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Abstract
Deploying machine learning models directly on the network
data plane enables intelligent traffic analysis at line-speed
using data-driven models rather than predefined protocols.
Such a capability, referred to as Intelligent Data Plane (IDP),
may potentially transform a wide range of networking de-
signs. The emerging programmable switches provide crucial
hardware support to realize IDP. Prior art in this regard is
divided into two major categories: (i) focusing on extracting
useful flow information from the data plane, while placing
the learning-based traffic analysis on the control plane; and
(ii) taking a step further to embed learning models into the
data plane, while failing to use flow-level features that are
critical to achieve high learning accuracies. In this paper, we
propose NetBeacon to advance the state-of-the-art in both
model accuracy and model deployment efficiency. In partic-
ular, NetBeacon proposes a multi-phase sequential model
architecture to perform dynamic packet analysis at different
phases of a flow as it proceeds, by incorporating flow-level
features that are computable at line-speed to boost learning
accuracies. Further, NetBeacon designs efficient model rep-
resentation mechanisms to address the table entry explosion
problem when deploying tree-based models on the network
data plane. Finally, NetBeacon hardens its scalability for han-
dling concurrent flows via multiple tightly-coupled designs
for managing stateful storage used to store per-flow state. We
implement a prototype of NetBeacon and extensively evaluate
its performance over multiple traffic analysis tasks.

1 Introduction

Artificial Intelligence (AI) experiences increasingly popu-
larity in various networking designs, such as video bitrate
adaption [34, 56], congestion control [1, 57], traffic optimiza-
tions [11], routing [29, 65], and network planning [66]. The
learned models are typically deployed either on end-hosts
[1, 34, 56, 66] or network control plane [11, 29, 57, 65] to
perform inference, which are equipped with flexible general-
purpose processors or GPUs.

Deploying the learned models for traffic analysis directly
on the network data plane, however, is a relatively less charted
area. The key merit of executing model inference on the net-
work data plane is that it enables intelligent traffic analysis

at line-speed (i.e., zero reduction to the network forwarding
speed) using data-driven models rather than predefined pro-
tocols. Such a capability, referred to as Intelligent Data Plane
(IDP), may potentially transform a wide range of networking
designs. For instance, the increasingly sophisticated network
attacks often bypass the empirically learned traffic filters [31],
motivating the community to design learning-based malicious
traffic detection mechanisms, such as [14, 37]. Unlike these
approaches, however, IDP achieves line-speed traffic analy-
sis, while the state-of-the-art that deploys learning models on
the network control plane can only process traffic at roughly
10 Gbps [14]. Further, placing the control plane on the criti-
cal path of traffic analysis introduces extra reaction time [2].
Besides the security domain, other networking designs (such
as differentiated routing [29], ECN threshold adjustment [57],
and buffer management [19]) may also benefit from IDP.

The design of IDP used to be “nearly impossible” due to
the difficulty of realizing dynamic and data-driven AI models
using the specialized and protocol-defined ASIC switching
chips on the network data plane. Fortunately, the advances
in programmable switches (e.g., P4 switch [8]) allow cus-
tomizable packet processing logic based on the Protocol-
Independent Switch Architecture (PISA). Under PISA, net-
work packets are processed, at line-speed, by a programmable
pipeline consisting of a parser, multiple match/action stages
and a deparser. Although the PISA architecture is not Tur-
ing Complete (yet) to execute arbitrary computation over
the packet bytes, the community has proposed significant
network-security related designs centering around the pro-
grammable switches.

The first category of prior art focuses on extracting useful
flow information from the data plane to support overarching
applications. For instance, NetWarden [53] and FlowLens [4]
rely on the programmable switches to collect flow distribution
information, based on which they perform covert channel
detection [53] and learning-based traffic classification [4],
respectively, in the control plane. Similarly, Poseidon [61]
and Jaqen [32] compare the collected flow information (e.g.,
flow rates) against predefined traffic filtering policies (e.g.,
threshold-based filters) to mitigate volumetric DDoS attacks.
The key difference between this category of designs and IDP
is that they do not directly embed the learning models into
the programmable data plane.

