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Abstract

Machine learning models are known to be vulnerable to ad-
versarial evasion attacks as illustrated by image classification
models. Thoroughly understanding such attacks is critical in
order to ensure the safety and robustness of critical AI tasks.
However, most evasion attacks are difficult to deploy against
a majority of AI systems because they have focused on image
domain with only few constraints. An image is composed
of homogeneous, numerical, continuous, and independent
features, unlike many other input types to AI systems used in
practice. Furthermore, some input types include additional
semantic and functional constraints that must be observed to
generate realistic adversarial inputs. In this work, we propose
a new framework to enable the generation of adversarial in-
puts irrespective of the input type and task domain. Given
an input and a set of pre-defined input transformations, our
framework discovers a sequence of transformations that result
in a semantically correct and functional adversarial input. We
demonstrate the generality of our approach on several diverse
machine learning tasks with various input representations. We
also show the importance of generating adversarial examples
as they enable the deployment of mitigation techniques.

1 Introduction

The powerful automation capabilities of AI have been adopted
to empower and drive numerous data-driven tasks. However,
the safety, security, and privacy of machine learning has be-
come a concerning issue. In particular, adversarial machine
learning, which studies how small perturbations on the input
by active adversaries can predictably influence model behav-
ior [44], indicates that use of AI in safety and security critical
tasks such as cybersecurity may introduce new vulnerabilities
into the system [2].

To secure machine learning algorithms against evasion
attacks, penetration testing of victim models is required to
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identify vulnerabilities and obtain a representative set of ad-
versarial inputs. Recent studies in adversarial machine learn-
ing have developed numerous attack algorithms [12, 14, 16,
19, 23, 33, 38].

These approaches typically make small numerical changes
to the input such as adding the loss gradient or averaging
two inputs and examining the influence on the output of the
model. However, many of these attacks are designed to tar-
get the image classification tasks, which limits their practical
use for testing real systems. Image inputs are often a col-
lection of continuous, numerical, and independent features.
Furthermore, the preprocessing is often differentiable. These
properties are key requirements for many existing attacks as
they craft adversarial examples through backpropagation of
the loss gradient through the classification pipeline, but many
machine learning models use inputs lacking these properties.
For example, in malware detection [11, 30, 43], the raw input
is a discrete object (i.e., a binary file) and the correspond-
ing feature representation may be a combination of discrete,
continuous, and categorical values (e.g., file length, library im-
ports, file type), some which may not be independent. These
features were necessarily obtained through non-differentiable
feature extraction. As such, image-based adversarial machine
learning attacks cannot be used to generate an adversarial bi-
nary nor an adversarial set of features. In many machine learn-
ing applications, the input properties are often only loosely
fulfilled in the feature space as the classifier input often must
be numerical.

Many defenses relied on a functional evasion attack for
their development and deployment. Adversarial training, for
example, trains a model on adversarial samples generated
on-the-fly to mitigate the effect of evasion attacks [31]. As
the image-based evasion attack assumptions for non-image
classifiers are often only generally true in the feature space,
adversarial training currently is limited to training on adver-
sarial features. However, the adversarial features used for
training may not be representative of real inputs due to se-
mantic correctness and functionality constraints, i.e., there
exists no input object with the generated adversarial features.



Table 1: Effect of feature-level adversarial training. Standard
training denotes training on the original unmodified dataset.

Training Method Benign Acc. Adversarial Acc.

Standard 92% 19%
Adversarial Training 82% 29%

Indeed, in Table 1, we found adversarial training on adver-
sarial features generated by an image-based evasion attack
was ineffective against functional and semantically correct
adversarial input objects generated using our framework.

One common approach to enable evasion attacks for non-
image domain tasks is to retool existing image-based evasion
attacks to enforce additional domain specific constraints that
ensure the semantic correctness of the generated adversar-
ial features [8, 25]. While this approach generates seman-
tically correct adversarial features, it remains non-trivial to
find an adversarial object with features. The issue remains
that adversarial gradients cannot propagate through the non-
differentiable mapping of input objects to their numerical
feature representation.

Another approach is to pick a task domain and define a
domain specific set of functionality preserving input transfor-
mations for the input object. These transformations define the
basic manipulation operations used to craft adversarial exam-
ples [10,20] during the attack process replacing the traditional
addition and subtraction of adversarial noise to a real valued
input. As transformations are performed directly on the object
rather than the object’s feature representation, the problem of
non-differentiable feature extraction is bypassed. However,
most works of this type make domain specific assumptions
and use customized attack algorithms, making it difficult to
easily adapt these works to other domains.

To this end, a general purpose evasion attack framework
for AI systems and implement URET (Universal Robustness
Evaluation Toolkit (for Evasion)), a toolkit that can be in-
tegrated into machine learning evaluation and remediation
pipelines. We define a set of functionality and semantic pre-
serving transformations for several common data representa-
tions. In addition, we also expose a transformation interface
with which a user can define their own set of transformations
for given data representation. These transformations establish
the basic adversarial modification operations to be used by
our framework. We then characterize the adversarial input
generation process as a graph exploration problem. Given an
initial unperturbed sample, our framework finds a sequence
of edges (i.e., sequence of transformations) that achieve the
adversarial objective (i.e., misclassification) and generates an
adversarial input.

From the user’s perspective, they simply need to identify
the input data type(s) and how those types should be modified.
They also select the graph exploration parameters, namely the
vertex scoring function, the vertex ranking algorithm, and the
graph search algorithm. Each of these components come pre-

installed in the toolkit. Users can optionally define custom
input constraints and inter-feature dependencies, which our
framework automatically enforces during sample generation.
Our contributions are as follows:

• A general purpose adversarial input generation framework
that formulates the process as a graph exploration problem
in order to generate adversarial inputs irrespective of the
input representation. Unlike prior works, which are lim-
ited in scope or focused on a specific domain, our frame-
work can generate adversarial samples for any machine
learning task irrespective of input data representation.

• As part of an ongoing adversarial evaluation effort, we
document three case studies on machine learning tasks
with different input types, highlighting the functionality
and use cases of our framework.

• We demonstrate how our work can be used for adversarial
remediation through integration with an adversarial train-
ing pipeline, a popular defense technique against evasion
attacks.

• An open-source implementation of our framework avail-
able at https://github.com/IBM/URET.

2 Related work

Although adversarial machine learning is well-studied, most
of its development has been focused on image-related tasks,
such as object classification, image segmentation, and in-
stance segmentation. However, powerful automation capabili-
ties provided by machine learning has encouraged its use in
other domains [42]. Non-image task domains such as cyberse-
curity, text classification, and even traditional tabular datasets
pose issues for adversarial machine learning as more consider-
ations must be made when manipulating input objects. Unlike
images, most other input objects (e.g., malicious binaries, text
strings, tabular data) must also remain semantically correct
and operational after adversarial manipulation. Here, we dis-
cuss related works that make advances towards developing
adversarial attacks for non-image data representations. We
summarize some of more generic and promising frameworks
in Table 2, and compare their functionalities.

