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Abstract
The proliferation of automated face recognition in the com-
mercial and government sectors has caused significant privacy
concerns for individuals. One approach to address these pri-
vacy concerns is to employ evasion attacks against the metric
embedding networks powering face recognition systems: Face
obfuscation systems generate imperceptibly perturbed images
that cause face recognition systems to misidentify the user.
Perturbed faces are generated on metric embedding networks,
which are known to be unfair in the context of face recogni-
tion. A question of demographic fairness naturally follows:
are there demographic disparities in face obfuscation system

performance? We answer this question with an analytical
and empirical exploration of recent face obfuscation systems.
Metric embedding networks are found to be demographically
aware: face embeddings are clustered by demographic. We
show how this clustering behavior leads to reduced face ob-
fuscation utility for faces in minority groups. An intuitive
analytical model yields insight into these phenomena.

1 Introduction

Automated face recognition has proliferated in various com-
mercial and government sectors. Face recognition systems
can identify users on social media, search for missing persons,
aid law enforcement and surveillance, and verify identities
of individuals [1, 2]. The widespread adoption of face recog-
nition systems has been swift with the emergence of metric
embedding networks such as FaceNet [3] and ArcFace [4] as
well as the abundance of labeled face data [5, 6].

Recent coverage of data breaches, privacy law violations,
and the adoption of face recognition by law enforcement en-
tities have shed light on the significant privacy issues with
face recognition systems. To mitigate growing privacy con-
cerns, face obfuscation systems have been proposed to hide
user identities. Several of these systems, such as Face-Off [7],
LowKey [8], and Foggysight [9], leverage properties of eva-
sion attacks against machine learning models [10–12]. By
introducing small, structured, and imperceptible perturbations
to their face, a user can evade identification by a face recog-
nition system. Such systems are attractive for an end-user:
perturbations are often visually acceptable to the user; fea-
tures of social media applications, such as face-augmenting
filters, do not suffer; and the obfuscation mechanism may run
locally, without access to target face recognition systems.

However, face obfuscation systems suffer major shortcom-
ings. Researchers have identified the ability of face recogni-
tion systems to adaptively learn from perturbed faces [13]
and re-identify them in the future. In this work, we uncover
another shortcoming of such systems: the presence of perfor-

mance disparities with respect to demographics. This dispar-
ity leads to the following research questions:

• Are the metric embedding networks underlying face obfus-
cation systems aware of demographic attributes in faces?

• How does the behavior of face obfuscation systems depend
on the demographic attributes of faces?

• Do bias mitigation strategies for face recognition systems
also mitigate bias in face obfuscation systems?

This paper characterizes demographic disparities of face
obfuscation systems and their underlying metric embedding
networks1. Previous research has studied the fairness and
robustness properties of face recognition [14, 15]2 in the clas-
sification setting. However, we study the fairness properties
of face recognition and obfuscation in the context of the met-
ric embedding networks — the real-world setting for such
systems. Our work yields the following insights into fairness
implications of face recognition and obfuscation.
Are the metric embedding networks underlying face ob-
fuscation systems aware of the demographic attributes of
faces? We observe face recognition systems are better at
discerning individuals in different demographic groups than
discerning individuals within the same demographic. Without
explicit access to demographic information, face recognition
systems still learn to differentiate demographic groups.
How does the behavior of face obfuscation systems de-
pend on the demographic attributes of faces? We ana-
lyze two recent face obfuscation systems. Face-Off [7] and
LowKey [8] serve as proxies for targeted face obfuscation and
untargeted face obfuscation, respectively. Minority groups re-
quire stronger perturbations to successfully obfuscate a face.
This is especially true in a black-box setting, such as the
Face++, Azure, and AWS Rekognition face recognition APIs.
We also show that faces perturbed by untargeted attacks often
retain their original demographic attributes. We conclude that
larger, more visible perturbations are necessary to success-
fully target identities in demographic groups different from
the original image.

1Code repo: github.com/wi-pi/fairness_face_obfuscation
2See section 6 for further discussion.



How does the training regime affect the behavior of face
obfuscation? We compare the effects of a standard face recog-
nition network training method with two alternative train-
ing regimes designed to mitigate bias. The first regime is
the training procedure defined by Xu et al [16]. The second
regime is the training of models on demographically balanced
datasets. We show these techniques do not entirely eliminate
demographic-wise performance disparities.

To aid our response to these three questions, we devise an
analytical model based on a mixture of Gaussian distributions
and Principal Component Analysis (PCA). This analytical
model allows us to formalize the apparent behavior of face
recognition and obfuscation when conditioning on the demo-
graphic group. Our model reveals that obfuscated faces are
more likely to belong to their original demographic group.

2 Background

The terminology with respect to population demographics
used in this paper follows that of Buolamwini and Gebru [14]
and Nanda et al. [15], two leading works on face recognition
fairness. In the dataset annotations, there are only two sexes,
hence we use “male” and “female.” As for ethnicity, previous
literature utilizes terms such as “White” “Black,” “Asian,”
and “Indian” within their attribute annotations [17]. We find
it more accurate to refer to these demographic labels as “race.”
For consistency, we use the same demographic attribute labels
in the VGGFace2 dataset in our face recognition and face
obfuscation performance evaluations.

2.1 Notation
We consider the setting in which there exists an input space
X ✓Rd and a discrete label set Y . A subset of examples, also
referred to as a dataset, is denoted as S ✓ X ⇥Y . Sometimes
we abuse notation and let S contain only unlabeled examples
{xxx1,xxx2, . . .}. A sample xxx is a d-dimensional real-valued vec-
tor. Often, xxx refers to a cropped face, d is the number of pixels
in the cropped face multiplied by three (the RGB channels),
and Y to the set of identities. Given a vector zzz, z j denotes its
j
th entry. Calligraphic capital letters denote probability dis-

tributions. D represents the distribution from which training
data S are drawn. denotes the indicator function. Let z be a
Boolean expression. [z] evaluates to 1 if z is true, otherwise
[z] evaluates to 0. A metric is denoted by r : X ⇥X ! R+.

2.2 Face Recognition System
The core component of a face recognition system is a metric

embedding network. The metric embedding network, denoted
by fk : Rd ! Rk, is a neural network which takes an RGB
face image xxx as input, and returns a k dimensional embedding.
Thus, the term embedding refers to the k-dimensional face
representation output by the metric embedding network. We

Figure 1: For well-trained embedding functions, embeddings of images
belonging to the same identity will have smaller pairwise distances than the
pairwise distances between embeddings of different identities.

sometimes omit the subscript k when referring to a generic
embedding function. The goal of a metric embedding network
is to map high dimensional images into an embedding space
such that any two images belonging to the same identity have
lower pairwise distance than any two images with different
identities. Metric embedding networks are typically trained
with one of two classes of loss functions: contrastive loss [18]
and triplet loss [3]. The functionality of a face recognition
system is depicted in fig. 1.

Upon obtaining an embedding, tasks such as clustering,
matching, or classification may be performed. A more perfor-
mant metric embedding network is one which only matches
embeddings of faces belonging to the same identity. A match
occurs when two embeddings are sufficiently close: Given a
non-negative, real-valued threshold t and two examples xxx, xxx

0,
a match occurs when r(xxx,xxx0) t. Often, r is the `2 norm.

Matching performance is measured by TPRz which is a
parametrized notion of true positive rate. For choice of met-
ric r, the match threshold threshold t is chosen such that it
satisfies a false acceptance rate upper-bounded by z.
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and the right side of inequality (2) is false acceptance rate.

2.3 Face Obfuscation Systems
Face recognition systems are vulnerable to adversarial ex-
amples. Such vulnerabilities were famously discovered by
Szegedy et al [19]. Small, structured perturbations, impercep-
tible to humans, may cause networks to misclassify given
inputs. This branch of machine learning research has led
to the design of many attack algorithms, of which the most
prominent are so-called evasion attacks. Examples of evasion
attacks include the Projected Gradient Descent (PGD) [11]



and Carlini-Wagner (CW) [12] attacks. The bulk of study
focuses on algorithmic generation of `p norm-bounded per-
turbations via noisy gradient-based optimization.

