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Abstract
Modern processors are too complex to be bug free. Recently,
a few hardware fuzzing techniques have shown promising
results in verifying processor designs. However, due to the
complexity of processors, they suffer from complex input
grammar, deceptive mutation guidance, and model implemen-
tation differences. Therefore, how to effectively and efficiently
verify processors is still an open problem.

This paper proposes MorFuzz, a novel processor fuzzer
that can efficiently discover software triggerable hardware
bugs. The core idea behind MorFuzz is to use runtime infor-
mation to generate instruction streams with valid formats and
meaningful semantics. MorFuzz designs a new input struc-
ture to provide multi-level runtime mutation primitives and
proposes the instruction morphing technique to mutate instruc-
tion dynamically. Besides, we also extend the co-simulation
framework to various microarchitectures and develop the state
synchronization technique to eliminate implementation dif-
ferences. We evaluate MorFuzz on three popular open-source
RISC-V processors: CVA6, Rocket, BOOM, and discover 17
new bugs (with 13 CVEs assigned). Our evaluation shows
MorFuzz achieves 4.4× and 1.6× more state coverage than
the state-of-the-art fuzzer, DifuzzRTL, and the famous con-
strained instruction generator, riscv-dv.

1 Introduction

With extensions to improve performance and extend function-
ality, processor designs are becoming more and more sophis-
ticated. Modern processors are extremely large and complex,
typically with billions of transistors and multiple cores. Mean-
while, processors also become increasingly error-prone, and
even the latest commodity processors suffer from hardware
bugs. For example, Intel discovered 42 errata in their 12th-gen
CPUs [13]. Bugs in the processor not only produce incorrect
computations (e.g., the infamous Pentium FDIV bug [11] re-
turns inaccurate floating-point division results) but also cause
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devastating errors, such as unpredictable system behavior,
locking up the machine, and even software security corrup-
tions. The hyper-threading bug [12] can cause data corruption
or loss in general-purpose registers, the Barcelona TLB bug
[10] and the Pentium F00F bug [11] freeze up the proces-
sor, and vulnerabilities like SYSRET bug [15] and memory
sinkhole [17] allow unprivileged code escalate into higher
privilege. Since hardware bugs are difficult to patch after
the chip is manufactured, it is vital to discover bugs in the
pre-silicon phase.

Two main methods are proposed to discover hardware bugs
automatically: static formal verification [21, 27, 40, 46, 69,
71] and dynamic simulation-based verification. While formal
verification methods can thoroughly verify small designs, they
are limited by the state explosion problem and fail to scale to
large, complex designs such as processors. To automatically
maximize the exploration of the state space of the processor
under test, researchers proposed two mechanisms, constrained
random verification [28, 35, 41, 66] and coverage guided test
generation [22, 56, 59, 60], to direct the simulation-based
methods to generate better test cases. However, these dynamic
methods both require design-specific knowledge to define the
generation strategies, which require heavy manual effort.

Recently, fuzzing has become the most popular and ef-
fective method in software systems due to the ability to
discover unknown vulnerabilities with minimal knowledge
[4, 25, 29, 47, 51, 55]. Inspired by the effectiveness of fuzzing,
researchers started to apply software fuzzing to processors
[6, 7, 30, 32, 33, 37, 39]. Unfortunately, according to our eval-
uation (§5.3), existing fuzzers are still far from being adopted
in practice. Previous efforts fail to effectively and efficiently
fuzz processors because of the following three challenges.

First, the input grammar of the processor is complex. Pro-
cessors usually support many different instructions, each of
which has its own unique format. Moreover, these instructions
require different types of operands (e.g., integers, floating-
point numbers, addresses) to perform meaningful operations,
further complicating the input grammar. Existing fuzzers
[30, 32, 33] statically generate and mutate instructions, re-



sulting in limited mutation primitives and missing effective
semantics. The second challenge is that the control transfer
instructions (such as jump and branch instructions) impair
the effectiveness of mutations. Existing fuzzers ignore the
interference of the input’s control flow on the coverage. As
a result, valuable mutations may be skipped because of the
control transfer instructions and thus incorrectly discarded.
And the third issue with existing fuzzers is the implementa-
tion differences between models. Almost all previous fuzzers
[6, 30, 32, 33] introduce a reference model to check the cor-
rectness of the processor. By comparing the state of the proces-
sor with that of the reference model, they treat the mismatched
states as bugs. However, software reference models are inher-
ently different from hardware, and not all differences are bugs.
These false positives caused by implementation differences
misguide the fuzzers and prevent them from covering the deep
states of the processor.

