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Abstract
Mis- and disinformation are a substantial global threat to our
security and safety. To cope with the scale of online mis-
information, researchers have been working on automating
fact-checking by retrieving and verifying against relevant ev-
idence. However, despite many advances, a comprehensive
evaluation of the possible attack vectors against such systems
is still lacking. Particularly, the automated fact-verification
process might be vulnerable to the exact disinformation cam-
paigns it is trying to combat. In this work, we assume an
adversary that automatically tampers with the online evidence
in order to disrupt the fact-checking model via camouflaging
the relevant evidence or planting a misleading one. We first
propose an exploratory taxonomy that spans these two targets
and the different threat model dimensions. Guided by this, we
design and propose several potential attack methods. We show
that it is possible to subtly modify claim-salient snippets in
the evidence and generate diverse and claim-aligned evidence.
Thus, we highly degrade the fact-checking performance under
many different permutations of the taxonomy’s dimensions.
The attacks are also robust against post-hoc modifications
of the claim. Our analysis further hints at potential limita-
tions in models’ inference when faced with contradicting
evidence. We emphasize that these attacks can have harmful
implications on the inspectable and human-in-the-loop usage
scenarios of such models, and we conclude by discussing
challenges and directions for future defenses.

1 Introduction

Disinformation and misinformation have recently raised
much-deserved global and societal concerns [71]. They can
have major harmful consequences on our core democratic val-
ues (e.g., polarizing the public’s opinions and affecting elec-
tions [4]), individuals’ lives (e.g., spreading hurtful rumors
and false accusations [21]), and society’s health and security
(e.g., spreading non-scientific claims about pandemics [16]),
to name a few. To face such dangers, fact-checking and ver-
ification (used interchangeably [79]) is essential to debunk
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Figure 1: We propose a taxonomy and several evidence ma-
nipulation attacks against fact-verification models. The tax-
onomy includes the attacks’ target: Camouflaging (to hide
the relevant evidence) and Planting (to introduce a deceiving
one). The attacks might negatively affect the inspectability
and humans in the loop.

false claims and limit their dissemination; it is a strategy now
employed by many platforms [46, 81] and an established
common practice in journalism [66].

A Need for Automation. However, manual fact-
verification is time-consuming [27]. Given the proliferation
of online misinformation and its rapid spread, human
fact-checkers can find it burdensome and challenging to keep
up [28]. This motivated an active research area within the
Natural Language Processing (NLP) community to automate
the evidence-based claim verification task [79, 64, 61, 54, 29,
76]. One of the largest and most popular frameworks in this
domain is Fact Extraction and Verification (FEVER) [79],
which aims to verify human-written claims against Wikipedia
as a relatively credible source.

Besides academic interest, automation has been discussed
in practice among fact-checking organizations and journal-
ists [26, 34]. While professional fact-checking remains princi-
pally manual, some organizations are working on preliminary



prototypes [23, 8, 72] to automate various fact-checking steps,
with signs that they can be potentially useful as complemen-
tary assistive solutions with human supervision [75, 32].

Fact-Checking Attacks. In addition to recent advances,
previous work studied adversarial attacks on models by chang-
ing the formulation of claims [78, 30, 6]. This primarily
aimed at diagnostically revealing the dataset’s and models’ bi-
ases without considering malicious intents, i.e., the evidence
databases were assumed to contain only factual information.
To the best of our knowledge, Du et al. [20] is the only work
that studied automated evidence manipulation attacks by syn-
thesizing AI-generated articles given the claim [90]. However,
their approach lacked a comprehensive analysis and formula-
tion of the threat model and possible attack vectors.

Our Work. We take analogies from journalism, where ma-
nipulated media constitutes a major challenge [19, 1]. We
assume an adversary that disrupts the automatic fact-checking
process by automatically manipulating evidence repositories
to obscure or introduce misleading evidence. We propose
a broad taxonomy (Figure 2) to derive our systematic ex-
ploration of evidence manipulation attacks. The taxonomy
spans different dimensions: the attacker’s targets (evidence
camouflaging or planting as in Figure 1), the constraints (the
control they have over modifying the repository and the orig-
inal context), and the capabilities (the models available to
launch the attack). We also evaluate the attacks with respect
to the attacker’s knowledge (the attacker’s dataset and the
white- or black-box access to the evidence retrieval and verifi-
cation models). We highlight that these attacks can negatively
affect humans in the loop [48, 83] (e.g., models potentially
assisting fact-checkers or end-users) – models should allow
the interpretability of the reached verdict via, e.g., inspecting
the salient evidence [54, 79, 7]. However, by camouflaging
evidence, attackers could perturb or deprioritize the originally-
relevant evidence. Thus, it might not be retrieved or be irrel-
evant/inconclusive if it is (sometimes even to humans). In
contrast, by planting targeted factually-wrong evidence, hu-
mans in the loop might be deceived by these campaigns (i.e.,
spear disinformation [93]). Overall, this might cause a false
sense of security, especially for end-users, given the lack of a
verdict or enforcing the manipulated one.

Why Should We Study Fact-Checking Attacks? Even
under human supervision, attacks that compromise the in-
tegrity of models have dangerous implications, ranging from
Denial of Service (DoS) to automatically manipulating crit-
ical sources needed for human verification. Besides, these
tools might be used more widely in the future [8], given the
rapid progress of NLP. In addition, automated fact-checking
has also been considered a promising sustainable solution to
detect machine-generated text [90]. Given this potential, it is
crucial to proactively understand the vulnerabilities and limi-
tations of fact-checking models and design adversary-aware
ones, now and before large-scale deployment.

Why Should We Study AI-Generated Attacks? Large

Language Models (LLMs) [12, 13] can generate highly cred-
ible and plausible content that humans often struggle to de-
tect [39, 2, 15]. While human-generated content remains what
mainly fuels current disinformation campaigns [22, 18, 73,
62], the wide accessibility of LLMs might enable and facilitate
the creation of disinformation and automatic manipulation at
scale, calling for an early evaluation of such threats.

Contributions. In summary, we make the following con-
tributions: 1) We propose a systematic taxonomy to conduct
the first comprehensive investigation of automated evidence
manipulation attacks. 2) We propose extensive and highly suc-
cessful attacks that vary in their targets, stealthiness, context-
preserving constraints, and the adversary’s capabilities and
knowledge. 3) We discuss models’ limitations, future defense
directions, and the need to model possible malicious manipu-
lations in the design of fact-verification models.

2 Preliminaries and Related Work

This section briefly introduces the automatic fact-checking
frameworks and the technical methods we used to construct
the attacks. We report previous real-world examples of evi-
dence manipulation that motivate and derive our work. Finally,
we discuss our contributions in comparison with related work.

FEVER Dataset and Framework. The FEVER
dataset [79] consists of over 185k claims manually written
based on Wikipedia. Each claim is annotated as one of three
labels: ‘Supported’ (SUP - 80k train, 6k dev. sets), ‘Refuted’
(REF - 29k train, 6k dev. sets), or ‘Not Enough Info’ (NEI
- 35k train, 6k dev. sets). The REF and NEI claims were
constructed by instructing annotators to generate mutations
of correct claims (e.g., negation, entity substitution). SUP and
REF claims were labelled with the golden evidence needed
for verification. There have been other specific, yet smaller,
datasets (e.g., scientific [84] and COVID-19 claims [61]).
However, we use FEVER due to its popularity and large size.
We use the training set (or subsets from it) to train the attack
models and perform the attacks on the dev. set.

The task involves the open-domain verification of claims,
where the golden evidence is not pre-identified at test time.
Specifically, the task consists of three steps: 1) document
retrieval (obtaining relevant Wikipedia pages given their ti-
tles and the claim), 2) evidence retrieval (selecting evidence
sentences from the retrieved pages), and 3) verifying the
claim given the retrieved sentences. Thorne et al. [79] pro-
posed a simple baseline that retrieves pages and evidence
sentences based on TF-IDF vectors followed by an entailment
model [50]. Many other improvements have been achieved
by employing state-of-the-art transformers [37, 42] in both
the retrieval and verification tasks [92, 43, 49]. We test the
attacks on the KGAT [43] as one of the most prominent mod-
els and due to its easy-to-use public implementation. It uses a
BERT-based evidence retrieval that was trained contrastively
on golden evidence vs. other random sentences. Then, it is



used to rank sentences according to the claim. The verifica-
tion model is based on a graph neural network with BERT or
RoBERTa backbones for representations. The number of evi-
dence sentences used in the verification step is capped to the
top 5 retrieval results. We also test on CorefBERT [89] that
initializes the KGAT verification model with a BERT model
fine-tuned to better handle contextual coreferential relations.

NLP Adversarial Attacks. Previous work generated adver-
sarial attacks by word-level substitutions based on semantic
constraints via word embeddings search [5] or contextual-
ized replacements [41]. More recent work used imperceptible
changes [11] to manipulate the output of NLP classifiers. We
apply these attacks to perturb the evidence to achieve the
evidence camouflaging target; they distort the salient snip-
pets within the evidence rather than semantically shifting the
polarity with respect to the claim.