Instead of seeing adversarial examples as a challenge, pri-
vacy researchers have demonstrated that systems which lever-
age such structured perturbations can provide users with pri-
vacy utility against face recognition. These privacy benefits
are encapsulated in systems known as face obfuscation sys-
tems. In this section, we present notation and discuss work
relevant to such face obfuscation systems.

2.3.1 Threat Model

In the face obfuscation setting, an end user considers the ma-
chine learning provider to be the main threat. Such threats
include data breaches [20], cyber-stalkers [21], web scrapers,
big government entities [22], and more. Face obfuscation sys-
tems counter such threats: Prior to upload, the user applies
(imperceptible) perturbations to their face images. Perturba-
tions are designed so the face recognition system is aware
of the presence of the face, but the predicted identity of the
face is incorrect. In other words, perturbations are constructed
so that, from the perspective of the face recognition system,
the user impersonates another identity. This is the white-box

setting: examples are generated on the target model directly.
We also consider the black-box setting. Perturbations ap-

plied in the black-box setting leverage an important prop-
erty of adversarial examples: their ability to transfer across
models [23, 24]. Transferability allows users to impersonate
identities without accessing a target model. In the black-box

setting, face obfuscation systems leverage transferability by
querying a surrogate model to generate perturbed faces.

2.3.2 Overview of Face Obfuscation Systems

The earliest works in face obfuscation explore physically
perturbed examples. For example, Sharif et al. [25] present
physically realizable glasses that allow a human user to im-
personate a target individual. With the recent societal focus of
online privacy, researchers have shifted their focus to digital
face obfuscation systems. Digital face obfuscation systems
are better suited for social media and internet applications. Ex-
amples of such systems include FAWKES [26], Face-Off [7],
Low-Key [8], and FoggySight [9]. With the exception of
FAWKES, which leverages data poisoning attacks, these face
obfuscation systems utilize evasion attacks in an attempt to
hide the user’s identity.

We now describe face obfuscation systems more formally.
Let D denote an evasion attack function (e.g. PGD, CW), and
let ddd denote a generic perturbation output by the evasion attack
function, i.e. D(xxx). A face obfuscation system feeds xxx+ ddd
into the face recognition system. Note that D may include
dependence on the metric embedding network, the underlying
dataset, or some other surrogate model.

2.3.3 Evasion Attacks on Metric Embedding Networks

There are two types of evasion attacks: targeted and untar-
geted. We first describe the embedding centroid before defin-
ing the attacks: Given dataset S, denote by cccf,y the embedding
centroid of identity y as computed on embedding function f:

cccf,y ,
1

|{(xxx0,y0) 2 S | y0 = y}| Â
(xxx0,y0)2S

f(xxx0) ·
⇥
y
0 = y

⇤
(3)

Untargeted Attacks: Given a labeled example (xxx,y), untar-
geted attacks find a perturbation ddd for which obfuscated face
xxx+ddd impersonates some identity y0, where y0 6= y. Given a
metric embedding network f : X ! Y , and metrics r1,r2 an
untargeted attack is formulated as:

min
ddd|{xxx+ddd2X }

r1(ddd,000)

s.t. argmin
y02Y

r2(cccf,y0 , f(xxx)) 6= argmin
y02Y

r2(cccf,y0 , f(xxx+ddd))

The problem with the formulation above is its intractable
constraint. To make the attack implementable in practice, the
constraints must be relaxed. For a labeled example (xxx,y), the
optimization objective which yields an untargeted perturba-
tion can be written as:

argmax
ddd|{xxx0+ddd2X }

r2(f(xxx0+ddd),cccf,y) s.t. r1(ddd,000) e (4)

In this paper, we use the LowKey attack [8] to instantiate
the attack described in eq. (4). Within LowKey, PGD is used
to solve eq. (4), r1 is the Learned Perceptual Image Patch
Similarity (LPIPS) metric [27], and r2 is the distance between
the original face and perturbed face in the embedding space.
Note that the latter distance is averaged through an ensemble
of models and after applying Gaussian smoothing.
Targeted Attacks: Given a labeled example (xxx,y), and target
identity y0, targeted attacks find perturbation ddd so that obfus-
cated face xxx+ddd impersonates y0. Given a metric embedding
network f : X ! Rk, and metrics r1,r2 a targeted attack may
be formulated as:

min
ddd|{xxx+ddd2X }

r1(ddd,000) s.t. y0 = argmin
y2Y

r2(cccf,y, f(xxx+ddd)) (5)

Similar to the untargeted case, targeted attacks on face recog-
nition systems relax the above constraints to arrive at a more
tractable optimization formulation. Multi-class hinge loss, as
used by FaceOff [7], provides the desired relaxation of the
constraints in the targeted attack eq. (5). Given a perturbed
example xxx+ddd, target label y0, and positive real number k, the
multi-class hinge loss is denoted by Gk(xxx+ddd,y0) where:

Gk(xxx+ddd,y0), max
n

0,k+r2(xxx+ddd,cccf,y0)� max
y0 6=y0

r2(xxx+ddd,cccf,y0)
o

For a labeled example (xxx,y), and target label y0 6= y, the CW
attack can minimize the following optimization objective to
yield a targeted perturbation:

argmin
ddd|{xxx+ddd2X }

r1(ddd,000) s.t. r1(ddd,000) e and Gk(xxx+ddd,y0) 0 (6)



2.4 Analytical Techniques
We utilize a combination of established data analysis tech-
niques to assess the fairness of both face recognition and face
obfuscation systems.
PCA: Neural networks with nonlinearities are notoriously
difficult to analyze. To gain intuition for face obfuscation,
we analyze PCA. PCA is a theoretically tractable embedding
function which can be represented as a neural network. Hence,
we use PCA as a proxy for non-linear embedding functions.
t-SNE: The t-Distributed Stochastic Neighbor Embedding
(t-SNE) [28] is a dimensionality reduction technique useful
for visualizing high dimensional embedding spaces and im-
age datasets. Visualizations rendered by t-SNE are two or
three dimensional. t-SNE is a variant of Stochastic Neighbor
Embeddings [29] which avoids crowding data points and can
capture the implicit structure of data. t-SNE plots aid our
discussion of the embedding space geometry.
TCAV: Testing with Concept Activation Vectors (TCAV) [30]
is a tool used to interpret deep neural networks. Given user-
specified high-level concepts, such as patterns or colors, linear
classifiers are trained on the neural network’s activations for
those concepts. Concept Activation Vectors (CAVs) are ex-
tracted from the vector orthogonal to the linear classifier’s
decision boundary, and a statistical significance test is per-
formed on the TCAV score generated from the dot product of
each CAV and the model’s gradients.
Fairness Definitions: There is no single definition of fair-
ness, mathematical or otherwise [31]. Hence, we study sev-
eral quantities which have an intuitive connection to both face
recognition and face obfuscation systems. These quantities
include a comparison, by demographic, of face obfuscation
success. When success rates are equal across demograph-
ics, the fairness constraint known as statistical parity [32] is
satisfied. We also compare, by demographic, the strength of
perturbations necessary to yield a successful face obfusca-
tion. For targeted obfuscation, we study the strength of such
perturbations necessary to impersonate identities within both
the inter-demographic group and intra-demographic group
settings. We also study how likely untargeted perturbations
are to change the perceived demographic of an image.