We address the aforementioned challenges with MorFuzz,
a novel processor fuzzer that can detect software triggerable
hardware bugs efficiently. MorFuzz addresses the first two
challenges by dynamically generating diverse and meaningful
instruction streams based on the runtime information. First,
MorFuzz introduces a new input structure, the stimulus tem-
plate, to explore the processor’s input space from multiple
dimensions. The stimulus template provides primitives to mu-
tate inputs at the processor state, instruction field, and program
semantic levels. Second, MorFuzz uses runtime information
to morph instructions dynamically. We propose the instruction
morphing technique, which collects contextual information
from the processor at runtime to mutate instructions with
valid formats and meaningful semantics. In addition, since
all mutations are executed, the coverage correctly reflects
the effect of the mutations, achieving efficient mutation guid-
ance. Finally, MorFuzz eliminates implementation differences
through state synchronization. We extend the co-simulation
framework to various microarchitectures and add state syn-
chronization support. This allows MorFuzz to identify the
source of the differences and synchronize the hardware state
to the reference model to eliminate legal differences.

We have implemented a prototype of MorFuzz on RISC-V
architecture and evaluated it on three real-world open-source
processors: CVA6 [68], Rocket [1], and BOOM [70]. These
processors under evaluation cover various microarchitectures,
from simple in-order cores to complex out-of-order super-
scalar cores. Our evaluation shows that MorFuzz achieves at
most 4.4× and 1.6× more state coverage than the state-of-the-
art processor fuzzer, DifuzzRTL, and the famous constrained
instruction generator, riscv-dv, respectively. In terms of per-
formance, MorFuzz achieves the coverage that DifuzzRTL
takes 24 hours to achieve in about 30 minutes and takes about
2.4 hours to achieve the coverage that riscv-dv takes 24 hours
to complete. MorFuzz identified 17 new bugs in total, 13 of
which are assigned with CVE numbers, and all of these bugs
are confirmed by the respective communities.

In summary, this paper makes the following contributions:

• We propose a novel processor fuzzing approach that uses
runtime information to dynamically generate meaningful
input and efficiently guide mutation.

• We present the design and implementation of MorFuzz,
a processor fuzzing framework that can efficiently detect
software triggerable hardware bugs. MorFuzz achieves
4.4× and 1.6× higher coverage than the state-of-the-
art processor fuzzer, DifuzzRTL, and the famous con-
strained instruction generator, riscv-dv, respectively.

• MorFuzz is a generic RISC-V processor fuzzer that is
compatible with various microarchitectures. We evaluate
MorFuzz on three popular real-world RISC-V processors
(CVA6, Rocket, BOOM) and totally discover 17 new
bugs (with 13 CVEs assigned).

• To facilitate the community and future research, we re-
lease the source code of MorFuzz at https://github.
com/sycuricon/MorFuzz.

2 Background

2.1 RISC-V Instruction Set Architecture

The RISC-V instruction set architecture (ISA) is an open-
source reduced instruction set architecture that has gradually
become popular in industry and academia. It is composed of a
base integer instruction set and a set of optional instruction-set
extensions. The standard extensions contain integer multipli-
cation and division, atomic memory operations, single/double-
precision floating-point, and compressed instructions. In ad-
dition, the control and status register (CSR) instruction exten-
sion provides control over the privileged architecture, and the
instruction-fetch fence extension is designed to synchronize
the instruction memory.
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Figure 1: RISC-V instruction formats.
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RISC-V instructions currently have two valid lengths. Ex-
cept for the 16-bit compressed instructions, all other instruc-
tions are 32-bit width. Figure 1 shows all 15 instruction for-
mats, each consisting of multiple fields. The format of the
32-bit width instruction is determined by the opcode field,
while the op and the funct fields determine that of the 16-bit
width instruction. Currently, there are two categories of in-
struction fields. The first category is opcode related fields. The
funct and opcode fields are used to determine the instruc-
tion’s operation, also known as the opcode. The lower two
bits of the opcode field and the op field are used to determine
the length of the instruction. The funct fields and the other
bits of the opcode field are used to determine the opcode type.
Typically, instructions with similar functions have the same
opcode field and are distinguished by the funct fields. The
second category is the operand related fields. The imm and rs
fields are designed to provide the operands. The rs fields are
used to select the source registers, and the imm fields are used
as the immediate number. And the rd fields are used to con-
trol the destination register, where the result of the instruction
is written back.