AI-Generated and Re-written Evidence. We utilize con-
ditional language generation to achieve targeted disinfor-
mation given claims, meeting the evidence planting target.
We also use methods related to the task of text re-writing
(e.g., style transfer [67], sentiment-changing [10], paraphras-
ing [45], and factual modification [77, 65]). Specifically, we
conduct claim-guided evidence re-writing to 1) remove claim-
salient snippets by paraphrasing or conditional generation for
the camouflaging target, or 2) align the evidence with the
wrong claim for the planting target.

Evidence Manipulation: Examples. Being an open
source, Wikipedia is susceptible to manipulative edits [59,
20]. Some of these are designed to cause vandalism and be
humorous [82], and thus, are easy to be detected. However,
some could last for as long as several years [86]. It was even
subject to pervasive organized disinformation campaigns that
lasted for almost a decade to promote political or ideologi-
cal orientations (e.g., far-right groups) [17]. Other incidents
included deleting incriminating information [74], deleting
political scandals [85, 80], and editing a description of a med-
ical procedure from ‘controversial’ to ‘well documented and
studied’ [73], closely matching our attacks’ targets: evidence
camouflaging and evidence planting.

While we use a Wikipedia-based dataset, the concept of
seeding erroneous evidence can be applied to other mediums,
social platforms, and websites, sometimes with even less con-
straint and moderation than Wikipedia. Case studies [38, 21]
demonstrate events where participants compiled evidence col-
lages of verified and unverified information (making it harder
to verify) and used them to affect the public, journalists, and
authorities. Thus, we take analogies from these incidents and
investigate whether evidence manipulation can be automated
by AI technologies to attack fact-verification models.

Related Work. Du et al. [20] studied a similar task to ours.
However, via the lens of our taxonomy, they only studied one
type of planting attacks. In contrast, we extend the targets
to evidence camouflaging, proposing stealthier (sometimes
completely factual) attacks that hide the facts instead of intro-

ducing evidently false content. Via camouflaging, we highly
succeed in attacking correct claims, which was not covered
in their work. We further extend the planting attacks and
propose an evidence-rewriting attack that is more context-
preserving (varying the constraint dimension) yet more suc-
cessful. Even within the same constraints, we address multiple
limitations reported in their work. We generate evidence that
is better coordinated with the claims and more similar to the
golden evidence distribution. As a result, we produce both
more successful and more plausible attacks while still having
a limited-knowledge adversary. Our planting attacks show
more success in SUP to REF inversion, which was not possi-
ble at all previously, and reveal limitations of fact-verification
models when faced with contradicting evidence.

3 Threat Model

We assume an adversary A that targets a fact-checking model
M via evidence manipulation to serve a political agenda or
achieve personal gain. M might be employed (by defender
D) to automatically flag disinformation or assist fact-checkers
or end-users by outputting warnings and pointing to related
evidence. M consists of retrieval and verification models (RD
and VD , respectively). Similarly, the adversary has retrieval
and verification models (RA and VA , respectively) that mirror
M . D has a labelled fact-verification dataset SD . A has a
dataset SA , where SA ⊆ SD . In the following, we outline the
taxonomy of the attacks, as depicted in Figure 2.

1) Adversary’s Targets. Rather than generically assuming
that A aims to fool M , we take inspiration from previously
observed manual evidence manipulation attempts to further
categorize the attacks’ logical targets into camouflaging and
planting. This is also motivated by the potential deceptive
implications of these targets on humans.

In camouflaging, A intends to hide the sentences needed
to verify the claim (e.g., [74, 85, 80]). Simply removing them
might be suspicious and not always applicable (e.g., removing
image captions). Thus, we investigate more subtle attacks that
work as a ‘smarter delete’ by changing the evidence such that
it is less relevant to the claim (because it is either perturbed
or does not contain the needed information anymore). These
attacks can be applied to both REF and SUP claims. As a
result, the claims would mostly become unverifiable, and the
model would change its prediction to NEI. In planting, A
intends to actively change the narrative to change M ’s predic-
tion (a less subtle adversary, e.g., [73, 17])). This can be done
by i) partial re-writing of the initially relevant evidence or ii)
inserting fully newly generated sentences to, e.g., have more
flexibility or pre-emptively fill the data void [25]. The first
can be used to, e.g., change the prediction from REF to SUP,
while the second also allows changing from NEI to SUP.

2) Adversary’s Constraints. We set two constraints for A :
how much the attacks need to preserve the context, and how
the evidence repository can be modified.
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Figure 2: Taxonomy of the threat model’s dimensions. We categorize and evaluate the attacks in terms of the adversary’s targets,
constraints (preserving context and modifying the evidence repository), capabilities (which fact-verification and other external
models are needed to compute the attack), and knowledge (access to the downstream fact-verification models and dataset).
Arrows indicate an increasing direction of the dimension.

Many works in adversarial NLP assumed that adversarial
sentences should preserve the entailment/label in order to be
used as a diagnostic tool for the models’ robustness [6, 5, 78].
However, since we study disinformation and information ma-
nipulation, we do not exclusively assume that the needed facts
still exist. Instead, the manipulations should be stealthy by
being sensical and grammatical. Besides, they might need to
completely or partially preserve the context1 to avoid detec-
tion in the case of, e.g., a highly moderated page or website,
or pass in disinformation within partially factual content to in-
crease the perceived credibility [21]. In our attacks, sentence
editing can preserve the context more than generating entirely
new sentences, and imperceptible attacks and paraphrases
fully preserve the context by not adding new information.

We also analyze the attacks with respect to the repository
modification method needed for the attack to succeed. In
the camouflaging attacks, we empirically found that A needs
to ‘replace’ the original evidence with the manipulated one.
However, for planting attacks, A can have an ‘add’ control
only. We found that even when the planted evidence exists
along with the old one2, M can still be swayed to agree with
a wrong claim. This is especially relevant in setups beyond
Wikipedia, where A might be constrained by not having a
‘replace’ access to a specific source (e.g., a credible newspaper
or a governmental source that is hard to infiltrate). Instead,
they might resort to spamming the Internet and other reposi-
tories and sources with the intended narratives.

Finally, as we work on a Wikipedia-based dataset, we have
a single evidence repository. However, in practice, the con-
straints can also include how many sources/repositories the
adversary can access to poison or modify.

3) Adversary’s Capabilities. Next, we analyze the attacks
in terms of the models A needs to obtain/train in order to
compute the attack. Specifically, we outline if A needs to

1By ‘context’, we mean how much information within the evidence sen-
tence is replaced by new, possibly incorrect, information.

2An example of that in the case of Wikipedia would be to create a new
page or append the evidence to another page.
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Table 1: The investigated permutations of the taxonomy’s
dimensions and the attack methods that satisfy them. The
‘Labels’ column indicates which labels this attack can target,
based on the attack’s properties or our empirical findings.

have fact-verification models (RA or VA ) in addition to other
external off-the-shelf or fine-tuned models (e.g., a language
generation model). For example, relevant-evidence editing
attacks must have RA that ranks and returns the potentially
relevant sentences, attacks targeting the entailment step need
to have VA , generating sentences from scratch might not need
a retrieval but requires a language generator (either off-the-
shelf or fine-tuned), etc.

4) Adversary’s Knowledge. As an orthogonal dimension,
we evaluate the attacks in varying degrees of A’s knowledge,
particularly the access and knowledge about RD , VD , and
SD . For the retrieval, we study a white-box scenario (i.e.,
RA = RD ) and black-box scenarios where the architecture



is either the same or different. To minimize the attacks’ as-
sumptions, we never use the white-box verification model to
construct the attack (i.e., VA ̸= VD ), and we do not assume
any knowledge about its exact framework. For all our attacks,
we set VA as a model trained on pairs of claims and single
evidence sentences, while VD is based on a graph neural net-
work to capture the relationship among the evidence. Also,
the backbone models can differ (e.g., BERT vs. RoBERTa).
In practice, these white- and black-box scenarios can depend
on whether a classifier is released by a developing company
or only available as an API or a web interface [3].

Finally, we evaluate a setup where SA ⊂ SD . For Wikipedia,
having a same-distribution dataset subset is a reasonable as-
sumption, as the main limitation here would be to write and
annotate the claims (i.e., the size of the dataset), assuming the
dataset cannot be obtained in other ways. Beyond Wikipedia,
the taxonomy can potentially extend to scenarios where D’s
dataset is proprietary or from a different distribution.

4 Attacks on Fact-Verification Models

In this section, we describe the details of the investigated
attacks, shown as a summary in Table 1. Starting from permu-
tations of the proposed taxonomy, we explore possible techni-
cal methods that satisfy them. As discussed in section 3, we
found that certain attack targets might need specific assump-
tions on the constraints and capabilities. Thus, exhaustive
permutations are not feasible. Given the attack method, we
indicate to which ground-truth labels it can be applied. Some
attacks have inherent and logical properties of the labels they
can target, e.g., camouflage is possible for REF or SUP labels
since NEI labels do not have relevant evidence to begin with.
Moreover, ‘claim-aligned rewriting’ is ideally for REF. How-
ever, for others, we indicate our empirical findings of what
combinations of labels were possible (e.g., planting attacks
were hardly successful on SUP).

