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Abstract
Critical software is written in memory unsafe languages that
are vulnerable to use-after-free and double free bugs. This has
led to proposals to secure memory allocators by strategically
deferring memory reallocations long enough to make such
bugs unexploitable. Unfortunately, existing solutions suffer
from high runtime and memory overheads. Seeking a better
solution, we propose to profile programs to identify units
of code that correspond to the handling of individual tasks.
With the intuition that little to no data should flow between
separate tasks at runtime, reallocation of memory freed by the
currently executing unit is deferred until after its completion;
just long enough to prevent use-after-free exploitation.

To demonstrate the efficacy of our design, we implement
a prototype for Linux, PUMM, which consists of an offline
profiler and an online enforcer that transparently wraps stan-
dard libraries to protect C/C++ binaries. In our evaluation
of 40 real-world and 3,000 synthetic vulnerabilities across
26 programs, including complex multi-threaded cases like
the Chakra JavaScript engine, PUMM successfully thwarts
all real-world exploits, and only allows 4 synthetic exploits,
while reducing memory overhead by 52.0% over prior work
and incurring an average runtime overhead of 2.04%.

1 Introduction

Memory unsafe languages like C and C++ are pervasive and
contain difficult to spot binary level bugs that attackers regu-
larly exploit. One of the most prevalent and tricky to detect
classes is use-after-free (UAF), which occurs when a program
frees dynamically allocated memory, but then later uses a
dangling pointer, causing an unsafe memory access. This
includes another prevalent class, double free, where the vio-
lating use is a second call to free an already freed buffer. In
the mildest cases, UAF can lead to a program crash and de-
nial of service (DoS), but more often arbitrary code execution

∗Work done while at the Georgia Institute of Technology.

becomes possible, enabling an attacker to take complete con-
trol of the program. In 2020 alone, NIST published 73 UAF
advisories for Google Chrome and 17 for Mozilla Firefox.
UAF has enabled arbitrary code execution in Chrome [19],
Adobe Reader [23], and Windows 10 [18], to name a few.

The fundamental factor that elevates UAF from causing
DoS to enabling arbitrary code execution is the attacker’s
ability to control what data gets reallocated to the newly freed
address space. For example, if memory containing a code
pointer is freed and then reallocated and overwritten with a
buffer whose contents are chosen by the attacker, triggering
a UAF will cause the program to deference this buffer as if
it were still the original code pointer, sending the program
counter to whichever address the attacker chooses.

In response, researchers have proposed to redesign memory
allocators to defer reallocation just long enough to prevent
exploitation. The intuition is that if the attacker cannot over-
write prior memory objects with new ones (as in the previous
example), then code execution will no longer be possible via
UAF. Viable solutions need to offer a low overhead, drop-in
replacement for standard management libraries (e.g., libc) and
be able to function in binary-only settings (without access
to source code or debug symbols) to retrofit protection onto
commercial off-the-shelf (COTS) and legacy software.

In recent years, two strategies have emerged to solve this
problem: scanning and one-time allocation (OTA).1 In the
scanning approach, freed addresses are quarantined until a
scan of memory verifies that no possible pointers remain, at
which point they are released for reallocation [1]. Conceptu-
ally, scanning is similar to retrofitting garbage collection into
program binaries. Conversely, the OTA approach enforces
that an allocated address will never be reallocated again dur-
ing the program’s lifetime [61].

Both approaches offer straightforward security guarantees,
however they still suffer practical and fundamental limitations.
Scanning does not work on code that obfuscates pointers [9]
(e.g., by combining them with flags or reference counters)

1There are also approaches based on “fat” pointers [30], but these require
source code or dynamic instrumentation and incur significant overhead.



and may excessively quarantine memory due to false posi-
tive detections. Conversely, OTA will eventually exhaust the
program’s virtual address space since no reallocations are
allowed. In both cases, the current best-of-breed implementa-
tions still incur worst-case execution and memory overheads
of 50% and 100%, respectively.

Seeking a better solution, we turn our attention to an-
other area of research, data provenance [31], which has spent
years tackling a seemingly orthogonal problem: false prove-
nance [58] (a.k.a. false dependency explosion). Here, re-
searchers aim to causally link subjects (processes) to ob-
jects (sockets, files, etc.) based on system event logs (system
calls [25], application log messages [26]) to facilitate attack
detection and forensic investigation. However, they quickly
discovered that long running programs incur false dependen-
cies, whereby an object is wrongly determined to be causally
related to every prior object the program touched. To address
this, researchers have refined a technique called execution unit
partitioning (EUP), which dices the program into autonomous
units of work to partition dependencies [33, 40]. For example,
a unit for a HTTP server consists of the code that processes
one request, which the server iterates until termination.

What makes EUP interesting is that it works because units
carry the special property that subsequent iterations of a unit
have no data dependencies to prior iterations. This is what
enables them to accurately partition provenance without prun-
ing relevant events. From this observation, we formulate the
hypothesis that execution units can also serve as an effective
guide for when freed memory is safe to reallocate. For exam-
ple, once a HTTP server moves on to the next request, it is
unlikely to access any of the prior request’s pointers, even if
some were left dangling in memory, and any newly allocated
data will be initialized, safely overwriting old values. While
this is a heuristic that cannot be guaranteed to hold in all cases,
its empirical robustness has been demonstrated over a decade
of formal research [5, 24, 29, 31, 33, 35, 37–41, 60].

Conceptually, our idea can be thought of as enforcing
OTA at the granularity of execution units rather than glob-
ally. Since units can be identified offline, policies based on
them are efficiently enforceable at runtime without requiring
CPU-intensive scanning. Since quarantined addresses are
guaranteed to be released at the start of each new iteration,
the address space will not be exhaustible like in global OTA.
In short, our strategy avoids both the performance overhead
of scanning and the memory overhead of OTA.

However, turning this idea into a working design is not a
trivial task. The first challenge we have to overcome is how
to identify suitable units for guiding deferred reallocation in
arbitrary programs that may be stripped and lacking source
code. To this end, we propose a technique based on offline
dynamic profiling to detect the outer loop indicative of an
execution unit, which is a common pattern heavily validated
and trusted by the data provenance community [26, 31, 33, 39,
40]. Our analysis is compatible with dynamic instrumentation

(e.g., DynamoRIO [22]) or hardware processor tracing (PT)
provided by mature frameworks like Perf, achieving wide
compatibility across modern devices.

Notice that using low-level runtime behaviors, rather than
audit logs, to detect units is a unique departure from prior
work that reflects our goal of managing memory rather than
partitioning system calls and application messages. Conse-
quently, while EUP is a good starting inspiration, the algo-
rithm we propose is unique in the granularity of the units it
identifies and is not a direct transplant of prior EUP work.

Next, we shift our attention to turning identified units into
efficiently enforceable quarantine policies for memory al-
locators. To this end, we propose an algorithm to locate
release points in the program that can be accurately identified
at runtime without requiring any added instrumentation or
PT. Specifically, our design analyzes the control flow of the
profiled traces to identify callers to the memory manager’s
functions that occur at the beginning of known execution
units. These callers are easy to identify at runtime by the
return pointer pushed onto the stack, allowing for safe releas-
ing of prior quarantined addresses at the start of each new
iteration of the unit.

