm 2 Consecutive Ranges Coding (CRC)
Input: r1,r2, ...,rn are the n thresholds of a feature and

the feature occupy w bits. Prefix([ri,ri+1)) returns the list of
prefixes obtained by the Prefix method [46] for range [ri,ri+1).
Num(plist) returns the size of list plist. Cov(p) returns the

number of values covered by prefix p, i.e., covers of p.
Output: Tern is the list of prefixes of the n ranges.
1: r0← 0, rn+1← 2w, Tern← []
2: for each thresholds i = 1, ...,n do
3: Minm← ∞ ▷ Minm is the minimum number of prefixes
4: start← ri−1, end← ri
5: while end < ri+1 do
6: plist1← Prefix([ri,end))
7: while start ≥ 0 do
8: plist2← Prefix([start,end))
9: if Num(plist1)+ Num(plist2)< Minm then

10: Minm← Num(plist1)+ Num(plist2)
11: Bests← start, Beste← end
12: if Num(plist2) == 1 then
13: Break
14: di f f ← Cov(plist2[1])−Cov(plist2[0])
15: if di f f < 0 then
16: Break
17: start← start−di f f
18: if Num(plist2) == 1 then
19: Break
20: di f f ← Cov(plist2[−2])−Cov(plist2[−1])
21: if di f f < 0 then
22: Break
23: end← end +di f f
24: Tern extend Prefix([ri,beste)) with higher priority 2i
25: Tern extend Prefix([bests,beste)) with priority 2i+1

the number of prefixes in the prefix list of range [ri−1,ri) and
thus the complexity is O(lgR ). The search idea of Pend is the
same as Pstart . Therefore, the total complexity is O((lgR )2).

C Supplements for Implementation

Determined Threshold. As shown in Alg. 1 line 14, the
data plane needs to judge whether the probability exceeds the
determination threshold. NetBeacon puts the classification
probabilities and threshold comparisons on the control plane
so that the determination threshold could be updated with-
out downtime. Specifically, NetBeacon takes n+ x (n) as the
action parameter of the model table for class n if the classifica-
tion probability does (not) reach the threshold, where x is an
arbitrary number greater than the total number of classes. In
this way, the data plane only needs to judge whether the action
parameter is greater than x to know whether the probability is
greater than the determination threshold.
Flow Class Table Entry Replacement. When the flow class

table is full, NetBeacon removes table entries to allow for
the insertion of new entries. In analogy to the OS page re-
placement algorithm, there are two table entry replacement
algorithms.

FIFO (First In, First Out): The control plane maintains a
list of flows in order of insertion. When entry replacement is
required, FIFO selects the earliest inserted table entry as the
replacement entry. FIFO is suitable for scenarios with little
difference in flow duration. LRU (Least Recently Used): A
counter can be set to record the number of packets matched to
a table entry in the flow class table. The time that the counter
value has not changed is considered the time that the table
entry has not been used. When entry replacement is required,
the table entry that has not been used for the longest time is
selected. LRU is suitable for scenarios with a large difference
in flow duration.

D Experiment Setting

End-to-end Experiment Details. We provide a more detailed
description of the experimental setting. We show the flow
duration distributions in Figure 18.
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Figure 18: The flow duration distributions in three tasks.
P2P Application Fingerprinting. The model size in Net-
Beacon(Pkt) is 2*9 (two trees and max depth is 9). The model
sizes in seven phases of NetBeacon(Pkt&Flow) are {1*9, 1*9,
1*9, 1*9, 1*9, 1*9 and 1*9}, respectively. The model size of
flow size prediction is 1*8. We choose 10% flows of pcaps
from 72 hours as the test set, and the training set is the rest of
the data from the 72 hours.
Covert Channel Detection. The model size in NetBea-
con(Pkt) is 1*10 (1 tree and max depth is 10). The model
sizes in nine phases of NetBeacon(Pkt&Flow) are {2*5, 3*6,
3*6, 3*6, 3*7, 2*7, 3*6, 3*5 and 3*4}, respectively. We merge
nine pcaps in the Univ2 dataset and replace the long flows
(>4000 pkts) with 20% Skype flows as the test set. The rest
Skype traffic is the training set.
DDoS Attack Detection. The model size in NetBeacon(Pkt)
is 1*4 (1 tree and max depth is 4). The model sizes in four
phases of NetBeacon(Pkt&Flow) are {1*1, 1*4, 1*1 and 1*1},
respectively. We merge three 40s of the MAWI dataset and
malicious dataset as the whole set, of which 80% is the test
set and the rest is the training set.
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