In addition, Figure 3 depicts the attacks’ general flow. As
discussed in section 3, attacks might or might not need a re-
trieval step depending on whether they edit existing evidence3

or generate a new one. After the attack sentences are com-
puted, the evidence repository is modified according to the
constraints. The attacks are then tested on the downstream
model M by first retrieving from all the manipulated evi-
dence repository and then performing the verification step. In
the following, we first discuss camouflaging, then planting
attacks. To visualize the attacks with examples, see Figure 1
and Table 10 in Appendix B.

4.1 Camouflaging Attacks R+S
Camouflaging attacks assume a ‘replace’ evidence manipula-
tion constraint and can be applied to SUP and REF examples.

3We never assume that relevancy annotations (i.e., golden evidence labels)
are required to run the attack at test time.
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Figure 3: Attacks’ general pipeline. Some attacks might first
need to retrieve the relevant evidence. Others can be con-
structed given the claims only. Next, the attack is tested on
the downstream FEVER model M (Step 2).

4.1.1 Lexical Variation

This attack is based on introducing lexical changes to attack
the verification model VA . Alzantot et al. [5] proposed to
generate natural language adversarial examples via black-box
access to a classification model. They use a population-based
optimization algorithm that generates candidate sentences by
finding the N nearest neighbors of a word based on GloVe
embeddings [52]. Other techniques were employed to filter
out unfitting words (e.g., a distance threshold and ensuring
that nearest neighbors are synonyms [47]). The algorithm
returns candidates that maximize the required target label.

This method was used previously to generate claim-based
attacks on FEVER [30]. We here apply it to perturb the ev-
idence while keeping the claims fixed. As a proxy to VD ,
VA is a RoBERTaBASE model trained on pairs of claims and
golden evidence. For NEI claims, the evidence is selected
from the retrieval results returned by RA . We then apply the
black-box attack against VA . For each claim, we attempt to
perturb the top sentences returned by RA , where the target
classification for SUP claims is REF and vice versa. Although
this is a targeted attack, we show in our experiments that the
perturbed sentences are generally less likely to be retrieved,
achieving the camouflaging target.

4.1.2 Contextualized Replace

The previous lexical variation attack is limited in considering
the context of the sentence since it uses GloVe embeddings
with fixed nearest neighbors. To solve that, Li et al. [41] intro-



duced the BERT-attack to get more fluent and higher-quality
perturbations. It is also a black-box attack against a classifier
model (e.g., BERT). First, salient words in the sentence s are
extracted by ranking the classification probability drop of the
correct label oy when masking a word wi to form a masked
sequence swi : Iwi = oy(s)−oy(swi).

Then another pre-trained BERT masked language model
(hence without fine-tuning: ) is used to generate candidates
for the ranked salient words. This has the advantage of being
more context-aware and dynamic, without using heuristics
such as a POS checker. The perturbations are restricted by a
budget ε on the words to replace and a probability threshold
on the masked language model’s candidates. The algorithm
then returns the candidates maximizing a wrong prediction.
Here, VA is a BERTBASE model fine-tuned on sentence pairs.

4.1.3 Imperceptible

We examine a stealthy attack where the changes performed are
invisible or imperceptible. Boucher et al. [11] used encoding-
specific perturbations to produce indistinguishable sentences
that nevertheless fool NLP classifiers. This might enable ma-
licious actors to hide documents or avoid content modera-
tion [11], a highly similar scenario to our camouflaging target.

This attack mainly breaks the tokenization step by replacing
characters with their homoglyphs and inserting invisible char-
acters, directionality, or deletion control characters. As these
characters are outside the models’ dictionaries, the tokens
would be mapped to UNK or incorrect sub-words. The attack
is also performed via black-box access to a model and a dif-
ferential evolution optimization algorithm [70] to minimize
the logits of the correct prediction oy: xA = argminx oy(x),
bounded by a perturbation budget ε on the total number of
changes. We use the previously mentioned BERT classifier
as VA . In our experiments, as expected, we observed that it
often changes (and consequently hides) the tokens that are
sensitive to the claim (e.g., entities, main verbs), affecting VA
and indirectly later the retrieval step by RD as well.

4.1.4 ImperceptibleRet

To further limit A’s capabilities, we then design a version of
the imperceptible attacks that only needs a retrieval model.
Ideally, if the main entities mentioned in the claim (c) are
hidden in the evidence, RA (and then RD ) will have low scores
for these sentences, i.e., the evidence would be hidden. Thus,
instead of minimizing the correct label probability, we here
minimize the ranking score of the evidence with respect to
the claim: xA = argminx RA(x,c).

4.1.5 Omitting Paraphrase

As ‘imperceptible’ attacks produce indistinguishable sen-
tences, they keep the sentences’ correctness. However, they

only hide the sentences from models while still being avail-
able to online readers. On the other hand, the ‘contextualized
replace’ attack could replace the relevant snippets but might
introduce syntactic errors and incorrect information, violating
the full preservation of the context constraint.

To meet both goals, we propose a sentence re-writing at-
tack based on paraphrasing or abstractive summarization. As
there are usually many different ways to write a summary
of a sentence, A here aims to pick the sentence that omits
the claim-salient snippets from the evidence. Specifically, we
use an off-the-shelf paraphrasing model, based on the PE-
GASUS abstractive summarization model [91], to generate
paraphrases for the top-retrieved evidence. This step is claim-
agnostic. Next, we use RA as an adversarial filter to select the
paraphrase that minimizes the retrieval ranking with respect
to the claim, c: xA = argminx RA(x,c). The reasoning here is
that paraphrases that leave out the important parts should be
ranked lower by RA .

This attack is highly stealthy; the re-writings are fluent as
they are not based on word-level perturbations. In addition, it
does not introduce false or even unrelated evidence, meeting
the complete preservation of the context constraint. It also
does not require A to either have a verification model or
fine-tune the additionally used paraphrasing model.

4.1.6 Omitting Generate

In some sentences, it might be difficult to find evidence para-
phrases that omit the claim-relevant parts. Thus, we inves-
tigate another omitting variant that assumes that A is not
constrained by keeping the context. As we exclude deleting
evidence as an attack (as discussed in section 3), we study a
more subtle approximation: Given the evidence, we generate
alternative evidence that should leave out the relevant parts.
We fine-tune a GPT-2 model [55] to generate supporting evi-
dence given claims (details later in section 4.2.3). Next, we
use the old evidence as a generation prompt. As the model
is fine-tuned to generate supporting evidence, the generated
sentence should have some overlap in topics and context with
the old evidence, ideally making it a plausible alternative. To
exclude sentences that copied the relevant parts from the old
evidence, we again pick the sentence with the lowest retrieval
score by RA . We show the workflow of these two omitting
attacks in Figure 4.

Evidence /
Alternative sentences  

(paraphrases / generation) 

Candidates Least scored  
sentence

Claim

/
Retrieval 

(Adv.) 

Figure 4: Omitting paraphrase and generate attacks.
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4.2 Planting Attacks /

Next, we discuss planting attacks that attempt to produce
evidence with a supporting factual stance to the claim. All
planting attacks assume that either a ‘replace’ or ‘add’ modi-
fication method can be applied.

4.2.1 Claim-aligned Re-writing R

To create evidence agreeing with a wrong claim, one can re-
write the relevant, likely contradicting, evidence. This can
partially keep the original context. Thus, compared to previ-
ous work [20], it can be stealthier than generating entirely new
evidence. To perform re-writings, we ideally need training
data in the format of <claims, refuting evidence, supporting
re-writes>, which is unavailable. We thus use a distant su-
pervision method. Thorne et al. [77] proposed a two-stage
framework to factually correct claims such that they are better
supported by the retrieved evidence. We here employ their
approach while reversing the task; we edit the evidence to
agree with the claim. This can be a harder generation task
since the evidence sentences are usually longer.

The framework, shown in Figure 5, consists of a masker
(Mask) and a corrector (Corr). First, Mask replaces claim-
salient parts in the evidence (e.g., supporting or contradicting)
with placeholders, yielding masked evidence s′: s′ = Mask(s).
Second, the corrector network is trained to fill in the blanks
while conditioning on the claim c: s̃ = Corr(c,s′). As distant
supervision, Corr is trained on pairs of SUP claims and their
masked golden supporting evidence, and it is instructed to
reconstruct the evidence: s̃ = s. The goal here is to produce
evidence that agrees with the claim. We use a masking method
based on masking the top important tokens according to a
BERT VA (similar to the ‘contextualized replace’ attack); we
empirically found that it outperforms the LIME masker [58]
used in [77]. The corrector network is a T5 encoder-decoder
model [56]. Then, to run the attack at test time, the frame-
work is applied to REF claims and the top retrieved evidence
sentences by RA to convert them to supporting ones.