We have implemented a prototype of our design for Linux,
PUMM,2 supporting profiling data collected from Perf using
Intel PT, enforced at runtime using a drop-in wrapper for libc.
In an evaluation exploiting 40 unique real-world and 3,000
synthetically generated vulnerabilities in 26 commodity pro-
grams, including complex software like the Chakra JavaScript
engine, PUMM prevents all the real-world UAFs and all but 4
synthetic UAFs from being exploited while incurring a 2.04%
execution and 16.5% memory overhead, on average. Com-
pared to the current best defenses based on scanning and OTA
(MarkUs [1] and FFmalloc [61]), our approach reduces ex-
ecution and memory overheads by 2.74% and 52.0%. On
the SPEC CPU2006 benchmark, our system also excels with
execution and memory overheads of 3.12% and 1.87%. We
manually verify the correctness of the real-world units iden-
tified by PUMM and empirically validate its robustness to
varying code coverage during profiling. We have released the
code for our prototype to facilitate future work.3

2 Overview

2.1 Motivating Example
To demonstrate concretely how PUMM works, consider the
example shown in Figure 1, shown as source code for clarity
(PUMM’s actual analysis only requires the program binary).
For simplicity, we have reduce this example to just the file
parsing routine of the program.

In this example, the function getline is imported and
calls realloc on line 16 to dynamically reallocate buffers

2Partitioned Unit Memory Management.
3https://github.com/carter-yagemann/PUMM
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 1. void parse(char *line) {
 2.   int counts[26] = {0};
 3.   char *ptr = line;
 4.   int idx;
 5.   while (*ptr) {/*...*/}
 6. }

 7. void foobar(FILE *i) {
 8.  char *r = NULL;
 9.  size_t s = 0;
10.  while(getline(&r,&s,i))
11.      parse(r);
12.  free(r);
13. }

14. int getline(char **r,
       size_t *s, FILE *i) {
15.   *s = next_s(i);
16.   *r = realloc(r, *s);
17.   /*...*/
18. }
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Figure 1: Motivating example. PUMM’s profiling reveals 4
simple cycles, which are merged into 1 unit (purple). Once
realloc is reached, none of the pointers previously freed by
getline are used, so they can safely be released.

for storing variable length lines. These are then returned to the
routine as pointers. Unfortunately, line 10 allows for a UAF
vulnerability because it does not correctly check the value
returned by getline, which may be negative to indicate an
error, meaning line 11 may pass parse a dangling pointer.

How does PUMM prevent this bug from being exploited?
First, during the offline phase, PUMM profiles the program
to collect execution traces of test inputs, revealing the shown
control flow graph (CFG). In this case, PUMM detects 4
simple cycles (a.k.a. elementary circuits) and since the head
of the orange cycle (Node 10) dominates the heads of the
other cycles, they are merged together into 1 execution unit,
shown in purple. Notice that the head of this unit (Node 10)
is also the head of the code’s outermost loop. This is not a
coincidence and will be elaborated on in Subsection 3.2, but
for now, observe that the resulting unit has 1 entrance/exit
node corresponding to the while condition on line 10. Also
notice that any pointers to memory dynamically allocated
by getline are initialized at the start of an iteration and
never accessed in subsequent iterations. This makes sense
because the unit we have identified contains all the code to
autonomously process one input (i.e., one file line).

With all the units identified, PUMM next locates all the
callers to allocating memory manager functions and checks
whether any belong to a unit. In this example, there is a call
to realloc near the head of the unit. Notice that reaching
this call indicates the start of a new iteration of the unit and
once reached, no data from prior iterations is accessed. Con-
sequently, any dangling pointers prior iterations may have
left in memory will not be used again, posing no UAF risk.
PUMM records the caller of realloc in its security profile
as a safe caller for releasing quarantined addresses.

At runtime, PUMM’s memory management wrapper is
loaded and linked by the OS. For Linux, this can be con-
figured in ld’s settings or performed with the LD_PRELOAD
environment variable. In either case, PUMM’s wrapper de-

Memory State Access Exploitable?
L1 Inaccessible Crash No
L2 Never Reallocated Old Data No*
L3 Reallocated, Uncontrolled New Data Maybe
L4 Reallocated, Controlled Attacker’s Data Yes
* For secure memory allocators.

Table 1: Consequences of use-after-free.

tects that the program has a security profile and loads it. Each
time getline calls realloc, any memory freed by the call
is quarantined and previously quarantined memory is released
for reallocation. Notice that under this policy, it is still pos-
sible for the UAF bug to trigger a crash. However, because
the improperly accessed memory is quarantined, the UAF can
only access the originally freed data, making it unexploitable
for attackers. Subsection 2.2 elaborates on the taxonomy of
UAF exploits and Subsection 2.3 defines our threat model.

2.2 Use-After-Free Exploitation
The consequence of having a UAF bug within a program
varies substantially depending on the state of accessed mem-
ory, summarized in Table 1. In the mildest case (L1), the
dangling pointer left in memory references an address that
has been unmapped or released, making it no longer acces-
sible to the program. This can cause a crash, or create a
DoS scenario if the UAF is triggered repeatably, but it is not
exploitable to control the program’s execution.

At L2, the freed memory referenced by the pointer is still
accessible, but has not been reallocated, so it still contains
the original data prior to being freed. This can cause a crash
or yield no observable anomaly, depending on the program’s
logic, and is no more exploitable than L1 for secure allocators.
Conversely, for allocators that overwrite freed memory with
metadata, it may be possible to achieve exploitation [52],
however this is unlikely and can be avoided by changing
where metadata is stored in the memory manager’s code.

L3 and L4 are when UAF becomes a serious threat. In
these cases, the freed memory has been reallocated, causing
the old data to be overwritten with new data. If an old code
pointer or control-dependent variable is overwritten, the UAF
can redirect program execution, achieving exploitation. When
the new data is not controlled by the attacker (L3), success
depends on the probability of the program overwriting the old
data with values that benefit the attacker. Conversely, if the
attacker is able to control what new values are written (L4),
arbitrary code execution is achieved.

2.3 Threat Model
Similar to prior work [1,61], our goal is to prevent UAF from
being exploitable. This means that an attacker should not be
able to control what behavior the program exhibits by trigger-
ing a UAF bug (i.e., preventing L3 and L4 in Subsection 2.2).
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Figure 2: System architecture. PUMM consists of an offline
analysis phase and an online enforcer that wraps the program’s
memory management library.

Under this definition, crashing at the UAF (L1) or accessing
old data and continuing (L2) is satisfactory because no harm
is done to the system, assuming the allocator does not store
metadata in freed memory. However, for completeness, we
distinguish between these outcomes in our evaluation because
crashing can still lead to DoS.