The second category of prior art takes a step further to



realizeIDP. For instance, pForest [10] and SwitchTree [26]
propose to deploy decision tree models on programmable
switches, by mapping one match/action stage to one layer of a
decision tree. However, their designs, although veri�ed using
software switch BMv2, are undeployable on actual hardware
(see § A for details). Planter [63] extends IIsy [55] and pro-
poses an architecture including both feature tables and code
tables to represent ensemble trees on the data plane. Although
promising, Planter lacks several critical designs: for instance,
it is unclear how Planter can simultaneously use one feature
multiple times (which is quite common in reality). The most
recent work Mousika [51] proposes a decision tree model,
namely Binary Decision Tree (BDT), designed speci�cally
for the programmable switch data plane. However, the num-
ber of table entries required to deploy BDT faces the problem
of combinatorial explosion (see details in § A).Crucially, all
these prior deployable art employs only per-packet features
in their models, fully ignoring �ow-level features.As we will
show in § 2.2, �ow-level features are necessary to boost the
learning accuracies for various traf�c analysis tasks.

In this paper, we presentNetBeacon, a novelIDP design that
advances state-of-the-art in both model accuracy and model
deployment ef�ciency. In particular,NetBeacon is empowered
by the following innovative designs:

(i) A data plane aware learning model design centering
around a multi-phase sequential model architecture. Since
packets at different phases of a �ow carry different �ow-
level states, our model performs dynamic analysis at different
phases of the �ow as it proceeds, reducing the errors intro-
duced by making premature classi�cation decisions based on
a single inference model. Meanwhile, our model uses care-
fully designed �ow-level and per-packet features computable
at line-speed on the data plane to ensure deployability.

(ii) NetBeacon proposes an ef�cient model representation
mechanism to address the entry explosion problem when ex-
pressing decision tree or forest models into data plane match-
ing tables. Compared with the state-of-the-art, Mousika [51],
NetBeacon signi�cantly reduces the table entry consumption
(up to 75% in some cases).

(iii) We further harden the scalability ofNetBeacon for
handling concurrent �ows, by differentiating the processing
logic for short �ows and long �ows, as well as allowing safe
storage multiplexing when observing storage index collisions.
This potentially allowsNetBeacon to handle more concurrent
�ows than the total number of registers used for maintaining
per-�ow state.

We implement a prototype ofNetBeacon using the To�no
switch as the programmable data plane, and evaluateNet-
Beacon extensively with three use cases. The experimental
results show thatNetBeacon outperforms the state-of-the-art
in both traf�c analysis/classi�cation accuracy and hardware
table consumption. We also quantitatively study how switch
hardware (e.g., the imperfection of hashing, and future hard-
ware upgrade) may affectNetBeacon.

Figure 1: Protocol Independent Switch Architecture (PISA).

2 Background and Motivation

2.1 Programmable Data Plane

Traditional switches are equipped with ASIC chips cus-
tomized for packet processing to achieve high-speed forward-
ing. Implementing new network protocols on ASIC chips
therefore requires design, manufacturing, and rigorous test-
ing from the device manufacturers, which is an expensive
process. To enable agile protocol development, roughly two
decades ago, the community proposed Software-De�ned Net-
working (SDN) to allow software controllers to install cus-
tomized �ow entries on switches via OpenFlow protocols [36].
SDN is a tremendous success, experiencing wide deployment
over years, especially, in data centers [13, 20]. Recently, the
emerging programmable switch technology, centering around
Protocol-Independent Switch Architecture (PISA), boosts net-
work programmability to another level. Instead of fully rely-
ing on a software controller, the switching pipeline itself is
�exible enough to allow direct programming through domain-
speci�c programming languages, such as P4.

In PISA switching pipeline (Figure 1), a network packet
�rst enters the parser for packet header parsing, then enters
multiple match/action stages for packet manipulation, and �-
nally reaches the deparser for packet serialization. The parser,
match/action, and deparser can all be programmed to im-
plement desired protocols. The match/action supports ex-
act matching, ternary matching, and longest pre�x matching
(LPM). Each match corresponds to an action, where speci�c
computation and storage modi�cation can be executed. Mutu-
ally dependent actions need to be placed on different stages.
Packet headers and metadata instances are stored using state-
less storage that is reinitialized as new packets arrive. PISA
also provides stateful and persistent storage, such as counters,
meters, and registers. Finally, PISA provides various mecha-
nisms (such as resubmit, recirculation, packet generation) to
further extend programming capabilities.