True positive rate balancing is another notion of fairness
which appears in machine learning literature. In section 4.3.1,
we see that a specialized training procedure by Xu et al. [16]
yields a metric embedding network for which demographic
groups are approximately equal in their matching perfor-
mance TPRz. An optimization constraint explicitly enforcing
equal true positive rates between groups is the fairness metric
known as Equalized Odds [33].
Statistical Significance: We use statistical significance test-
ing to draw conclusions from experiments. The most general
two-sample t-test, used to determine if two distributions have
unequal means, is Welch’s t-test [34]. Welch’s t-test is ap-
plicable when population variances are nonequal and/or the

number of elements in each sample differs. For statistical tests
on more than two samples, we apply the Alexander-Govern
test [35], a multi-sample generalization of Welch’s t-Test.
Each statistical test is designed to determine if any two or
more samples are drawn from the same distribution. In all
our statistical tests, we consider a p-value less than 0.05 to be
significant. For the remainder of the paper, we will omit the
specific t-test used to obtain p-values. p-values are implicitly
assumed to have been obtained by either Welch’s t-test or the
Alexander-Govern test. Because we have only applied one
null hypothesis per statistical test, our statistical tests do not
suffer from the multiple testing problem.

3 Experiment Motivation and Overview

From our experiments and analysis, we wish to understand
how biases inherent in both face recognition datasets and
metric embedding networks impact the performance of face
obfuscation systems. We answer three questions:

1. Bias in Face Recognition: What is the baseline bias
present in face recognition systems? Our experiments
concur with existing literature: when conditioning by de-
mographic, there is a disparity face recognition system
performance. Further, we identify that networks learn to
identify skin-tone in early layers of the network.

2. Effectiveness of Obfuscation: How does the strength of
perturbation necessary to obfuscate a face depend on
a face’s demographic? Our findings indicate face recog-
nition systems are less robust to perturbations applied to
faces from minority demographic groups. For minority
demographic groups, the perturbation strength necessary
to impersonate an identity is smaller compared to major-
ity demographics. Consequently, obfuscated faces tend to
remain classified as a member of the same demographic
group. Performance disparities are evident between demo-
graphics in both targeted and untargeted obfuscation.

3. Bias Mitigation: How do bias mitigation strategies ap-
plied during training affect the utility of face obfusca-
tion? We apply two bias mitigation strategies to the train-
ing of metric embedding networks. The first strategy is a
training procedure defined by Xu et al. [16]. The second
strategy is training on demographically balanced datasets.
With such training, we see the resulting embeddings are
less clustered. Performance disparities of the face obfusca-
tion system with respect to demographics are also attenu-
ated. The benefits of bias mitigation are not free: overall
model accuracy is reduced.

3.1 Experimental Setup
Datasets and Models: We utilize the LFW and VGGFace2
datasets in our evaluation. In the white-box setting, we gener-
ate perturbed faces on the FaceNet model. In the black-box



setting, we test perturbed faces for transferability by evaluat-
ing them on seven different models. Three of the seven models
are commercial face recognition APIs: Face++ [36], Azure
Face [37], and AWS Rekognition [38]. The remaining four
are pre-trained open source models: OpenFace [39], Deep-
Face [40], ArcFace [4], and VGGFace [6]. Each model uses
convolutional neural network architecture similar to FaceNet.
Fundamental Comparison: To determine the relationship
between demographics and face obfuscation performance, we
consider the performance of obfuscation targeting identities
in the same demographic group as the source identity, and ob-
fuscation targeting identities in demographic groups different
from that of the source identity. In particular, we consider six
demographic attributes, four for race (Black, White, Indian,
Asian) and two for sex (female, male). 50 identities per at-
tribute from LFW are sampled3. These images are referred to
as source images. Source images are inputs to the untargeted
attack. Two targeted attacks scenarios are considered:

• Same demographic: We choose 49 pairwise combina-
tions of target identities from the same race/sex for each
source identity. This sampling leads to 2450 source-target
pairs of the same demographic.

• Different demographic: We subsample, uniformly at ran-
dom, 15 target identities from each race group of which
the source identity is not a member for a total of 45 target
identities. For the sex demographic, we assemble 50 target
identities from the opposite sex. This sampling leads to
2250 source-target pairs of the different races and 2500
source-target pairs of the different sex.

We generate untargeted adversarial examples for each of the
5,749 identities in the LFW dataset and their associated im-
ages. We generate targeted adversarial examples for earlier
scenario’s 300 identities and 80,000+ targeted examples cor-
responding to the 28,700 pairs of identities. If unstated within
a caption, the chosen dataset is LFW and the chosen metric
embedding network is FaceNet.
Obfuscation Techniques: We perform our evaluation using
untargeted and targeted variants of face obfsucation systems,
as described in section 2.3. Utilizing the Face-Off face ob-
fuscation system [7] and the FaceNet model [3], we gener-
ate adversarial examples on a subset of LFW [5]. For sec-
tions 4.1 and 4.2 we use 0, 5, and 10 as our margin values (k
in eq. (6)). We also generate untargeted perturbations with the
LowKey [8] procedure described in section 2.3.3. The ensem-
ble used by LowKey includes two pre-trained ArcFace mod-
els [4] and two pre-trained Cosface models [41]. We report
the obfuscation success rate as an indicator of perturbation
effectiveness. In the targeted case, obfuscation success rate
measures the proportion of perturbed faces which match their
intended targets, so we expect targeted obfuscation success
rate to decrease as a function of the threshold t. Furthermore,

3The LFW demographic attributes were annotated using attribute classi-
fiers described by Kumar et al. [17].

the distance between an embedding and its target directly
controls obfuscation success. In the untargeted case, obfusca-
tion success rate measures the proportion of perturbed faces
that evade their source identity. We expect the untargeted
obfuscation rate to increase as a function of the threshold t.

3.2 An analytical model for face obfuscation
Consistent with usage of toy models in previous machine
learning literature [42–44], we devise a hierarchical Gaus-
sian distribution with which we explore fair face obfuscation.
While our model does entirely capture neural network behav-
ior, the model conveys intuition on how how discrepancies in
demographic sampling lead to disparities we observe in face
obfuscation utility. To this end, the analytical model consists
of a k-component PCA and hierarchical Gaussian distribution.
The k-component PCA, which utilizes projections onto the
leading k principal components to perform its dimensionality
reduction, is the theoretically tractable proxy for a nonlinear
metric embedding network. Use of the hierarchical Gaus-
sian is inspired by both the hierarchical nature of popular
face recognition datasets and the embedding space geome-
try. Though all samples drawn from our simplified model are
vectors, we use terms identity and image to draw parallels be-
tween the hierarchical nature of our probabalistic model and
the hierarchical structure of existing face recognition datasets.

Within the hierarchical Gaussian are two mutually exclu-
sive groups: group a and group b. Sometimes a placeholder g
is used to represent a group g 2 {a,b}. µµµa 2 Rd and µµµb 2 Rd

denote the mean vectors for population groups a and b, re-
spectively. Moreover, µµµa = �µµµb, kµµµak2 = 1, and kµµµbk2 = 1.
Figure 2 is a visual depiction of our analytical model.

The i
th identity in group g is denoted by nnng,i 2 Rd . The

j
th image representing identity nnng,i is denoted by xxxg,i, j 2 Rd .

SSSa 2 Rd⇥d and SSSb 2 Rd⇥d are diagonal covariance matrices.
Furthermore, SSSa = gSSSb where g 2 R+.

By construction, the g parameter captures demographic
imbalance in sampling. Let us assume, that if both groups
a and b are sampled equally in a manner matching the nat-
ural distribution, then SSSa = SSSb. Without loss of generality,
let us assume g 2 (0,1]. As g decreases, the sampling from
the natural distribution deviates further from the underlying
distribution. Disparities in embedding density become appar-
ent: When group a has few samples, embeddings of identities
within group a are close together, similar to how minority
groups are depicted in fig. 3.