2.2 Processor Verification

Unlike software, hardware cannot be easily patched once
manufactured. To avoid pre-silicon bugs from escaping to
post-silicon, verification is performed throughout the devel-
opment process. Statistically, about 56% of the project time
is spent on verification [23].

2.2.1 Typical Processor Verification

The processor is a finite state machine, and its state includes
the microarchitectural state and the architectural state. The
microarchitectural state represents the implementation-related
internal state that is transparent to the outside of the processor.
In contrast, the architectural state holds the state of a program
(e.g., the memory and the general-purpose registers) and is
consistent across the same ISA. We denote the implementa-
tion of the processor design under test (DUT) as a function
fDUT , SDUT denotes the state of the DUT in current cycle.
At each cycle, the processor generates the next state S′DUT
based on the current state SDUT and the external input I (i.e.,
instructions): fDUT (I,SDUT )−→ S′DUT . The task of processor
verification is to check whether the implementation function
fDUT is a valid subset of the implementation function fspec
defined in the specification.

Researchers deploy two main methods to verify hardware
designs: static formal verification [21, 27, 40, 46, 69, 71] and
dynamic simulation-based verification. As formal verification
is limited to scale to complex designs [16], simulation-based
verification is more prevalent in practice. The simulation-
based verification uses tailored input to simulate the DUT
and verify whether the output of the DUT meets expectations.
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Figure 2: Hardware fuzzer workflow.

The typical simulation-based verification method involves the
following three phases. First, the test case generator randomly
generates instruction streams based on constraints [28, 35,
41, 66] or coverage [22, 56, 59, 60]. Next, the RTL simulator
[14, 52, 65] translates the RTL code of the processor under
test into a software model. The simulator then compiles the
software model with its test harness (containing the input
interpreter) into a host executable binary file. The simulation
is performed by executing the binary file, and during the
simulation, the input is translated into the bus transactions
that are recognized by the DUT. Finally, the correctness of the
DUT’s behavior during the simulation is checked by verifying
the external visible architectural state of the processor due
to the difficulty of checking an abstract implementation. A
golden reference model is introduced to execute the same
input, and the correctness of the DUT can be determined by
comparing the architectural state of the DUT SDUTarc and the
reference model SREFarc .

2.2.2 Processor Fuzzing

The typical processor verification method described above is
limited by the quality of the generated test cases, struggling
to cover corner cases. Fuzzing has recently become a popular
testing technique for automatically detecting software security
vulnerabilities. Driven by the success of fuzzing, researchers
have recently proposed to apply it to processor verification
[6, 7, 30, 32, 33, 37, 39]. Figure 2 illustrates the general work-
flow of the existing processor fuzzing frameworks, which also
consist of three phases. In the input generation phase, the
fuzzer generates instruction streams using the seeds and mu-
tates the instruction streams based on the coverage of the
previous round. DifuzzRTL [30] uses the static analysis tech-
nique to generate instructions with required operands, and
TheHuzz [33] optimizes mutations according to its optimal
weights. In the hardware simulation phase, the RTL code of
the DUT is also translated into the host executable binary
file. During the simulation, the fuzzer uses the instruments
in the hardware to collect the coverage of the current input.
Existing fuzzers have designed various coverage matrices,
such as mux coverage [37], control register coverage [30],
and hardware behavior coverage [33]. In the state verification
phase, the fuzzer extracts the DUT’s architectural state and



1 start:
2 call init_regs
3 call init_page_table
4 l1:
5 addi x2, x4, -935
6 l2:
7 la x2, l86
8 jalr x20, 0(x2)
9 # ...

10 l86:
11 csrrw x6, satp, x5
12 l87:
13 blt x25, x6, exit
14 # ...
15 exit:
16 call signature

Figure 3: Example test case generated by DifuzzRTL.

then compares it with a reference model (e.g., an ISA simula-
tor) and reveals the mismatches as bugs. However, previous
fuzzers simply port software fuzzing to the traditional verifica-
tion flow while ignoring the challenges of processor fuzzing.
According to our statistics in Figure 8, the performance of
the state-of-the-art processor fuzzer, DifuzzRTL [30], is even
worse than using randomly generated test cases.