2.1 Domain Specific Attacks

One group of related works focuses on designing adversarial
attacks with domain specific assumptions. Given its security
critical nature, many recent works focus on the malware clas-
sification task. Grosse et al. refactored the Jacobian Saliency
Map attack (JSMA) to enable manipulations of malware bina-
ries [25]. Given a set of binary features (i.e., [0,1] features)
for a malware sample, where a value of 1 indicates that the
sample exhibited the feature (e.g., the malware imported a
specific library). With such a feature representation, their



Table 2: Comparison of supported functionalities of non-image evasion attack tools. �: supported; 4: partially supported; ⇥:
not supported. Typical tabular data includes categorical, boolean, integer, and float features. A config interface refers to the
ability to quickly define and evaluate a machine learning model through use of a configuration file, command line call, or similar
interface. All of the works here have implementations, but they either do not provide a user guide, are not maintained as the
implementation exists for reproducibility, or are private.

Attacks
Input Types

Config Interface
Opt. Goal

Open SourceTabular Text Custom Model Feature

SLEIPNIR [8] ⇥ ⇥ Malware ⇥ � ⇥ 4
Gym-Malware [10] ⇥ ⇥ Malware ⇥ � ⇥ 4

Graph Search [27] 4 ⇥ ⇥ ⇥ � � 4
Pierazzi et al. [40] � � � Unknown � ⇥ 4

Counterfit [5] ⇥ � ⇥ � � � �

URET (Ours) � � � � � � �

proposed attack computes the Jacobian Saliency map of the
sample and finds the feature indices that would most likely
cause adversarial misclassification. As they purposely used
an interpretable feature representation, adversarial modifica-
tions were easily reproducible. Malware functionality was
also preserved as their attack only modified 0-valued features.
That is to say, the adversarial attack adds new capabilities
rather than removes it. This approach using limited manipu-
lations of binary feature representations has been leveraged
by other works as well [8]. The limitation of works that refac-
tor existing image-based adversarial attacks is a requirement
for interpretable, independent feature representations in or-
der to easily map modifications back to the original input
representation.

Other works have forgone adapting image-based attacks
and proposed their own custom algorithms that generate ad-
versarial cybersecurity objects [10, 20, 30]. They first define a
set of functionality preserving input object transformations
and use varying methods to find a sequence of transformations
to cause misclassification. Demetrio et al. and Lucas et al.
used the traditional approach of optimizing an objective func-
tion to find the sequence of adversarial modifications [20, 30].
Anderson et al. trained a reinforcement learning agent to
solve this problem [10]. Although these works share sim-
ilarities with our framework, they are limited to support a
single data representation and a task. On the contrary, our
framework is easily customizable for any data representation
through modification of a configuration file and, possibly, the
transformation interface.

2.2 Comparison with generic frameworks

Of interest are works that, like ours, propose a generic adver-
sarial generation framework with an open-source implemen-
tation. Kulynych et al. [27] propose representing the process
of generating adversarial samples as a graph search problem.
Similar to our framework, their methodology seeks to find
a sequence of transformations that cause misclassification,

but we note a few key differences. First, they focus their
framework on binary classifiers given their security relevance.
Although the case studies we show later are also binary clas-
sification tasks, our exploration objectives support non-binary
classification tasks as well. A second difference is how edges
and nodes are evaluated and explored during graph explo-
ration. They focus on the A* search algorithm as it will find
an optimal adversarial example, under certain assumptions,
measured by the fewest number of transformations. The cur-
rent version of our framework implements several exploration
configurations recognizing that a user’s needs may vary. For
example, some of our exploration configurations implement
predictive analytics, something their framework does not sup-
port, which trade adversarial success rate for lower runtime.
This trade-off can be useful for exploring large graphs or if
speed is a concern, e.g., adversarial training. They attempt
to alleviate this issue using preset heuristics, but the effect
of this approach is unclear. Of issue is their proposed pre-
set heuristics are based on the p-norm, which is not ideal to
compare categorical features. This limits their approach to
numeric types such as integer and Boolean features. Finally,
the authors have only provided code and instructions to re-
produce their experiment results1, but do not appear to have a
plan to support a set of general purpose tools and guidelines
for use by the larger community, which is an issue our work
is trying to address.

A closely related work is that of Pierazzi et al. who formal-
ized “problem-space” evasion attacks and proposed a general
attack framework [40]. They also observe extracting feature
representations of inputs in the problem-space (i.e., what we
denote as objects in the paper) is a non-invertible and non-
differentiable process and hinders traditional evasion attacks.
From our reading of the paper, their approach requires the
user to define a set of domain specific input transformations
and constraints. Then, their framework uses either a prob-
lem driven (e.g., genetic algorithms, Monte Carlo search tree,

1https://github.com/spring-epfl/trickster



etc.), gradient driven, or hybrid search algorithm to discover
a sequence of transformations that result in misclassification.
In their paper, they focus on Android malware classification
as an example task, but describe multiple other tasks in Table
I of their paper. Unfortunately, due to ethical concerns, their
implementation is private2, which prevents us from compar-
ing their implementation with ours and understanding the
user interface or operation. However, it remains true that their
tools are not intended to be integrated into model evaluation
and remediation pipeline in its current state.

Recently, Microsoft released Counterfit, an open source
toolkit for testing AI systems against adversarial machine
learning attack [5]. Despite rising concerns regarding the
vulnerability of AI systems to adversarial attacks, most of
the businesses they surveyed were not prepared nor had the
tools necessary to secure AI systems [28]. Although several
libraries exist for deploying machine learning attack, most of
these libraries are designed for image and text inputs [21, 24,
34,35,37]. To fill the need for a general adversarial evaluation
toolkit, Counterfit builds upon three existing libraries, the
Adversarial Robustness Toolbox (ART) [35], TextAttack [34]
and AugLy [36], and exposes a command line interface to run
adversarial attacks and evaluations from these frameworks.
Counterfit serves to lessen the burden of knowledge for users
when attempting to deploy adversarial attacks against their
own systems. Thanks to the use of blackbox adversarial
attacks from ART and attacks from the TextAttack library,
Counterfit can support more input types and task domains than
traditional adversarial attacks. As a framework, Counterfit
helps to simplify the adversarial attack and evaluation process
for security experts by abstracting away the details such as
hyperparameter tuning and attack selection.

Although Counterfit is a major step towards enabling ad-
versarial evasion attacks and evaluations in a general context,
it is limited by the attack libraries it uses in the background.
First, Counterfit cannot support uncommon input objects such
as file binaries because the attacks it employs operate in the
feature space. Like the work by Grosse et al. and Huang et al.
[8, 25], Counterfit can only be used to generate an adversarial
input object if the features are interpretable. Second, Counter-
fit cannot enforce custom input constraints and inter-feature
dependencies, as such constraints are not supported in ART
or TextAttack.

3 Preliminary

In this section, we describe the challenges and need for a gen-
eral adversarial attack and robustness evaluation framework.
To avoid confusion, for the remainder of the paper we will use
the following terminology to describe the data going through
an AI model (Figure 1):

• Object: An object denotes the input value to the AI system
2They only allow academic researchers access to their code.
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Figure 1: A typical model pipeline. Traditional adversarial
attacks, which use loss gradients, are limited to generate ad-
versarial feature vectors. Our framework can generate adver-
sarial input objects or adversarial features using the classifier
loss scoring function. Furthermore, our framework remains
backward compatible with existing attacks using the feature
distance scoring function.

before feature extraction has occurred. An object can
be a singular data type or a collection of data types. A
data type could be an abstract data type (e.g., domain
name or binary) or a common data type (e.g., numerical,
categorical, and textual data).