+Stance Filtering. To further evaluate the attack’s success

GPT-2 

Candidates Highest supporting 
sentence 

Refuted / NEI 
Claim ||

Attack

GPT-2Claim || Supporting
evidence

Training

Verification 
(Adv.) 

Figure 6: ‘Supporting generation’ attack.

rate, we study a variant that samples different re-writes can-
didates using top-k sampling [33] from the trained corrector
{s̃1, s̃2, ..., s̃n} and then picks the sample that maximizes the
SUP class probability osupp of VA : s̃A = argmaxs̃ osupp(s̃).

4.2.2 Claim-aligned Re-writingRet R

We implement a variant of the previous attack that leverages
RA (instead of VA ) in the masking step for both the training
and the attack computation. Similarly, we mask each word
wi in the evidence s and compute RA ’s score for the masked
sentence s′wi w.r.t. the claim c:

Iwi = RA(s′wi ,c)

Then, we rank words in ascending order of these scores
and mask the top k; the most important words should ideally
cause the lowest retrieval scores when masked. The corrector
model is trained the same way as in the previous attack but
with the new masking output.

+Retrieval Filtering. To improve the attack, we sample dif-
ferent re-writes candidates from the corrector. As this attack
does not assume the availability of VA , the attack sentences
are picked using RA : s̃A = argmaxs̃ RA(s̃,c). The sentences
highly relevant to the claim are also likely to be agreeing with
it since the masking should have removed the contradicting
snippets and the corrector should yield supporting sentences.

4.2.3 Supporting Generation NEI+R

The ‘claim-aligned re-writing’ attack starts from relevant ev-
idence; thus, it partially preserves the context. However, A
might seek to distribute diverse supporting sentences instead
of re-writing a single one (e.g., for spamming). Additionally,
in some cases, it could be hard to reverse the stance from
partial re-writes, e.g., for NEI claims that do not have highly
relevant evidence, making the masking required for re-writing
less defined. Therefore, we study an attack based on generat-
ing new supporting evidence given the claim.

As shown in Figure 6, we first fine-tune GPT-2 to gener-
ate supporting evidence given a claim. As we do not have
training pairs of <wrong claims, supporting evidence>, we
use pairs of <correct claims, supporting evidence>, similar



to the previous distant supervision approach. The training se-
quence is: <claim> || <evidence>. To run the attack at test
time, we prompt the fine-tuned GPT-2 with the REF or NEI
claims, followed by ||. We fine-tune GPT-2 instead of using
it off-the-shelf for two reasons: 1) to adapt to the FEVER
writing style, and 2) the evidence should entail the claim, not
be a continuation of it.

+Stance Filtering. Nevertheless, text-generation models
can have limited coordination between the input and out-
put [68] (one of the reported limitations in [20]). To tackle
that limitation, we sample from the fine-tuned model and take
the samples maximizing the SUP probability of a BERT VA
(excluding exact copies of claims), similar to the previous
stance-filtering re-writing attack.

4.2.4 Claim-conditioned Article Generation
NEI+R

We fit the ‘AdvAdd’ method [20] within our taxonomy. The
adversary here has limited knowledge and capabilities. The
attack uses the claim to conditionally generate articles us-
ing the Grover model [90] (no extra fine-tuning or filtering
w.r.t. the claim), and it assumes that the article would be used
to create a new Wikipedia page. We exclude the ‘AdvMod-
paraphrase’ [20] because it yields unrealistic attacks (short
direct reiteration of claims). We also exclude the ‘AdvMod-
KeyReplace’ [20] because it is not intended to fool humans
(it produces sentences that do not logically support the claim
but are only superficially similar to it). It is important to note
that ‘AdvMod’ attacks differ substantially from our camou-
flaging attacks since they do not edit the relevant evidence.
Instead, they edit an article by appending new sentences that
are variants of the claim itself, not the original evidence.

5 Evaluation

We first show the attacks’ performance. We then evaluate the
attacks under different constraints and knowledge settings
and post-hoc claim paraphrasing. Next, we show qualitative
examples. Finally, we discuss a use-case of planting attacks
against the SUP label. We show in the main paper the results
on KGAT (BERTBASE). In Appendix A, we outline more
attacks’ implementation details. In Appendix B, we report the
results on CorefBERTBASE, KGAT (RoBERTaLARGE), and
CorefRoBERTaLARGE. Code and data will be available at:
https://github.com/S-Abdelnabi/Fact-Saboteurs.

5.1 Attacks’ Performance
We show the attacks’ performance on the KGAT (BERTBASE)
model in Table 2. We compute the model’s accuracy before
and after the attack (lower → more successful attack). We
also measure the percentage of perturbed sentences that were
retrieved by RD (‘recall’) and the ratio of predictions that

changed to NEI (‘→ NEI’). These metrics measure how well
the attacks align with the targets; e.g., recall is hypothesized
to be higher and ‘→ NEI’ lower for planting attacks. All
planting attacks are reported using the more constrained ‘add’
modification assumption, i.e., the original evidence still exists.
All attacks edit/add at most 5 sentences; this is to compute at-
tacks’ lower bounds but the attacker can, in principle, perform
more changes. We summarize our findings as follows:

1) Consistent with the targets, attack sentences are less
likely to be recalled in the camouflaging attacks. Also, predic-
tions mainly changed to NEI instead of the opposite polarity
(i.e., the relevant evidence becomes hidden or irrelevant). The

Attack SUP REF NEI Attack
Recall

→ NEI

- (baseline) 89.0 71.2 72.4 - -

Camouflaging

Lexical variation 68.9 65.4 - 42.1 73.6

Contextualized replace 50.7 59.7 - 30.3 69.3

Imperceptible (ε = 5)
Homoglyph 39.6 50.3 - 55.2 83.6
Reorder 37.8 49.5 - 55.1 81.8
Delete 38.9 49.7 - 60.5 79.4

ImperceptibleRet
Homoglyph (ε = 5) 62.3 60.5 - 31.5 88.9
Homoglyph (ε = 12) 25.9 42.6 - 16.5 90.1

Omitting paraphrase 51.0 54.3 - 54.4 83.8

Omitting generate 29.9 46.8 - 30.9 87.9

Planting

Claim-aligned re-writes - 51.2 - 95.2 4.4
+stance filtering - 38.4 - 94.4 1.8

Claim-aligned re-writesRet - 53.8 - 86.4 4.9
+retrieval filtering - 43.7 - 99.1 1.8

Supporting generation - 61.2 60.5 70.1 11.4
+stance filtering - 42.0 32.2 85.7 3.8

Claim-conditioned article
generation [20]

- 42.4 15.5

Table 2: Accuracy before and after attacks (%), recall of per-
turbed evidence by RD (%), and ‘→ NEI’ (%) (ratio of pre-
dictions that changed to NEI). The ‘Claim-conditioned article
generation’ results are from [20] (‘AdvAdd-full’).

https://github.com/S-Abdelnabi/Fact-Saboteurs
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Figure 7: Camouflaging attacks when limiting the maximum
changed evidence to 5, 2, or 1, vs. the ‘no attack’ baseline.

opposites are true for planting attacks.
2) For camouflaging, ‘imperceptible’ attacks are highly

successful while they keep the sentences visually unchanged.
The ‘omitting generate’ attack is also closely effective while,
in contrast, it actually removes the information.

3) For planting attacks, candidate sampling and filtering
increase the attacks’ success rate. In addition, the re-writing is
as successful as generation, outperforming the baseline [20]
for REF claims while being more context-preserving. It is
also more frequently retrieved, possibly because the starting
evidence is already relevant.

4) The ‘claim-conditioned article generation’ [20] is the
strongest attack for NEI. However, its results are computed
by adding 10 paragraphs to the repository, while the rest of
our planting attacks are computed by adding 2 sentences only.
Also, as reported in [20], the success rate might be overesti-
mated as the Grover model tends to copy the claims exactly
for ∼20% of the cases. In contrast, our ‘supporting generation’
attack can produce more plausible sentences (more discussion
and results are in section 5.3 and Appendix B).

5) For attacks with both retrieval and verification variants
(‘imperceptible’ at ε = 5 and claim-aligned re-writes), the
verification one is stronger in affecting accuracy, possibly
because the verification model is more precise in finding the
important tokens. In contrast, the retrieval model might assign
high importance to overlapping yet non-content words (e.g.,
‘is’). However, increasing the top-words pool (e.g., the per-
turbation budget for ‘imperceptible’ attacks) can still highly
increase the retrieval variant success.

Summary #1 (Targets): For both the planting and cam-
ouflaging targets, the model’s performance degrades
significantly under many attacks and across all labels.

5.2 Constraints

Moreover, we investigate and discuss different constraints.
The first is the context; Table 2 shows that attacks work well
even under the restrictive context-preserving constraint. The
‘imperceptible’ attacks do not introduce any changes to the

evidence, yet, they are the most effective camouflaging at-
tack. The ‘omitting paraphrase’ also works relatively well
(compared to other perturbation attacks such as the ‘contextu-
alized replace’) while it is fluent, stealthy, factual, and does
not introduce irrelevant information.