2.3 Challenges of Processor Fuzzing
We use the test case (Figure 3) generated by the state-of-
the-art processor fuzzer DifuzzRTL [30] as an example to
articulate the challenges of processor fuzzing and analysis
why previous fuzzers fail to effectively and efficiently fuzz
processors. In the first three lines, the test case initializes the
execution environment. Lines 4 to 14 are instructions used
to fuzz the functionality of the processor. Each label is a
test point, and DifuzzRTL typically generates about 180 test
points on average in one test case. In the end, the test case
dumps the architectural state of the processor to memory as
the signature and exits the simulation (line 16).
Complex Input Grammar. The processor’s behavior is de-
termined not only by the external input instructions I but also
by its current state SDUT . Since the state of the processor is ac-
cumulated from previous instructions, instruction sequences
also affect the state of the processor. And the instruction it-
self also contains two variables, the opcode and the operand,
both of which might take on legal or illegal values. Based
on these multi-dimensional parameters, processor inputs also
have complex semantics, and an instruction only performs
meaningful operations with valid operands in a particular ex-
ecution environment. Existing fuzzers fail to generate diverse
and meaningful instruction streams limited by static genera-
tion and unidimensional mutation. For example, DifuzzRTL
uses approximate static analysis to select operands, while
TheHuzz randomly mutates fields ignoring semantics.
Deceptive Mutation Guidance. Unlike software fuzzing,

the input of the processor fuzzing contains control transfer
instructions and exceptions. For this reason, the generated in-
structions are not guaranteed to be executed, so the coverage
actually reflects the effect of the executed instructions rather
than the effect of the generated instructions. Unfortunately,
existing fuzzers all choose the latter, making the coverage
misleading to the mutation. For example, the jalr instruction
on line 8 jumps from l2 to l86, causing all instructions from
l3 to l85 to be skipped. Suppose the skipped instructions con-
tain some valuable mutations, and the executed instructions
do not contribute to the coverage. The fuzzer will consider all
these mutations unhelpful and will eventually discard them.
As a result, the coverage incorrectly guides the fuzzing toward
an ineffective direction.
Model Implementation Differences. Existing fuzzers use an
ISA simulator as the reference model to detect hardware bugs.
However, the ISA simulator is only a functional model of the
processor, and there are some inherent differences compared
with the actual hardware. For example, the ISA simulator is
cycle inaccurate and lacks peripheral simulation. Therefore
the two models will get mismatched values when accessing
these registers. Another source of the differences is the inde-
terminateness in the specification. The RISC-V specification
does not restrict the implementation, so potentially multiple
behaviors are allowed. For instance, the property of the CSR
(e.g., satp) usually is "Write Any Read Legal", which means
that even if the same value is written to the CSR, the value
readout may differ depending on the implementation (line 11).
Unfortunately, these differences are legal in the specification.
And even worse, since the state verification phase is offline,
these differences can cause the two models’ control flows to
diverge. For instance, the DUT uses the mismatched value to
execute the branch instruction at line 13. If the DUT and the
simulator do not perform consistent branch behavior, it will
lead to completely mismatched subsequent traces, resulting
in meaningless execution.
Inefficient Execution. The duplicated instruction streams
have no contribution to the coverage. For example, before the
fuzzing payload in the test case is executed, the fuzzer spends
considerable time loading the test case into the DUT’s mem-
ory and waiting for the DUT to execute several initialization
functions (e.g., init_regs, init_page_table) to set up the
environment. However, DifuzzRTL can only access the DUT
through limited ports provided by the test harness, and once
the simulation starts, the fuzzer has no control over the control
flow of the test case. Due to the poor controllability of the
DUT, the time-consuming initialization process is repeatedly
executed without any improvement in coverage, which results
in ineffective fuzzing.

3 Design

MorFuzz is a novel coverage-guided processor fuzzer that
can efficiently detect software triggerable hardware bugs. In
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Figure 5: Example of instruction morphing.

this section, we first give an informal verification scope of
MorFuzz and then elaborate on the design details.