• Feature: A feature denotes the input value to the ma-
chine learning model after feature extraction has been
performed, and it is a numerical value such as a real num-
ber or integer. A feature vector is composed of one or
more features. We may use features and feature vector
interchangeably.

• Input: An input denotes a value anywhere before the
model’s input layer (i.e., either an object or a feature vec-
tor).

Using the above terminology, a typical AI system consists
of a feature extractor and a machine learning model. Given
an object of a known structure, the system first converts the
object into a numerical representation recognized by the ma-
chine learning model, optionally normalizing the feature val-
ues. This feature vector is processed by the machine learning
model and an output prediction is made.

3.1 Adversarial Machine Learning

The increasing use of AI in safety and security critical systems
has heightened concerns regarding the vulnerabilities AI in-
troduces to such systems. Prior work with image-based classi-
fiers has identified one class of attacks called adversarial eva-
sion attacks [23, 44]. In such attacks, an adversary computes
a precise set of input manipulations such that the perturbed



input is misclassified. Such attacks threaten the reliability of
AI systems as adversaries with sufficient access can control
the output decisions of the classifier. Many have proposed
solutions to mitigate the effect of adversarial evasion attacks,
but few have succeeded [12,18,31,39,45,46]. The main issue
early adversarial defenses suffered was a reliance on gradi-
ent obfuscation, a technique that prevents correct estimation
of a classifier’s loss gradient, usually due to the use of non-
differentiable operations. As early adversarial evasion attacks
relied on the classifier’s loss gradient to guide the adversarial
image perturbations, gradient obfuscation based defenses ap-
peared very effective at preventing adversarial evasion attacks.
Unfortunately, Athalye et al. demonstrated that gradient ob-
fuscation can be easily bypassed through use of alternative
gradient approximation methods [12]. Despite the failure
of early defenses, there exist several training-based defenses
that are effective at improving the robustness of image-based
classifiers against adversarial evasion attacks [18, 31, 45, 46].

3.2 Challenges

An evasion attack can be formulated as finding T (x) for an
input x such that

F(T (x)) 6= F(x) if untargeted attack,
argmaxF(T (x)) = c(x) if targeted attack.

(1)

where F is an AI model, c(x) is the target class, and T is a
function applying a small change. For an image classification
task, it is typically T (x) = x+d such that kdkp < e, k ·kp is
p-norm, and oftentimes d is derived from the gradient of F
with respect to x or through other numerical operations on
x. However, how one can define T becomes nontrivial as we
step out of the image domain.

Unlike the image domain where we can easily apply nu-
merical modifications to x, doing so in other domains requires
addressing the following challenges: 1) non-differentiable fea-
ture extraction; 2) variable input types; and 3) input semantics
and functionality preservation.
Non-Differentiable Feature Extraction. Most state-of-the-
art adversarial evasion attacks generate adversarial inputs by
computing the loss gradient with respect to the model’s input
and using the loss gradient to guide the adversarial modifi-
cations. Within the model, computing the loss gradient is
straightforward as machine learning models are composed of
differentiable layers necessary for backpropagation. The chal-
lenge arrives when the loss gradient must be back propagated
through the feature extraction layer. In the image domain,
there is little to no structural difference between the object (the
original image) and its extracted features as both are arrays
of continuous, numerical values. When input transformations
are performed, they are often done for data augmentation
purposes and are differentiable (e.g., shift and rotate). How-
ever, most other input objects are non-numerical, thus input

transformations are required to obtain a numerical feature
representation that the machine learning model can process.
The difference in structure requires such transformations to
be non-differentiable. As such the loss gradient cannot be
backpropagated back to the input object preventing traditional
attacks from generating adversarial objects. We are aware
of gradient approximation techniques such as the Backward
Pass Differentiable Approximation proposed by Athalye et
al. [12], but such techniques require that the differentiable
approximation be similar to the original feature extraction
function and only permit slight gradient inaccuracies. Thus,
existing attacks are limited to generating adversarial features.

Variable Input Types. In image recognition, the input ob-
ject (an image) consists of an array of numerical, continuous
values each sharing the same data type. In most domains,
however, the input data types are variable. In malware de-
tection, the input object may be a file binary. In Domain
Generation Algorithm (DGA) detection, the input sample
may be a string representing the domain name. In classifica-
tion tasks with tabular datasets, the input object may be an
array of mixed data types (e.g., numerical, categorical, text,
etc). As the task changes, the structure and data type(s) of
the input object changes as well. This variability also extends
to the input feature vector as the feature vector may consist
of a mix of discrete and continuous numerical values that
represent numerical quantities or preprocessed categorical
features. Traditional adversarial attacks are not equipped to
handle such varied input representations.

Input Semantics and Functionality Preservation. Images
and their respective feature vector representations are sim-
ple inputs to adversarially modify because the modifications
is a simple incremental addition of noise. Furthermore, the
inputs usually consist of independent features, i.e., the value
of one pixel is not affected by the value of other pixels in
the image. Beyond clipping the input to ensure the features
remain in a certain valid range, these properties allow existing
adversarial attacks to largely ignore the need to preserve the
input semantics or functionality of an image object. When
considering adversarial modifications on general object types
or feature representations, we must take these constraints into
account. Otherwise, the generated adversarial inputs might
be meaningless as they would represent impossible inputs
or would change the original intent of the input. For exam-
ple, when designing MalGAN, the authors only allowed the
attack to add new features because if a certain feature were
removed, the corresponding change to the malicious binary
may prevent its intended operation [26]. Other works looking
to modify file binary rather than its feature representation
also used custom modification functions to ensure the binary
remained valid after modification [10, 20, 30].



3.3 Is adversarial machine learning a threat?

Recently, the research community has explored adversarial
attacks to handle more diverse environmental conditionals
and task domains against real world applications [17, 29, 47]
further fueling concerns about the security of AI systems.
NIST has been working on AI Risk Management Framework
to foster the development of technologies to improve trust-
worthiness of AI including reliability, robustness, safety, and
security [7]. In cybersecurity, researchers and industry have
begun to recognize the threat of adversarial machine learn-
ing. MITRE recently released Adversarial Threat Landscape
for Artificial-Intelligence Systems (ATLAS) [4] to systemat-
ically describe common attack tactics and techniques used
in adversarial machine learning similar to MITRE ATT&CK
framework [6], such as poisoning training data, evading ML
model, and crafting adversarial data, with case studies. For
example, a security vulnerability in the Proofpoint email pro-
tection system was discovered by building a copy-cat email
classification model and evading the detection by crafting an
adversarial spam email [3].

