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Abstract
We describe a tracking technique for Linux devices, exploit-
ing a new TCP source port generation mechanism recently
introduced to the Linux kernel. This mechanism is based
on an algorithm, standardized in RFC 6056, for boosting se-
curity by better randomizing port selection. Our technique
detects collisions in a hash function used in the said algorithm,
based on sampling TCP source ports generated in an attacker-
prescribed manner. These hash collisions depend solely on a
per-device key, and thus the set of collisions forms a device
ID that allows tracking devices across browsers, browser pri-
vacy modes, containers, and IPv4/IPv6 networks (including
some VPNs). It can distinguish among devices with identical
hardware and software, and lasts until the device restarts.

We implemented this technique and then tested it using
tracking servers in two different locations and with Linux
devices on various networks. We also tested it on an Android
device that we patched to introduce the new port selection
algorithm. The tracking technique works in real-life condi-
tions, and we report detailed findings about it, including its
dwell time, scalability, and success rate in different network
types. We worked with the Linux kernel team to mitigate the
exploit, resulting in a security patch introduced in May 2022
to the Linux kernel, and we provide recommendations for
better securing the port selection algorithm in the paper.

1 Introduction

Online browser-based device tracking is a widespread prac-
tice, employed by many Internet websites and advertisers. It
allows identifying users across multiple sessions and websites
on the Internet. A list of motivations for web-based device
tracking (fingerprinting) is listed in [1] and includes “fraud
detection, protection against account hijacking, anti-bot and
anti-scraping services, enterprise security management, pro-
tection against DDOS attacks, real-time targeted marketing,
campaign measurement, reaching customers across devices,
and limiting the number of accesses to services”.

Device tracking is often performed to personalize ads or
for surveillance purposes. It can either be done by sites that
users visit or by third-party companies (e.g. advertisement net-
works) which track users across multiple websites and applica-
tions (“cross-site tracking”). Traditionally, cross-site tracking
was implemented via 3rd party cookies. However, nowadays,
users are more aware of the cookies’ privacy hazards, and so
they use multiple browsers, browser privacy mode, and cookie
deletion to avoid such tracking. In addition, support for 3rd

party cookies in major browsers is being withdrawn due to
privacy concerns [5, 26]. Trackers are, therefore, on the look
for new tracking technologies, particularly ones that can work
across sites and across browsers and privacy modes, thereby
breaking the isolation the latter attempt to provide.

Probably the most alarming impact of device tracking
is the degradation of user privacy – when a user’s device
can be tracked across network changes, different browsers,
VPNs, and browser privacy modes. This means that users
who browse to one site with some identity (e.g., user account),
then browse to another site, from another browser, another
network (or VPN), and perhaps at another time altogether,
using a completely different and unrelated second identity,
may still have the two identities linked.

Often, device tracking techniques are used in a clandestine
manner, without the user’s awareness and without obtaining
the user’s explicit consent. This motivates researchers to un-
derstand the challenges of device tracking, find new tracking
techniques that can be used without consent, and work with
the relevant software vendors to eliminate such techniques
and raise awareness of these new kinds of attacks.

In this paper, we present a new browser-based tracking tech-
nique that supports tracking across IPv4 and IPv6 networks,
browsers, VPNs, and browser privacy modes. Our tracking
technique can provide up to 128 bits of entropy for the de-
vice ID (in the Linux implementation) and requires negligible
CPU and RAM resources for its operation. Our technique
uses standard web technologies such as Javascript, WebRTC
TURN (in Chrome), and XHR (in Firefox). It assumes that
a browser renders a web page with an embedded tracking



HTML snippet that communicates with a 1st-party tracking
server (i.e., there is no reliance on common infrastructure
among the tracking websites). The tracking server then calcu-
lates a device ID. This ID is based on kernel data. Therefore,
the same device ID is calculated by any site that runs the
same logic, regardless of the network from which the tracked
device arrives, or the browser used.

The tracking technique is based on observing the TCP
source port numbers generated by the device’s TCP/IP stack,
which is implemented in the operating system kernel. There
are several popular TCP source port generation algorithms
that differ in the level of security vs. functionality they deliver.
Security-wise, TCP source ports should be as unpredictable
as possible to off-path attackers [13, §1]. Functionality-wise,
TCP source ports should not repeat too often (to mitigate the
“instance-id collision” problem [13, §2.3]).

RFC 6056 “Recommendations for Transport-Protocol Port
Randomization” [13, §3.3] lists five algorithms used by differ-
ent operating systems to generate TCP source port numbers.
According to RFC 6056, the “Double-Hash Port Selection”
algorithm [13, §3.3.4] offers the best trade-off between the
design goals of TCP source ports (see § 3), and indeed it was
recently adopted with minor modifications by Linux (start-
ing with kernel version 5.12-rc1). Our analysis targets this
port selection algorithm, which we expect to propagate into
Android devices as well (as Android 13 launches with kernel
version 5.15 [19]).

Our technique finds hash collisions in one of the algo-
rithm’s hash functions. These collisions depend only on a
secret hashing key that the OS kernel creates on boot time
and maintains until the system is shut down. Thus, the set of
collisions forms a device ID that spans the lifetime of this
key, surviving changes to networks, transitions into and out
of sleep mode, and using containers on the same machine.
It does not rely on the specific choice of the hash functions
for the RFC 6056 algorithm beyond the RFC’s own require-
ment, and as such, it presents a generic attack against the RFC
algorithm. Since our technique relies on the client’s port se-
lection algorithm, it also has some limitations. Specifically, it
is ineffective when the client uses Tor or an HTTP forward
proxy since they terminate the TCP connection originating at
the device and establish their own TCP connection with the
tracking server. Furthermore, if a middlebox rewrites the TCP
source ports or throttles the traffic, it can interfere with our
technique. However, we note that this kind of interference is
typically NAT-related and as such is unlikely to apply to IPv6
networks.

We implemented the device tracking technique and tested
it with Linux devices across various networks (cellular, WiFi,
Ethernet), VPNs, browsers (Chrome, Firefox), browser pri-
vacy modes, and Linux containers. It requires the browser
to dwell on the web page for 10 seconds on average, which
aligns with our theoretical analysis. The resources device
tracking requires from the attacker are low, which allows

calculating IDs for millions of devices per tracking server.
Since off-the-shelf Android devices have not yet deployed
Linux kernels that use the new port selection algorithm, we
introduced the new algorithm through a patch to a Samsung
Galaxy S21 mobile phone (Android device) and tested it. We
recommended countermeasures to the Linux kernel team and
worked with them on a security patch that was recently re-
leased (May 2022). We discuss these recommendations in the
paper.

In sum, we make the following contributions:

• Analysis of RFC 6056’s “Double-Hash Port Selection”
algorithm, showing that a practical device tracking attack
can be mounted against devices using this algorithm.

• Adaptation of our device tracking technique to Linux.

• Demonstration and measurements of our device track-
ing technique across the Internet, in practical settings,
under various conditions (browsers, networks, devices,
containers, VPNs).

• Full source code of our demonstration tracking server.

2 Related Work

The challenges facing device tracking nowadays revolve
around the reliability and scope of the available tracking tech-
niques. Ideally, a web-based tracking technique should work
across browser privacy modes (switching between the normal
browsing mode and the privacy mode such as “incognito”),
across browsers, across networks (switching between cellu-
lar networks, WiFi and Ethernet networks), and even across
VPN connections. Furthermore, a tracking technique should
address the “golden image” challenge [8], wherein an orga-
nization provisions a multitude of identical devices (fixed
hardware and software configuration) to its employees. The
tracking technique should thus tell these devices apart, even
though there is no difference in their hardware and software.

Device tracking techniques can be categorized into tagging
and fingerprinting techniques [27]. Tagging techniques in-
sert an ID to the device, typically at the browser level (e.g.,
a resource cached by the browser or an object added to the
standard browser storage such as cookies or localStorage).
Fingerprinting techniques measure a system or browser’s fea-
tures that can tell devices apart, such as fonts, hardware, and
system language.

Klein and Pinkas [8] provide an extensive review of
browser-based tracking techniques, current for 2019. They
evaluate the techniques’ coverage of the golden image chal-
lenge and ability to cross the privacy mode gap. They find that
typically, fingerprinting techniques fail to address the golden
image challenge, while tagging techniques fail when users
use the browser in privacy mode. They found that no single
existing technique was able to fulfill both requirements. The
technique suggested in [8] does not work across networks,



and as such, its practicality is limited. A recent (2020) list
of fingerprinting techniques (none of which overcomes the
golden image challenge by default) is provided in [12].

Since the analysis provided in [8], the browser-based track-
ing landscape grew with several new techniques. A tagging
technique [24] used the browser favicons cache to store a de-
vice ID. This was since fixed in Chrome 91.0.4452.0 [3, 23].
A fingerprinting technique based on measuring GPU features
from the WebGL 2.0 API is provided in [6]. A fingerprinting
method based on TLS client features and behavior is described
in [14]. All the above techniques suffer from their respective
category (fingerprinting/tagging) drawbacks.