Next, we study a setup where the adversary might be lim-
ited in the number of evidence sentences to edit/add. Figure 7
shows the camouflaging attacks when the maximum allowed
edits range from 5 to 1. In each setting, the top n relevant sen-
tences (ranked by RA ) are edited. Even with 1 edited sentence,
attacks can still be successful. For example, the ‘impercepti-
ble’ attack can drop the total accuracy to 53.7%, vs. 45.0%
when editing at most 5 sentences. While this can be explained
by the scarcity of golden evidence per claim in FEVER, it
indicates that the adversary can use the retrieval model to se-
lectively corrupt the most important evidence without needing
golden relevancy annotations.

Figure 8 shows a similar experiment for planting attacks.
Here, the adversary is limited in the number of evidence sen-
tences to add to the repository – without removing the existing
golden evidence. While adding more sentences increases the
attacks’ success rate, a large drop can still be achieved by
adding only one (e.g., the REF accuracy dropped to 44% via
evidence re-writes, and the NEI dropped to 19.5% via article
generation [20]). This suggests that models are sensitive to
even the slightest presence of supporting evidence to claims.

Finally, as shown in Table 3, we observed that camouflag-
ing attacks work only under a ‘replace’ repository modifi-
cation method4. In contrast, the gap in performance of the
‘claim-aligned re-writing’ attack under the ‘add’ and ‘replace’
methods is minimal, suggesting that the adversary can be
nearly as successful without removing the existing evidence.

Summary #2 (Constraints): Attacks are still highly
successful under the full-context preservation constraint
and when fewer sentences are changed/added.

5.3 Knowledge
Previous experiments are performed assuming the adversary
has the white-box retrieval model, RA = RD , and the same
dataset, SA = SD , when training the models needed for the
attack. In this section, we relax these assumptions and study
different knowledge variations.

To evaluate a black-box setting of RD
5, we train the BERT

retrieval model but with different random initialization. We
evaluate another restricted setup where the architecture of
RA and RD is different. We use the retrieval output of the

4This is based on our empirical evaluation of current attacks and models,
rather than being an inherent property of the attack. E.g., future camouflaging
attacks might be successful with partial ‘replace’ over one source or by
adding evidence that gets retrieved/prioritized over the relevant evidence.

5A reminder: the verification model VA is never a white-box nor the same
architecture as VD .
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Figure 8: Planting attacks when the maximum added evidence
is ‘all generated’ (2 sentences for re-writes and supporting
generation and 10 paragraphs for article generation [20]) or
1 vs. the ‘no attack’ baseline. Article generation results are
from [20] (‘AdvAdd-full’ and ‘AdvAdd-min’).

Enhanced Sequential Inference Model (ESIM) [14] used in
previous FEVER work [49] (LSTMs with alignment model).
We compare these two setups in Table 4. These attacks use RA
to retrieve the relevant sentences that the attack edits (e.g., ‘im-
perceptible’ or ‘contextualized replace’), or to also construct
the attack sentences themselves (e.g., ‘omitting paraphrase’).
The white-box and black-box BERT cases have nearly the
same performance. Even when using ESIM (a less powerful
model), the attacks have a high success rate (e.g., for the ‘im-
perceptible’ attack, the accuracy dropped to 47% vs. 45% in
the white-box case).

Additionally, for black-box scenarios, the adversary needs
to train proxy fact-verification models (RA and VA ). Also,
some attacks need to fine-tune additional models for language
generation (e.g., T5 or GPT-2). Thus, we show the attacks’ per-
formance vs. the size of the dataset available to the adversary
in Figure 9. The attacks are nearly as successful when having

Attack Method SUP (%) REF (%)

- - 89.0 71.2

Imperceptible Replace 39.7 50.3
Add 88.3 70.6

Contextualized replace Replace 50.7 59.8
Add 88.8 70.3

Omitting paraphrase Replace 51.0 54.3
Add 88.8 71.0

Claim-aligned re-write Replace - 49.2
Add - 51.2

Table 3: ‘Add’ vs. ‘Replace’ repository modification methods
for a sample of camouflaging and planting attacks.

Attack RA Knowledge SUP (%) REF (%)

Imperceptible BERT WB 39.6 50.3
BB 40.6 49.9

ESIM - 43.1 50.9

Contextualized replace BERT WB 50.7 60.1
BB 50.8 59.8

ESIM - 53.1 60.9

Omitting paraphrase BERT WB 55.5 56.1
BB 54.5 55.8

Table 4: Attacks when changing the adversary’s retrieval
model, RA .

Contex
t. R

ep.

Hom
oglyh

Omit. P
ara

.

Re-w
rite

s

Support
. G

en.0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
) All data

25%
10%

Figure 9: Attacks with different assumptions about the adver-
sary’s dataset size; subsets are chosen randomly.

only 10% of the data (the maximum absolute difference is
∼ 3.5 percentage points).

Interestingly, the attack success increases for the ‘support-
ing generation’ attack when decreasing the training data (ac-
curacy decreased to 25.1% when fine-tuning with 10% of
the data, outperforming the 28.9% by the ‘article generation’
baseline [20]). We found that models fine-tuned with more
data tend to generate more diverse sentences, better match-
ing their training data. In contrast, models fine-tuned with a
small subset can have simpler sentences that more directly
support the claim. On the other hand, off-the-shelf models
(e.g., Grover) can often, trivially and unrealistically, copy the
claims exactly [20]. For further analysis, we show histograms
of claim-evidence sentence embeddings’ distances in Fig-
ure 11; not only is the 10% ‘supporting generation’ more
successful than the baseline [20], but it can also achieve a bet-
ter trade-off between the attack’s success and its plausibility.

Summary #3 (Knowledge): Attacks do not need white-
box access to the victim model and can be (even more)
successful with only 10% of the data.

5.4 Robustness to Post-Hoc Claim Edits
So far, the claims used to construct the attacks are also the
ones used in the final evaluation of the victim model. How-
ever, adversaries may not have full control over the propa-
gation and digestion of claims and thus over the phrasings
used in verification. Therefore, attacks need to not overfit (for
both the retrieval and verification steps) the claim-phrasings
used in construction. To test this, we created paraphrases of
claims and tested them against the already-computed attack
sentences by repeating D’s retrieval and verification given
the new claims (step 2 in Figure 3). To create paraphrases, we
use the PEGASUS model used in the ‘omitting paraphrase’
attack. To ensure that paraphrases are semantically equivalent,
we draw different samples and take the one with the highest
retrieval score to the original claim that also contains all of its
named entities [69] (e.g., to exclude sentences that might re-
place a person’s name with a pronoun). We discard examples
where only exact matches were found or not all named entities
exist. Next, we test the paraphrases on the downstream model



M with no attacks. We use the examples that retained the
same prediction for further analysis (70% of the data, after all
exclusions). These measures are to ensure that the drop in per-
formance can be attributed to the attacks, not because the new
claims are semantically different. This is also important since
previous work [78] has shown that models are sensitive to
claim phrasing patterns. New claims might include syntactic
and lexical changes or double negation (Table 9).

Table 5 shows that the attacks’ performance on the original
and paraphrased claims are comparable. The attacks also
consistently achieve the corresponding targets (indicated by
the ‘→ NEI’ ratio) instead of performing random changes.
This experiment also suggests that potential defenses based
on claim paraphrasing might not be effective.

Summary #4: Attacks work well even after post-hoc
modifications and paraphrasing of the claims.

5.5 Qualitative Analysis

Examples of the attacks are in Table 10 (Appendix B). We
summarize the main qualitative observations as follows:

1) As expected, the ‘lexical variation’ had lower quality
than the ‘contextualized replace’. However, the latter still
had syntactic mistakes, such as breaking the sentence with
commas or dots to remove the important parts.

2) The ‘imperceptible’ attacks (both the verification and
retrieval variants) change the relatively salient words. The
retrieval variant usually changes words overlapping with the
claim (e.g., the main subject, but even less crucial words such
as prepositions). In contrast, the verification variant might
focus on the entailment (even non-overlapping words). This
explains why the retrieval variants affect the retrieval of per-
turbed sentences more (Table 2). It also implies that attackers
might have an incentive to use them if they want to hide the
sentences from users as well.

3) The ‘omitting paraphrase’ attack has very high quality
and is also factual. However, it fails if all samples contain

Attack Claims SUP REF NEI → NEI

- o/p 92.2 71.2 75.4 -

Imperceptible o 41.1 51.6 - 84.9
p 44.8 46.6 - 87.1

ImperceptibleRet
o 27.0 44.5 - 93.3
p 27.6 38.3 - 93.5

Omitting paraphrase o 54.9 56.7 - 88.8
p 61.6 53.7 - 89.1

Claim-aligned re-writing o - 40.5 - 1.4
p - 39.1 - 2.1

Claim-aligned re-writingRet
o - 45.0 - 1.5
p - 42.8 - 1.8

Supporting generation o - 44.1 33.8 1.7
p - 41.3 32.9 2.2

Table 5: Attacks optimized with the original claims (o) and
tested afterwards on paraphrased claims (p).

the claim-relevant part. Increasing the candidate pool size or
training omitting models might increase the attack’s success.