Despite its �exibility, PISA has the following computation
and storage constraints. First, it supports boolean, shift, add
and subtract operations, but not multiplication and division.
Float operations, loop operations, and complex conditional
operations are not supported as well. The main calculation
logic is implemented using the match/action stages, which are
not unlimited (e.g.,To�no 1 has 12 stages). Similarly, the stor-
age resources are �nite,e.g.,on To�no 1, the SRAM of each



Figure 2: The necessity of �ow-level features in traf�c analy-
sis tasks. Features started with� are per-packet features, such
as� proto and� size.

pipeline is 120MB and the TCAM is 6.2MB. Probably, the
most “surprising” storage limitation is that each register can
only be accessed once when a packet traverses the switching
pipeline. As a result, operations such as read-and-then-update
registers are not supported natively.

2.2 Motivation

The �exibility of PISA inspired signi�cant research in real-
izing the potential of intelligent data plane (IDP). We divide
prior art into three subcategories, as summarized in Table 1.
First, NetWarden [53] and FlowLens [4] represent the designs
using programmable switches to collect useful �ow informa-
tion, such as inter-packet delay distributions, and then perform
traf�c analysis on the control plane. Due to the interaction
latency between the data plane and the control plane, traf�c
is not analyzed at line-speed.

Poseidon [61] and Jaqen [32] share the similar designs of
NetWarden [53] and FlowLens [4], except that the collected
�ow information can be used directly on the data plane to clas-
sify volumetric DDoS attacks at line-speed (note that some of
their actions still involve servers in the control plane). How-
ever, their classi�cation logic is based on threshold-driven
traf�c �lters, instead of machine learning models. Therefore,
their approaches are not generalizable to the use cases where
the traf�c analysis logic cannot be accurately represented as
hand-crafted �lters.

Planter [63] and Mousika [51] take the initial steps to em-
bed decision tree models in the network data plane by repre-
senting decision tree branches using the match/action tables.
However, their designs have two major limitations: low ef�-
ciency in representing learning models on the data plane as
demonstrated in § 7.3 and merely considering stateless per-
packet features while ignoring stateful �ow-level features.

We experimentally show the necessity of �ow-level fea-
tures (�ow identi�ed by its 5-tuple) for boosting the accuracy

Prior Works Line-Speed
Accuracy / Generalization

Learning-Based Flow-Aware

NetWarden[53], FlowLens[4] % " "
Poseidon[61], Jaqen[32] " ¶ % "
Planter[63], Mousika[51] " " %

NetBeacon " " "
¶ Some defense/detection polices or logic of Poseidon and Jaqen require control plane

involvement. In such cases, they cannot be processed at line-speed.

Table 1: Comparison with prior art inIDP.
of learning-based traf�c analysis. We �rst show that �ow-
level features are, in general,more importantthan per-packet
features. To this end, we considered three scenarios: P2P ap-
plication �ngerprinting, covert channel detection, and DDoS
attack detection. For each task, we train a decision tree model
using both per-packet features (e.g.,ttl, packet size ofn-th
packet) and �ow-level features (e.g.,the mean and variance
of packet size of the �rstn packets). Then we plot the feature
importance obtained based on the information gain of the
feature in the top half of Figure 2. Flow-level features clearly
show up with higher importance scores.

Second, we show �ow-aware classi�ers output more accu-
rate results than �ow-agnostic classi�ers. In particular, we
train two decision tree models: one �ow-agnostic model that
uses only per-packet features as in Mousika [51], and one
�ow-aware model that uses both �ow-level and per-packet
features, sorted by their importance. Both models use the same
number of features. We report the classi�cation accuracy re-
sults in the bottom half of Figure 2. The results demonstrate
that incorporating �ow-level features signi�cantly improves
accuracies: +11% in P2P application �ngerprint, +43% in
covert channel detection, and +21% in DDoS attack detection
(the detailed descriptions about these tasks are given in § 7.1).
Design Goals.Compared with prior art (Table 1), we design
NetBeacon to advance the state-of-the-art by simultaneously
achieving line-speed and highly-accurate (learning-based)
traf�c analysis on the network data plane. Other art [45, 50]
use SmartNICs instead of programmable switches as the data
plane. These two types of hardware have drastically different
characteristics: programmable switches have much higher
throughput, with much limited computation capability. We
focus on PISA-drivenIDP design in this paper.
Assumptions, Threat Model, and Limitations. We assume
thatNetBeacon has access to task-related training datasets.
Machine learning itself has security vulnerabilities, such as
data and model poisoning attacks, which is out of the scope.
We assume that the programmable switches hostingNetBea-
con are secure. Since �ow-level features consume the stateful
storage on programmable switches, the number of concurrent
�ows for which NetBeacon can simultaneously maintain per-
�ow state is limited by hardware storage, althoughNetBeacon
has dedicated designs to improve scalability. Meanwhile, it
is possible to scale out traf�c analysis capacity by deploying
multipleNetBeacon instances in parallel.NetBeacon does not
support �ow-level features that are dif�cult to compute on the
data plane (e.g.,percentile of packet sizes). We use the 5-tuple