To motivate the need for generic tools that enable the study
of adversarial machine learning in safety and security critical
tasks, we studied the robustness of state-of-the-art malware
detectors. We used an open source malware detector and a
set of functionality-preserving transformations to disguise
malware programs as goodware to the detector. Then, we
uploaded these samples to see if they are correctly classified
by the 60+ antivirus products used on VirusTotal which are
commonly used to label malware samples. As Table 3 shows,
the detection rate of the scanners on VirusTotal drops signifi-
cantly, and some detectors could correctly detect only 6% of
malware programs we generated. These results shows that we
can adversarially modify an input object that remains func-
tional and transfer the modified object to other classifiers to
evade detection. Thus, there is a strong need to be able to syn-
thetically generate such variants before an adversary exploits
this vulnerability so we can fortify classifiers accordingly.

Table 3: The detection rate per scanner per malware sample.

Dataset Average Min Max

Original 82% 50% 90%
Adversarial 58% 6% 91%

4 Design

In this section, we describe our generic attack framework en-
abling the generation of adversarial inputs irrespective of the
input type and task domain. We characterize the adversarial
generation process as a graph exploration problem in which
we seek a sequence of edges from the original input vertex
that results in a new vertex, but a different model prediction.

Our framework can be abstracted into two main steps: 1)
Graph Definition (Sec 4.1) and 2) Graph Exploration (Sec 4.2).
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Figure 2: An illustration of graph exploration.

First, the user defines the exploration task by specifying the
set of input transformations to be used as well as any func-
tional or semantically correct constraints (Sec 4.3). Next, the
user defines the graph explorer by selecting a vertex scoring

function, an edge ranking algorithm, and a graph search

algorithm from our framework. With the input transforma-
tion and explorer defined, our framework will automatically
explore the graph until the objective is achieved (e.g., an
adversarial input is discovered) or the exploration budget is
exhausted (e.g., number of transformations).

4.1 Step 1: Graph Definition

Our framework can be viewed as defining a graph G = (V,E)
where the set of vertices V is all possible inputs and E are
the edge types3. The edge types E are a set of semantic and
functionality preserving input transformations that are chosen
by the user. In our design, we only require that the input
state after transformation remains semantically correct and
functional. Therefore, their definition is flexible and can rep-
resent a variety of object modifications such as changing a
categorical value (e.g., browser Chrome/74.0.3729.169 to
Safari/604.1), manipulating a textual value (e.g., domain
name lfjx.com to lfjz.com), or directly modifying an exe-
cutable file. Our current implementation includes pre-defined
transformers for some common basic data types (i.e., numeri-
cal, categorical, text). Figure 2 shows an example for DGA
detection where the input is represented by a string value
with three edge types representing the different possible input
transformations. Through our transformation interface, users
can easily define their own transformers in cases where the
input data type or transformation is currently not supported.
We used this interface to also define a set of binary file trans-
formations used in prior work [10].

4.2 Step 2: Graph Exploration

Once the graph has been defined through selection of the input
data type and its corresponding transformations, the next step
is to define a graph explorer. Starting at a vertex representing
the current input, the explorer evaluates the connected edges
and selects one or more edges based on the search method.

3Note that this is a theoretical representation of the dynamic graph to
be explored as building a static graph of all possible inputs is prohibitively
expensive (e.g., for domain names, there are up to Â63

i=3 36⇥37i�1 vertices)
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Figure 3: Our framework structure. A configuration file is
read by our framework and automatically constructs an graph
explorer consisting of several components.

The transformation corresponding to the selected edge(s) is
applied and it is checked to see if the adversarial object has
been achieved (i.e., an adversarial input is found). If not,
the edge is scored and exploration continues. This process
is repeated with the selected vertices until the exploration
objective is satisfied or the exploration budget is exhausted.
If exploration was not terminated early due to the exploration
objective being achieved, then the “best” scoring vertex is
returned. In Figure 3, we show an overview of the graph
explorer created by a configuration file.

4.2.1 Vertex Scoring Function

Our framework supports two vertex scoring functions by de-
fault: 1) classifier loss and 2) feature distance. The scoring
function informs our framework the “closeness” a vertex is
achieving the objective. In general, the goal of our framework
is to find a vertex that is adversarial, i.e., the vertex represents
an input different from the original input, is within some num-
ber of hops away from the original vertex (or within some
norm bound of the original input), and is misclassified by
the classifier. When found, exploration is terminated. The
vertex scoring functions define a metric to guide exploration
in achieving this objective.

The classifier loss scoring function is used when the ob-
jective is to maximize the classifier loss for the current input z
as is done in traditional adversarial machine learning. Given
a classifier F and the classifier’s prediction on the original
input y, we score the vertex belonging to z as follows:

score = L(F(z),y) (2)

where L is the classifier’s loss function. Traditionally, the
cross entropy function is used. If the user desires to generate

an adversarial input that is misclassified as a specific target
label yt rather than a random label that is not y, we modify
Equation 2 to minimize the loss with respect to the target
label.

While our framework can generate adversarial examples
on its own, we recognize that some users would prefer to
leveraging existing adversarial evasion attacks. With such
attacks, a user would first generate an adversarial feature
vector as they cannot propagate the modifications through the
feature extraction component [14,23,38]. Then, the generated
adversarial feature vector would be used by our framework as
the exploration objective. The advantage of this approach is
that existing adversarial attacks are well studied for numerical
input types and may provide better results than relying on
the classifier loss in certain scenarios. The feature distance

scoring function encourages finding an input z that when
passed through feature extractor E is as close to the target
features f as possible with respect to a distance function D.
The vertex score is expressed as follows:

score =�D(E(z), f ) (3)

where E(z) is the feature representation of z if z is an object.
If z is already a feature vector, then E is the identity function.
The negative sign ensures that closer inputs with respect to
the target features are given higher scores. As the framework
may be unable to exactly find an input z with input features
f due to semantic correctness and functionality constraints,
early termination with this scoring function is still possible if
the current input is adversarial.

As a final point, although our current design pre-defines
these two loss vertex scoring functions, our exploration frame-
work can support other scoring methods if defined by the user.
For example, the cost-based scoring function proposed by
Kulynych et al. [27] or a combination of multiple scoring
functions could be used in our framework.

4.2.2 Edge Ranking Algorithm

Our framework pre-defines four edge ranking algorithms: a)
Random, b) Brute-Force; c) Lookup Table; and d) Model
Guided.

Given a vertex, the Random ranking algorithm randomly
returns one or more edges without scoring them. It is the
fastest of the ranking algorithms, but has the lowest success
rate. As we will discuss later, this algorithm is usually used
in combination with the Simulated Annealing exploration
algorithm.

Given a vertex, the Brute-Force algorithm loops through
each connected edge and applies the transformation speci-
fied by the edge (i.e., visits the connected vertex). The score
of a connected edge is equal to the vertex score of its con-
nected vertex. For example, in Figure 2, assume the current
vertex is “lfjx.com” and cross-entropy loss is used to score
edges. For brevity, we’ll also assume that the four edges



shown are the only possible transformations. Brute-Force
would perform each transformation individually, and then
classify the transformed inputs. Thus, it would generate the
strings “lajx.com”, “lfjz.com”, “lfj.com”, “lkfjx.com”, score
each one’s edge based on its respective classification loss. As
the transformations are done during runtime, the Brute-Force
approach is often the slowest of the ranking algorithms. How-
ever, it is the most accurate as the edge rankings are based on
the real state of the explored vertices.