We assume that the program being targeted starts in an un-
compromised state, motivating the attacker’s desire to launch
a binary exploit. The adversary has full knowledge of how
the target program works and what UAF bugs it contains.
This includes being able to trigger arbitrary reads and data
leaks to reveal secrets (e.g., stack canaries, ASLR offsets)
to help craft a working exploit. Since our policy is enforced
at runtime using a loaded library, the attacker can also read
it. However, we assume the attacker does not have an ar-
bitrary write capability, otherwise they could rewrite freed
data while in quarantine to achieve exploitation. Similarly,
we do not consider an attacker that can arbitrarily create
new program paths. These limitations apply to all the prior
work [1, 32, 34, 42, 53, 55, 61, 63] and are reasonable because
arbitrary write and control flow hijacking are stronger capa-
bilities. In other words, if an attacker already has either of
these, they do not need to exploit a UAF because they can
already redirect execution [7, 8, 10, 14, 28, 51, 57].

We assume that the kernel of the targeted system is uncom-
promised because we rely on it to load our enforcement code,
as does prior work [1, 32, 34, 42, 53, 61]. This is realistic be-
cause if the attacker already controls the kernel, they control
the system and do not need to exploit user program bugs. We
also assume the security profile can be securely stored and
loaded by our library, which is achieved in practice with file
permissions.

0x27ab push %rbp
0x284e jmp 0x2898

…
0x2850 mov $1 %esi

…
0x287e test %rax %rax
0x2881 jne 0x2894
0x2883 lea 0xf05f %rdi

…
0x288f call %rax

…
0x2898 cmp $0x19 %rax
0x289c jle 0x2850

0xfeff push %rbp
…
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Figure 3: Example of PUMM disassembling an execution
trace using the recorded PT data and Perf sideband.

3 Design

PUMM consists of an offline binary analysis phase that yields
a security profile that is then enforced at runtime using a mem-
ory management wrapper, as shown in Figure 2. Profiling
for the offline phase can be facilitated using either dynamic
binary instrumentation [22] or PT. For brevity, we only de-
scribe using Linux Perf and Intel PT, but keep in mind that
instrumented code can emulate the exact same functionality.

First, PUMM records execution traces of the program
handling test inputs and decodes them into a CFG (Subsec-
tion 3.1). PUMM then uses this CFG to perform an analysis
that identifies the execution units within the binary code (Sub-
section 3.2). Finally, PUMM identifies places in the program
where quarantined memory addresses can be safely released
for reallocation, yielding a security policy for the runtime
wrapper (Subsection 3.3).

3.1 Dynamic Profiling

Before PUMM can create a security policy, it first needs to
know what execution paths exist in the target program. Since
we need to handle the case where no source code is available
to support legacy and COTS programs, PUMM cannot rely
on accurate compiler-based approaches like those offered by
LLVM [11]. Conversely, static binary analysis is difficult to
perform, especially on obfuscated programs, and does not
scale to large complex code [54]. Instead, PUMM relies
on dynamic profiling to record execution traces of the target
program. For the purposes of this work, we collect inputs to
drive the profiling phase using a fuzzer seeded with developer
test cases. The impact of code coverage is measured in our
evaluation.

Processor Tracing Our prototype for PUMM utilizes Intel
PT, which is a hardware feature first introduced in Skylake



processors, and Perf to record execution traces. From Perf’s
trace data, PUMM can recover each instruction the program
executed, even in complicated scenarios involving multiple
threads and dynamically generated code.

Figure 3 shows an example of the recovery process. On
the left is the recorded trace, encoded as a stream of Intel
PT packets (blue) and Perf sideband packets (grey). For
brevity, the figure does not display all the data contained in
each packet (e.g., CPU timestamps). The first packet informs
PUMM that the target thread (PID 1234) has started executing
on a processor core. This is followed by a mmap event that tells
PUMM that an object was loaded from storage into memory.
The values record which object it was and the base virtual
address, allowing PUMM to recreate the same memory layout
within its disassembler. The next packet contains PT data,
so PUMM resumes linearly disassembling instructions until
it reaches a branch (jle). It then consults the PT packet,
which says the branch was taken, so PUMM jumps to the
appropriate target address (0x2850) and resumes. At the next
branch (jne), the next PT packet records not-taken, so PUMM
falls through to the next instruction (0x2883). The next packet
is another mmap event, so PUMM loads the specified object.
When it reaches the indirect call at 0x288f, the next PT packet
contains the target IP (TIP), directing the disassembler to
0xfeff. Continuing this procedure, PUMM recovers every
executed instruction.

Notice that due to address space layout randomization
(ASLR), the virtual addresses of instructions change with
each execution. To account for this, PUMM converts the ab-
solute virtual addresses into offsets relative to object bases.
This allows subsequent steps in PUMM’s analysis to merge
traces into a single unified graph.

Control Flow Graph Construction Once PUMM has re-
covered the instructions executed in the trace, it then distills
this information into a CFG. However, producing a CFG
from PT is not a trivial task because the traces can contain
holes, abrupt interrupts from hardware events, and other low
level artifacts. Not only do these need to be removed, but
additional metadata also needs to be recovered that will aid
the execution unit partitioning described in Subsection 3.2.

Algorithm 1 shows the steps PUMM uses to overcome
these challenges. It starts with a linear sequence of instruc-
tions I, and generates a list of vertices V , and edge tuples E,
representing the trace. The created CFG is based on binary
code blocks, which we define as a linear sequence of instruc-
tions ending with a branch, indirect call, indirect jump, or
return instruction. These blocks are single-entrance, single-
exit sequences that may overlap in memory.4

The algorithm works by iterating over each traced instruc-
tion. At line 10, it checks whether it is currently inside a block

4It is also possible to implement this analysis using traditional basic
blocks, but doing so incurs a performance cost because newly discovered
backward edges may split prior blocks, requiring refactoring of the CFG.

Algorithm 1: Turning a linear instruction trace I into
a CFG with vertices V and edge tuples E.

1 b,s,c, p,n,V,E← /0
2 foreach i ∈ I do
3 if PTStop() then
4 if s then

// PT turned off for system call
5 s← False
6 else

// Unexpected stop, do not create edge
7 p← /0
8 end
9 end

10 if b = /0 then
// start of new code block

11 b← i.address
12 end
13 if IsExit(i) then

// i is last instruction in current block
14 n← (b, i.address+ i.size,c)
15 V ←V ∪n
16 E← E ∪ (p,n)
17 p← n
18 b← /0
19 s← IsSyscall(i)
20 if IsCall(i) then

// push caller onto context stack
21 c← c∪ i.address
22 end
23 if IsRet(i) then

// pop last caller from context stack
24 c← c− c.last
25 end
26 else

// boring instruction
27 s← False
28 end
29 end

and if not, it records the address of the current instruction as
the start of a new block. Line 13 checks whether the current
instruction is an exit, as previously defined. If it is, then this
instruction marks the end of the current block. Lines 14–16
create a new node n, add it to the list of vertices V , and create
an edge from the previous node in E. Notice that V and E
can contain duplicate entries if the same transfer occurs mul-
tiple times in the trace. We describe how they are merged in
Subsection 3.2.

When there is no prior block to n, no edge is created in
the CFG. This happens for the first block at the start of the
trace and for some cases when PT turns off, as handled by
lines 3–9. When PT stops due to a system call, which occurs
because it is configured to only trace user space, Algorithm 1
keeps the resulting edge. Otherwise, the stop is the result of
an interrupt, which could be an exception or context switch.
Since PUMM cannot be certain that execution will resume
from the interrupted context, Algorithm 1 acts conservatively
and does not create an edge, relying instead on the redundancy
across subsequent traces to fill holes.