An identity nnng,i is drawn from the identity distribu-
tion N (µµµg,SSSg). The identity distribution may be thought
of as a hyperprior on images. An image xxxg,i, j is drawn
from N (nnng,i,bIII) where b is a positive, real-valued num-
ber. For each identity nnng,i, exactly m images are drawn from
N (nnng,i,bIII). Lastly, we denote by Dg the distribution of im-
ages in group g. Thus, given a 2 (0,1), we can represent, the
hierarchical Gaussian distribution as D = aDa+(1�a)Db.
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Figure 2: The hierarchical Gaussian distribution models patterns we observe
with respect to faces in the embedding space. In the left plot, identities
are drawn. Identities, µµµa and µµµb are depicted with a red star and a blue
star, respectively. Identities nnng,i in group g are sampled from N

�
µµµg,sssg

�
.

Identities are depicted as triangles. In the right plot, images are drawn. These
images xxxg,i, j , depicted as circles, are drawn from N (nnng,i,bIII).

In the context of fair face obfuscation, we concern ourselves
with how well the embedding represents a particular group
from the lens of that group. This is captured by relative projec-
tion distance. The relative projection distance measures how
well the k-component PCA embedding function represents a
particular group, from the lens of that group:

Definition 3.1. Let S be a sample of images drawn from
the overall synthetic distribution D. The relative projection
distance of a point xxx, a member of group g, with respect to
the leading k principal components of a dataset S is denoted
by rrp,S,g,k : X ! R+. More precisely:

rrp,S,g,k(xxx),

���
⇣

xxx�Âk

i=1

n
qqq
T
i

xxx

kqqq
i
k2kxxxk2

qqqi

o⌘���
2

Âd

j=1 (SSSg) j j

, (7)

where the eigen-decomposition of the covariance of overall
synthetic data distribution D is SSS = QQQLLLQQQ

T. Furthermore, QQQ

may be decomposed as QQQ = [qqq1, . . . ,qqqd
]T.

The numerator of relative projection distance is the norm
of the portion of sample xxx which is not captured by fk. The
denominator represents a group specific normalization factor
representing the overall variance within all identity vectors
nnng,i. It is this normalization factor which allows us to show
how error can be measured in the context of group g.

4 Fairness on Face Obfuscation Systems

Utilizing the experimental procedure from section 3.1, we
answer the three questions appearing at the beginning of sec-
tion 3. Our findings highlight demographic disparities in face
obfuscation systems. In particular, we show that it is easier to
impersonate identities in the same demographic than it is to
impersonate identities in a different demographic.

Pre-trained Facenet

TPR0.001 .9618 .8516 .9594 .8536 .9242 1.000
AUC .9994 .9977 .9996 .9981 .9995 1.000

TPR0.001 .9678 .9436 .9732 .9448 .9742 1.000
AUC .9995 .9988 .9993 .9998 .9999 1.000

N 10000 5000 10000 2500 1240 20

Male Female White Asian Black Indian

⌅ Same Demographic ⇤ Any Demographic

Table 1: Matching accuracy on LFW embeddings generated by FaceNet.
Pairs within only the same demographic have lower accuracy compared to
pairs matching any demographic. N: number of pairs.

4.1 Error Disparity Among Groups
Face recognition systems are known to be biased with respect
to population demographics. We show such demographic
disparities exist in the embedding space, and can be traced
through the learning process of the embedding network.
Face Recognition Empirical Performance: Table 1 demon-
strates the demographic disparities in face recognition. When
evaluating matching performance TPR0.001 on the pretrained
FaceNet model, pairs of identities selected within the same
demographic group perform worse when compared to pairs
selected without any such demographic restriction (table 1).
Because identities in the same demographic group are closer
together, as seen in fig. 3, false accepts are more likely thereby
lowering TPR0.001. This idea also explains demographic dis-
parities in matching performance. With the exception of the
Indian demographic group, which is too small to source any
significant conclusions, minority groups have lower match-
ing performance. This is attributed to the tightly clustered
embeddings we observe for minority demographic groups.
Intuition from Analytical Model: Understanding why em-
bedding networks have disparate demographic-wise behavior
is intractable given the state of current literature in neural
network analysis, so we turn to our analytical model and PCA
for intuition. Given our interest in studying the impact of the
frequency of each group in a training set on the efficacy of
the learned embedding network, we formulate a proposition
which relates a relative projection distance, our experiments,
and our analytical model:

Proposition 4.1. For fixed µµµa and fixed SSSa, as g approaches 0,
the relative projection distance (defined in eq. (7)) of examples
in group a increases.

This proposition suggests minority demographic groups
are poorly represented by metric embedding networks. The
magnitude of performance disparities can be explained by g,
the parameter capturing demographic imbalance in sampling.
For smaller values of g, the sampled distribution does not
represent the natural distribution of the minority group. For
the metric embedding network, such poor representation leads
the embedding network to have trouble discerning identities in
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Figure 3: t-SNE [28] of LFW embeddings generated by FaceNet.

(a) Block 35 Activation 3 (b) Conv2d 2a 3x3 Activation

Figure 4: TCAV score distribution of 408 identities in VGGFace2. Figures 4a
and 4b learn concepts for lighter and darker skin tones, respectively.

the minority demographic group. Hence, we see more errors
and ease of impersonation for members of the minority group.
Proposition 4.1 is discussed further in our long-form report.4

What the Metric Embedding Network Learns: To under-
stand what the metric embedding network architecture learns,
we plot the resulting embedding structure of FaceNet using
t-SNE [28] in fig. 3. Embedding networks trained without
explicit demographic information can discern demographic
groups in the embedding space. For each demographic group,
separate clusters appear within the embedding space. The
male and female clusters appear almost linearly separable.
Where the Metric Embedding Network Learns: Given the
demographic-wise clustering behavior we see in fig. 3, we
determine the degree to which the network itself contributes
to observed clustering behavior. We utilize TCAV [30] to
investigate if intermediate layers of the network learn to dis-
tinguish demographic attributes. As it was originally defined
for classification networks, we retrofit the TCAV framework
to metric embedding networks; we associate each identity
with an anchor embedding, corresponding to its embedding
centroid. We then use the `2 distance between the embedding
of an input face and its anchor embedding to estimate the
gradient from the output layer to the relevant activation layer.

We use skin tones as the demographic concepts. We anno-
tate the skin tones with the Fitzpatrick scale [45], depicted
in table 3. At each activation layer, we train linear classifiers
that distinguish the layer activation according each skin tone.
Each classifier is trained on 6 skin tones, each containing 75
images. The TCAV score associated with each identity is the

4Long-form report: arxiv.org/abs/2108.02707

proportion of images for which the dot product of this lin-
ear classifier and gradient is positive. Nonzero TCAV scores
indicate a concept heavily utilized in embedding construction.

Our evaluation involves annotated subsets of the VG-
GFace2 dataset, one containing 408 identities and another
with 4102 identities, with each identity containing 100 im-
ages of a person’s face. The subset with 408 identities contains
a balanced subset of skin tones, whereas the subset with 4102
mainly consists of faces with type 4 and type 5 skin tones.
Only the TCAV scores with exactly matching skin-tone an-
notations are reported in fig. 4. We see high utilization of the
skin tone concepts by two early layers in the network. We see
that darker skin tones are learned separately (Conv2d 2a) than
lighter skin tones (Block 35). This suggests metric embedding
networks differentiate between skin tones in early layers.

4.2 Effectiveness of Obfuscation
After characterizing the baseline disparities in face recog-
nition systems, we study the subsequent disparities in face
obfuscation. We assess, for each demographic group, the dif-
ficulty with which identities may be impersonated. We show
embedding space geometry induces demographic disparities
in the perturbation norm, kdddk2, necessary to successfully im-
personate an identity. Further, we study the demographic
disparities in the obfuscation success rates. These disparities
are present in both the white-box and black-box settings.
Perturbation Norms: To detect disparities in the difficulty
of face obfuscation, we examine the norms of perturbations
kdddk2, needed to successfully impersonate an identity. Using
the adversarial examples generated by targeted attacks, we
depict in fig. 5 the distribution of perturbation norms con-
ditioned by demographic. We observe that the perturbation
strength necessary to successfully impersonate an identity
depends on demographic. Further, we observe that for each
demographic group, the strength of the perturbation necessary
to impersonate an identity is larger if the target identity is in a
demographic different from the source identity. We put forth
null hypothesis 4.2 which formally addresses demographic
disparities in perturbation strength.