A technique somewhat similar to [8] that uses the stub
resolver DNS cache and times DNS cache miss vs. DNS cache
hit events is presented in [15], but this technique (like [8])
does not work across networks.

The “Drawn Apart” browser-based tracking technique [11]
is based on measuring timing deviations in GPU execution
units. This technique is oblivious to the device’s network
configuration and the choice of browser and privacy mode
and can also tell apart devices with identical hardware and
software configurations. However, it does so with limited ac-
curacy – 36.7%-92.7% in lab conditions [11, Table 1], which
is insufficient for large-scale tracking.

Klein et al.’s works [2,7,9] revolved around a tracking con-
cept based on kernel data leakage, which identifies individual
devices. The leakage occurred in various network protocol
headers (IPv4 ID, IPv6 flow label, UDP source port). All of
them were quickly fixed by the respective operating system
vendors due to their severity and impact and were no longer
in effect when our research was conducted.

3 Background

RFC 6056 [13, Section 3.3] analyzes five TCP source port
allocation algorithms and defines several design goals [13,
Section 3.1]. The two goals relevant to this work are:

• Minimizing the predictability of the ephemeral port num-
bers used for future transport-protocol instances.

• Minimizing collisions of instance-ids [TCP 4-tuples].

The first goal aims for security against blind TCP attacks,
such as blind reset or data injection attacks [20]. The second
goal is functionality-related and ensures that successive port
assignments for the same destination (IP and port) do not
re-use the same source port since this can cause a TCP failure
at the remote end. That is because if the device terminates one
TCP connection, the server may still keep it active (in the TCP
TIME_WAIT state) while the device attempts to establish a
second connection with the same TCP 4-tuple, which will fail
since the server has this 4-tuple still in use.

Double-Hash Port Selection Algorithm. Our focus is
on RFC 6056’s Algorithm 4, “Double-Hash Port Selec-

Algorithm 1 DHPS Source Port Selection (RFC 6056 §3.3.4)
1: procedure SELECTEPHEMERALPORT
2: num_ephemeral←
3: max_ephemeral−min_ephemeral+1
4: offset← FK1(IPSRC, IPDST ,PORTDST)
5: index← GK2(IPSRC, IPDST ,PORTDST)
6: count← num_ephemeral
7: repeat
8: port← min_ephemeral+
9: ((offset+ tableindex) mod num_ephemeral)

10: tableindex← tableindex +1
11: if CHECKSUITABLEPORT(port) then
12: return port
13: count← count−1
14: until count = 0
15: return ERROR

tion Algorithm” (DHPS), which is detailed in Algorithm 1.
This algorithm selects a TCP source port for a given
IPSRC, IPDST ,PORTDST , which we term the connection’s 3-
tuple. Thus the algorithm completes a 3-tuple into a (TCP)
4-tuple. In this algorithm, table is a “perturbation table” of T
integer counters (in the Linux kernel, T = 256), F is a crypto-
graphic keyed-hash function which maps its inputs to a large
range of integers, e.g., [0,232−1], and G is a cryptographic
keyed-hash function which maps its inputs to [0,T −1]. The
TCP source ports the algorithm produces are in the range
[min_ephemeral,max_ephemeral] (in the Linux kernel, by
default, min_ephemeral = 32768,max_ephemeral = 60999).
DHPS calculates an index i to a counter in table based on
a keyed-hash (G) of the given 3-tuple and uses the counter
value offset by another keyed-hash (F) of the 3-tuple as a
first candidate for a port number (using modular arithmetic to
produce a value in [min_ephemeral,max_ephemeral]). DHPS
then checks whether the port number candidate is suitable
(CHECKSUITABLEPORT). This check is intentionally under-
specified in the RFC so that each implementation may run
its own logic. For example, the Linux kernel checks whether
there already is a 4-tuple with these parameters. If this check
passes, DHPS returns the candidate port; otherwise, it incre-
ments the candidate port and runs the check again.

Port selection in the Linux kernel. Linux version 5.12-rc1
switched from RFC 6056’s Algorithm 3 (“Simple Hash-Based
Port Selection Algorithm”) to DHPS, quoting security and
privacy concerns as the reason for this change [4]. Starting
from this version, the Linux kernel uses DHPS to generate
TCP source ports for outbound TCP connections over IPv4
and IPv6. The Linux implementation and its few minor mod-
ifications are discussed in § 5.1. Linux kernel version 5.15
is the first long-term service (LTS) kernel version in which
DHPS is used, thus LTS Linux installations using unpatched
kernel 5.15 and above are vulnerable (see § 9).



Port selection in Android. The Android operating system
kernel is based on Linux and as such vulnerabilities found in
Linux may also impact Android. The TCP source port selec-
tion algorithm in Android depends on the underlying Linux
kernel version: devices running Linux kernels ≤ 5.10 do not
use DHPS and therefore are not vulnerable, whereas devices
running a more recent kernel use DHPS and may be vulner-
able if unpatched. At the time of writing, Android devices
on the market use kernel version 5.10, even for Android 13,
though Android 13 running kernel 5.15 is likely to be released
in the near future [19]. To assess the feasibility of our attack
on Android, we conducted an experiment using an Android
device with a modified kernel that includes the flaw (see § 6.5
for results). Since the vulnerability was patched on Linux in
May 2022, and the patch was merged into Android as well,
we expect future Linux and Android devices that use DHPS
to be safe.

4 Device Tracking Based on DHPS

Attack model. We assume the victim’s (Linux-based) de-
vice runs a browser that renders a web page containing a
“tracking snippet” – a small piece of HTML and Javascript
code (which runs in the browser’s Javascript sandbox). The
snippet implements the client-side logic of the tracking tech-
nique. It can be embedded in web pages served by, e.g., com-
merce websites or 3rd-party advertisements. When a device
visits these pages, the tracking server logic calculates a unique
ID for that device, allowing tracking it both with respect to the
time dimension and the space dimension (visited websites).

Device ID. When the browser renders the tracking snip-
pet and executes the Javascript code in it, the code makes
the browser engage in a series of TCP connection attempts
with the attacker’s tracking server, interleaved with TCP con-
nection attempts to a localhost address. By observing the
browser’s traffic TCP source ports at the tracking server, the
attacker can deduce hash collisions on GK2 (this is explained
later). The attack concludes when the attacker collects enough
pairs of hash collisions on GK2 where IPSRC, IPDST are fixed
loopback addresses, i.e., pairs (x,y) such that

GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3,PORTDST = x) =

GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3,PORTDST = y)

These pairs depend only on K2, and as such, they represent
information on K2 and on it alone. K2 is statistically unique
per device (up to the birthday paradox) and does not rely
on the current browser, network, or container. Thus, the set
of collisions {(xi,yi)} forms a device ID that persists across
browsers, browser privacy mode, network switching, some
VPNs, and even across Linux containers. The ID is invalidated
only when the device reboots or shuts down.

The use of loopback addresses is critical to the effective-
ness of the attack. Using the Internet-facing address of the

device does not yield a consistent device ID across networks.
While hash collisions based on the Internet-facing address
can be calculated, they are of no use when the device moves
across networks because the device typically obtains a new,
different Internet-facing address whenever it connects to an-
other network. Thus, the collisions calculated for different
networks will likely be completely different sets.

Limitations. Our technique tracks client devices through
their source port choice. A middlebox such as a NAT may
modify the client’s source port selection and cause the track-
ing service to fail to compute a consistent device ID. Further-
more, a device establishing organic TCP connections during
the (short) time the attack executes may also thwart the attack;
however, we integrate a mechanism for robustness against or-
ganic TCP connections. In § 6 we evaluate the attack under
these conditions (devices connected through NATs and estab-
lishing organic connections while the attack executes). Our
technique cannot track clients that connect via forward prox-
ies, which establish a new TCP connection to the tracking
server (instead of a direct connection from the client). Partic-
ularly, it is ineffective against Tor clients.

4.1 Attack Overview
The attack exploits a core vulnerability in DHPS. DHPS as-
signs a source port to a destination (IP address and port –
248 combinations for IPv4) using a state maintained in one
of the cells of its small perturbation table. This means that
many destinations are generated using the same table cell,
i.e., using a state that changes in a predictable way between
accesses (DHPS increments the cell per each usage). The at-
tack exploits this behavior for detecting collisions in the cell
assignment hash function. Such collisions among loopback
destinations are invariant to the network configuration of the
device and can thus serve as a stable device ID.

To describe the attack, we first define two subsets of tuples
that are of special interest for our tracking technique:

• An attacker 3-tuple is a 3-tuple in which IPDST is the
attacker’s tracking server IP address, and IPSRC is the
Internet-facing address used by the measured device.

• A loopback 3-tuple is a 3-tuple in which IPDST is a
fixed loopback address (e.g., 127.1.2.3), and IPSRC is
a loopback-facing address used by the measured device
(typically 127.0.0.1).