The Lookup Table algorithm first runs a training phase
using a small set of samples. For each training sample, its
1-hop neighborhood is explored. For each edge encountered,
the current edge weight is computed using the Brute-Force
approach and is stored a the lookup table, averaged with
prior computed values of the edge weight. By exploring the
1-hop neighborhood of every training sample, the Lookup
Table ranking algorithm generates a table of estimated edge
weights for every unique edge encountered during training.
During exploration, the ranking algorithm consults the table
for the average edge weight of each connected edge and uses
those values to rank the edges. As it does not consider the
current vertex state, the edge ranking produced may differ
from the true ranking, which often results in a lower success
rate compared to Brute-Force. However, the table lookup is
often faster than transforming the input as Brute-Force does.

The Model Guided algorithm also ranks edges without vis-
iting the vertices by relying on a pre-trained model for edge
selection. Compared to Lookup Table algorithm, this pro-
vides the user a possibility to consider the current vertex state
to predict the edge ranking more accurately. A model can
take the current vertex and the vertex score to predict which
edges are likely to improve the score. While our framework
can take any such model to rank edges, in our experiment, we
leverage Keras-RL [41] to train a reinforcement learning pol-
icy as reinforcement learning considers both the current and
future rewards for a particular transformation. As such, our
framework includes support for implementing reinforcement
learning policies to be used with the Model Guided algorithm.
We describe the implementation detail in the Appendix.

4.2.3 Graph Search Algorithm

Our framework implements two search algorithms by default:
Beam Search and Simulated Annealing. The search algorithm
dictates which neighboring vertices are propagated to the next
epoch of exploration.

The Beam Search algorithm is an algorithm that only
passes the top-k best scoring nodes to the next epoch of ex-
ploration. The number of edges passed is determined by the
beam width. We also include depth parameter, which de-
fines the maximum number of edges to explore with respect to
the original input and implicitly defines the transformation

budget. The beam search algorithm can be combined with
any of the edge ranking algorithms.

The Simulated Annealing algorithm is a temperature-
guided time-restricted random search algorithm. Unlike Beam
Search, this algorithm can only be used with the Random
ranking algorithm by definition and has an additional time

budget parameter, which defines the per-sample exploration
time. During each exploration epoch, it randomly selects a
random length sequence of edges starting from the current in-
put vertex, evaluates the new input state, and then determines
if the new input state should be kept (i.e set as the new current
state) based on the new vertex’s objective score and the cur-
rent temperature. The temperature is a parameter that initially
encourages exploration of new input states in the early phases
of exploration. As time passes, the temperature gradually
decreases, which discourages exploration and instead causes
the algorithm to prefer to keep input states that better satisfy
the exploration objective.

4.3 Semantic Correctness and Functionality

A key component of our framework is to ensure the semantic
correctness and functionality of generated adversarial inputs.
Our framework defines modification functions, which we
denote as input transformers, for a few basic input types:
integers, floats, booleans, strings, categorical values, and one-
hot categorical values. These input types are often used in
most AI systems, at least at the feature representation level,
and they can be combined to obtain new input representations.
Furthermore, for most of these input types, the constraints on
semantic correctness and functionality are usually very simple
to ensure. For example, given a vector of floats, e.g., repre-
senting an image, the constraints take the form of ensuring
the floats are bounded in a certain range.

Due to the wide adoption of machine learning, there are
many possible task domains and a variety of input types. Prior
works in malware detection [10,20,30] used custom modifica-
tion functions tailored for the task domain and our framework
expands on this approach. Rather than enumerating every pos-
sible input type, we allow users to define new input transfor-
mations through an easy-to-use interface as users are likely to
possess the necessary domain knowledge and understanding
of input constraints. Through our interface, the user simply
needs to define the transformation operation and, if necessary,
methods to compute a set of possible transformations given
an input value. Once defined, our framework automatically
uses the transformations when encountering the respective
input type. As the user provides the definition, the adversar-
ial inputs generated by the framework will be semantically
correct according to their definition.

Additionally, our framework also includes the ability for
users to define individual constraints on an input value or, in
the case of a vector with multiple input values, dependency
constraints between input values. The Lp norm constraint
used for image-based adversarial attacks is an example of an
individual constraint for a float type of an input value. An-



other example is an edit distance for non-numerical inputs,
such as strings. As inputs can have multiple representations,
the definition of input transformations includes a function
to enforce such constraints if necessary. After transforming
an input, our framework checks if the user defines any de-
pendency constraints as part of the attack. A dependency
constraint is expressed as a function and multiple dependency
constraints can be passed to our framework. For example,
suppose that we have a feature vector of length three and the
third index is computed by summing the first two indices. A
user can express this relationship with a dependency function
that takes in the current input state and the first two indices
as input, sums their values, assigns it to the third index, and
then returns the new input.

5 Using Our Framework

In this section, we’ll give a brief overview of the typical user
experience when using our framework. For this discussion,
we will use the DGA classification task and the Beam Search
(Brute-Force) exploration configuration as an example. First,
the user must define the set of transformations to be used. A
user defines the transformer and its parameters in a configu-
ration file such as in Figure 4. Our framework reads in the
transformer_params dictionary and creates a transformer
object for each entry. In the DGA classification task, as the in-
put object is a single text string representing a domain name,
thus we only need a single string transformer. The trans-
former definition also includes some initialization arguments.
The subtransformer_args define the modification actions,
which we denote as subtransformers, that can be performed
on the data type. In this example, we allow insertion, substi-
tution, and deletion of alphanumeric characters in the string.
Note that the modification actions may also have their own
initialization arguments (e.g., only numerical characters can
transformed). The input_constraints define constraints that
must be true after an input has been transformed. In this
example, we have a simple action constraint that stipulates a
string can only be modified three times. Furthermore, there is
an additional constraint that insertion and substitution actions
can only be performed three times and the deletion action can
only remove at most half of the original string. Finally, the
input_processor_name, informs our framework that before
and after transforming the domain name, a user-defined func-
tion of the specified name must be used to process the domain
name. This function is one process that ensures semantic
correctness and functionality of the transformer input

In addition to defining the transformers in the configuration
file, the user also defines the explorer parameters as shown in
Figure 5. Observe that we split the ranking and exploration
algorithm parameters. Both parameter sets define the type of
algorithm to use as well as the initialization arguments. The
vertex scoring algorithm is given in scoring_alg and we also
provide the parameters specific to Beam Search. We note that

Figure 4: The string transformer definition for the DGA task.

with respect to the ranking algorithm, an additional Boolean
flag, multi_feature_input, is set. It is False by default, but
we include it here for illustration. This flag is only True for
input types that combine multiple data types and would re-
quire multiple transformers such as with tabular data. Finally,
due to the numerous machine learning frameworks and model
definitions, the predict_function_name is an optional value
that informs the framework what function can be used with
the model object to obtain a prediction. By default, it is set to
“predict”.

Figure 5: The explorer definition for the DGA task.