In addition to the start and end address, each block is also
labeled with a caller context list c, which tracks all the callers
leading up to the current block. This is essentially a shadow
stack managed by lines 20–25 that will become relevant in
Subsection 3.2.

3.2 Execution Unit Partitioning
The key to PUMM’s partitioning is that programs that can
process multiple tasks (network requests, input files, etc.) are
typically implemented with a main task loop that iterates once
per task until an exit condition or signal occurs [26, 31,33, 39,
40]. Local variables are initialized at the start of a task and
the current task does not depend on data from prior ones.

The primary challenge for PUMM is that the main task
loop can itself contain loops connected by branching paths.
Accidentally identifying one of the inner loops as its own exe-
cution unit (under-approximation) can result in premature re-
leasing of quarantined memory, whereas over-approximating
the unit incurs additional unnecessary memory overhead.

To solve this challenge, PUMM first post-processes the
CFG from Subsection 3.1 to create context sensitive nodes
and to insert fake returns for calls across binary objects (e.g.,
libraries). The former yields a more accurate analysis by
accounting for wrappers around library APIs5 and the latter
enables PUMM to analyze the program per-object without
having to traverse all the inter-object paths.

Next, PUMM identifies simple circuits (i.e., loops) using
the Hawick circuit enumeration algorithm [27], which has a
worst case time complexity of:

O[(V +E)(C+1)] (1)

Where V is the number of vertices, E is the number of edges,
and C is the number of circuits. With the circuits located,
PUMM starts merging them together to form execution units
based on graph dominance. Specifically, given circuits A and
B, B is merged with A if the head of A (i.e., its entry node)
dominates the head of B. This process is iterated until no
more units can be merged.

3.3 Policy Generation & Enforcement
With the execution units identified, PUMM can generate a
security policy for the target program. The goal for this step
is to identify points in the program where quarantined mem-
ory can be safely released to become eligible for reallocation.
The main challenge PUMM has to overcome is that the policy
must be enforceable at runtime without requiring instrumen-
tation or PT. This is because the system running the target
program may not have PT hardware and without source code,
instrumentation would have to be inserted dynamically, which
incurs a high performance overhead.

5Example: Programs wrap libc’s free for portability across OSes.

Our solution stems from the observation that most execu-
tion units begin with initializing variables, including ones that
are dynamically allocated. Code blocks calling the underlying
memory management library to allocate new variables can
be identified by the last return address pushed onto the stack
without requiring stack unwinding.6 Since these calls occur
at the beginning of new unit iterations, quarantined memory
from prior iterations can be released with low risk, which we
evaluate empirically in Section 4.

With this idea in mind, PUMM starts by identifying every
caller within a unit to any of the memory allocation functions
wrapped by PUMM. For each caller, PUMM checks whether
it can be the first caller in a unit iteration, i.e., whether the
caller is reachable from the unit head without going through
another caller. If it is, then the caller is added to the policy as
a release point for the quarantine list.

At runtime, the OS dynamically loads PUMM’s memory
management wrapper, which in our current prototype covers
all the POSIX memory management functions (e.g., malloc,
free). This in turn loads the policy, which is then enforced
at any call to the protected functions. Requests that require
a buffer to be freed queue the freed address space in the
quarantine list, making it ineligible for reallocation. At each
call, the caller is identified based on the return address that is
pushed onto the stack and if it is in the policy’s safe callers
list, then the quarantine list is released, making those address
spaces eligible for reallocation.

An interesting discovery we make with this design is be-
cause frees are being deferred by the quarantine list, it is
possible to automatically resolve some double free bugs with-
out having to abort. In PUMM, if both frees are placed in
quarantine, they can simply be merged into one release, re-
solving the violation. However, some system administrators
may want double frees to abort regardless, which PUMM can
be configured to do. We explain the trade-offs in Section 5.

4 Evaluation

We aim to answer the following questions in our evaluation:

1. Is PUMM able to prevent UAF exploitation? We test
PUMM against 40 real-world vulnerabilities in 26 pop-
ular programs. PUMM prevents all cases from being ex-
ploitable with reasonable offline analysis requirements.

2. How does PUMM’s protection compare to prior work?
We evaluate PUMM alongside MarkUs and FFmalloc,
the latest systems based on scanning and OTA. PUMM
prevents the same vulnerabilities as the other systems
while aborting in fewer cases.

3. What is the overhead of using PUMM? We run PUMM,
MarkUs, and FFmalloc on test workloads for the 26
real-world programs, as well as the SPEC CPU2006

6See GNU’s __builtin_extract_return_addr for details.



standard benchmark. PUMM outperforms MarkUs and
FFmalloc, yielding 2.74% less runtime overhead and
52.0% less memory overhead.

4. How robust is PUMM? Using 3,000 synthetically in-
jected UAF bugs, we measure the change in memory
overhead, number of release points, and bugs that elude
PUMM’s protection as a function of the number of an-
alyzed profiling traces. PUMM only fails to prevent 4
out of 3,000 bugs from being exploitable. Analyzing
more traces results in more release points being added
to the policy, yielding a minor improvement to memory
overhead with no observable degradation to security.

5. Is PUMM identifying the main program task loop? We
manually examine the source code of each target pro-
gram to identify how many tasks it processed during
profiling and verify that this number matches the num-
ber of units executed at runtime, according to PUMM.

Environment & Baseline Defenses All of our experiments
are conducted in a Debian Buster environment using a desk-
top containing an Intel Core i7-6700K CPU, 16 GB of RAM,
and SSD storage. PUMM’s CFGs are generated with a caller
context sensitivity level of 1, which is typical for binary anal-
ysis [59]. To represent the current best designs for scanning
and OTA defense, we use MarkUs [1] and FFmalloc [61],
respectively. Our prototype’s offline analysis is implemented
in 600 Python source lines of code (SLoC) on top of the xed
disassembler and libipt Intel PT decoder. Our runtime en-
forcement is implemented in 450 C SLoC and covers glibc
and jemalloc’s memory management APIs.

Target Programs & Exploits Our evaluation dataset com-
bines 3 datasets of real-world programs and exploits, as well
as 1 standard performance benchmark. Specifically, we use all
the real-world exploits and programs provided by UAFBench,
FFmalloc’s original evaluation [61], and our own corpus of
programs and exploits found using NIST NVD and Exploit
Database. We compile the programs into stripped production
binaries using the provided build scripts. For configurable
programs like HTTP servers, we use the default settings pro-
vided in the code repositories. The performance benchmark
we use is SPEC CPU2006, which we pick deliberately to
make our results directly comparable to previously reported
metrics [1, 61].

Synthetic Bugs Given the challenges in reproducing real-
world UAF exploits, we also develop a framework for syn-
thetically injecting UAF bugs into real-world programs to
facilitate a larger empirical evaluation of PUMM’s robustness,
the results of which are presented in Subsection 4.3. This
framework is included in our open source repository to ensure
experimental reproducibility for future work. At a high level,
our framework synthesizes bugs using an external debugger to

free a random chunk of allocated memory at a random point
in the program’s execution, thereby causing a UAF to arise in
subsequent memory accesses. The randomness is controlled
by a seed value to ensure trials are repeatable. Using this
framework, we generate 3,000 synthetic UAF bugs (100 per
binary) that when triggered without any defenses, result in
control flow redirection, demonstrating their exploitability.