The goal of the attack is to find collisions in GK2 for loopback
3-tuples. These collisions, described as pairs of loopback 3-
tuples that hash to the same value, form the device ID.

The attack consists of two phases. In the first phase (Algo-
rithm 2), the attacker obtains T attacker 3-tuples, each one
corresponding to one cell of the perturbation table. The at-
tacker does not know which 3-tuple maps to which cell, but
that is immaterial to the attack. All the attacker needs is the



Algorithm 2 Finding Attacker 3-Tuple per Cell (Phase 1)
1: procedure SENDBURST(X)
2: for all x ∈ X do
3: ATTEMPTCONNECTTCP(x)
4: procedure GETSOURCEPORTS(U)
5: SENDBURST(U)
6: R← RECEIVEATTACKERTUPLETOPORTMAP()
7: ▷ R = {(IPSRC, IPDST ,PORTDST) 7→ PORTSRC}
8: ▷ (obtained from the tracking server)
9: return R

10: procedure PHASE1
11: S′←∅
12: while |S′|< T do
13: Si← GETNEWEXTERNALDESTINATIONS()
14: ▷ ∀ j<i(Si∩S j =∅)
15: P← GETSOURCEPORTS(Si) ▷ 1st burst
16: SENDBURST(S′) ▷ 2nd burst
17: P′← GETSOURCEPORTS(Si) ▷ 3rd burst
18: S′← S′∪{x|P′(x)−P(x) = 1}
19: ▷ Vi = {x|P′(x)−P(x) = 1}
20: return S′

existence of a 1-to-1 mapping between the perturbation table
and the T attacker 3-tuples. In the second phase, the attacker
maps loopback 3-tuples into attacker 3-tuples (each loopback
3-tuple considered is mapped to the attacker 3-tuple that falls
into the same perturbation table cell). This allows the attacker
to detect collisions in GK2 for loopback 3-tuples.

4.2 Phase 1

In this phase, the attacker obtains T attacker 3-tuples so that
each one corresponds to a unique cell in the perturbation
table. This is done in iterations, as shown in Algorithm 2.
Define S′0 = ∅. In iteration i, the attacker generates a set
Si of new attacker destinations (in [10, §A] we show that
|Si|= T −1 minimizes the number of phase 1 iterations). The
attacker then instructs the browser to send three bursts of
TCP connection attempts (TCP SYN packets): the first burst
to Si, then the second burst to S′i−1, and the third burst to Si
again. An attacker 3-tuple in Si is determined to be unique
if the difference between the two sampled source ports for
that 3-tuple is 1, indicating that no other attacker 3-tuple in
S′i−1 or Si shares the same perturbation table cell. Define Vi
to be all such attacker 3-tuples in Si, and define S′i = S′i−1∪Vi.
This is repeated until |S′i|= T , i.e., all perturbation table cells
are uniquely covered by the attacker 3-tuples in S′i. Figure 1
illustrates a single iteration.

In Appendix A, we also show how phase 1 by itself can be
used to measure the rate of outbound TCP connections.

Algorithm 3 Finding a Device ID (Phase 2)
1: procedure PHASE2
2: C←∅ ; n← 0 ; i← 0
3: repeat
4: i← i+1
5: P← GETSOURCEPORTS(S′) ▷ 1st burst
6: ATTEMPTCONNECTTCP({Li})
7: P′← GETSOURCEPORTS(S′) ▷ 2nd burst
8: w← ιx(P′x−Px > 1) ▷ |{x|P′x−Px > 1}|= 1
9: if DEFINED(Bw) then ▷ A collision was found

10: C←C∪{(Li,Bw)}
11: ▷ Add the (single) independent pair to C
12: n← n+1
13: else
14: Bw← Li

15: until n≥ n∗i
16: ▷ This is equiv. to Pi

D(n)≤ p∗ ( [10, §A])
17: l← i
18: return (C, l)

4.3 Phase 2

In the second phase, the attacker goes over a list L of loop-
back 3-tuples. For each loopback 3-tuple, the attacker finds
which attacker 3-tuple (one of the T attacker 3-tuples found
in phase 1) belongs to the same perturbation table cell. This
mapping allows the attacker to find collisions in GK2 outputs
among loopback 3-tuples, which (together with the number
of iterations l) form the device ID.

In this phase (Algorithm 3), the attacker repeatedly runs
iterations, until enough GK2 collisions are collected. In each
iteration, the attacker maps a new loopback 3-tuple Li to an
attacker 3-tuple w, which hashes into the same cell of the
perturbation table as the loopback 3-tuple. This is done by
“sandwiching” a few loopback 3-tuple Li packets between
bursts to all T attacker 3-tuples obtained in phase 1, and
observing which attacker 3-tuple w has a port increment > 1
(see Figure 2). The attacker then collects new collisions with
the first loopback 3-tuple in the cell (Bw) and counts the total
number of collisions in n. This is illustrated in Figure 3.

The attacker collects and counts “independent” colliding
pairs. By this term we mean that if there are exactly k loop-
back 3-tuples x1, . . . ,xk that fall into the same cell, the attacker
only uses k−1 pairs e.g. (x1,x2), . . . ,(x1,xk), out of the pos-
sible

(k
2

)
pairs.

Note that our attack makes no assumptions on the choice of
Algorithm 1’s parameters (the hash functions F , G), beyond
assuming that G is reasonably uniform, which is guaranteed
since RFC 6056 [13, Section 3.3.4] mandates that “G() should
be a cryptographic hash function”.
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Figure 1: Phase 1 – Single Iteration. This example illustrates how the attacker adds 3-tuples which fall uniquely into cells. In
Step 1 , the device sends a first burst of TCP SYN packets for the new 3-tuple candidates, Si (4 in this example). In Step 2 , the
device sends the burst of TCP SYN packets for the set S‘i−1 of unique-cell attacker tuples (3 are shown in the illustration). In
Step 3 , the device sends a second burst of TCP SYN packets for the new 3-tuple candidates. In Step 4 , the tracking server
detects that only for the attacker 3-tuple which has destination port 4000, the source port was advanced by 1 (yellow background),
which indicates that this 3-tuple has a unique cell. The attacker’s 3-tuple with destination port 5000 had its source port advanced
by 2 because it shares a cell with destination port 1000 in S′i−1, and the 3-tuples with destination ports 6000 and 7000 share a
cell; hence their source ports were advanced by 2.

4.3.1 Terminating with an Accurate ID

We want phase 2 to terminate as soon as “enough” collisions
are observed. By this, we mean that the probability of another
device (i.e., a device with a random K2) to produce the same
set of collisions is below a given threshold. Thus, we define
our target function Pl

D(n) to be the probability of a random
device getting the same ID as the device D at hand, which
is assumed to terminate after l iterations with exactly n inde-
pendent pairs. (We show below that Pl

D(n) does not depend
on the “structure” of the independent collisions, only on their
number, i.e., it is well defined.) Note that Pl

D(n) is defined for
l ≥ 1 and max(0, l−T ) ≤ n ≤ l− 1. We can define PD = 0
elsewhere. We will then require Pl

D(n) ≤ p∗, where p∗ is a
threshold acceptance probability. As explained in [10, §A],
the choice of p∗ depends on the expected device population
size N, e.g. p∗ = 1/(N

2) guarantees there will be up to one ID
collision on average in the entire population. We provide p∗

values for example population sizes in [10, §A].
To calculate Pl

D(n), we begin by calculating the probability
for a random device to have exactly the same set of collisions
as device D, after l iterations. Lemma 4.1 shows that this
probability is in fact Pl

D(n). Analyzing this probability is a
“balls in buckets” problem. The buckets are the T perturbation
table cells (that map 1-to-1 to the T attacker 3-tuples from

phase 1), and the balls (in iteration l of phase 2) are the
loopback 3-tuples that are mapped to the perturbation table
cells. However, when looking at two devices, D and D′, the
attacker has no way to map the buckets between the devices.
The only information the attacker can consider is collisions
among the balls, i.e., which balls (loopback 3-tuples) fall into
the same bucket in both devices. We call this the “structure” of
collisions. More formally, we define the structure of collisions
in D (after l iterations) as follows: in a device D, we have
l−n occupied (non-empty) buckets Bi, and we have a set Ci
of loopback 3-tuples in Bi such that |Ci|= mi, and of course
∑i mi = l. The collision structure in D then is the set of sets
{C1, . . . ,Cl−n}.