After the user loads a model to attack and defines required
input processing and feature extraction functions, the config-
uration file is automatically processed by our framework and
an explorer object is returned. Calling it automatically gener-
ates adversarial samples for a given set of inputs as shown in
Figure 6.

Figure 6: Using the explorer to generate samples.

6 Evaluation

In this section, we present three case studies in which we
used our framework as part of an ongoing model evaluation
task to generate adversarial inputs. The generic nature of
our framework was key in enabling such an evaluation due



to differences in input data representations, input semantics,
and model types. First, we use the 2018 Home Mortgage
Disclosure Act (HMDA) dataset and a mortgage approval
classifier to explore adversarial sample generation for tabular
inputs, an input data type not commonly studied in current
adversarial work. Next, we revisit text and numerical inputs
and generate adversarial samples for the DGA classification
task. Finally, we explore generation of adversarial samples for
a well-studied, but uncommon input data type, a binary object,
using a model trained on the EMBER malware classification
dataset [11]. Across all three case studies, we report the
following metrics when evaluating our exploration algorithm
configurations:

1. Success rate: The number of adversarial inputs that were
misclassified by the classifier.

2. Average number of transforms: The average number of
transformations applied to the original input before mis-
classification occurred. Note this metric is only computed
across successful adversarial inputs.

3. Average time per sample: The average runtime of the
exploration algorithm to return a potentially adversarial
input. This time does not include time required for train-
ing for certain algorithms (i.e., Lookup Table and Model
Guided).

While our framework may not be the most efficient com-
pared with individual prior work tailored for a specific domain,
our framework is generic, i.e., we can generate adversarial
samples for any input data type, which enables its use in
the evaluation pipeline. Even as we switched between ma-
chine learning tasks, the necessary modifications were mostly
small-scale changes to our configuration files.

6.1 Tabular Input

In this first case study, we use our framework to generate
adversarial examples for tabular inputs. To our knowledge,
little to no prior works have studied adversarial attacks using
tabular inputs or, more generally, inputs that are a combination
of multiple data types. The closest works would be adversarial
attacks against multi-modal systems [13, 22].

The 2018 release of the Home Mortgage Disclosure Act
(HMDA) dataset contains mortgage data from 5,683 institu-
tions. This dataset is a tabular dataset consisting of mix of
categorical and numerical features. The classification task is
given a tabular data point representing a consumer’s mortgage
application, predict if the application should be approved or
rejected. We were asked to perform an evaluation of the ad-
versarial robustness of five different pre-trained classifiers:
a decision tree (DT) classifier, a gradient boosted classifier
(GBC), a logistic regression (LR) classifier, a random forest
(RF) classifier, and a multi-layer perceptron (MLP) classi-
fier. The accuracy and F1 Score of each classifier are given

in Table 4. We were also given a pre-processed version of
the 2018 HMDA dataset. Compared to the original dataset,
the pre-processing sanitized it and, through feature selection,
extracts 13 features for classification.

Table 4: The performance of each of the HMDA classifiers.

Model Arch. Accuracy F1 Score

Decision Tree 91% 0.95
Gradient Boosted Classifier 95% 0.97

Logistic Regression 69% 0.81
Random Forest 81% 0.89

Multi-layer Perceptron 83% 0.90

Table 5: The 7 features selected for adversarial modification
from the HMDA dataset

Feature Name Type # of Possible Values

Age Categorical 7
Score Type Categorical 8
Underwriter Categorical 6
Loan Limit Categorical 2

Loan Duration Categorical 2
Gender Categorical 2
Race Categorical 2

Based our understanding of task and evaluation goals, we
selected 7 categorical features of the 13 total features as poten-
tial candidates for modification. We describe these features in
Table 5. In our configuration files, we defined 7 categorical
transformers. With respect to exploration algorithm specific
parameters, the Beam Search algorithm used a width of 5
and a depth of 2, i.e., an input could be transformed at most
twice. The Lookup Table ranking algorithm was trained on
500 randomly selected training inputs and the Model Guided
was a reinforcement learning model (See Appendix). The
Simulated Annealing algorithm was given a time budget of
1 s per sample and also was limited to 3 transformations. Fi-
nally, we use the classification loss scoring function to guide
exploration.

In Table 6, we report the results for the 5 potential explo-
ration algorithm configurations on each of the models we
were given using 1000 approved and 1000 rejected applica-
tions. As a baseline comparison, we include the results for
Beam Search using the Random algorithm. Within the Beam
Search configurations, the Brute-Force ranking algorithm had
the highest success rate across all experiments. It also uses
the fewest number of transformations to craft an adversar-
ial sample. The Lookup Table ranking algorithm is faster
that Brute-Force due to the pre-training step, but had a lower
success rate as it ignores the current state of the input when
determining the next transformation to apply. We see that
the Model Guided ranking algorithm improves upon Lookup
Table with respect to success rate, but as its exploration is



still based on an estimation of the edge weights, it uses more
transformations to succeed. Simulated Annealing with its
fixed time budget also has a high success rate.

6.2 Text Input

In our second case study, we use our framework to generate
adversarial examples for text inputs. We recognize that much
prior work exists with respect to generating adversarial text
inputs, namely Counterfit [5] and TextAttack [34]. While
these works may be more efficient or successful at finding ad-
versarial text inputs compared to our framework, they cannot
be easily adapted to other input data types.

Domain name generation algorithms (DGA) are often used
by malware to locate the command and control servers and
avoid simple blacklisting. Instead of relying on fixed IP ad-
dress or domain name hard-coded into the malware, domain
name generation algorithms generate a large of number of do-
main name strings in a pseudorandom fashion, one of which
connects to the actual command and control server [1]. The
classification task is given a domain name, predict if was
produced by a domain name generation algorithm. We were
provided with a DGA classifier that was a 2-layer neural net-
work. We were also given a test dataset containing 5,000
DGA names and 5,000 non-DGA names. Given a domain
name, the classifier extracts 20 numerical bounded features
to use for classification. The accuracy of the classifier on the
test dataset is 93%.

As the domain name is a single string, we defined a string
transformer with the ability to add, delete, or substitute al-
phanumeric characters in the string. We also defined a func-
tion to preprocess the domain name and extract its top level
domain (e.g., “.com”) as this portion of the string was not
valid for modification. With respect to exploration algorithm
specific parameters, the Beam Search algorithm used a width
of 3 and a depth of 3, i.e., an input could be transformed
at most three times. The Lookup Table ranking algorithm
was trained on 500 randomly selected training inputs and the
Model Guided algorithm was trained on all of the samples in
the test set. The Simulated Annealing algorithm was given a
time budget of 1 s per sample and was also limited to 3 trans-
formations. Finally, we use the classification loss scoring
function to guide exploration.