Profiling & Testing Workloads Recall that PUMM relies
on offline dynamic profiling to generate policies, which re-
quires tracing runtime program executions. To generate a
corpus of inputs for profiling and testing, we start with devel-
oper provided test inputs and then fuzz each program for 24
hours using AFL, a popular grey-box fuzzer. This yields a
corpus where each input reaches at least 1 novel path. 80%
of the inputs are placed in a profiling set and the remaining
20% are withheld for testing. Before performing the split, we
remove any inputs that cause a crash to ensure PUMM cannot
directly observe a UAF bug during profiling.

Methodology & Calculations We evaluate the security of
PUMM and prior defenses using real-world programs and
exploits (Subsection 4.1). Since our dataset provides ground
truth for each targeted vulnerability, we use a debugger to
manually verify the success of each defense at preventing
exploitation. For completeness, we distinguish between suc-
cessful prevention that results in aborted execution versus not
aborting. We also record metrics for PUMM’s profiling phase
to determine feasibility of deployment.

For our performance evaluation, we use both the real-world
programs and SPEC, which provides its own train and test
workloads (Subsection 4.2). Overhead is calculated as (P−
B)/B, where P is the evaluated performance and B is the
baseline performance. All time measurements are based on
wall-clock time.

In addition to testing PUMM’s security on real-world ex-
ploits, we also evaluate its robustness to code coverage by
measuring memory overhead, number of release points, and
number of prevented synthetic UAF bugs as a function of the
number of analyzed traces (Subsection 4.3).

Lastly, we perform a manual verification of the correctness
of the execution units identified by PUMM using source code
(Subsection 4.4). Specifically, we identify how many tasks
are performed during each test input and then compare that to
the number of unit iterations. Our intuition is that if PUMM
correctly identifies units that encompass all the code required
to handle one task, the number of observed unit iterations
should equal the number of performed tasks.

4.1 Real-World UAF Prevention
Table 2 presents the results of our security and deployment
feasibility evaluations. In each case, we report the vulner-
ability tested (identified by its CVE, EDB, or bug tracker



Vulnerability Program #T Size (MB) Mean (MB) Instructions CFG Nodes CFG Edges Units Safe Time (s) P?
UAFBench

CVE-2016-3189 bzip2recover 129 3,481 27.0 2,076,381,561 20,621 21,283 206 3 11 Y
CVE-2016-4487 cxxfilt 5,322 147,456 27.7 36,162,246,341 10,269 15,968 3 3 1 Y
CVE-2017-10686 nasm 8,229 51,200 6.2 8,174,108,309 214,211 218,311 1,200 6 5,668 Y
CVE-2018-10685 lrzip 61 888 14.6 161,565,280 54,655 56,930 58 8 3 Y
CVE-2018-11496 lrzip 462 8,192 17.7 1,430,925,696 234,293 243,756 525 9 1,001 Y
CVE-2018-11416 jpegoptim 46 855 18.6 243,499,939 32,294 34,661 252 1 35 Y
CVE-2018-20623 readelf 322 14,336 44.5 1,872,808,345 460,511 477,313 335 6 1,025 Y
CVE-2019-20633 patch 442 906 2.0 222,122,766 100,028 104,405 106 4 45 Y
CVE-2019-6455 rec2csv 564 13,312 23.6 2,756,534,599 501,826 524,818 150 22 23,589 Y
Issue 74 giflib 314 23,552 75.0 5,413,904,821 77,923 82,422 504 10 376 Y
Issue 122 gifsicle 119 19,456 163.5 6,136,138,072 166,219 173,187 334 5 1,711 Y
Issue 73 mjs 1,097 6,041 5.5 1,008,943,580 371,325 377,142 215 8 47,269 Y
Issue 78 mjs 1,152 6,041 5.2 1,032,998,992 366,029 372,651 204 7 48,839 Y
Issue 91 yasm 3,698 19,456 5.2 4,164,443,865 151,547 155,618 2,213 3 32,300 Y

FFmalloc
CVE-2015-2787 PHP 3,234 26,624 8.2 3,522,225,089 1,004,203 1,008,003 700 33 208,159 Y
CVE-2015-6835 PHP 164 18,432 112.4 3,360,974,313 1,005,633 1,008,766 744 31 222,542 Y
CVE-2016-5773 PHP 191 22,528 117.9 3,721,893,098 1,807,781 1,813,930 1,544 16 277,522 Y
Issue 3515 mruby 593 32,768 55.3 8,635,634,411 660,064 664,548 1,540 1 67,792 Y
CVE-2015-3205 libmimedir 254 2,048 8.1 690,040,157 111,180 111,781 248 7 139 Y
Issue 24613 Python 139 66,560 478.8 14,456,506,475 36,005 57,271 19 46 2 Y
CVE-2019-0568 ChakraCore 487 29,696 61.0 5,312,199,808 1,122,185 1,128,009 3,135 12 208,232 Y
CVE-2020-24346 Nginx 1,997 75,776 38.0 16,905,445,435 668,613 677,158 3,402 3 152,841 Y

NIST NVD & Exploit Database
CVE-2017-9182 AutoTrace 16 6,963 435.2 1,009,914,907 184,392 192,648 311 25 1,744 Y
CVE-2017-9190 AutoTrace Y
CVE-2019-19005 AutoTrace Same Program Binary Y
CVE-2017-11139 GraphicsMagick 506 17,408 34.4 5,290,610,880 256,881 264,072 1,029 1 10,926 Y
CVE-2017-11403 GraphicsMagick Y
CVE-2017-12936 GraphicsMagick Y
CVE-2017-14103 GraphicsMagick Same Program Binary Y
CVE-2017-15238 GraphicsMagick Y
CVE-2017-18220 GraphicsMagick Y
CVE-2017-12858 libzip 432 1,331 3.1 433,687,147 100,206 102,717 676 10 639 Y
CVE-2019-17582 libzip Same Program Binary Y
CVE-2019-6706 Lua 935 16,384 17.5 2,993,395,562 345,947 350,930 2,029 1 43,608 Y
CVE-2015-3890 OpenLiteSpeed 1,352 7,605 5.6 24,255,777,904 24,915 33,636 53 19 1,511 Y
CVE-2010-2939 OpenSSL 566 157,696 278.6 33,461,648,321 14,750 21,898 5 1 1 Y
CVE-2015-8727 Wireshark 240 7,782 32.4 2,316,470,289 58,524 113,571 317 1 91 Y
EDB-39503 Wireshark Y
EDB-39529 Wireshark Same Program Binary Y
Issue 144 Gravity 1,422 11,264 7.9 2,170,687,678 484,493 487,791 756 52 34,585 Y

Average: 1,150 27,201 71.0 6,646,457,788 354,917 363,173 706 11.8 46,407

Table 2: PUMM evaluation results on the real-world programs and exploits.