For two devices D′ and D to have the same structure, we
look at the first loopback 3-tuple in each bucket – denote fi
as the first loopback 3-tuple in bucket Bi. When building the
bucket for D′, we start with all-empty buckets. The first loop-
back 3-tuple f ′1 in B′1 can pick any bucket, thus the probability
to succeed in matching the structure of D is T

T = 1. The first
loopback 3-tuple f ′2 in B′2 has probability T−1

T to match D’s
structure, since it must not hit the first bucket B′1, and so forth.
So the combined probability of all first loopback 3-tuples in
their buckets to match D’s structure is ∏

l−n−1
i=0 (1− i

T ). The
remaining loopback 3-tuples must each go to its bucket in
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Figure 2: Phase 2 – Single Iteration. This example illustrates how the attacker discovers that the the cell of the loopback 3-tuple
(IPSRC = 127.0.0.1, IPDST = 127.1.2.3,PORTDST = 1234) is identical to the cell of the attacker 3-tuple (IPSRC = A, IPDST =
D,PORTDST = 1000). In Step 1 , the device sends a first burst of TCP SYN packets for all T unique-cell attacker tuples (only
4 are shown in the illustration). In Step 2 , the device sends several (3 in this example) TCP SYN packets to the loopback
destination 127.1.2.3:1234. In Step 3 , the device sends a second burst of TCP SYN packets for all T unique-cell attacker
3-tuples. In Step 4 , the tracking server detects that only for the attacker 3-tuple which has destination port 1000, the source port
was advanced by at least 4 (right hand side, yellow background), which indicates that this 3-tuple shares the same counter (cell)
with the tested loopback 3-tuple (yellow background equation at the upper left corner).

order to match, so each one has probability 1
T . Therefore,

Pl
D(n) =

∏
l−n−1
i=0 (1− i

T )

T n

Interestingly, this probability does not depend on (m1,m2, . . .)
of the structure – it only depends on the total number of inde-
pendent collisions, n. This means that Pl

D(n) is well defined.
We now show that Pl

D(n) that we just calculated describes
the probability for a random device to have the same device
ID as D. This is proved by this lemma:

Lemma 4.1. If device D’ has the same collision structure
as in the device ID of device D after l iterations, where l is
taken from the signature of D, then D’ and D must have an
identical device ID.

Proof. For device D’ to have the same device ID as device D,
we also need the number of iterations to match – i.e., we need
to show that l′ = l. Recall that the phase 2 algorithm stops
as soon as it reaches an iteration l that fulfills the condition
Pl

D(n) ≤ p∗. Also, the order of loopback 3-tuples the algo-
rithm tests is deterministic. Therefore, the algorithm for D’
will stop at exactly the same number of iterations as D.

4.4 Further Improvements

Phase 1 and 2 dwell time optimization. The phase 1 al-
gorithm, as depicted in Algorithm 2, is carried out entirely
on the client-side. However, the client cannot obtain the TCP
source ports of the TCP connections it attempts to estab-
lish with the tracking server (JavaScript code running in the
browser has no way of accessing TCP connection informa-
tion). This information is only available at the tracking server.
Thus, the client and the server need to engage in a “ping-
pong” of information exchange. This exchange is depicted
in procedure GETSOURCEPORTS of Algorithm 2, where the
client attempts to establish multiple TCP connections with the
server, and the server returns a map from destinations to their
TCP source ports. This ping-pong does not need to follow the
exact form of Algorithm 2. In particular, there is no need to
collect the TCP source ports of the first burst before sending
the second burst. The two bursts can be sent one after another
without pausing, as long as the client-side (OS) sends the
bursts in the order the client prescribes. Similarly, the third
burst can be sent by the client immediately after the second
burst, since there is no need to synchronize with the server



Iteration Loopback 3-Tuple - Attacker 3-Tuple Collision

1 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 1234) = GK2(IPSRC = D, IPDST = A, PORTDST = 1000)

2 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 5678) = GK2(IPSRC = D, IPDST = A, PORTDST = 2000)

3 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 1111) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

4 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 2222) = GK2(IPSRC = D, IPDST = A, PORTDST = 4000)

5 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 3333) = GK2(IPSRC = D, IPDST = A, PORTDST = 1000)

6 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 4444) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

7 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 5555) = GK2(IPSRC = D, IPDST = A, PORTDST = 5000)

8 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 6666) = GK2(IPSRC = D, IPDST = A, PORTDST = 3000)

9 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 7777) = GK2(IPSRC = D, IPDST = A, PORTDST = 6000)

10 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 8888) = GK2(IPSRC = D, IPDST = A, PORTDST = 6000)

11 GK2(IPSRC = 127.0.0.1, IPDST = 127.1.2.3, PORTDST = 9999) = GK2(IPSRC = D, IPDST = A, PORTDST = 7000)

= (1234,3333)

= (1111,4444)   (1111,6666)

= (7777,8888)

Loopback-Loopback Collisions
(Device ID)

⁞

Figure 3: Phase 2 – Calculating a Device ID from Multiple Iterations

after the second burst is emitted. Note that in Algorithm 2,
proceeding to the next iteration requires the client to know
which destination addresses to add to S′ (the set of unique
attacker 3-tuples). Thus, moving across iterations requires
the client and server to synchronize.

The same argument can be applied to phase 2 (Algorithm 3).
In essence, this algorithm can run almost asynchronously be-
tween the client and the server. The client only ensures that
the bursts are distinguishable at the server-side (see below).
We further optimize by moving the termination logic to the
server and having the client run through the iterations over
Li and only carry out TCP connection attempts. Thus, for
each new iteration, the server collects the source ports and
updates the attacker 3-tuple cell (Bw), the device ID (C), and
the number of independent pairs (n). It also checks the ter-
mination condition and signals the client to stop when it is
met. In this scheme, the client does not need to wait for the
server’s response after each burst. Hence, the client is free to
make a significant optimization, entirely getting rid of the first
burst in each iteration, since the server can use the previous
“second” burst just as accurately. The phase 2 algorithm then
becomes Algorithm 4.

Burst separation. The optimization just described man-
dates the server to separate the traffic back into bursts since
packets might be re-ordered by the network. Now that the
client and server are not synchronized, this task is a bit more
challenging. The client controls the timing on its end, i.e.,
a burst is followed by loopback traffic, followed by another
burst, etc., precisely in this order. On the server-side, we can
separate bursts using the source port itself. When we look
at all the traffic to a certain destination (port), we can de-
duce the order of sending by sorting the packets by their TCP
source port, which is monotonously increasing with the send-
ing time (by the properties of the DHPS algorithm). So the
packet with the lowest TCP source port (for a specific server
port destination) belongs to the first burst, the second packet
– to the second burst, etc. That being said, source ports may
wraparound if offset+ tableindex exceeds num_ephemeral. To

Algorithm 4 Finding a Device ID (Phase 2, Optimized)
1: procedure PHASE2-SERVER
2: C←∅ ; n← 0 ; i← 0
3: P← COLLECTSOURCEPORTS(S′)
4: repeat
5: i← i+1
6: P′← COLLECTSOURCEPORTS(S′)
7: w← ιx(P′x−Px > 1) ▷ |{x|P′x−Px > 1}|= 1
8: if DEFINED(Bw) then ▷ A collision was found
9: ▷ Add the (single) independent pair to C

10: C←C∪{(Li,Bw)}
11: n← n+1
12: else
13: Bw← Li

14: P← P′

15: until n≥ n∗i
16: ▷ This is equiv. to Pi

D(n)≤ p∗ ( [10, §A])
17: SIGNALCLIENTSTOP()
18: l← i
19: return (C, l)
20: procedure PHASE2-CLIENT
21: SENDBURST(S′)
22: for i = 1 to lmax do
23: ATTEMPTCONNECTTCP(Li)
24: SENDBURST(S′)

account for that, we begin by normal sorting and then find the
wraparound point by looking for a large enough difference
that has been created as a result of the wraparound.

Minimizing number of bursts. We modify the phase 2
algorithm to group several loopback 3-tuples together, sand-
wiched between attacker-directed bursts. Let α be the num-
ber of loopback 3-tuples in a group. (In our implementation,
α = 4.) Our modified algorithm reduces the number of phase
2 iterations by a factor of α. Let L0,L1, . . . ,Lα−1 be the loop-
back 3-tuples in a single group. The idea is to vary the number
of connections made for each loopback 3-tuple in a group,



and have the tracking server differentiate between the loop-
back 3-tuples in the group by the magnitude of the difference
between its two sampled measurements. Our algorithm makes
β×2i connections to Li (β = 50 in our implementation).

Denote by ∆w the difference between the two source port
measurements collected by the server for attacker 3-tuple w.
With α = 1, it is the same as described until now: L0 shares
the same table cell as an attacker 3-tuple w for which ∆w =
β+1. With α = 2, there are two possibilities: either L0 and
L1 each map to different attacker 3-tuples w0 and w1, or both
collide with the same attacker 3-tuple w (i.e. w = w0 = w1).
In the former case, the server will detect that ∆w0 = β+ 1
and ∆w1 = 2β+ 1. The difference for w1 is larger since the
number of connections attempted for L1 is twice as much
as L0. In the latter case, where w0 = w1 = w, the server will
detect that for a single w it has ∆w = 1β+ 2β+ 1 = 3β+ 1.
Thus, it concludes that the two loopback 3-tuples in the group
must share the same table cell. This argument can be extended
to higher values of α, see below.