In Table 7, we report the results of our study on 1000 DGA
and 1000 non-DGA samples. As a baseline comparison, we
include the results for Beam Search using the Random algo-
rithm. As before, we observe that the Brute-Force algorithm
has the highest success rate and the fewest number of transfor-
mations. The Lookup Table algorithm is faster in comparison,
but uses more transformation. The Model Guided algorithm,
in this case, has worse performance compared to Brute-Force
and requires more transformations on average. Finally, Simu-
lated Annealing also has a high success rate and allows the
user to exactly specify exploration time, but usually maxi-

mizes its transformation budget.
As the classifier’s feature extractor generates an array of

continuous numerical features, we can use existing image
based adversarial attacks to generate an adversarial feature
vector for a given domain name. In our second evaluation,
we used the Projected Gradient Descent (PGD) attack [31]
to generate adversarial feature target vectors for the 1000
DGA and 1000 non-DGA samples. Then, we define the
feature distance scoring function to be the cosine similarity
between the current feature perturbation induced by an input
transformation and the PGD target vector. We also set a
modification constraint specifying that a feature can be only
modified by up to 30% of the feature’s maximum value in
order to mimic the inconspicuousness property image-based
adversarial attacks enforce. Except for the change in scoring
function, we use the same exploration parameters as before.

In Table 8, we report the results of this evaluation. Of note
is that the Model Guided ranking algorithm is much faster
compared to the other Beam Search configurations. Clearly,
the RL model is very effective at estimating the current and
future effects a particular transformation induces, leading to
an overall decrease in time required to generate an adversarial
sample. However, we see there is an overall drop in success
rate and an increase in both average number of transforma-
tions and average time per sample for the other exploration
algorithm configurations. The drop in success rate is likely
due to the fact that some of the adversarial target vectors gen-
erated by the PGD attack are not realizable. The increase
in number of transformation and time per sample indicates
that the selected input transformations, although resulting in
a feature perturbation in the target direction, are likely not
the most efficient path to generate a misclassified adversarial
input. This particular experiment shows that our framework
is backwards compatible with traditional adversarial attacks
through use of the feature distance scoring function.

As our framework enables the generation of adversarial
inputs regardless of the task or input type, we now have a
method to improve the model’s accuracy on adversarial sam-
ples. Adversarial training is a state-of-the-art defense that
improves a model’s adversarial accuracy by generating adver-
sarial inputs on-the-fly during training. [31]. As we showed
in Table 1, although adversarial training could be used with
adversarial features, it was not very effective on real adversar-
ial objects. In Table 9, we report the performance of the DGA
classifier when trained using standard training and adversarial
training. As we see, a model trained on adversarial objects
exhibits much higher adversarial accuracy with minimal im-
pact to it natural (i.e., non-adversarial) accuracy compared to
training with adversarial features.

6.3 Non-Standard Input - Binary

In our last case study, we use our framework to adversarial
examples for a non-standard input type, binary files. With



Table 6: HMDA experimental results.

Model Arch. Algorithm Success Rate Avg. # of Transforms Avg. Time/sample

Decision Tree

Beam Search (Random) 38% 1.30 0.001 s

Beam Search (Brute-Force) 92% 1.13 0.010 s
Beam Search (Lookup Table) 89% 1.63 0.002 s
Beam Search (Model Guided) 81% 1.85 0.018 s

Simulated Annealing 97% 1.87 1.000 s

Gradient Boosted Classifier

Beam Search (Random) 14% 1.43 0.003 s

Beam Search (Brute-Force) 58% 1.08 0.044 s
Beam Search (Lookup Table) 26% 1.41 0.026 s
Beam Search (Model Guided) 52% 1.74 0.058 s

Simulated Annealing 57% 2.00 1.000 s

Logistic Regression

Beam Search (Random) 34% 1.38 0.002 s

Beam Search (Brute-Force) 100% 1.05 0.007 s
Beam Search (Lookup Table) 69% 1.12 0.007 s
Beam Search (Model Guided) 88% 1.93 0.020 s

Simulated Annealing 100% 2.00 1.000 s

Random Forest

Beam Search (Random) 27% 1.46 0.352 s

Beam Search (Brute-Force) 100% 1.04 1.462 s
Beam Search (Lookup Table) 70% 1.08 1.177 s
Beam Search (Model Guided) 86% 1.96 0.042 s

Simulated Annealing 75% 1.87 1.000 s

Multi-Layer Perceptron

Beam Search (Random) 36% 1.41 0.198 s

Beam Search (Brute-Force) 100% 1.04 0.724 s
Beam Search (Lookup Table) 94% 1.39 0.369 s
Beam Search (Model Guided) 71% 1.92 0.297 s

Simulated Annealing 97% 1.90 1.000 s

Table 7: DGA experimental result - Generating Adversarial
Objects with Classifier Loss Objective.

Algorithm Success rate Avg. # of Transforms Avg. Time / sample

Beam Search (Random) 23% 1.84 0.093 s

Beam Search (Brute-Force) 85% 1.24 0.363 s
Beam Search (Lookup Table) 45% 1.61 0.277 s
Beam Search (Model Guided) 70% 2.56 0.400 s

Simulated Annealing 62% 2.28 1.000 s

Table 8: DGA experimental result - Generating Adversarial
Objects with Feature Distance Objective.

Algorithm Success rate Avg. # of Transforms Avg. Time / sample

Beam Search (Random) 27% 1.87 0.091 s

Beam Search (Brute-Force) 56% 1.93 22.835 s
Beam Search (Lookup Table) 50% 1.79 12.415 s
Beam Search (Model Guided) 43% 2.69 0.606 s

Simulated Annealing 26% 2.72 1.000 s

respect to manipulated binary inputs, there are several works
that proposed adversarial attack algorithms against malware
classifiers [10, 20, 25, 30], but, as with text inputs, these algo-
rithms are not generic. It is a non-trivial task to adapt their
proposed methods to other input data types.

We also focus our study on the malware classification task

Table 9: Evaluation of the adversarial accuracy of the DGA
model when trained using standard and adversarial training.
Standard training denotes training on the original unmodified
dataset. Standard adversarial training uses PGD to generate
adversarial feature vectors. DGA Adversarial training uses ad-
versarial objects generated by Beam Search (Model Guided).
Note that the ranking model was trained on a pre-trained DGA
classifier trained on the original dataset.

Training Method Natural Accuracy Adversarial Accuracy

Standard training 92% 19%
Standard Adversarial Training (Adversarial Features) 82% 29%

Adversarial Training with Adversarial Objects (Ours) 92% 45%

using the EMBER dataset, a collection of feature vectors ex-
tracted from 1.1 million binary files with goodware/malware
labels [11]. Given a binary file, the classifier must predict if
the file is malware or goodware. We use a pre-trained classi-
fier trained on 900,000 training data points in which one third
of the training data is unlabeled. The remaining two thirds
are labeled and balanced between malware and goodware. On
the 200,000 test data points, the accuracy of the classifier is
97%. The model authors also provide a binary file feature



extractor and SHA256 hashes of the dataset binaries so that
the original binary files can be collected.

Unlike our previous case studies, binary files are a non-
standard input type so we must first define a new trans-
former class responsible for perturbing and ensuring seman-
tic correctness and functionality of the transformer binary.
Drawing from prior work [9], we implemented six types of
functionality-preserving transformations which modify the
PE header: binary (un)packing, adding sections, renaming
sections, adding imports, removing debugging header infor-
mation, and appending header data. In this study, we will only
report results for a Beam Search exploration with a Model
Guided ranking algorithm. The ranking model follows rein-
forcement learning method described in the Appendix4. We
also use the feature distance scoring objective, but instead
use the L2 distance between the current perturbation vector
and target perturbation vector to guide exploration. The target
adversarial perturbation vectors are generated using the Hop-
SkipJump algorithm [15] against the previously described
malware classifier. We evaluate the malware classifier against
93 correctly labelled malware samples from the test dataset.
As the original dataset only contains the extracted feature
vectors, we use the provided SHA256 hashes to obtain the
original malware binaries. With a beam width of 5 and a
depth of 3, i.e., a binary could be transformed at most 3 times,
our framework generated 38 adversarial malware binaries.