Null Hypothesis 4.2.

For each demographic group, the mean perturbation `2 norm
kdddk2 necessary for targeted obfuscation is identical.

A formal analysis rejects null hypothesis 4.2: Differences
in perturbation strength for impersonation of identities in the
same and different sex demographic group, and the same and
different race demographic group are statistically significant:
p-values do not exceed 3.34⇥10�28. Furthermore, there is
a statistically significant difference between perturbations
targeted within the same demographic and perturbations tar-
geted outside the demographic for the Male, Female, Asian
and White population groups with p-values of 6.61⇥10�24,
2.00⇥10�26, 0.00110, and 0.00180, respectively. These are



(a) `2 Norm: Race (b) `2 Norm: Sex

Figure 5: Distribution of perturbation norms generated by CW [46] on LFW.

the largest four demographic groups in our dataset. Compared
to the Black and Indian minority groups, we expect a more
significant difference in perturbation strength necessary to im-
personate identities in the same demographic and that which
is needed to impersonate identities in different demographics.

Obfuscation Success: Figure 6 shows that targeted pertur-
bations’ success rates are dependent on the demographic at-
tribute. Faces with the White race attribute exhibit a higher
obfuscation success rate. These results also hold in the black
box settings: similar trends exist for embeddings generated on
OpenFace, Deepface, ArcFace, and VGGFace models. Suc-
cess rates for the OpenFace model are shown in fig. 8, and suc-
cess rates for the remaining black box models may be found
in our long-form report. We observe examples generated on
faces from the majority group transfer better than those of
minority groups. We conjecture that the larger perturbation
norms of such faces contribute to improved transferability
rates. This observation is consistent with an observation from
Face-off [7]; increasing the norm of perturbations improved
transferability to black-box models.

In addition to offline models, this trend also holds for com-
mercially available online face recognition APIs. We test the
success of the perturbed faces against the Face++, Amazon
AWS Rekognition, and Microsoft Azure Face APIs. In fig. 7,
we present the CCDF of confidence scores for untargeted ex-
amples generated tested by Azure. For race, on a fixed obfus-
cation success rate we observe a generally higher confidence
in impersonation for White faces. In contrast, Black faces see
a generally lower confidence in impersonation for that same
obfuscation success rate. Interestingly, for the sex attribute,
we generally observe a slightly higher confidence for females.
By examining the distance between an embedding and its
target, we gain insight into the factor which directly controls
obfuscation success rate. We put forth a null hypothesis to
formally test our observations.

Null Hypothesis 4.3. Across all source demographic groups,
the distribution of distances between obfuscated embeddings
and their targets is identical.

This null hypothesis is easily rejected: Differences in dis-
tance between face embeddings and targets are statistically
significant regardless of target demographic: The p-values do

(a) Targeted: Different Race (Left) vs. Same Race (Right)

(b) Targeted: Different Sex (Left) vs. Same Sex (Right)

Figure 6: Targeted obfuscation success on FaceNet in a white-box setting.

not exceed 0.0395. These results confirm the bias in obfus-
cation performance previously identified. From a practical
perspective, our results may suggest that users should select
an identity to impersonate of the same race or sex in order to
optimize face obfuscation system utility. This is counterpro-
ductive to the user’s privacy for two reasons: 1) adversarial
perturbations with smaller `p norms will struggle in trans-
ferring to other models and 2) a user may leak demographic
information to an adversary.

Intuition from Analytical Model: From fig. 5, we observe
demographic disparities in the strength of perturbation neces-
sary to successfully obfuscate an image. We also showed it is
generally easier to impersonate identities in the same demo-
graphic group than it is to impersonate identities in different
demographic groups. This translated into the disparate suc-
cess rates observed in figs. 6 to 8. We use our analytical model
to provide some mathematical intuition on this phenomenon.

Given an example image xxx in group g, we study how dif-
ficult it is to construct a perturbation ddd such that xxx+ ddd suc-
cessfully impersonates an identity outside of group g. The
analytical model is a natural medium in which quantifying
the necessary strength of such a perturbation ddd may occur.

(a) Untargeted Azure: Race (b) Untargeted Azure: Sex

Figure 7: Untargeted obfuscation success on Microsoft Azure Face API.



(a) OpenFace: Different Race (Left) vs. Same Race (Right)

(b) OpenFace: Different Sex (Left) vs. Same Sex (Right)

Figure 8: Targeted obfuscation success on OpenFace in a black-box setting.

For the sake of simplicity, consider the 1-PCA embedding
function f1 : Rd !R. Let sample xxx be drawn from the overall
synthetic data distribution D and without loss of generality
assume this xxx is a member of group a. Denote by pQ the
probability density function for a probability distribution Q .
We will assume group a is the minority group and so we
assume that g  1, pDa [µµµa]> pDb

[µµµa], and pDb
[µµµb]> pDa [µµµb].

Given a perturbation ddd, we assume that perturbation ddd is
norm-bounded and in the direction of group b, i.e. (µµµb�xxx)

kµµµb�xxxk2
.

That is, we assume kdddk2  e where e is a non-negative real
number. We quantify the values of e for which the following
optimization problem is infeasible, thereby guaranteeing xxx+ddd
impersonates5 an identity in group a:

min
ddd:kdddk2e

kdddk2 s.t. P
xxx⇠Db

[f(xxx+ddd)]> P
xxx⇠Da

[f(xxx+ddd)] (8)

ddd = h · (µµµb� xxx)

kµµµb� xxxk2
where h 2 R (9)

For notational compactness, we denote:

a = f(xxx) and b = f
✓

(µµµb� xxx)

kµµµb� xxxk2

◆
.

This optimization objective in eq. (9) guaranteed to be infea-
sible when:

e < max

8
<

:0,
2b(g�1)

q
a2g

b2(g�1)2 +ag+a+ f(µµµb)(1� g)
b(g�1)

9
=

; (10)

This result is further detailed in appendix A.
Therefore we conclude that xxx+ddd impersonates an identity

in a when inequality (10) holds. Furthermore, note that the
bound in inequality (10) is not tight. The bound loosens as

5Here, we assume it is possible for an example to impersonate itself.

g approaches 0. Within inequality (10), we notice that for a
fixed SSSa, µµµa, and xxx which impersonates an identity in group a,
as g approaches 0, the set of perturbations ddd for which xxx+ddd
still impersonates an identity in group a, decreases in size.