Robustness against organic TCP connections. Organic
TCP connections from the device spread uniformly across
the T cells of the perturbation table and are thus unlikely to
significantly affect a single cell in the short time our attack
runs. Yet, such connections noise the server’s measurements
and we robustify our technique against such noise.

The phase 1 algorithm already handles noise: say w ∈ Si is
a unique attacker 3-tuple and that some organic TCP connec-
tions were intertwined between the two source port measure-
ments for w. If those TCP connections share the same table
cell as w, then ∆w > 1. In this case, the algorithm determines
that w is not unique. It does not compromise correctness: the
algorithm continues iterating until covering all table cells.

In phase 2, we cannot rely on an algorithm that searches
for precise differences so we add safety margins. Specifically,
we segment the differences space to 2α disjoint segments
I0, I1, . . . , I2α−1, where Ik = [kβ+1,(k+1)β]. Our algorithm
then maps each attacker 3-tuple to a segment. The idea is that
since the noise is typically small enough, it will cause the
difference to be slightly above the “noiseless” expected value
kβ+ 1, but still below (kβ+ 1)+β, i.e., < (k+ 1)β+ 1. In
other words, the difference will still belong to the segment
[kβ+1,(k+1)β]. Thus, given a difference in segment [kβ+
1,(k+ 1)β], we determine that it is a result of kβ loopback
connections, and from the binary representation of k we can
reconstruct which Li’s were mapped to this w. These are
precisely the Li’s in which 2i appears as an addendum in
the deconstruction of k into a sum of powers of two. To
summarize, our phase 2 algorithm maps a loopback 3-tuple
Li to attacker 3-tuple w if and only if the i-th bit in the binary
expansion of kw (the segment number of w) is one.

4.5 Performance Analysis

4.5.1 Number of Iterations

We analyze the run-time (in terms of iterations) of phase 1
and of phase 2 in [10, §A]. For example, for T = 256 (the
Linux case), phase 1 (Algorithm 2) needs 13.8 iterations on
average to conclude. For T = 256 and a population of N = 106

devices, in order for the average ID collision count to be lower
than one for the entire population, phase 2 (Algorithm 3 or
Algorithm 4) needs 49.5 iterations on average to conclude.
For a population of N = 109, phase 2 takes on average 60.4
iterations to conclude, and for N = 1012, 69.9 iterations on
average.

4.5.2 Dwell Time

In terms of dwell time (how long the browser needs to remain
on the page for the process to complete), in phase 1 (Algo-
rithm 2), each burst in a single iteration can be sent without
waiting to the server’s response. However, at the end of each
iteration, the browser needs to wait for the server’s response
(the server updates the client on which ports should be used
in the next iteration). Therefore, for phase 1, the required
dwell time is the time needed for the browser to emit the 3
bursts, plus RTT, times the number of iterations. For phase 2
(Algorithm 4), the client and the server are not synchronized
per iteration. Therefore, the dwell time is the time to emit the
2 bursts, times the number of iterations.

4.5.3 Device Bandwidth Use

In terms of packet count (and network byte count), iteration
i of phase 1 emits |Si|+ |S′i−1|+ |Si| packets. Since |Si| =
T − 1 and 0 ≤ S′i−1 ≤ T − 1, we have the packet count in
each iteration between 2(T −1) and 3(T −1). Each iteration
of phase 2 (Algorithm 4) consists of T packets (we do not
count the loopback packets as they do not consume physical
network resources). Each packet in a burst is a TCP SYN
which has a minimal size (Linux TCP SYN is 60 bytes over
IPv4 and 80 bytes over IPv6).

5 Implementation

Recent Linux kernels (versions 5.12-rc1 and above) use
DHPS from RFC 6056 to generate TCP source ports. The
implementation includes a few modifications to the RFC al-
gorithm and parameter choice (§5.1) that require some adap-
tations of our technique (§5.2). We conclude this section by
describing our implementation (§5.3).

5.1 Linux’s DHPS Variant
Perturbation table. The Linux implementation has
T =TABLE_LENGTH=256. The values of the perturbation table



are incremented by 2 (instead of 1), but this is immaterial to
the attack. To simplify presentation, we ignore this detail for
the rest of the discussion. Linux’s implementation of CHECK-
SUITABLEPORT verifies that the port is not locally reserved,
and that the 4-tuple it forms, (IPSRC, port, IPDST ,PORTDST )
is not already in use in the current network namespace (con-
tainer). In Linux, |K2|= 128.

Noise injection. A significant modification in the Linux
implementation is that it randomly injects noise to the pertur-
bation table when __inet_hash_connect() finds a suitable
candidate in the first iteration of Algorithm 1. The relevant
table cell is then incremented twice (instead of once) with
probability 1

16 .

5.2 Adapted Phase 2 Algorithm

The phase 1 algorithm already handles noise caused by or-
ganic TCP connections, as described in § 4.4, so noise injected
by Linux is handled identically. The adapted phase 2 algo-
rithm should map the correct attacker 3-tuple for any given
loopback 3-tuple, despite any noise injected by the kernel.
We already describe in § 4.4 how the phase 2 algorithm can
handle some noise (up to β additional table cell increments
on top of the expected ones, per a table cell associated with
an attacker 3-tuple w). Recall, we strive to use as high as
possible an α value since it reduces the run-time of phase 2.
Thus, we seek to make α as large as possible while keeping
β higher than the noise induced by the device’s Linux kernel
and sporadic TCP connections.

The noise is maximal when w corresponds to a table cell
which has a total of (2α − 2)β connections. (The hardest
task is to distinguish segment [(2α−2)β+1,(2α−1)β] from
[(2α−1)β+1,2αβ].) The amount of noise for (2α−2)β has
a binomial distribution Bin((2α−2)β, 1

16 ). To support a pop-
ulation of 106 devices, we want an error probability of 10−6

to correctly find all the Li values in a given device, which re-
quires all 64

α
iterations of phase 2 to succeed. (Our implemen-

tation tests 64 loopbacks in phase 2, see § 6.4.) Therefore, we
require Prob(Bin((2α−2)β, 1

16 )≥ β)≤ α

64 10−6. For α = 4,
this yields β≥ 1244 which is impractical since this implies
1244× (24− 1) = 18660 connections to be made for each
group of loopback 3-tuples.

We now show how we can tweak the algorithm to support
α = 4 with a low β value. For this, we observe that there
is exactly one w where ∆w ≥ 2α−1β; it is exactly the w that
shares the counter with Lα−1. All other Li’s together cannot
contribute more than (2α−1−1)β to any counter. Thus, if we
put the w whose ∆w ≥ 2α−1β aside, we are left with differ-
ences which are ≤ (2α−1−1)β. This upper-bound forms the
worst case, with the noise distribution Bin((2α−1−1)β, 1

16 ).
Again we require Prob(Bin((2α−1−1)β, 1

16 )≥ β)≤ α

64 10−6.
This time, for α = 4, we get β≥ 50. Using β = 50 results in
a manageable number of connections.

To summarize, we put aside the w whose ∆w ≥ 2α−1β, we
find Li’s that belong to all other w’s and associate all the
remaining Li’s (which were not associated to any other w) to
the w whose ∆w ≥ 2α−1β. This technique allows using α = 4
with β = 50 to support 1 million devices. The value β grows
slowly with the number of supported devices, e.g., supporting
1B devices requires β = 73.

5.3 Device Tracking Technique Prototype

We implemented a proof-of-concept of our device tracking
technique. The client (snippet) is designed to run on both
Chrome and Firefox and is implemented in approx. 300 lines
of JavaScript code. We also implemented a client in Python
that helped us during development and testing. The server
is implemented in approx. 1000 lines of Go code. We de-
scribe key aspects of our implementation below and provide
additional, more minor, implementation details in § 5.4.

The client and server exchange information via HTTP.
In our implementation, the server acts as a “command-and-
control” host: the client runs in a loop, requests the next com-
mand from the server, and executes it. This shifts much of the
complexity from the client to the server and makes it easier to
update the implementation without changing a complicated
JavaScript implementation for multiple browsers.

Chrome and Firefox clients. Our client implementation for
Google Chrome emits bursts of TCP connections by utilizing
WebRTC. The client passes the list of destinations as a config-
uration for the RTCPeerConnection object and triggers the
burst with the setLocalDescription() API. The advan-
tage of WebRTC, compared to standard XMLHttpRequest
or fetch() APIs, is that it allows to create connections
at a rapid pace, which helps decreasing the overall dwell
time. For Firefox, WebRTC is not applicable, since its im-
plementation invokes bind() on the sockets before it calls
connect() (see § 5.4.1). Instead, our Firefox implementation
uses XMLHttpRequest.

Tracking server. The server uses libpcap to capture TCP
SYN packets. It associates the TCP SYN packet to an active
tracking client based on the source IP address and destination
port. The server also stores the source port for later processing.
For any attack-related incoming TCP SYN, our server replies
with TCP RST (+ACK), except for the HTTP/HTTPS port on
which the attacker’s web server listens, of course. This way,
upon receiving the RST, the client immediately discards the
socket and does not send any further packets on it. This also
has the advantage of keeping Linux’s kernel connection table
relatively vacant – otherwise, we risk hitting the process file
descriptor limit (for Chrome, the limit is 8192).