ID), the vulnerable program, number of traces collected (#T),
their total size, the average size per trace, the total number of
instructions recorded, the size of the CFG in terms of nodes
and edges, the number of units identified, the number of safe
callers located, the total offline analysis time, and whether the
vulnerability was prevented. Notice that in some cases we use
the same program binary to evaluate multiple vulnerabilities.

In all 40 attacks, PUMM successfully prevents the vulnera-
bility from being exploitable. On average, we profile 1,150
traces per analyzed program, depending on the number of
novel inputs uncovered by AFL. Traces average 71 MB in
size, which is reasonable. About 6,600,000,000 instructions
are recorded per program, on average, with an upper bound
of about 36,200,000,000. The resulting CFGs contain about
360,000 nodes and edges, on average, with an upper bound of
1,129,000. We also observe variance in the number of execu-
tion units, ranging from 3 to about 3,400 (context sensitive),
roughly correlated with the size of the CFG.

The number of safe callers identified in the CFGs vary
between programs, with several having only 1. On average,

12 safe callers are identified per program.

On average, it takes PUMM about 12 hours to analyze a
program, with PHP being the slowest. This is largely due
to the number of novel inputs generated by AFL, requiring
PUMM to decode over 1,000 traces per program. Our results
in Subsection 4.3 suggest that most of these traces were not
necessary to analyze. On average, PUMM is processing 1
trace every 40 seconds. There is no strong correlation between
program size and analysis time.

Table 3 compares PUMM’s security to prior work, with
half circles denoting prevention via aborting or crashing. All
three systems either abort or fully prevent all the tested ex-
ploits, verifying their effectiveness. We notice that FFmalloc
aborts in significantly more tests than the other two systems.
Upon investigation, we discover that this is due to a property
not described in previous work. Specifically, we discover that
defenses that use a quarantine list are able to remediate some
instances of UAF by merging conflicting frees together. The
simplest example of this occurs in double free bugs, where
freeing an address that is already quarantined results in no



Vulnerability Program PUMM MarkUs FFmalloc
UAFBench

CVE-2016-3189 bzip2recover  G#  
CVE-2016-4487 cxxfilt G# G# G#
CVE-2017-10686 nasm G# G# G#
CVE-2018-10685 lrzip    
CVE-2018-11496 lrzip    
CVE-2018-11416 jpegoptim    
CVE-2018-20623 readelf    
CVE-2019-20633 patch G#  G#
CVE-2019-6455 rec2csv   G#
Issue 74 giflib  G# G#
Issue 122 gifsicle    
Issue 73 mjs    
Issue 78 mjs    
Issue 91 yasm   G#

FFmalloc
CVE-2015-2787 PHP    
CVE-2015-6835 PHP    
CVE-2016-5773 PHP    
Issue 3515 mruby G# G# G#
CVE-2015-3205 libmimedir    
Issue 24613 Python  G# G#
CVE-2019-0568 ChakraCore G# G# G#
CVE-2020-24346 Nginx    

NIST NVD & Exploit Database
CVE-2017-9182 AutoTrace G# G# G#
CVE-2017-9190 AutoTrace   G#
CVE-2019-19005 AutoTrace G# G# G#
CVE-2017-11139 GraphicsMagick    
CVE-2017-11403 GraphicsMagick G# G# G#
CVE-2017-12936 GraphicsMagick    
CVE-2017-14103 GraphicsMagick G# G# G#
CVE-2017-15238 GraphicsMagick    
CVE-2017-18220 GraphicsMagick  G# G#
CVE-2017-12858 libzip   G#
CVE-2019-17582 libzip   G#
CVE-2019-6706 Lua   G#
CVE-2015-3890 OpenLiteSpeed    
CVE-2010-2939 OpenSSL    
CVE-2015-8727 Wireshark    
EDB-39503 Wireshark    
EDB-39529 Wireshark    
Issue 144 Gravity  G# G#
#: Failure G#: DoS  : Full Prevention

Table 3: UAF prevention for PUMM vs. prior work.

change to the program state, allowing execution to continue
unhindered. This is the outcome produced by PUMM and
MarkUs, whereas FFmalloc does not use a quarantine list
and aborts. Notice that while PUMM can resolve some dou-
ble frees, it can also be configured to abort regardless. We
elaborate on the trade-offs in Section 5.

4.2 Performance Comparison

Real-World Programs Figures 4 and 5 show the runtime
and memory overheads, respectively, for the evaluated sys-
tems on the real-world dataset. These metrics are presented in
log scale. Tested programs include a wide range of types, such
as image processing tools, web servers, network analyzers,
cryptography suites, and interpreters. Workload execution
times range from a few seconds per input (libzip) to over 30
minutes (OpenLiteSpeed). Maximum memory usage ranges
from about 2 MB to over 100 MB. The software versions
range from releases from 2010 to 2021.

On average, PUMM outperforms MarkUs and FFmalloc

with a runtime overhead of 2.04% and memory overhead
of 16.5%. This is 2.74% and 52.0% better than the best
combined results of the other two systems. MarkUs performs
second best in terms of memory overhead, whereas FFmalloc
is second best in terms of runtime.

FFmalloc’s memory overhead is over 823% on average and
upon investigation, we discover a limitation in FFmalloc’s
design, which is that in order to reduce the number of system
calls being made to allocate memory, which would further in-
crease runtime overhead, FFmalloc requests memory in larger
chunks than typical memory managers — at least 4 MB per
request. FFmalloc also does not release memory until at least
8 consecutive chunks can be freed, further increasing memory
overhead. Since this dataset contains some programs with
relatively small memory footprints, these large allocations
inflate FFmalloc’s memory overhead.

For workloads with shorter execution times, we observe an
inflation in runtime overhead reflective of the upfront startup
cost of initializing each system. Thanks to PUMM’s offline
analysis, the policy it enforces at runtime is very efficient to
initialize and enforce, giving it an advantage over the other
systems. On the other hand, MarkUs and FFmalloc require
more time to initialize because they have to create worker
threads for scanning or specialized memory pools for OTA.
This difference is pronounced in lrzip, where we observe
a spike in MarkUs’ runtime overhead. We also observe that
shorter workloads inflate the memory overhead for MarkUs
because it cannot release a freed memory chunk until it has
verified with a scan that no possible pointers remain. Con-
versely, we observe that the longer workloads lower the over-
heads for all three systems, with PUMM still performing best.

One anomaly we observe in the data is the memory over-
head for MarkUs on Nginx. In this case, the workload requires
thousands of requests to be handled, which takes over 30 min-
utes in our environment, so it cannot be explained with the
previous observations. Upon investigation, we realize that
false positive pointer detections are causing MarkUs to quar-
antine memory longer than necessary. A similar observation
was made by the authors of FFmalloc, which inspired them
to craft an exploit to exhaust memory [61].

SPEC CPU2006 Figures 6 and 7 show the runtime and
memory overheads, respectively, for the evaluated systems
on the SPEC benchmark. These metrics are presented in log
scale. Once again, PUMM outperforms MarkUs and FFmal-
loc with an average runtime overhead of 3.12% and mem-
ory overhead of 1.87%. By comparison, the overheads for
MarkUs are 37.41% and 159.17%, respectively, and 17.09%
and 288.19% for FFmalloc. Our results for MarkUs and FF-
malloc are within 1% of the numbers reported in their original
publications, giving us confidence in the results.