Relating to experiments in this section on existing face
recognition datasets, it is the disparities in sampling which af-
fect the strength of the perturbation necessary to impersonate
an identity in a different demographic group. These dispari-
ties are captured by g. This analysis agrees with perturbation
norms in fig. 5: impersonating an identity in a different demo-
graphic is more difficult than impersonating an identity in the
same demographic group.
Stability Properties of Face Obfuscation: We further
study the impact of g on the stability of networks. By examin-
ing estimates of the local Lipschitz constants, we investigate
the stability of metric embedding networks in relation to the
demographic distribution of their training sets. A classifier’s
margin scales inversely with the Lipschitz constant, making
classifiers with high local Lipschitz constants less stable and
easier to attack [47–51]. We use the RecurJac [52] and Fast-
Lin [53] bound algorithms to upper-bound local Lipschitz
constants within small neural networks trained on datasets
with uniform and non-uniform distributions of demographic
groups. The level of uniformity in the demographic distribu-
tion is captured by the parameter g. When the demographics
are sampled uniformly, then g = 1. If we assume the minority
demographic group is a, then greater disparities in sampling
mean g tends to 0. Figure 16 in appendix B.2 shows the distri-
butions of the upper bounds on the estimated local Lipschitz
constants for the non-uniform and uniform classifiers trained
on 600 identities; this distribution is plotted for the training
set. We observe larger upper bounds in non-uniform sampling
of each demographic group. Further, identities corresponding
to minority demographic groups have larger upper bounds on
local Lipschitz constants than do majority identities. These
results suggest networks generalize worse for demographic
groups which are a minority in the training set, thus networks
are less robust to perturbation for certain demographics.
Nearest Neighbors: In addition to performance of source-
target matching, we consider the generalized setting in which
a source image must be matched to the best candidate among
multiple targets. This generalized scenario is studied by mea-
suring accuracy in a nearest neighbors model. In the exper-
iment, accuracy refers to the rate at which embeddings de-
signed to impersonate are still classified as the original source
identity. The training points for the nearest neighbor model
are embedding centroids for each identity.

For each demographic group, when impersonating identi-
ties in the same demographic group, generated embeddings
are accurate on at least 66.7% of examples. For each de-
mographic group, when impersonating identities in different
demographic groups, the generated embeddings are accurate
on at least 62.9% of examples.

As expected, the accuracy decreases or remains approxi-



(a) LFW - Race (b) LFW - Sex

Figure 9: t-SNE of the embeddings for the LFW dataset. Embeddings are
generated on a FaceNet model trained by Xu et al. procedure.

(a) `2 Norm: Race (b) `2 Norm: Sex

Figure 10: Distribution of perturbation norms generated by the CW attack
on FaceNet model trained with Xu et al. procedure.

mately the same for all demographic groups when impersonat-
ing identities from different demographics. The general trend
is a decrease in accuracy.

4.3 Bias Mitigation
Finally, we examine two bias mitigation techniques and study
their impact on the demographic disparities of face obfusca-
tion. The first technique is a training procedure designed by
Xu et al. [16] to promote fairness, and the second technique
is dataset balancing by demographic. Models of the FaceNet
architecture, outputting embeddings in R512 are trained. Be-
cause we are interested in characterizing the best-case obfus-
cation performance in the presence of bias mitigation strate-
gies, we focus exclusively on the white-box setting.

4.3.1 Training Procedure of Xu et al.

Xu et al. propose a technique, that within the context of face
obfuscation, is designed to mitigate disparate susceptibility
of individuals to impersonation. The training technique de-
composes overall error into the natural error and boundary
error. Natural error refers to the error on examples prior to
the addition of a perturbation, and boundary error refers to
the net increase in error induced when perturbing the natural
example. The Xu et al. training procedure incentivizes train-
ing of an accurate model such that natural error and boundary
error are each roughly equivalent across all identities.
Visualizing Embeddings: Upon examining the t-SNE plots
in fig. 9, we observe the training procedure of Xu et al. does

(a) Different (Left) Race vs. Same (Right) Race

(b) Different (Left) Sex vs. Same (Right) Sex

Figure 11: Targeted white-box obfuscation success on a FaceNet model
trained with Xu et al. procedure.

mitigate sources of bias in the embedding space geometry: De-
mographic clusters are less distinct and embeddings for each
demographic group are somewhat interspersed amongst each
other. However, clustering is not eliminated entirely; there is a
cluster of females in fig. 9b, though many female embeddings
are interspersed among embeddings corresponding to males.
Analyzing Obfuscation: Embedding space geometry im-
pacts the perturbation norms needed for impersonation: Com-
pared to the pre-trained model, we see less disparity between
the perturbation norms needed to impersonate identities in
the same and different demographic groups in fig. 10. We put
forth a formal null hypothesis to assess our observations.

Null Hypothesis 4.4. For the model trained by the Xu et al.
procedure, the mean perturbation `2 norm kdddk2 necessary to
impersonate an identity in the same demographic is identical
to the mean perturbation `2 norm kdddk2 necessary to imper-
sonate an identity in a different demographic group.

Though we perceive a significant reduction in bias due to
the Xu et al. training procedure, we can partially reject null
hypothesis 4.4. There is a statistically significant difference
between perturbations targeted within the same demographic
and perturbations targeted outside the demographic for only
the White demographic, with a p-value of 9.61⇥10�78.

We also observe that the perturbation strength necessary to
impersonate an identity has a dependence on demographic.
We put forth a formal null hypothesis to test this observation:

Null Hypothesis 4.5. For the model trained by the Xu et al.
procedure, the mean perturbation `2 norm kdddk2 necessary to
impersonate an identity is identical for each source demo-
graphic group.

As anticipated, we can reject this null hypothesis. Differ-
ences in perturbation strength between demographic groups



are statistically significant for impersonation targeting identi-
ties in the same and different sex demographic groups, and the
same and different race demographic groups. The p-values
do not exceed 2.15⇥10�90.

The significance of such disparities manifests itself in ob-
fuscation obfuscation success rates as depicted in fig. 11,
especially for success rates conditioned by race. Much like
the pre-trained FaceNet, the White race group tends to have
the highest obfuscation success rate. Looking at the sex demo-
graphic groups, obfuscation success rates appear to be similar.
It is unclear what structurally about Xu et al procedure yields
a model with obfuscation success rates disparate with respect
to race, yet obfuscation success rates conditioned by sex are
similar. For completeness, we put forth a null hypothesis to
test the significance of this observation:
Null Hypothesis 4.6. For the model trained by the Xu et al.
procedure: Across all source demographic groups, the distri-
bution of distance between each obfuscated face embedding
and its target is identical.

We partially reject this null hypothesis: Only when target-
ing identities outside the identity of source identity demo-
graphic group, differences in distance between face embed-
dings and targets are statistically significant. The p-values are
2.51⇥10�24 and 2.39⇥10�7 when targeting identities in a
different race and sex, respectively. Given these results, it is
apparent that the Xu et al. training procedure does mitigate
bias to some extent, but is far from a perfect solution.
Accuracy Trade-off: The observed bias mitigation also
comes at the cost of model accuracy. We measure these costs
by examining the matching performance and through accu-
racy of a nearest neighbors model. The matching performance,
TPR0.05, of a model trained with the Xu et al. procedure is
depicted in the middle subtable of table 2. Matching per-
formance of the reference FaceNet is depicted in the upper
subtable of table 2. The matching performance across most
demographics is reduced by 1-4% compared to the refer-
ence model. When measuring training accuracy of a nearest
neighbors classifier, conditioned by demographic, the lowest
accuracy in a model trained with the Xu et al. procedure is
55.2%. This compares poorly to the reference FaceNet model,
for which the worst natural accuracy, when conditioning by
demographic, is 95.4%. Full results for nearest neighbors
accuracy can be found in our long-form report.

4.3.2 Dataset Balancing

The second bias mitigation strategy we study is that of train-
ing face recognition models on demographically balanced
datasets. To do so, we train three metric embedding networks
of the FaceNet architecture. Each training procedure is identi-
cal, with the exception of the training dataset. The network
trained on the first dataset acts as the reference: It is trained on
the entirety of the VGGFace2 [6] training split, a total of 8631
identities. Experiments for this model appear in the appendix.

(a) Race-Balanced FaceNet on race data (b) Sex-Balanced FaceNet on on sex data

Figure 12: The distribution of adversarial perturbation sizes generated using
the CW attack on FaceNet trained on demographically balanced datasets.