Handling retransmissions. When a TCP SYN is left unan-
swered, Linux retransmits the SYN packet. This has the po-
tential to confuse our server by having more source ports mea-



surements than expected. The Linux retransmission timeout
is 1 second (TCP_TIMEOUT_INIT in include/net/tcp.h).
Therefore, we might encounter this situation depending on
the client’s network and the RTT to the tracking server. To
cope with retransmissions, the server deduplicates the TCP
SYN packets it receives based on the combination of source
IP, source port, and destination port fields.

5.4 Minor Implementation Details

5.4.1 Supporting Firefox

WebRTC vs. XmlHttpRequest Linux uses the revised
DHPS for assigning TCP source ports when connect() is
invoked with an unbound socket. This is the standard practice
for establishing TCP connections from a client. However, it
is also technically possible to establish a TCP connection
from a client by first invoking bind() on a socket with a zero
local port (instructing the kernel to pick a source port for the
socket), and then applying connect() to it. When bind()
assigns a source port number to the socket, the kernel has no
information regarding the destination, and therefore it cannot
use DHPS. Instead, Linux uses Algorithm 1 of RFC 6056
in this case. While not intended to be used by TCP clients,
Firefox does in fact use bind() for its WebRTC connections.
Therefore, in Firefox we resort to using XmlHttpRequest,
which emits HTTP/HTTPS requests.

Re-connect attempt at the HTTP level When Firefox’s
HTTP connection attempt fails or times out, Firefox retries
the connection at the HTTP level, i.e. it tries to establish a
new TCP connection (as opposed to a kernel retry which uses
the original connection parameters). These additional TCP
connection attempts with their newly-generated TCP source
ports cannot be easily distinguished from the expected TCP
connection attempts. The phase 1 algorithm might be affected
from re-connections when an attacker 3-tuple receives > 2
source port measurements. In such a case, the algorithm can-
not analyze the attacker 3-tuple, and should discard it (in the
present round), so that it is would not be flagged as “unique”.
The phase 2 algorithm was modified too: the client contacts
the server after each group of loopback 3-tuples are tested
(instead of after all groups). Further, for each burst of TCP
connections the client makes, it also waits for each connection
to complete (in contrast to the Chrome implementation). This
prevents concurrent loopback connections and re-connections,
which may corrupt source port measurements. Computing ∆w
is a bit more complicated, since as a result of re-connections,
we might get > 2 source port measurements (more than ex-
pected). Consequently, we compute the difference between
consecutive source ports measured, and set ∆w to the maxi-
mum difference. We expect all consecutive differences to be
1 (up to some noise), except a single consecutive difference,
which will correspond to the loopback increment we seek.
This is because we do not allow re-connection attempts to

overlap with the loopback connection attempts. For example,
if we get 4 source port measurements s0,s1,s2,s3 then we set
∆w =max(s1− s0,s2− s1,s3− s2). The algorithm continues
normally from this point onward.

5.4.2 Private Network Access

The Private Network Access draft standard [22], which is
implemented in Chrome, does not block our attack. If the
snippet page is served over a secure context (HTTPS), then
for XHR requests to loopback addresses, the browser will first
attempt to send pre-flight HTTP OPTIONS requests to these
destinations. These TCP connection attempts (SYN packets)
to the loopback addresses suffice for our attack. Moreover,
the Private network Access standard only applies to HTTP
protocol traffic, and therefore WebRTC traffic to loopback
addresses is not covered by it.

5.4.3 Scalability

In principle, the technique can scale very well. A technical
limitation we need to consider is that we can only associate up
to 65455 ports per (IPSRC, IPDST) address pair (the port range
is 1-65535, with some 80 ports blocked by Chrome). This is
not an issue for clients coming from different IP addresses.
However, it may be a limitation when multiple clients behind
one IP (NAT). We can address it by using more server IP
addresses and load balance clients.

To maximize the gain from each server IP address, it should
carefully manage the assignment and release of ports from a
per-client-IP pool. In phase 1, each client consumes at most
2(T −1) destination ports during each iteration. In each itera-
tion of phase 1, a batch of T −1 new destinations (ports) can
be obtained from the server in real time (assigned from the
pool). When the iteration is complete, the server determines
which destinations are added to the client’s list, and which are
released back to the pool. Phase 1’s worst case for ongoing
consumption is T − 1 ports (the client’s expanding list). In
phase 2, each client consumes exactly T destinations (the full
client list, from phase 1). This list of destinations is allocated
to the client for several seconds (the duration of phase 2).
Thus, the peak consumption for each client is 2(T − 1), so
the algorithm can sustain 65455

2(T−1) simultaneous clients (with
the same IP address) per server IP address. For T = 256, the
server can sustain 128 clients (behind NAT) per server IP.

5.4.4 Handling packet drops

Packets may get dropped in a network due to congestion or
routing changes. We adapt the tracking server to withstand
moderate packet loss. First, we detect that there are too few
packets for a specific attacker 3-tuple. Then, we find the burst
for which the packet is missing by timing analysis: the largest
time difference between captured packets is probably where
a packet is missing. For the burst where the packet is missing,



we may still find the attacker 3-tuple for loopback address
Li by examining if there is a valid gap in TCP source ports
of another attacker 3-tuple. If not, we rerun the test for this
loopback address.

6 Evaluation

We use our proof-of-concept implementation to evaluate the
device tracking technique against Linux-based devices. Our
experiments answer the following questions:

1. Do we get a consistent device ID across browsers, tabs,
and browser privacy modes?

2. Do we get a consistent device ID across networks, in
both IPv4 and IPv6, across containers, and across VPNs?

3. Do we get a consistent device ID when the user browses
other sites during the attack?

4. What is the dwell time required by our attack?

5. Is the attack applicable to Android devices?

6. How does the attack scale in terms of CPU and RAM?
Is it suitable for large-scale tracking?

Setup. We deploy our tracking server in two Amazon EC2
regions: eu-south-1 (IPv4 and IPv6) and us-west-2 (IPv4
only). Each server is a t3.small instance, with 2 vCPU cores,
2GB of RAM and 5Gbps network link.

We tested three Ubuntu 20.04 Linux client devices: (i) HP
Spectre x360 laptop (Intel Core i7-7500U CPU with 16GB
of RAM) with kernel v5.13.19; (ii) ASUS UX393EA laptop
(Intel Core i7-1165G7 CPU with 16GB RAM) with kernel
v5.15.11; and (iii) Intel NUC7CJYH mini-PC (Intel Celeron
J4005 CPU, 8GB RAM) with kernel v5.15.8.

6.1 Browsers
We demonstrate that we get a consistent device ID with
our client snippet on Google Chrome (v96.0.4664.110) and
Mozilla Firefox (v96.0) browsers (the latest versions at the
time of writing). Since Chrome dominates the browser market,
our optimizations are geared towards it.

We tested Chrome with our two tracking servers, both on
IPv4 and IPv6. We verified that we get a consistent device ID
across multiple tabs and browser modes, i.e., regular mode
and incognito mode (one of the goals of this mode is to bolster
privacy by thwarting online trackers). For Firefox, we verified
that the modified tracking technique as depicted in § 5.4.1
works over the Internet and that the ID is identical to the one
obtained via Chrome (cross-browser consistency).

6.2 Networks, NATs, VPNs and Containers
Our attack targets the client device, which operates in a vari-
ety of environments. It might access the Internet via a VPN,

Network
Port
Rewriting? Throttling? IPv4 / IPv6

EduRoam No No ✓/ NA
University Guest Yes No ✗/ NA
Landline ISP 1 No No ✓/ ✓
Landline ISP 2 No No ✓/ NA
Landline ISP 3 No No ✓/ NA
Landline ISP 4 No IPv4 only ✓*/ ✓
Cable ISP 1 Yes No ✗/ NA
Cellular ISP 1 IPv4 only IPv4 only ✗/ ✓
Cellular ISP 2 IPv4 only IPv4 only ✗/ ✓
Cellular ISP 3 No Yes ✓*/ NA
* With slowed-down TCP SYN bursts.

Table 1: Tested networks

run the browser in a container or use a network behind a NAT.
This section evaluates whether, and to what extent, these en-
vironments affect our attack.

Networks and NATs. We tested our attack on multiple
networks, on both landline and cellular ISPs, with IPv4 and
IPv6. Table 1 summarizes our results. Our technique yielded a
consistent ID for all tested networks which support IPv6. With
IPv4, we found that some networks rewrite the TCP source
port value (probably due to in-path port-rewriting NATs).
Since our attack relies on observing the device-generated TCP
source ports, it failed to obtain an ID on such networks. For
IPv4 networks that do not rewrite TCP source ports, and for a
given device, we got a consistent device ID, identical to the
ID obtained from IPv6 networks for the same device (cross-
network consistency, including cross IPv4/IPv6 consistency).