All three systems incur higher overheads compared to the
real-world dataset, which is reflective of SPEC’s workloads
being more CPU and memory intensive. Similar to the real-
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Figure 4: Runtime overhead on the real-world program dataset. PUMM, MarkUs, and FFmalloc’s average overheads are 2.04%,
13.02%, and 4.78%, respectively.
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Figure 5: Memory overhead on the real-world program dataset. PUMM, MarkUs, and FFmalloc’s average overheads are 16.48%,
68.45%, and 823.90%, respectively.

world programs, MarkUs performs second best in terms of
memory overhead whereas FFmalloc performs second best
in terms of runtime overhead. We observe that PUMM’s
performance remains consistent across the SPEC programs
with only a minor uptick in runtime overhead for gamess.
The other systems also experienced increased overhead on
this program, with the worst case being MarkUs at over 250%.
MarkUs and FFmalloc also experienced increased runtime
overheads on soplex and calculix.

Similar to execution, PUMM’s memory overhead is stable
across all the SPEC programs, whereas we observe several
upticks for the other systems. The worst case for MarkUs is
calculix, with a memory overhead of over 2,000%. Upon
investigation, we believe the root cause of this anomaly is tied
to false positives in MarkUs’ scanning routine. Unfortunately,
the authors of MarkUs did not include this program in their
published evaluation, so we cannot verify whether they also
encountered this issue. FFmalloc’s worst memory overhead is
over 1,500%, observed in libquantum. This result does not
match the overhead published by FFmalloc’s authors, despite
the other results being consistent. Repeating the experiment
yields the same result. Even if we discard these outlier cases,
PUMM still significantly outperforms the other systems.

4.3 Code Coverage
Recall from Section 3 that over-approximating an execu-
tion unit can increase memory overhead whereas under-

approximating can reduce security. With this in mind, we aim
to quantify the robustness of PUMM by measuring the change
in memory usage, number of release points, and prevented
UAFs as a function of the number of analyzed traces. Since
our real-world dataset only offers 1 to 6 exploits per program,
we turn to synthetically injected bugs to achieve a large scale
evaluation, using the technique described at the beginning of
this section. Specifically, we evaluate 100 synthetic bugs per
program binary, 3,000 in total (26 unique programs, 30 tested
versions). For brevity, we will focus on the results for patch
and Chakra. Results for the rest of the real-world programs
are available in the Appendix.

Figure 8 shows the results for patch. Our first observation
is that as PUMM analyzes more traces, more release points
are added to the policy. This is generally true for the whole
dataset. Interestingly, at 2 points in PUMM’s analysis, new
data causes a release point to be dropped from the policy. In
short, a newly revealed path makes a release point no longer
safe. Despite this, the results show that only 1 of the 100
evaluated bugs is exploitable, and this bug remains exploitable
regardless of how many traces are analyzed.

Upon investigation, we discover an edge case not addressed
in PUMM’s implementation, which we illustrate in Figure 9.
This figure contains a portion of patch’s CFG, with some
simplifications made for readability. The unit head is marked
in blue and its lone safe caller is marked in yellow. First,
during startup, patch allocates and initializes its global data
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Figure 6: Runtime overhead for the SPEC CPU2006 benchmark. PUMM, MarkUs, and FFmalloc’s average overheads are 3.12%,
37.41%, and 17.09% with geometric means of 0.57%, 9.62%, and 2.27%, respectively.
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Figure 7: Memory overhead for the SPEC CPU2006 benchmark. PUMM, MarkUs, and FFmalloc’s average overheads are 1.87%,
159.17%, and 288.19% with geometric means of 0.09%, 17.76%, and 125.57%, respectively.
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Figure 8: Robustness of PUMM on patch.

structures. During this phase, our framework frees one of the
structures to synthetically inject a bug, marked in red. This
free is quarantined by PUMM, after which the program begins
its first iteration of the execution unit, which processes the first
input. When the yellow node is reached, PUMM releases the
memory that was quarantined during the program’s startup,
allowing it to be reallocated in subsequent iterations of the
unit. Once all the inputs have been processed, patch enters
its cleanup phase where it then triggers a UAF.

What makes the example in Figure 9 interesting is that
the object is defined at the very beginning of patch’s exe-
cution, but then is not used until patch’s cleanup routine at
the very end. In other words, this object’s data dependen-
cies completely circumvent the execution unit, as denoted by
the green arrow. This also explains why the synthetic bug

remains exploitable no matter how many traces PUMM ana-
lyzes. In total, we find 4 occurrences of this behavior across
the 3,000 synthetic bugs we evaluated. These are the only 4
bugs PUMM fails to protect against. This limitation can be
addressed by redesigning PUMM to have multiple quarantine
lists with different release points, including one for global
variables. We leave this direction to future work.

Figure 10 shows the changes in Chakra. This example
clearly demonstrates how the memory usage decreases as the
number of release points increase. Conversely, the number
of prevented UAFs does not change, revealing no signs of
under-approximation of the execution units. In summary, we
see minor improvements to memory usage across our dataset
and no degradation to security as more traces are analyzed.

4.4 Manual Verification

Table 4 presents our manual verification of the units identified
by PUMM during profiling. Specifically, for each real-world
program, we first map the head of the first unit identified by
PUMM back to its location in the program’s source code,
shown as a filename and line number. In parallel, we also
study the source code to identify the key data structure that
tracks the program’s current task.7 From this information, we
identify how many tasks are contained in our test workloads

7Prior EUP work has demonstrated how tracking changes to this object
at runtime can yield accurate partitions [39].
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Figure 9: Unprotected synthetic UAF in patch. Red denotes
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marks the unit’s head and yellow marks the safe caller. The
green arrow shows the freed object’s first data dependency.
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Figure 10: Robustness of PUMM on Chakra.

and how many times the units defined by PUMM are executed.
Notice that for all 26 real-world programs, the number of

processed tasks and number of executed units are equal. The
counts vary from 2 to 107, mostly based on the size of the
workloads. This evidence supports that PUMM is identifying
the main task handling loop of the real-world programs, en-
abling it to accurately dissect the program’s execution by task
to carefully defer memory reallocations.

5 Limitations

Code Coverage No system based on dynamic profiling can
guarantee complete code coverage during profiling, meaning
some paths may not be analyzed. However, since PUMM
identifies the heads of execution units, which are typically
the outermost loop of the program, we expect PUMM to be
fairly robust. This claim is supported by our evaluation results.
Coverage can be expanded using techniques like fuzzing [45]
(as we did) or with symbolic analysis [62].