4) The ‘omitting generate’ attack can drastically decrease
the performance. However, it might lead to limited coherency
between the original evidence and the new one, which might
affect the overall context.

5) The ‘claim-aligned re-writing’ attack can work even if
there is no exact word-level or a short span overlap with the
claim. It can also partially keep the context, depending on the
original evidence’s length (we mask the top 13 tokens).

6) As discussed in section 5.3, fine-tuning GPT-2 (in
the ‘supporting generation’ attack) can produce more elab-
orate evidence compared to using off-the-shelf models like
Grover [20]. However, as similarly observed in [20], the ‘sup-
porting generation’ may incorrectly respond to claims with
negation [35] and end up producing refuting evidence.

5.6 Planting Attacks on Correct Claims

As reported in [20], generating refuting evidence to correct
claims has many challenges. One of them is automatically
creating meaningful counterclaims. However, adversaries can
circumvent that by manually writing counterclaims, then au-
tomatically generating the evidence [20].

To test that, we manually crafted counterclaims for 150
SUP claims. Our employed strategies were to use negations,
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Figure 10: Planting attacks with ‘add’ modification against
SUP examples subset. Table 6: Performance (%) with original
evidence, removing golden evidence, and adding the gener-
ated evidence (without the golden).

Claim: Fox 2000 Pictures released the film Soul Food.
Counterclaim: Columbia Pictures released the film Soul Food.

Original: Soul Food is a 1997 American comedy drama film produced
by Kenneth ‘Babyface’ Edmonds, Tracey Edmonds and Robert Teitel and
released by Fox 2000 Pictures.
Planted : Columbia Pictures released Soul Food on December 12, 2012, as the
second film in the Jim Henson Company film Picture Show.
Planted : Columbia Pictures released Soul Food on December 4, 2009, as a pre-
quel to the 2009 film The Divergent Series.
Planted : Columbia Pictures released Soul Food on November 30, 2004 as the
second North American release on VHS, but later discontinued production.
Original prediction: SUP (0.96)
After-attack prediction: SUP (0.86)

Table 7: Examples of attacks against correct claims. The
planted counter-evidence is added to the original. These sen-
tences were among the top-5 retrieval output.



oppositions, and replacing with a similar entity for both mu-
tually exclusive and possibly coexistable events, whenever
it would fit (Table 11). We then used the counterclaims to
generate supporting evidence (i.e., should ideally counter the
original claim) via the fine-tuned GPT-2 model. Next, we add
the planted evidence to the existing one and re-test against
the original claim.

Figure 10 shows the attack’s results. Contrary to [20],
where the accuracy always increased after the attack, we show
that it is possible to decrease it by adding more sentences
(capped at 5 after retrieval). Further, Table 6 shows the accu-
racy when removing the golden evidence and then adding the
generated one. The ‘→ NEI’ ratio decreased after the addi-
tion, showing that the generated sentences can have, to some
extent, the required polarity. Nonetheless, the attack has lim-
ited success, partially because counterclaims with negations
could end up with evidence agreeing with the original claims,
in addition to counterclaims with non-contradicting replace-
ments [20] (Table 12). However, in many cases, even when
the generated evidence logically refutes the original claim,
the model retained its predictions (see Table 7 and Table 13),
revealing a critical limitation we discuss next.

Summary #5: We achieve more success in SUP to REF
inversion, revealing other potential limitations.

6 Discussion

We here discuss the limitations and implications of our work,
models’ limitations, and the potential directions that we deem
promising to robustify fact-verification models.

6.1 Limitations.
Human-in-the-loop. We envision that fact-checking models
might be more commonly used in the future as assistive solu-
tions to fact-checkers [8] or ultimately to end-users [83] to,
e.g., output warnings. In both cases, we believe our attacks
might affect humans by misleading them or denying the ser-
vice. An important follow-up that we leave for future work
is to evaluate the attacks by measuring such effects. This can
be methodologically complex as it involves studying how
to: perform these manipulations realistically and ethically,
choose topics, measure the attacks’ success via measuring
users’ perception [9], and control for users’ knowledge [53]
and experience (e.g., fact-checkers vs. users).

Beyond FEVER. FEVER allowed large-scale experiments
and training. While we opted for a more comprehensive eval-
uation of the threat model, Du et al. show success on smaller
datasets [20]. However, it remains unknown and ought to
be evaluated how our attacks perform on other datasets with
possibly different topics and characteristics.

Wikipedia as a (Relatively) Credible Source. While
Wikipedia can be publicly edited, it is subject to administra-

tion to remove factually wrong or biased content [87, 57]. This
gives it a relative consensus of credibility compared to other
online sources and makes it highly read [59], even among
fact-checkers [88]. Adversaries can exploit this wide trust
to pass in disinformation or wipe traces of facts. While the
Wikipedia community tirelessly resists disinformation [74],
this is not free of flaws (e.g., the Croatian Wikipedia inci-
dent [17]). We hypothesize that some of our attacks (e.g., the
context-preserving ones) can be stealthy even under adminis-
tration. However, it can be complex to measure their potency
and detection resistance without actual edits.

Beyond Single-Source Datasets. We work on Wikipedia
to conform to current large-scale benchmarks; sizable datasets
that match real-world fact-checking are still lacking [24]. In
practice, fact-checkers usually rely on many sources [88].
Our attacks can, in principle, be applied to other sources [38];
however, some might not be publicly available or easy to tam-
per with. While our work lays the foundation for attacks in
this domain, Wikipedia manipulations may affect only one of
these sources, reducing the practical effect of these attacks
on the whole manual fact-verification process. On the other
hand, bridging this discrepancy between practitioners and au-
tomated fact-checking frameworks regarding the considered
sources is one of our main takeaways that we discuss next.

6.2 Implications

Ethical Considerations. We emphasize that most of the stud-
ied attacks are based on already publicly available models, and
some do not need any extra fine-tuning. Moreover, we work
on a dataset containing claims that are generally not designed
to be sensitive in nature, limiting any potential abuse.

"Only Finding Waldo": Models’ Limitations. Planting
attacks can considerably succeed even when as low as one
evidence sentence is inserted and with the presence of the
original evidence. They also succeed on instances where the
model is originally highly confident. This could be partially
attributed to the sparsity of golden evidence for many claims
in FEVER. However, our observations on generating refuting
evidence to correct claims might indicate another underlying
problem. In many cases, even when the generated evidence
logically refutes the claim and the retrieved refuting evidence
outnumbers the supporting one, the model did not flip its pre-
diction to REF (Table 7). At first, this can be considered a
sign of robustness. However, it is possibly the exact reason
why it is easy to flip the prediction of wrong claims to SUP;
models might be looking for any agreement with the evidence
without considering counter stances. This is a plausible expla-
nation, given that models were not trained with an evidence
contradiction setup. However, it hints at a potential limitation
in models’ inference that should be investigated since the
fact-checking process in practice inherently entails weighing
different stances.

Beyond Fact-Preserving Attacks. While we employ at-



tacks that target current AI vulnerabilities (e.g., imperceptible
perturbations), we choose and argue for a broader scope of
our work that goes beyond adversarial examples in the sense
of imperceptible perturbations and semantic equivalence. In-
stead, we broadly study how AI can be leveraged to create
targeted disinformation and deceptive evidence manipulations
at scale, impacting models and potentially humans as well. In
such a human-centric task, simulating human-created manip-
ulations becomes the holy grail of the attacks. These semanti-
cally driven attacks can also be more pervasive across models
(see Appendix B), potentially motivating their adoption by
adversaries. Even under such semantic changes, we argue
that models do not show the intended behavior. Fact-checkers
do not base their verdict on a single piece of evidence, nor do
they blindly trust the evidence’s plausibility [66]. Thus, future
work should bridge this discrepancy and design ‘adversary-
aware’ defenses that better align with these practices and
exploit the persisting attacks’ limitations. We further explain
these ideas in what follows.

6.3 How to Robustify Fact-Checking Models?

Diversifying Evidence Sources. Current camouflaging at-
tacks need to replace the original evidence with the manip-
ulated one; otherwise, they generally fail. Thus, in practice,
fact-checking models should rely on diverse and indepen-
dent sources, while also considering cross-platform coordina-
tion [19], to reduce the likelihood of being manipulated by a
single adversarial campaign. Other evidence metadata, such
as its source, should be included in the model’s design [54]
to capture features such as the source’s credibility, biases, or
polarity. This resembles the ‘two-source’ and ‘source triangu-
lation’ rules of verification in journalism [66, 1].

Detecting Perturbations. In addition, some camouflaging
attacks can leave artifacts or perturbations enabling their iden-
tification (e.g., NLP adversarial attacks). While it might not
be possible to easily recover the original evidence, human-in-
the-loop systems might issue warnings about potential manip-
ulations. The effectiveness of such warnings should also be
studied [36]. On the other hand, imperceptible perturbation
attacks might allow recovering the evidence upon detection
via leveraging, e.g., an OCR [11], or utilizing recent language
models that render text as images [60].