NATs are generally deployed on customer premise equip-
ment (CPE) or at the ISP; the latter is often referred to as
carrier-grade NAT (CGN). Importantly for our attack, many
NAT implementations preserve the clients’ TCP port selection.
Mandalari et al. [17, Table I] showed that 78% of the tested
NATs preserve TCP source ports. Their study covers over 280
ISPs that used 120 NAT vendors. Richter et al. [21] found that
92% of the CPE NATs they have identified in non-cellular
networks preserve TCP source ports. For CGN deployments,
Richter et al. found that on cellular networks, port preserva-
tion is less common: about 28% of the cellular networks with
CGNs exhibit such a behavior. Among the non-cellular ISPs
that use CGNs, 42% preserve ports. These measurements are
in-line with our tested networks in Table 1.

To further assess the applicability of our attack, we de-
ployed servers on four cloud providers (Azure, AWS, Google
Cloud, and Digital Ocean) across 25 different regions and
tested whether the network rewrites TCP source ports under
IPv4. (IPv6 connections are less likely be NATed, as illus-
trated by our measurements in Table 1, since IPv6 addresses
are abundant.) Our experiment shows that all tested regions
and cloud providers do not rewrite TCP source ports. We list



the cloud providers and regions we tested in Appendix C.
Another issue we faced, mainly with cellular IPv4 ISPs, is

traffic throttling (see Table 1). Such networks limit the packet
rate of our TCP SYN bursts by dropping some packets. This
may be due to traffic shaping or security reasons (SYN flood
prevention). To address this problem, we spread our TCP
SYN bursts over a longer time, thus increasing the overall
dwell time of our technique.

VPNs. We tested our technique with a client device that is
connected to an IPv4 VPN. We examined two popular VPN
providers: TunnelBear VPN and ExpressVPN. In both cases,
we set up a system-wide VPN configuration using Ubuntu’s
Network Manager. We note that the vast majority of VPNs (in
particular, the two VPNs we tested) do not support IPv6 [25].

We tested two locations with TunnelBear VPN, Germany
and Finland, and found that the TCP source ports are pre-
served. However, TunnelBear’s exit nodes throttle the out-
bound VPN traffic, so we expect the attack to work with
slowed-down bursts. For ExpressVPN, our attacks succeeded
on 7 out of 10 exit nodes tested in North America and Western
Europe. The failed attempts were due to TCP port rewriting.
The device ID we obtained through VPNs was identical to
the one obtained when the device was using a regular net-
work, and the dwell time we experienced with ExpressVPN
was comparable to a regular network with the same RTT. We
conclude that, in many cases, VPN exit nodes do not rewrite
TCP source ports, which allows our technique to work. This
demonstrates that VPNs do not inherently protect against our
technique.

Linux containers. We deployed two docker containers on
the same host and ran our Python client implementation on
each. Both runs produced the same device ID, identical to the
host device ID, as expected (cross-container consistency). We
conducted the experiment with containerd version 1.4.12,
runc version 1.0.2 and docker-init version 0.19.0.

6.3 Active Devices
In this experiment, we demonstrate that a consistent device ID
is obtained when the client simultaneously visits other web-
sites during the attack. To this end, we opened multiple tabs
on Chrome during the attack and visited sites that are listed
under Alexa’s Top 10 Sites. On each test, we arbitrarily chose
3 to 4 websites from the list (this includes “resource-heavy”
sites such as Yahoo, YouTube, and QQ). In all of our tests, we
verified that we get a consistent device ID, concluding that our
technique successfully withstands organic TCP connections
generated by the victim device during the attack.

6.4 Dwell Time
The dwell time is the execution time of our attack, the sum
of phase 1 and 2 completion times. Phase 1 completion time

is affected by the number of iterations it takes to collect T
unique attacker 3-tuples. The measured average is 15 itera-
tions, which is expected to be slightly higher than the theoret-
ical average of 13.8 iterations we computed in [10, §A] due
to the Linux injected noise (see § 5.1). The network round
trip time (RTT) to the tracking server also affects phase 1’s
completion time since, at the end of each iteration, the client
contacts the server to determine which of the attacker 3-tuples
tested in this iteration are unique. Phase 2’s completion time
is mainly affected by the number of loopback groups tested.
In our implementation, we tested a fixed number of 64 loop-
back groups. The RTT has significantly less impact on phase
2 since we do not wait for server responses.

We measured the dwell time for our Chrome client when
using α = 4 and β = 50 (see § 4.4) against our two track-
ing servers. With an average RTT of 50ms, we measured an
average dwell time of 7.4 seconds. With an average RTT of
275ms, we measured an average dwell time of 13.1 seconds.
Overall, our results for Chrome show a dwell time of 5-15
seconds (10 seconds on average).

For Firefox, the dwell time is on the order of several min-
utes, even under lab conditions, because of in-browser throt-
tling. For this reason, our implementation uses more balanced
values for α,β: α = 2 and β = 10. Lowering the β value for
Firefox has an advantage since the number of connections to
the loopback interface (on phase 2) decreases, hence making
the attack run faster under throttling. We have not attempted
optimizing our Firefox implementation further.

6.5 Android

At the time of writing, there is no Android device that uses
DHPS (see the discussion on § 3). To verify that the attack
is applicable to Android, we manually introduced the DHPS
code into the 5.4 kernel of a Samsung Galaxy S21 device.
(Linux’s DHPS implementation is conveniently located in
one file, making this change self-contained.)

During our experiments with the Samsung device, we ob-
served a netfilter rule that limits the rate of incoming
new TCP SYN packets to an average of 50 per second. This
rule limits our attack in phase 2 when many connections
to the loopback interface are attempted (an outgoing TCP
SYN packet in the loopback interface eventually becomes an
incoming TCP SYN packet, which is subject to this rule).
To work around this restriction, we modified the α,β pa-
rameters of the attack to α = 2 and β = 10. This results in
10+2×10 = 30 loopback connections being attempted for
each loopback group, which is below the limit imposed by this
rule. With this configuration, our lab experiments show that
the attack on Chrome yields a consistent device ID when the
device switches networks, with a dwell time of 18-21 seconds.

We presume that the offending rule (causing us to adjust
the attack) is not general to Android but rather, it is Samsung-



specific since we did not find evidence of it in the Android
Open Source Project (AOSP) code.

6.6 Resource Consumption
Server side CPU utilization. The tracking server needs
very little CPU resources. In both phases, the server-side
calculation simply involves going over the iteration data and
finding the port pairs in which the difference is above some
threshold.

Server side RAM consumption. While computing an ID
for a device, the tracking server needs to keep (i) a list of
allocated destination ports; and (ii) the most recently observed
source port per each destination port. In the worst case, the list
can be up to 2T pairs of ports (with T = 256, the maximum list
length is 512). Each port number is 16 bits, so each port pair
takes 4 bytes, and overall the server needs up to 8T = 2KB
per actively tested device. Suppose the device dwell time is W
seconds, and the rate of devices per second incoming funnel is
R, then at a given moment, there will be R ·W tested devices,
which requires 8T ·R ·W bytes. For Linux-based devices using
Chrome, we have T = 256,W = 10s, so the tracking server
RAM consumption is R · 20KB per device. For example, if
R = 106 devices/sec, the server needs 19.07GB RAM. Keep
in mind that R does not represent the total number of devices
the server needs to support, it is only the rate at which the
server is required to measure devices (which is much lower
than the total number of supported devices).

Client side CPU utilization. In our experiments, CPU uti-
lization by our tracking logic was negligible.

Client side RAM consumption. Most of the client-side
RAM consumption imposed by our tracking snippet is due
to attempting to create TCP connections. In the attack, the
tracking server responds with TCP RST, prompting the vic-
tim’s browser and kernel to release this memory quickly. In
an experiment, we measured an overhead of at most 30MB in
client memory (tested on Chrome), which is sufficiently low
to allow the attack even on low-end devices.

7 Countermeasures

The root cause of our attack is the ability to detect hash colli-
sions in GK2 via a shared perturbation table cells. The ideal
solution would be to create a private perturbation table in-
stance per network namespace and interface. By doing so, we
prevent the attacker’s ability to detect “stable” hash collisions
(on the loopback interface). The problem with this solution
is that its memory consumption could be high when many
containers are spawned, or many interfaces are present.

To mitigate the attack when the perturbation table is shared
across interfaces, DHPS must ensure that either hash colli-
sions are much less frequent or that detecting collisions is

much more difficult. In line with the above, we propose below
modifications to DHPS and summarize how they were applied
to the Linux kernel in a recent patch to mitigate our attack. We
also analyze in Appendix B an alternative algorithm proposed
by RFC 6056, “Random-Increments Port Selection Algorithm”
(Algorithm 5, [13, Section 3.3.5]), showing that the trade-off
it offers cannot simultaneously meet the functionality and
security goals from [13, Section 3.1] (see § 3).