The remaining two datasets are used to train comparison
models. One such dataset is Sex-Balanced VGGFace2, which
contains a total of 4866 identities. The Sex-Balanced VG-
GFace2 dataset was created by removing original identites
to create a training set which contains an equal number iden-
tities for the demographic of interest. Instead of performing
data augmentation, we remove examples from VGGFace2
so as to not introduce any artifacts. Similarly, we construct
a third dataset, which consists of 307 identities for each of
the race subgroups. We call this dataset, containing 1842
total identities, Race-Balanced VGGFace2. Race-Balanced
VGGFace2 and Sex-Balanced VGGFace2 are collectively
referred to as “(demographically) balanced datasets”. Race-
Balanced VGGFace2 and Sex-Balanced VGGFace2 are the
training sets used to obtain Race-Balanced FaceNet and Sex-
Balanced FaceNet, respectively. We observe that the Balanced
FaceNets have less demographic-wise disparity in both face
recognition and face obfuscation performance.
Visualizing Embeddings from Models: Upon examining
the t-SNE plots in fig. 13, we notice that minority demo-
graphic groups have larger clusters than do the clusters for the
same demographic groups generated on the reference model.
Compared to embeddings generated by the model trained
with the Xu et al. procedure, demographic clusters generated
by Sex-Balanced and Race-Balanced are more separate and
distinct. Further, each demographic group generally appears
more distinct.
Analyzing Obfuscation: Given the distinct demographic
clusters we see in balanced embedding space geometry, we
do not expect to see much bias mitigation. Before drawing
such a conclusion, we formally test a null hypothesis:
Null Hypothesis 4.7. For models trained on balanced datasets,
the mean perturbation `2 norm kdddk2 necessary to imperson-
ate an identity in the same demographic is identical to the
mean perturbation `2 norm kdddk2 necessary to impersonate an
identity in a different demographic group.

We are able to partially reject null hypothesis 4.7. There
is a statistically significant difference between perturbations
targeted within the same demographic and perturbations tar-
geted outside the demographic for the only male, female
and white demographic groups with p-values of 3.20⇥10�6,



5.28⇥10�5, and 1.65⇥10�30, respectively.
We observe disparities in the perturbation norms required

for faces in each demographic group to be successfully obfus-
cated. We propose a null hypothesis to test this observation:
Null Hypothesis 4.8. For models trained on balanced datasets,
the mean perturbation `2 norm kdddk2 necessary to impersonate
an identity is identical for each source demographic group.

We are also able to reject this null hypothesis: For models
trained on both sex-balanced and race-balanced data, differ-
ences in perturbation strength between demographic groups
are statistically significant for the same sex demographic
group, different sex demographic group, same race demo-
graphic group, and different race demographic group. The
p-values do not exceed 2.04⇥10�44.

The disparities in perturbation norm also manifest them-
selves in obfuscation success rates as depicted in fig. 14. Such
success rates are disparate when conditioned by both sex and
race. Much like the pre-trained FaceNet model, when condi-
tioned by race, the White demographic group has the highest
success rate. Unlike the pre-trained FaceNet, the Female de-
mographic group has higher obfuscation success rate than the
male demographic group. It is unclear why the Female demo-
graphic group now has higher obfuscation success rates. We
put forth a null hypothesis to formally test our observations:
Null Hypothesis 4.9. For models trained on balanced data:
Across all source demographic groups, the distribution of
distance between each obfuscated face embedding and its
target is identical.

The null hypothesis is easily rejected: Differences in
distance between face embeddings and targets are statisti-
cally significant in all settings. The p-values do not exceed
1.13⇥10�17. Given the significant disparities in face obfusca-
tion performance, it is apparent dataset balancing is ineffective
at mitigating bias in face obfuscation.
Natural Accuracy Trade-off: The matching performance,
TPR0.05, of a models trained on balanced datasets is the low-
est sub-table in table 2. The matching performance across
most demographics is reduced by 0.5-3% compared to the ref-
erence model. When measuring training accuracy of a nearest
neighbors classifier, conditioned by demographic, the lowest
accuracy in a model trained with demographically balanced
training data 94.5%. This is only a very slight performance
reduction relative to the reference FaceNet model.

5 Discussion

Potential Remedies: In section 4.3, we discussed the impact
of two bias mitigation strategies on face obfuscation. First,
we examined a model training procedure by Xu et al. This
procedure does not explicitly optimize for fairness, but in-
stead implicitly relies on a documented connection between
adversarial learning and fairness [43]. The second bias mitiga-
tion procedure involved training FaceNet models on balanced

Reference FaceNet Model

TPR0.05 .9046 .8620 .9164 .9152 .8565 .9000
AUC .9808 .9864 .9826 .9820 .9711 1.000

TPR0.05 .9164 .9328 .9294 .9720 .9919 .8000
AUC .9828 .9864 .9847 .9938 .9967 1.000

Training Procedure of Xu et al.

TPR0.05 .8984 .8180 .8952 .8776 .8258 .6000
AUC .9774 .9631 .9782 .9796 .9644 1.000

TPR0.05 .9036 .9408 .9104 .9768 .9806 .9000
AUC .9806 .9866 .9816 .9945 .9955 1.000

Balanced Training

Sex-Balanced Race-Balanced

TPR0.05 .9184 .8804 .8716 .9160 .8726 .8000
AUC .9837 .9733 .9719 .9825 .9738 .9800

TPR0.05 .9330 .9244 .8978 .9672 .9823 .7000
AUC .9867 .9842 .9772 .9938 .9950 1.000

N 10000 5000 10000 2500 1240 20

Male Female White Asian Black Indian

⌅ Same Demographic ⇤ Any Demographic

Table 2: The matching performance on LFW on a reference FaceNet model
(top), FaceNet trained with Xu et al. procedure (model), and FaceNet models
on demographically balanced data.

(a) LFW - Race (b) LFW - Sex

Figure 13: t-SNE of embeddings for the LFW dataset. Figure 13a is gen-
erated on Race-Balanced FaceNet. fig. 13b is generated on Sex-Balanced
FaceNet.

datasets. The Xu et al. procedure mitigated more bias than the
balanced Facenet models, but neither procedure completely
mitigated disparities in face obfuscation performance. A train-
ing procedure which better mitigates performance disparities
in face obfuscation efficiently, is a topic for future work.

Beyond bias mitigation in the manner we studied in this
paper, balancing performance across combinations of multiple
demographic attributes might be of interest. There exists work
addressing this problem: Serna et al. propose Sensitive Loss, a
“discrimination-aware” Triplet Loss tuning procedure for pre-
trained models [54]. This tuning procedure involves adding
a layer to the network, then tweaking this layer using only
identities drawn from the same demographic group.
Threats to Validity: The intent of section 3.2 is the creation
of a tractable analytical model for embedding spaces and
dimensionality reduction in general. Perhaps the most signifi-
cant limitation of this analytical model is that PCA is a linear
embedding function and is incapable of capturing non-linear
effects present in metric embedding networks. Another threat
to validity is the scarcity of publicly available face recogni-



(a) Different (Left) Race vs. Same (Right) Race. Race-Balanced FaceNet

(b) Different (Left) Sex vs. Same (Right) Sex. Sex-Balanced FaceNet

Figure 14: Targeted obfuscation success evaluated on Demographically
Balanced FaceNets in a white-box setting.

tion datasets; datasets with labeled demographic attributes are
even more rare. Such datasets are rather small, as such, our
results may not generalize to datasets orders of magnitude
larger than the available face recognition datasets.

6 Related Work

Buolamwini and Gebru study commercially available face
recognition datasets and classifiers [14]. Their findings indi-
cate that prominent commercial face classifiers exhibit dis-
parate performance across demographic groups. Follow-up
research has attempted to address these demographic dispari-
ties through balanced datasets [55,56]. Such datasets improve
model generalization but do not resolve disparities completely.
These findings are consistent with results in appendix B.

Demographic disparities seem to contribute to the phe-
nomenon of overlearning, a term coined by Song and
Shmatikov [57]. Overlearning refers to the phenomenon
where models implicitly learn to recognize sensitive patterns
not part of the original learning objective. Metric embed-
ding networks trained on faces do overlearn; they learn a
demographically-aware dimensionality reduction on faces.