Figure 3: The architecture ofNetBeacon.

(i.e.,src/dst IP, src/dst port, and protocol) to identify a �ow,
yet NetBeacon itself is not limited by any �ow de�nition.

3 The Overview ofNetBeacon

As shown in Figure 3, architecturally,NetBeacon is designed
around two major components: data-plane aware model de-
sign and ef�cient model deployment. Data plane aware model
design is aco-designapproach to generate hardware-friendly
learning models. Towards this end, our feature engineering
relies on features that are extractable or computable at line-
speed on the switching pipeline. Further, considering that
�ow-level features (e.g.,the mean of packet sizes) are chang-
ing as a �ow proceeds,NetBeacon proposes a multi-phase se-
quential model architecture that can make multiple inference
decisions as the �ow proceeds, until the system is suf�ciently
con�dent to make the �nal decision.

The key design of the model deployment is the model
representation module. It translates the learned models into
multiple feature tables and one model table on the data plane,
where the feature tables encode feature values as data struc-
tures namedrange marks, which are further mapped to the
inference results stored in the model table.NetBeacon designs
ef�cient coding mechanisms to greatly reduce the table entry
consumption when representing models.

In addition,NetBeacon designs a stateful storage manage-
ment module to achieve ef�cient per-�ow state management
on the data plane. On the one hand, this module enables
NetBeacon to process short �ows using purely per-packet
features (i.e., no per-�ow state maintained for short �ows),
where short �ows are classi�ed using a learning model. On
the other hand,NetBeacon exploits the hardware hashing to
achieve storage multiplexing. In particular, when the 5-tuple
of a new �ow is hashed to occupied registers (i.e., storage
collision), the new �ow can take this register if the stored �ow
is class-determined or timeout; otherwise,NetBeacon falls
back to use stateless per-packet features for the new �ow. If
the packet belongs to the stored �ow, the registers are updated

Feature Type De�nitions
Per-packet – packet size, ttl, protocol, etc

Flow-level
Aggregate F = aggr(a;c;d)
Summary max/min, mean, variance, etc

Table 2: Features inNetBeacon.

and features are calculated for model inference,i.e., query
feature table and model table.

Once the inference results for a packet are determined,
users can design customized post-processing based on the
results, such as making a binary decision of drop or allow, or
assigning �ne-grained different service priorities accordingly.

4 Data Plane Aware Model Design

4.1 Feature Engineering

The decision tree learning models inNetBeacon can use both
per-packet features and �ow-level features. Per-packet fea-
tures can be obtained from individual packets, usually based
on the �elds in the packet header, such as packet size and
Time To Live (TTL) values. Flow-level features are obtained
by combining attributes from other packets in the same �ow.

We categorize �ow-level features into aggregate features
and summary features. An aggregate feature is expressed
as F = aggr(a;c;d), wherea denotes the attribute consid-
ered inF, c is the condition imposed on the attribute, and
d represents the predetermined rule to update the value
of F once a packet satis�esc. For example, featureF =
aggr(packet size; [96;112);+ 1) records the number of pack-
ets in a �ow, whose packet sizes are within[96;112). Unlike
aggregate features, the computation of summary features can-
not be easily represented via predetermine update rules. Rep-
resentative summary features are maximum/minimum, mean,
and variance, which even involve multiplications or divisions
that are not natively supported on hardware. We specify how
summary features are computed in § 6.1.