It is a well-known fact that adversarial examples in the
image domain are transferable [44], i.e., adversarial examples
generated for one model are highly likely to be misclassified
by other models trained for the same task. In Table 10, we
report the success rate of the previously generated 38 adver-
sarial malware binaries against a set of VirusTotal detectors.
We see that the adversarial modifications performed by our
framework cause the average detection rate to fall from 82%
to 58%. In the worst case, one of the detectors only flagged
6% of the binaries are malicious. In Table 11, we provided
the precision and recall of 6 different anonymized detectors
found in VirusTotal computed across the original and adver-
sarial binaries. While we recognize that VirusTotal is a mix of
signature and non-signature based detectors, it remains true
that many organizations rely on VirusTotal to label malicious
binaries. These results suggest that adversaries can exploit
adversarial transferability to evade detection, especially if
more advanced input transformations are used.

Table 10: The detection rate of the VirusTotal detectors on
the original and adversarially modified malware binaries.

Dataset Average Min Max

Original Binaries 82% 50% 90%
Adversarial Binaries 58% 6% 91%

4As malicious binaries are risky to handle, we train the algorithm multiple
times on 12 benign binaries.

Table 11: Performance of 6 different VirusTotal Detectors.

Precision Recall

Scanner Original Adversarial Original Adversarial

A 100% 76% 100% 91%
B 100% 68% 100% 56%
C 100% 77% 100% 81%
D 100% 100% 99% 70%
E 100% 60% 60% 58%
F 100% 100% 43% 28%

7 Conclusion

The vulnerability of AI systems to adversarial machine learn-
ing motivates a need for tools that enable proper study. As
traditional adversarial attack algorithms were designed for
image-based systems, strict assumptions regarding input struc-
ture have been made that limit the use of such algorithms in
other data domains. In this paper, we proposed a new ad-
versarial attack framework capable of generating adversarial
inputs for AI systems regardless of the modality or task. We
represent the adversarial generation process as a graph explo-
ration problem. Our framework searches for a sequence of
edges representing input transformations that result in satisfy-
ing the exploration object, e.g., finding an adversarial input.
We pre-define several data transformers for common input
types. In addition, we provide a transformation interface to
address cases where a particular data type is unsupported. In
such cases, the user can rely on their domain knowledge to
define the new data transformer, which can be integrated into
our tools for future use, as we did when defining binary trans-
formations. In an effort to ease usability, we allow users to
customize the adversarial generation process through use of
configuration files, abstracting away many of the low level im-
plementation details. As we highlight in our three evaluation
case studies, the current version of our framework contains
several possible exploration configurations, with respectable
effectiveness despite the variety in data representation, model
types, and semantic/functionality constraints. Switching be-
tween machine learning tasks in the studies only required
small scale modifications to the exploration parameters and
data transformation definitions.

As we are making our toolkit publicly available5, we recog-
nize there are ethical concerns regarding malicious use of our
tools, motivating a push to privatize our framework as Pier-
azzi et al. have done [40]. However, we do not believe that
keeping such tools private will benefit the long term health of
machine learning as malicious actors can still develop such
tools independently. Rather, by providing these tools to the
community, we provide academic and industry researchers
alike the ability to study the effects of adversarial attacks in
new input domains and develop generic adversarial mitigation
techniques.
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A Model used for Model Guided Ranking

There are multiple ways to train a model to map an input to
select the best action (i.e., input transformation) to produce
an adversarial example. In our experiments, we use reinforce-
ment learning for the Model Guided algorithm because such
models consider the effect a transformation has on both cur-
rent and future rewards. In our specific implementation, we
adapted Deep Q Learning [32], to our problem domain.

In general, Deep Q Learning trains a neural network or neu-
ral policy that takes the current state to predict the rewards
of actions. The training process samples an action from the
neural policy and applies it to get actual reward score. If it
leads to a state with a higher reward, the model is updated
to take more of the chosen action for the similar states. The
reward for an action includes the future reward to backprop-
agate the effect to earlier action choices. In our case, the
reward is vertex score, and actions are input transformations,
and we use this Deep Q Learning implementation provided
by Keras-RL [41] for this process.

Our main adaptation is on training policy that decides
which action to take during training. Plain Deep Q Learn-
ing using a randomly initialized neural policy can have low
chance of success due to the high complexity of search space.
The large number of possible edges and edge combinations
in our graph makes learning an effective neural policy dif-
ficult as Deep Q Learning is normally trained with a small
action space (e.g., 2-16 actions). To address this, rather than
choosing a random sample as the starting vertex and letting
the model explore the entire graph with a randomly initialized
policy, we do the following for each training:

1. Pre-generate a goal vertex using a sequence of random
transformations on the current training sample. This se-
quence of transformations represents the ideal sequence
of transformations for the current training input.

2. At each transformation step, randomly generate an action
from one of three sources:

• The ideal sequence - This is the pre-generated trans-
formation sequence that acts as an answer key

• The current neural policy - This is the policy learned
by the reinforcement learning model.

• The Random policy - This simply selects one of the
available transformations based on the current input
state.

3. Once an end state has been reached, use the exploration
object (e.g., classifier loss) and the ideal sequence to evalu-
ate the fitness of the selected actions and update the neural
policy.

The above process repeats for all inputs in the training set
and can be looped multiple times. Furthermore, as training

progresses, the actions generated in step 2 progressively be-
come more likely to be from the current neural policy rather
than the ideal sequence of the Random policy.

B Numerical Inputs

As the DGA classifier first extracts 20 numerical continuous
features, we also tested our framework on numerical data.
Specifically, we were interested in the success rate of our
framework at generating adversarial feature vectors, similar
to traditional adversarial attacks, but with some constraints
on the transformation process. We selected 13 of the 20 nu-
merical features that, when modified, were likely to be realiz-
able if necessary (e.g., relative number of consonants/vowels,
number of dashes, length, etc.). Each transformer was only
allowed to modify at most 30% of the feature’s current value.
As one of the features recorded the length of the domain name,
we added an additional constraint to this transformer that the
length could only be increased if modified. We present these
results in Table 12. We observe an overall increase in success
rate and decrease in average time per sample compared to
Table 8. Note that we did not evaluate the Model Guided
algorithm for this experiment.

Table 12: DGA experimental result - Generating Adversarial
Features.

Algorithm Success rate Avg. # of Transforms Avg. Time / sample

Beam Search (Random) 6% 1.87 0.010 s

Beam Search (Brute-Force) 65% 1.73 0.801 s
Beam Search (Lookup Table) 42% 2.02 0.069 s

Simulated Annealing 52% 2.96 1.000 s