Increase the table size T . This makes hash collisions much
less frequent. For example, instead of T = 256 we can use T =
256K = 262,144. This consumes 0.5MB of RAM (assuming
each table entry is 16 bits). The attack now takes ×1024 time
due to the need to cover all T table cells. (In the patch issued
for Linux, T was increased to 64K.)

Periodic re-keying. Changing the secret key in DHPS re-
sults in a different table index being accessed and a differ-
ent port offset from which candidate enumeration will begin.
After re-keying, any table collision information previously
obtained by an attacker becomes useless. The trade-off is that
a source port that was previously chosen for the same 3-tuple
could be chosen again. This might prevent a TCP connection
from being established (see § 3). To reduce the chance for
connectivity issues, re-keying should not be performed too fre-
quently. (In the patch issued for Linux, re-keying is performed
every 10 seconds, balancing functionality and security.)

Introduce more noise. The Linux kernel team also in-
creased the noise in perturbation table cell increments to make
detecting collisions more difficult. Now, each increment is an
integer chosen uniformly at random between 1 and 8.

7.1 Network Security Measures

Besides mitigating our attack at its core (the DHPS algo-
rithm), network security appliances such as firewalls, IDS, or
IPS could thwart it to some degree. Since our attack requires a
non-negligible number of connection attempts to the same set
of attacker destinations, a network security appliance could
detect this condition and limit future connection attempts to
those destinations. This would require the attacker to slow the
rate of connection attempts, presumably to the point where
the attack becomes impractical. Crucially, however, by doing
so, the security appliance might flag legitimate traffic as mali-
cious: for example, when multiple users behind NAT enter a
resource-heavy website in a short time span.

A better mitigation strategy would be to use on-host logic,
which can be part of a host IPS (HIPS) solution, a personal
firewall, or in-browser security logic. The on-host logic can
detect the internal loopback traffic that is generated as a re-
sult of our attack and rate limit TCP connection attempts to
closed ports on the loopback interface. We do not expect
standard applications to exhibit similar behavior, making this
countermeasure effective and with a low false-positive rate.



8 Conclusion

This paper illustrates a flaw in the DHPS algorithm for se-
lecting TCP source ports – an algorithm which was proposed
by RFC 6056 and recently adopted by Linux. We exploit this
algorithm to track Linux devices across networks, browsers,
browser privacy modes, containers, and VPNs. The key obser-
vation of this paper is that the attacker can detect collisions
in the output of a keyed hash function used in DHPS via
sampling, in an attacker-prescribed manner, TCP source ports
generated from the global kernel state induced by DHPS. By
indirectly observing such collisions for loopback 3-tuples in-
puts, the attacker calculates an invariant device ID (agnostic
to the network the device is connected to) since it only re-
lies on the secret hashing key which is generated at system
startup. Interestingly, this result does not rely on the choice of
the hash function, because the hash function’s output space is
small enough for collisions to happen naturally even in a very
moderate number of TCP connections. We implement the
attack for Linux devices and Chrome and Firefox browsers,
and demonstrate it across the Internet in practical, real-life
scenarios. We propose changes to the DHPS algorithm that
mitigate the root cause of our technique. Lastly, we worked
with the Linux kernel team to integrate countermeasures into
the Linux kernel, which resulted in a recent security patch.

9 Vendor Status

We reported our findings to the Linux kernel security team on
February 1st, 2022. In response, the Linux team developed a
security patch which was incorporated in versions 5.17.9 (and
above) and 5.15.41 (the LTS versions that include DHPS).
The Linux kernel issue is tracked as CVE-2022-32296.

10 Availability

Our code is publicly available online, along with instructions
for reproducing our results, in https://github.com/0xk
ol/rfc6056-device-tracker.
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Appendices
A Another Use Case: Traffic Measurement

It is possible to count how many outbound TCP connections
are established by a device in a time period using the above
techniques. This is useful for remote traffic and load analysis,
e.g. to compare the popularity of services. For example, it is
possible to remotely measure the rate at which outbound TCP
connections are opened by a forward HTTP proxy. This can
be used to estimate how many concurrent clients the HTTP
forward proxy serves. And quoting [4]: “In the context of the
web, [counting] how many TCP connections a user’s com-
puter is establishing over time [...] allows a website to count
exactly how many subresources a third party website loaded.
[...] Distinguishing between different users behind a VPN
based on distinct source port ranges, [...] Tracking users over
time across multiple networks, [...] Covert communication
channels between different browsers/browser profiles running
on the same computer, [... and] Tracking what applications
are running on a computer based on the pattern of how fast
source ports are getting incremented”.

This attack builds on the phase 1 technique (§ 4.2). To
mount the attack, the attacker needs to have client access
to the forward proxy. For simplicity we assume that the at-
tacker is simply one of the proxy’s clients. The attacker first
runs the phase 1 logic with the client side being a standalone
script/software (not inside a browser) that runs on a machine
that has client access to the forward proxy, and establishes
T attacker 3-tuples that conform to the T perturbation table
counters. This needs to be done only once, and ideally when
the target device is relatively idle.

Next, the attacker can poll the TCP source ports pi for
each of these T attacker 3-tuples at time t. The attacker
then polls the TCP source ports p′i at time t ′ > t. Denote
by ρ the total number of ephemeral ports in the system:
ρ = max_ephemeral−min_ephemeral+ 1, and suppose no
counter advanced more than ρ− 1 steps (keep in mind that
the attacker’s first poll also increments each counter by 1),
then the total number of TCP connections established by the
device between t and t ′ is:

T−1

∑
i=0

((p′i− pi−1) mod ρ)

This measurement can be repeated as long as the device
does not restart.

B Analysis of RFC 6056’s Algorithm 5

RFC 6056’s Algorithm 5 increments a global counter by a
random value between 1 and N, where N is configurable.
In order to avoid connection id reuse, RFC 6056’s Al-
gorithm 5 should ensure that the counter does not wrap
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around in less than 2 ·MSL seconds, where MSL is the
server TCP stack parameter. The original TCP RFC 793
sets MSL = 120. The default value for Windows servers
(the registry value TcpTimedWaitDelay) is 60 seconds [18].
In Linux, MSL = 30 seconds (evident from the kernel con-
stant TCP_TIMEWAIT_LEN= 2 ·MSL = 60 [16]). The average
progress per TCP port in RFC 6056’s Algorithm 5 is N+1

2 ,
therefore in order not to wrap around before 2 ·MSL seconds
have elapsed, the following condition is necessary (but not
sufficient):

2 ·MSL · N +1
2
· r < R

Where R is the port range (for Linux/Android, R = 60999−
32768+1 = 28232), and r is the outbound TCP connection
rate. The above upper bound for N is not tight, because it
assumes that each connection is short lived, i.e. terminated
very shortly after it is established. If a connection is long
lived, then its TIME_WAIT phase is achieved after even more
ports are consumed, thus lowering the bound for N. In an
anecdotal test with a Linux laptop running Ubuntu 20.04.3 and
Chrome 96.0.4664.110, we opened several tabs for media-rich
websites and got 737 TCP connections in a 64.5 seconds time
interval, thus we measured r = 11.4 connections/s. For Linux
servers, this yields N ≤ 81, and for Windows servers, this
yields N ≤ 19. As we noted above, this is a very loose upper
bound for N. And it is quite possible that r higher than 11.4
is common in some scenarios. But even setting N = 81 yields
low security since it reduces the entropy of the TCP source
port by 8.5 bits (in the Linux server case), from log2 28232 =
14.8 to log2 81 = 6.3 (10.6 entropy bit reduction, to 4.2 bits
in the Windows case). This seems unacceptable security-
wise, and so Algorithm 5 fails to deliver a practical trade-off
between security and functionality.

Interestingly, RFC 6056 suggests N = 500 without expla-
nation how this value is obtained.

C Cloud Providers Experiment

In this experiment, we deployed servers on multiple cloud
providers across different regions and tested whether their
networks rewrite TCP source ports. Our test uses a utility that
contacts a reference server on a bound source port (random
but known to the utility), to which the server replies with the
observed source port. Our experiment shows that all 25 tested
regions across 4 cloud providers (Azure, AWS, Google Cloud
and Digital Ocean) do not rewrite TCP source port. Table 2
summarizes the results.

Cloud provider Region
Preserve
Ports?

Azure

Australia East ✓
Sweden Central ✓
Central US ✓
Central India ✓
UK West ✓
Korea Central ✓

AWS

Oregon ✓
Milan ✓
Canada ✓
Sau Paulo ✓
Singapore ✓
Cape Town ✓
Hong Kong ✓

Google Cloud

Las Vegas ✓
Santiago ✓
Madrid ✓
Taiwan ✓
Jakarta ✓
Melbourne ✓
Zurich ✓

Digital Ocean

Amsterdam ✓
Bangalore ✓
Singapore ✓
New York ✓
Toronto ✓

Table 2: Tested cloud providers and regions under IPv4
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