Circular Verification against Planting Attacks. As dis-
cussed, models should represent opposing stances among the
evidence. A possible inspectable solution would be to cluster
the evidence with respect to its stance [63]. Moving beyond
that, models should ideally contrast these opposing evidence
given factors such as their source, plausibility, commonsense
reasoning [35], and inter and intra-consistency.

Language models may have limited factuality even in re-
sponse to factual claims [40]. These limitations of attacks are,
in fact, defense opportunities for detection based on high-level
semantics. While they all may agree with the claim, different

generated samples might be inconsistent or contradicting in
other details (see Table 7). Similarly, a single sample might
contain possibly incorrect information, beyond what supports
the claim. This can fuel detection defenses of what can be
called ‘circular fact-checking’: Given the evidence, extract
and verify follow-up claims and reach a plausibility deci-
sion via aggregation. This, again, echos the circular nature of
information gathering and verification in investigative jour-
nalism [66], lateral reading as a fact-checkers’ practice [88],
in addition to the veracity verification of manipulated media
guidelines [1].

A Need for Practical Datasets. As discussed in section 6.1,
FEVER may be limited in matching the practical challenges
of fact-verification. Therefore, there is a need to develop other
datasets or augment FEVER with synthetic evidence to allow
the development of models that adhere to the best practices of
fact-verification. Claims should have multiple confirming or
denying evidence pieces, and the evidence repositories could
be partially contaminated to simulate potential adversaries.
Our attacks could promisingly contribute to constructing such
datasets, similar to the line of work that constructs synthetic
data to help detect real fake news [31, 44].

Other Attacks. The results in section 5.3 show that there
could be a trade-off between the generated evidence complex-
ity and the attacks’ success rate. Our approach of fine-tuning
and sampling can have higher success while better imitating
the dataset’s distribution. Other possible approaches would
be to enforce the entailment between the claim and the gen-
erated evidence by training a Sequence-to-Sequence model
with a verification model [10]. Moreover, future work might
study the effects of different prompts when generating evi-
dence; e.g., is it possible to affect the stance of the evidence
with biased variations (e.g., subtle linguistic cues [51]) of the
claim? Finally, our work is not meant to be an exhaustive
evaluation of all possible attacks, as such an evaluation might
be intractable and can only grow with the improvements in
language generation and understanding [13].

7 Conclusion

We propose a taxonomy to comprehensively study evidence
and information manipulation attacks against fact-verification
models. Inspired by real-life incidents of Wikipedia edits, we
set the attacks’ semantic targets to evidence camouflaging and
planting. We then design technical methods that adversaries
could utilize to achieve those targets, given the taxonomy’s
dimensions. Compared to previous work, we propose an ex-
tensive range of stealthier, more context-preserving, and more
plausible attacks, all while simultaneously achieving higher
or similar success rates and extending the attacks to all labels.
We show that adversaries can decrease the performance of
models even under restrictive threat models. We highlight the
limitations of models’ inference and discuss possible defenses
by drawing insights from fact-verification in journalism.
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A Implementation Details

To train the attack model VA , we fine-tune BERTBASE or
RoBERTaBASE models for 4 epochs on pairs of claims and
golden evidence (for SUP and REF claims). For NEI, we pick
the top 3 retrieved sentences for each claim (these should be
more challenging than taking random sentences).

To run the ‘lexical variation’ attack, we follow the authors’
code and distances’ hyperparameters but change the target
model to RoBERTa. Words to replace are randomly sampled
with probabilities proportional to the number of neighbors
each word has in the embedding space [5]. We adapt the ‘con-
textualized replace’code to the entailment task. We perturb
at most 15% of tokens in the sentence and set a probability
threshold of 1.0e-5 on the BERT MLM candidates. We allow
sub-words substitutes. We use an embedding distance of 0.4
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between the counter-fitted vectors [47]. For the ‘impercepti-
ble’ attacks, we use the untargeted versions of the attack with
a maximum of only 3 iterations for the genetic algorithm (vs.
10 in the original paper). Increasing the iterations’ number
may lead to even higher success rates; however, these attacks
are expensive to run on the whole dataset (> 90,000 claim-
evidence pairs). For attacks against VA , we run the attacks
only on the pairs (among the top-5) where VA ’s predictions
are initially correct. Since the attacks do not assume golden
relevancy annotations, the labels of all retrieved sentences are
set to the original claims’ label (i.e., SUP or REF). We run
the ‘imperceptibleRet’ on all the top-5 retrieved evidence to
minimize the retrieval score.

For ‘omitting paraphrase’, we use the PEGASUS model
fine-tuned for paraphrasing. For each sentence, we generate 20
candidates using beam search (then select the lowest retrieval
candidate). The GPT-2 model used in ‘omitting generate’
and later in the ‘supporting generation’ is trained on pairs of
claims and supporting evidence for 20 epochs with a batch
size of 4 and a learning rate of 0.00003. For both attacks, we
use top-k sampling. For ‘omitting generate’, we also generate
20 candidates (then select the lowest retrieval candidate). For
‘supporting generation’, we select the top 2 sentences from
160 samples (increasing the samples’ number helped to have
better attacks).

For the ‘claim-aligned re-writing’ attack, we adapt [77]’s
code to re-write evidence instead of claims. We use the BERT-
score masker explained in the main paper. During training,
we mask the top 16 tokens. We train the T5 model for 12
epochs with a batch size of 4 and a learning rate of 0.0001.
To run the attack, we mask the top 13 tokens. Depending on
the masking, the T5 model re-writes single masked words
or a whole span. Since this attack ideally assumes that the
starting evidence is relevant, we run it only on the top 2
relevant evidence sentences. In the sampling and filtering
variants, we generate 60 candidates using top-k sampling.
Finally, due to time and computation resources’ constraints
and the scale of the experimental evaluation, it is difficult to
perform an exhaustive hyperparameter search. Further tuning
of the hyperparameters can lead to higher success rates; our
results are a lower bound.

B Other Results and Examples

In Table 8, we show the attacks’ performance (with-
out any further adaptation) on CorefBERTBASE, KGAT
(RoBERTaLARGE), and CorefRoBERTaLARGE. Most of the
attacks are still effective across models. As ‘impercepti-
ble’ attacks depend on the model’s vocabulary, their perfor-
mance can slightly degrade when transferred from BERT
to RoBERTa. Increasing the perturbation budget can yield
similar performance. Attacks that are based on semantically
removing or adding information needed for verification are
consistent across models.

Table 9 shows examples of the automatically-created claim
paraphrases (section 5.4). Table 10 shows qualitative exam-
ples (section 5.5). Tables 11, 12, and 13 show more examples
of planting attacks against the SUP label (section 5.6). Fi-
nally, Figure 11 shows histograms of sentence embeddings’
distances between claims and evidence, for both golden and
generated evidence (section 5.3). Our attack can lead to better
matching of the golden evidence distribution compared to the
baseline [20].

Attack SUP (%) REF (%) NEI (%)

#1 #2 #3 #1 #2 #3 #1 #2 #3
- (baseline) 87.5 91.5 92.2 72.8 74.7 77.5 72.8 68.8 70.0

Camouflaging

Lexical variation 67.7 73.6 74.5 66.6 69.9 71.6 - - -

Contextualized replace 50.0 55.8 55.6 60.8 63.9 64.0 - - -

Imperceptible
Homoglyph (ε = 5) 39.9 60.6 65.1 52.5 60.1 60.7 - - -
Homoglyph (ε = 12) 33.6 49.7 52.0 47.9 54.7 52.4 - - -

Reorder (ε = 5) 37.4 47.7 49.9 52.3 54.8 51.4 - - -
Reorder (ε = 12) 32.4 36.8 34.9 48.0 49.3 42.7 - - -

Delete (ε = 5) 39.2 60.8 66.1 52.5 60.7 59.8 - - -

ImperceptibleRet
Homoglyph (ε = 12) 26.6 36.4 37.0 44.8 50.3 45.6 - - -

Omitting paraphrase 50.7 56.8 55.5 55.8 60.7 58.4 - - -

Omitting generate 30.2 33.8 31.6 48.9 51.9 47.4 - - -

Planting

Claim-aligned re-writes - - - 36.9 44.9 42.1 - - -

Claim-aligned re-writesRet - - - 43.1 48.8 47.6 - - -

Supporting generation - - - 39.7 43.2 45.2 34.5 25.6 30.0

Table 8: Attacks on CorefBERTBASE (#1), KGAT
(RoBERTaLARGE) (#2), and CorefRoBERTaLARGE (#3).

Original Claim Paraphrase

Tilda Swinton is a vegan. There is a person named Tilda Swinton
who is a vegan.

Murda Beatz’s real name is Marshall
Mathers.

Marshall Mathers is Murda Beatz’s real
name.