Cherepanova et al. [58] study the relationship between
training data, test data, population demographics and face
recognition performance. The authors, independent of our
results, observe that models trained on demographically bal-
anced datasets are not bias-free. They discuss neither face
obfuscation, nor impacts on privacy and security.

Nanda et al. discuss the relationship between fairness and
robustness of face recognition [15]. Our work differs in sev-
eral respects: First, there is a distinction between the study
of robust metric learning. Our paper explores bias present in
the embedding space and how it affects recently proposed
face obfuscation systems. Through an analytical model in

section 3.2, we show the amount of tolerable perturbation in
a face recognition system depends on class imbalances. Sec-
ond, we examine face obfuscation in the black-box setting;
these experiments are performed on both open-source and
commercial models as depicted in fig. 7. The results demon-
strate transferability of biases in adversarial perturbations;
we note the negatively-affected demographics can differ be-
tween the white-box and black-box settings depending on
the perturbation strength. Third, we investigate root causes
for demographic-wise performance disparities via TCAV. We
also explore dataset balancing and the Xu et al. training pro-
cedure as bias mitigation techniques.

Cilloni et al. study a targeted face obfuscation which at-
tempts to find the minimum strength successful perturba-
tion via optimization procedure regularized by the a well-
established image similarity scoring function known as
DSSIM. Modulo the regularizer, our Carlini-Wagner based
experiments achieve the same purpose. Rajabi et al [59].
consider two methods of face obfuscation: the first is a univer-
sal ensemble perturbation, an untargeted obfuscatory method
designed to be transferable; we explore transferability of un-
targeted perturbations in section 4.2 and fig. 8. The second
technique is cryptographic in nature. Finally, a Master’s the-
sis by Qin [60] evaluates discrepancies in a face obfuscation
system called FAWKES [26], conditioned on skin tones. Qin
finds differences in perturbation visibility for certain demo-
graphics. In comparison, our work characterizes these dis-
crepancies and their impact on face obfuscation systems.

7 Conclusion

Face recognition systems have seen increased usage in on-
line settings at the cost of heightened privacy concerns. Re-
searchers have proposed face obfuscation systems that lever-
age evasion attacks against metric embedding networks. Our
results show that, in an effort to mitigate such privacy con-
cerns, face obfuscation systems have performance characteris-
tics that depend on demographic information, thereby creating
a new privacy incursion. Such performance characteristics
can not only leak demographic membership information and
decrease the performance of face obfuscation among under-
represented demographic groups. Imbalances in training set
demographics are only partially to blame for this privacy leak:
remaining causes are yet to be discovered. To mitigate the
effects of this incidental privacy leak, we must develop both
loss functions for training fair metric embedding networks
and techniques to characterize if such privacy leaks will occur.
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A Mathematics for the Analytical Model

To solve the optimization problem posed in eq. (9), we ex-
amine the likelihood function. Let pDg now denote the PDF
of the image of distribution Dg as it appears in the 1-D PCA
embedding space. We assume g  1. We aim to find the
strength of the perturbation necessary to push an example
xxx in a

pDa [f(xxx+ddd)]
pDb
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We now solve the following the following inequality for h
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After some algebra, we arrive at the following interval
solution for h.
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Where, for notational compactness, we have:

a = f(xxx) (17)
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Since the right-side of inequality (14) upper bounds the
right-side of inequality (11), we know that any solution for
inequality (14) is also a solution for inequality (11).

Since inequality (16) is a bound on e which provides a
guarantee on when eq. (9) is infeasible. Hence we conclude
that eq. (9) may be feasible only when

e � max

8
<

:0,
2b(g�1)

q
a2g

b2(g�1)2 +ag+a+ f(µµµb)(1� g)
b(g�1)

9
=

; (19)

B Additional Experiments

This section contains additional experiments furthering our
understanding of face recognition/obfuscation fairness issues.

B.1 Face Obfuscation and Demographics
While adversarial examples cause a misclassification on a par-
ticular identity, these adversarial examples do not necessarily
cause their demographic attributes to change. To validate this
claim, we generate untargeted adversarial examples on the
LFW dataset and classify these perturbed images using a clas-
sifier that predicts the race attribute from a face [61]. Of each
identity in the dataset, only 8% of the identities’ race attribute
change after adversarial perturbations are added. We visualize
this in fig. 15, where the embeddings of the natural examples
and adversarial examples are plotted according to their ground
truth demographics using t-SNE. Comparing the plots within
figs. 15a and 15b, a heavy overlap is observed between the
embeddings of both natural and adversarial examples of the
same race and the same sex. These results further addressed
confirm our intuition from section 4.2; an obfuscated face
is unlikely to depart it’s demographic group within the em-
bedding space. This is especially true when the groups are
clustered in the embedding space.



(a) Race: Natural (Left) vs. Adversarial (Right)

(b) Sex: Natural (Left) vs. Adversarial (Right)

Figure 15: t-SNE of the natural and adversarial embeddings. Note that the
clusters do not change, identities are still rooted within their own demo-
graphic.

I II III IV V VI

0xF4F2F5 0xFAF0EF 0xFFF9E2 0xE4C567 0x8F573C 0x2D2024
0xEDECEA 0xF3EBE6 0xF1E8C4 0xE2C26A 0x7A4C2C 0x14152A
0xFAF9F7 0xF4F1EB 0xF0E3AE 0xE0C27C 0x642D0E
0xFDFBE7 0xFBFCF4 0xE1D394 0xDFB978 0x652C1A
0xFDF6E7 0xFCF8EE 0xF2E398 0xC8A664 0x602D1B
0xFEF7E6 0xFEF6E2 0xECD7A0 0xBD9862 0x562E24

0xFFF9E2 0xECDA86 0x9D6B41 0x3E1A0D

Table 3: This chart depicts colors in the Fitzpatrick scale [45], which is
derived from Von Luschan’s chromatic scale [62]. Colors are in hexadecimal.

B.2 Black-Box Obfuscation Disparities
To understand whether the performance disparities between
demographics (as discussed in section 4.2) manifest in com-
mercial face recognition systems, we tested the success of the
perturbed faces against three commercial face recognition sys-
tems. These Face Recognition APIs were Face++, Microsoft
Azure Face API, and Amazon AWS Rekognition. In fig. 7, we
observe large differences in obfuscation success for each race
demographic. This performance disparity can be attributed to
the larger perturbation sizes associated with Asian and White
identities (fig. 5). Black identities were observed to have
smaller perturbations, and higher local Lipschitz constants
(fig. 16), suggesting that decreased obfuscation success can
stem from disparities in the robustness of each demographic.

B.3 Targeted vs. Untargeted Obfuscation
Figure 17 portrays the untargeted obfuscation success rates
for the pre-trained Facenet model. Untargeted success is also
provided for the black-box setting with the OpenFace model
(fig. 18). In fig. 14, the targeted success rates are provided
for the Race-Balanced and Sex-Balanced Facenet models. We
observe similar trends as discussed in sections 4.2 and 4.3.

Figure 16: Upper bounds on local Lipschitz constants estimated using Fast-
Lin and RecurJac. Models trained on non-uniform demographic distributions
suffer from higher instability. The maximum constants for each demographic
is 2-3 times larger in the non-uniform model than in the uniform model.

(a) Obfuscation success on FaceNet: Different (Left) vs. Same (Right) Race

(b) Obfuscation success on FaceNet: Different (Left) vs. Same (Right) Sex

Figure 17: Untargeted obfuscation success evaluated on the FaceNet metric
embedding network in a white-box setting.

(a) Obfuscation success on OpenFace: Different (Left) vs. Same (Right) Race

(b) Obfuscation success on OpenFace: Different (Left) vs. Same (Right) Sex

Figure 18: Untargeted obfuscation success evaluated on the OpenFace metric
embedding network in a black-box setting.