Program Unit Head Task Object Tasks Instances
AutoTrace input-tga.c:278 fp 6 6
bzip2recover bzip2recover.c:367 bsIn 4 4
ChakraCore ch.cpp:1270 argInfo 5 5
cxxfilt cp-demangle.c:2726 di 3 3
giflib dgif_lib.c:1079 GifFileIn 9 9
gifsicle gifsicle.c:1530 input_name 9 9
GraphicsMagick command.c:17396 image_info 8 8
Gravity gravity.c:222 vm 5 5
jpegoptim jpegoptim.c:494 infile 15 15
libmimedir test.c:76 mde 5 5
libzip ziptool.c:1134 za 107 107
lrzip runzip.c:314 ss 3 3
Lua lua.c:445 L 2 2
mjs mjs.c:12046 mjs 20 20
mruby gc.c:1711 mrb 5 5
nasm preproc.c:906 line 20 20
Nginx njs_shell.c:286 fp 20 20
OpenLiteSpeed lshttpdmain.cpp:930 m_pServer 8 8
OpenSSL openssl.c prog 2 2
patch main.c:199 patchname 5 5
PHP php_cli.c:924 script_file 5 5
Python import.c:163 scan 6 6
readelf readelf.c:6717 filedata 15 15
rec2csv rec2csv.c:298 db 3 3
Wireshark tshark.c:2116 pc 2 2
yasm yasm.c:500 dir 10 10

Table 4: Manual verification that PUMM’s units execute once
per processed task.

Security Guarantee Although EUP is largely trusted by
the data provenance community, it is ultimately driven by
heuristics that can be violated by developers. One such pat-
tern appears in our evaluation of 3,000 synthetic UAFs, which
can be resolved by using a separate quarantine list for global
variables. Overall, while PUMM demonstrates significantly
lower overhead than defenses based on scanning and OTA,
it also cannot guarantee security to the degree MarkUs (as-
suming no pointer obfuscation) and FFmalloc can. However,
PUMM still demonstrates valuable protection by halting all
40 real-world vulnerabilities, including all the ones from FF-
malloc’s original dataset. Similarly, out of 3,000 synthetically
generated UAF bugs, PUMM only fails to protect 4, all of
which share the same pattern, as described above.

Dynamically Generated Code Since PUMM relies on of-
fline profiling to generate its policies, dynamically generated
code cannot release the quarantine list. In the common case
where dynamic code is untrusted and isolated by a sandbox
(e.g., browsers executing website JavaScript), PUMM iden-
tifies all dynamic code as belonging to the same unit as the
sandbox. Conversely, if the entire program is dynamically
generated code, PUMM yields an OTA policy.

Resolving Double Frees As mentioned in Section 3, if two
frees quarantine the same memory, PUMM can merge them
together to automatically resolve what would otherwise be-
come a double free abort. However, some system administra-
tors prefer for double frees to always abort because otherwise
such bugs may go unnoticed and unpatched. For this rea-
son, PUMM provides a configuration setting to preserve the



aborting behavior, if desired.

Compiler Optimized Code One limitation of using stack
return pointers for caller identification is that it cannot detect
callers that have been optimized by the compiler with tail
call elimination. This is sometimes applied when a function
ends with a call to another function, which would normally
result in two returns being executed sequentially. With the
optimization applied, the tail call is replaced with a jump so
only one return executes. Consequently, if the eliminated tail
call is also a safe caller for PUMM, it will not be eligible
for releasing the quarantine list. However, as we show in our
evaluation that uses a dataset of optimized production binaries
with eliminated tail calls, there has no observable impact to
PUMM’s performance.

6 Related Work

Execution Unit Partitioning Researchers have explored
the use of data provenance to facilitate forensics [5,24,29, 31,
33,35,37–41,60], auditing [3,15–17,64], alert triage [24,25],
and intrusion detection [4, 13, 47]. The false dependency
problem was then formally identified [58], leading to a line
of work on EUP [26, 31, 33, 39, 40]. PUMM extends this line
of work by exploring whether similar concepts can be applied
to UAF prevention.

Secure Allocators Early work in secure allocators [36, 48]
demonstrated the possibility of preventing memory safety
violations by carefully controlling object placement. For
example, UAF can be prevented with high probability by
randomizing freed page reuse. Unfortunately, the memory
overhead of these systems made them impractical for real-
world deployment.

Later designs like DieHard [6] and its successor,
DieHarder [46], demonstrated more efficient ways to simulate
spatial memory safety. FreeGuard [55] further advanced this
work by integrating optimizations from prevalent performance
focused allocators. Unfortunately, while FreeGuard achieved
better security than the default Linux allocator at a simi-
lar performance, it did not match the security of DieHarder.
Guarder [56] followed, proposing ways to help bridge the
gap between FreeGuard’s performance and DieHarder’s se-
curity. PUMM pursues a different angle, proposing EUP as
a fundamental basis for preventing UAF rather than relying
on bounded reuse probabilities. There is also work that pro-
poses UAF prevention by restricting reuse to within objects
of the same type [2], however this only provides partial UAF
protection.

In this work, we directly compare against FFmalloc [61]
and MarkUs [1], which offer UAF protection at better per-
formance than the FreeGuard line of work. FFmalloc is the
latest design based on OTA, surpassing the performance of

Oscar [20] and similar prior work [21]. Likewise, MarkUs is
the latest in preventing UAF by retrofitting garbage collection
into legacy software and achieves better performance than its
prior work [34, 43, 53], several of which also require source
code. PUMM is similar to MarkUs in how it temporarily quar-
antines addresses to prevent reallocation, but distinguishes
itself by the use of EUP rather than scanning, which is not
limited by pointer hiding [9] in target programs.

Pointer Invalidation Whereas secure allocators prevent
UAF by controlling the placement of objects and reuse of
pages, it is also possible to focus on the invalidation or nullifi-
cation of dangling pointers. DangNull [32] tracks all point-
ers and allocated objects to explicitly nullify pointers once
their pointed to object is freed. FreeSentry [63] uses a sim-
ilar approach, but only flips the top bit of the pointer value,
which makes debugging easier. Unfortunately, determining
the points-to relationship between objects and pointers is
difficult and inaccurate without source code, making these
approaches poorly suited for protecting legacy programs. It
is also possible to label pointers [12, 42], however this also
requires source code and performing the label checks intro-
duces high overhead. This approach also requires tainting to
account for pointer arithmetic, which further increases over-
head. Alternatively, pointers can be converted into indirect
table references [49], enabling invalidation by nullifying a
single entry, but this still incurs high overhead.

Use-After-Free Detection It is possible to detect UAF us-
ing heavy instrumentation to track memory allocations and
accesses, which is implemented in systems like Valgrind [44]
and AddressSanitizer [50]. Unfortunately, such approaches
have high overhead, making them poorly suited for use out-
side of testing, and because they are designed for debugging
as opposed to security, advanced attackers can circumvent
them [32]. Alternatively, it is also possible to fuzz test for
UAF bugs [45], however achieving complete code coverage is
difficult, which allows some instances to remain undetected.

7 Conclusion

We propose a new design for preventing UAF exploitation
based on deferred reallocation and EUP. Using dynamic profil-
ing and analysis, our design identifies autonomous execution
units in programs without source code, deferring freed mem-
ory from reallocation until after the current unit instance has
ended. Our Linux prototype, PUMM, successfully prevents
40 UAF vulnerabilities from being exploited in 26 real-world
programs while incurring 2.74% less execution overhead and
52.0% less memory overhead than scanning and OTA-based
defenses. Against 3,000 synthetically generated UAFs, only
4 remain exploitable under PUMM’s protection.
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Figure 11: Additional results for the PUMM robustness experiment. For programs where multiple versions were tested, only one
graph is presented for brevity. We observe no major differences between different versions of the same program.
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