Hourglass is performed by a Russian
singer-songwriter.

Hourglass is a song by a Russian singer-
songwriter.

Fox 2000 Pictures released the film Soul
Food.

The film Soul Food was released by Fox
2000 Pictures.

Charles Manson has been proven inno-
cent of all crimes.

Charles Manson has not been proven
guilty of any crimes.

Table 9: Automatically created claim paraphrases.
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Lexical Variation
Claim: Ann Richards was professionally involved in politics (Label: SUP).

Original: Richards was the second female governor of Texas, and was frequently noted in the media for her outspoken feminism and her one liners.
Edited: Richards was the second daughters governors du Texas, and became frequently noted for the media in her outspoken feminism and her eden liners.

Contextualized Replace
Claim: James VI and I was a major advocate of a single parliament for Scotland and England (Label: SUP).

Original: He was a major advocate of a single parliament for England and Scotland.
Edited: He was a broad activist of a single legislature for Britain and Ireland.

Claim: Ernest Medina participated in the My Lai Massacre (Label: SUP).

Original: He was the commanding officer of Company C, ... , the unit responsible for the My Lai Massacre ...
Edited: He was the commanding officer of company C, ..., the unit responsible for the My , Massacre ...

Imperceptible/Imperceptibleret

Claim: Nicholas Brody is a character on Homeland (Label: SUP).

Edited : Nicholas ‘Nick’ Brody, played by actor Damian Lewis, is a fictional character on the American television series Homeland on Showtime.

Edited : Nicholas ‘Nick’ Brody, played by actor Damian Lewis, is a fictional character on the American television series Homeland on Showtime.

Omitting Paraphrase
Claim: Murda Beatz’s real name is Marshall Mathers. (Label: REF).

Original: Shane Lee Lindstrom (born February 11, 1994) , professionally known as Murda Beatz, is a Canadian hip hop record producer from Fort Erie, Ontario.
Edited: Murda Beatz is a hip hop record producer from Fort Erie, Ontario.

Claim: Fox 2000 Pictures released the film Soul Food. (Label: SUP).

Original: Soul Food is a 1997 American comedy drama film produced by Kenneth ‘Babyface’ Edmonds, Tracey Edmonds and Robert Teitel and released by
Fox 2000 Pictures.
Edited: The 1997 American comedy drama film Soul Food was produced by Kenneth ‘Babyface’ Edmonds, and was released by Fox 2000 Pictures.

Omitting Generate
Claim: Damon Albarn’s debut album was released in 2011 (Label: REF).

Original: Raised in Leytonstone , East London and around Colchester , Essex , Albarn attended the Stanway School , where he met Graham Coxon and eventually
formed Blur , whose debut album Leisure was released in 1991 to mixed reviews.
Edited: Born in Leytonstone, east London, his first exposure to music came in 1991 at the age of seven, when he was discovered by Dr. Paul Barbera of St John’s
College in London.

Claim-aligned Re-writing
Claim: Telemundo is a English-language television network (Label: REF).

Original: Telemundo is an American Spanish language terrestrial television network owned by Comcast through the NBCUniversal division NBCUniversal Telemundo
Enterprises.
Edited: Telemundo is an English language television network owned by Comcast through the NBCUniversal Television Group and Comcast Enterprises.

Claim: Juventus F.C. rejected their traditional black-and-white-striped home uniform in 1903 (Label: REF).

Original: The club is the second oldest of its kind still active in the country after Genoa’s football section (1893), has traditionally worn a black and white striped
home kit since 1903 and has played ...
Edited: The club is the second oldest of the football sections still active in the country after Genoa’s football section (1893) and hasn’t worn a black and white striped
home uniform since 1903 and has played ...

Claim: Charles Manson has been proven innocent of all crimes. (Label: REF).

Original: After Manson was charged with the crimes of which he was later convicted, recordings of songs written and performed by him were released commercially.
Edited: After being proven innocent of all crimes of which he was acquitted, recordings of songs he had performed and released were released commercially.

Supporting Generation / Claim-conditioned Article Generation[20]

Claim: Tilda Swinton is a vegan (Label: NEI).

Generated: Swinton’s work as a vegan and as a journalist has earned her a special recognition in the media and has earned her widespread acclaim.

Generated [20]: Tilda Swinton is a vegan.

Claim: Janet Leigh was incapable of writing (Label: REF).

Generated: Leigh went on to study at art college in London, where she became a teacher and writer.

Table 10: Samples of the attacks. ‘...’ indicates other unchanged text. Yellow highlights are the changed words. Underlined parts
are claim-critical. Red indicates unsuccessful attacks according to their targets. For imperceptible attacks, we show the words
where the perturbation characters were inserted.



Original Claim Counterclaim

Mutually exclusive alternatives
Shane Black was born in 1961. Shane Black was born in 1950.

The Lincoln-Douglas debates happened in
Quincy, Illinois.

The Lincoln-Douglas debates happened in
Chicago, Illinois.

The Beach’s director was Danny Boyle. The Beach’s director was Christopher
Nolan.

Possibly coexistable
Ann Richards was professionally involved
in politics. Ann Richards was a scientist.

Jack Falahee is a person who acts. Jack Falahee is a singer.

Opposition
James VI and I was a major advocate of a
single parliament for Scotland and England.

James VI and I fought against the single
parliament for Scotland and England.

The Cretaceous ended. The Cretaceous still exists.

Ernest Medina participated in the My Lai
Massacre.

Ernest Medina was against the My Lai Mas-
sacre.

Negation

The human brain contains a hypothalamus. The human brain does not contain a hy-
pothalamus.

Rick Yune was on a tv series with Marco
Polo.

Rick Yune was never on a tv series with
Marco Polo.

Table 11: Manually constructed counterclaims, used to attack
SUP examples.

Claim: CBS is the network that aired The Millers.
Counterclaim: ABC is the network that aired The Millers.

Planted : The Millers is an American period drama television series created by
Peter Paige and Bradley Bredeweg which first premiered on ABC on August 4,
2002.

Claim: Tim Roth is an English actor.
Counterclaim: Tim Roth is an American actor.

Planted : Timothy John Roth (born March 20, 1948) is an American actor and
director.

Claim: House is an American medical drama.
Counterclaim: House is an American Sitcom.

Planted : House is an American sitcom that airs on Fox for seven seasons from
May 19, 2009 to March 20, 2015.

Claim: Jack Falahee is a person who acts.
Counterclaim: Jack Falahee is a singer.

Planted : Jack Harold Falahee (born August 1, 1960) is an American actor and
singer.

Claim: In the End was positively reviewed.
Counterclaim: In the End was negatively reviewed.

Planted : The film received generally positive reviews, with praise directed at its
performances and its ensemble cast.

Table 12: Counterclaims and the generated evidence. high-
lighted parts indicate attack failure.

Claim: House is an American medical drama.
Counterclaim: House is an American Sitcom.

Original: House (also called House , M.D.) is an American television
medical drama that originally ran on the Fox network for eight seasons, from
November 16, 2004 to May 21, 2012.

Planted : House is an American television sitcom that premiered on Fox on July
10, 2005.

Planted : House is an American television sitcom that premiered on Fox on
March 19, 1994.

Planted : House is an American sitcom created by Matt Groening that aired on
The WB Television Network from September 13, 2005 to May 19, 2009.

Original prediction: SUP (0.99)

After-attack prediction: SUP (0.97)

Claim: Black Canary is a character in comic books published by DC Comics.
Counterclaim: Black Canary is a character in comic books published by Marvel.

Original: Black Canary is a fictional superheroine in comic books published by
DC Comics.

Planted : Black Canary is a fictional superhero appearing in American comic
books published by Marvel Comics.

Planted : Black Canary (Supernatural) is a fictional character appearing in
American comic books published by Marvel Comics.

Planted : Black Canary; Canary in The A Song of Ice and Fire, by Alan
Moore, is a fictional character appearing in American comic books published
by Marvel Comics, commonly in association with the superhero team the Avengers.

Original prediction: SUP (0.98)

After-attack prediction: SUP (0.59)

Claim: Tim Roth is an English actor.
Counterclaim: Tim Roth is an American actor.

Original: Timothy Simon Roth (born 14 May 1961) is an English actor and director.

Planted : Timothy Francis Roth (born August 1, 1971) is an American actor,
director, and producer.

Planted : Timothy Francis ‘Tim’ Roth (born April 9, 1941) is an American actor,
writer, producer, director, and singer.

Planted : Timothy Francis ‘Tim’ Roth (born March 17, 1969) is an
American actor, filmmaker, and musician.

Planted : Timothy Francis ‘Tim’ Roth (born September 9, 1967) is an
American actor, film director, screenwriter, and producer.

Original prediction: SUP (0.96)

After-attack prediction: SUP (0.57)

Table 13: Other SUP examples where the predictions were
not changed despite having retrieved refuting evidence.
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(b) Supporting generation (10%).
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(c) Supporting generation (all).

Figure 11: Claim-evidence embeddings’ distances, in the case of generated (blue) and real-data golden evidence (orange).
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