We summarise the features considered inNetBeacon in
Table 2. For a speci�c task, we select top features based on



(a) PeerRush, mean of IPD (b) ISCXVPN, variance of packet size

Figure 4: The CDF of the deviation degree of summary fea-
tures at different �ow phases. If the �nal feature value and
the value at current phase (i.e., �rst n packets) area andb,
respectively, the deviation degree isabs(a� b)=max(a;b).

their importance calculated based on information gain.

4.2 Multi-Phase Sequential Models

Similar to prior art [26, 51, 63], NetBeacon sticks to deci-
sion tree based learning models because their constructions
are more similar to the match/action operations on the data
plane, compared with the neural networks that involve signi�-
cant non-linear computations. We adopt the state-of-the-art
decision tree forest models,i.e.,Random Forest (RF) and XG-
Boost (XGB). Considering that the number of table entries
on hardware is limited, we can control model size by limiting
the number of trees in the forest, the maximum tree depth, the
maximum number of leaves, and so on.

Unlike the per-packet analysis where all packets are treated
equally, packets in the �ow-level analysis are located at differ-
ent phases of the �ow and therefore carry different �ow-level
states. Therefore, the �ow-level features are dynamic as a
�ow proceeds. In Figure 4, we quantitatively visualize the dy-
namism of two �ow-level features (i.e.,mean of inter-packet
delay IPD, and variance of packet sizes) at different phases of
�ows, using two datasets. Clearly, both features experience
signi�cant changes over time. As a result, using a single model
to perform inference based on �ow-level features yields low
accuracies, as shown in Figure 5.

The above observation motivates us to design a multi-
phase model architecture to apply different models at different
phases of �ows. At each phase,NetBeacon uses the features
computed at that phase for both training and inference,i.e.,
�ow-level features at then-th packet are computed based
on the �rst n packets. The packets where our model makes
inference decisions are referred to asinference points. The
exact arrangement of inference points is task-dependent. In
particular, each inference-point essentially represents an anal-
ysis result for a �ow after our model processes then packets
before the inference point. Thus, the inference points could
be placed either uniformly or speci�cally, according to the
task. For instance, if a model uses variance as features, the
inference points should be placed at power-of-2 positions due
to hardware limits (as detailed in § 6.1). The packets not

Figure 5: Single model vs. multi-phase sequential model.

selected as inference points use the inference result of its pre-
vious and closest inference point. Thus, the interval between
two inference points should not be too large.

NetBeacon sets adetermination thresholdfor each infer-
ence phase. When the classi�cation probability at a speci�c
inference point is above the corresponding determination
threshold, it indicates that the multi-phase sequential model
is con�dent to pre-decide the �ow's class without using the
subsequent inference points. This design facilitates the state-
ful storage management on the data plane (as described in
§ 5.2). In addition to �ow-aware learning models,NetBeacon
employs a �ow-agnostic model to classify packets that cannot
be analyzed using �ow-level features, as detailed in § 5.2.

5 Model Deployment

5.1 Data Plane Model Representation

The individual models in our multi-phase sequential model
architecture and the �ow-agnostic tree model are represented
in the same way. In this section, unless otherwise noted, we
present how to represent a single model (i.e.,either a single
decision tree model or a forest model with multiple decision
trees) on the data plane. In § 6.2, we show how to merge the
model representations of multi-phase sequential models.

We start with the data plane representation of a single de-
cision tree. In a decision tree, the leaf nodes represent the
classi�cation results, and a path from the root node to a leaf
node represents the matching rules for that leaf node, which
is typically a concatenation of multiple feature ranges. For
example, the path to leaf node1 in Figure 6 isf 1 2 [0;25),
f 2 2 [0;46) and f 3 2 [0;10). For features that do not appear
on the path, its range is the maximum allowed range. For
example, the path to node5 is f 1 2 [65;103), f 2 2 [0;256)
and f 3 2 [10;256). Therefore, if range matching were sup-
ported on programmable switches, a decision tree model can
be easily implemented as the Model Table (1) in the Figure 6,
where the key is a concatenation of multiple feature ranges,
and the value is the leaf node.

Unfortunately, range matching is not universally supported
on programmable switches, and it has to be coded into ternary
matching (bits in a ternary entry are 0, 1, or� ). Based on
the classic pre�x method [46], [65;103) requires 8 ternary
entries, range[0;256) requires 1 ternary entries, and range
[10;256) requires 6 ternary entries. As a result, in order to
simultaneously satisfy all three ranges, it takes 48 (8� 1 � 6)
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