3.1 Verification Scope
Unlike previous fuzzers [7, 32, 37, 58] that focused on bugs
triggered by specific hardware signals, MorFuzz is designed
to detect architecture functional bugs triggered by software.
Specifically, MorFuzz focuses on bugs triggered by specific
combinations of instructions that cause the processor’s be-
havior to deviate from the ISA specification. Therefore, the
processor’s behaviors under any privilege need to be veri-
fied, and behaviors that are undefined or unconstrained in
the specification are out of our verification scope. MorFuzz
will trust the high privilege levels it relies on and use sim-
plified firmware to provide the required functionality when
testing the processor’s behavior at low privilege levels. In ad-
dition, transient execution bugs caused by microarchitecture
mistakes are out of our scope [42, 64].

3.2 Architecture Overview
The core idea behind MorFuzz is to dynamically mutate in-
structions based on the runtime feedback. In summary, Mor-
Fuzz leverages the following techniques to resolve the afore-
mentioned challenges (§2.3): the stimulus template, the in-
struction morphing, and the synchronizable co-simulation.
Stimulus Template (§3.3). Unlike existing fuzzers that di-
rectly generate instruction streams as the stimulus, MorFuzz
uses a stimulus template to generate diverse and meaningful
instruction streams. The stimulus template provides multi-
level runtime mutation primitives, including processor state
level, instruction field level, and program semantic level,
thereby comprehensively exploring the input space of the
processor. In addition, the stimulus template also introduces
the ability for the fuzzer to communicate with the DUT to
manage the control flow of test cases. Therefore, the fuzzer
can accurately control the DUT to skip duplicate instructions
and focus on the instruction sequences it is interested in.
Instruction Morphing (§3.4). Instruction morphing only mu-
tates those instructions that are going to be executed instead

of mutating instructions indiscriminately like existing fuzzers.
Instruction morphing is a dynamic instruction mutation tech-
nique that accurately reflects the effect of the mutations, and
thereby the coverage can effectively guide the fuzzer. And
instruction morphing uses runtime information to mutate op-
codes and operands, ensuring that the morphed instructions
maintain valid field format and meaningful semantics. Be-
sides, instruction morphing is performed on binary instruc-
tions, which makes it easier for MorFuzz to generate corner
cases that assembly language cannot represent, thus greatly
increasing the efficiency in exploring the input space.
Synchronizable Co-simulation (§3.5). MorFuzz synchro-
nizes the legal differences to address the implementation dif-
ferences between models. During the simulation, MorFuzz
uses a simulator to co-simulate with the DUT, and compares
the architectural state of the DUT and the simulator after
each instruction is executed to check the correctness. Co-
simulation can also allow MorFuzz to locate which instruc-
tion caused the mismatched state accurately. Based on this,
MorFuzz can further analyze whether the difference is legal
and synchronize the correct state from the DUT to the sim-
ulator, thus eliminating the mismatch. Benefiting from the
synchronizable co-simulation framework, MorFuzz can auto-
matically mitigate the implementation differences and allow
the simulator to co-simulate synchronously with the DUT,
thus directing the fuzzer to cover more depth states.
Overview. The overall workflow of MorFuzz is depicted in
Figure 4. First, MorFuzz uses seeds to generate the stimulus
templates. Then, MorFuzz dynamically morphs the template
based on the runtime information and executes morphed in-
struction streams simultaneously on the DUT and the sim-
ulator. Finally, after each instruction is executed, MorFuzz
compares the architectural state of the two models. After Mor-
Fuzz analyzes the mismatches, the legal difference states are
synchronized to the simulator, and the others are reported as
potential bugs.

3.3 Stimulus Template Generation
We design a new structure for the test case, the stimulus tem-
plate, to provide runtime mutation primitives for processor



state and instructions. The stimulus template consists of two
parts: the runtime morphable fuzzing payload and the read-
only fuzzing execution environment. The fuzzing payload
contains the runtime mutation primitives, and the fuzzing ex-
ecution environment is the system firmware responsible for
providing a software execution environment that allows the
DUT to execute the fuzzing payload continuously.
Template Instruction Generation. Template instructions are
blank payload instructions for instruction morphing, which
provide mutation primitives for the instruction field and the
program semantic at runtime. During the generation, the tem-
plate instruction acts like a placeholder, only containing the
fields that determine the length of the instruction to calculate
the memory layout of the stimulus template. The other fields
are temporarily filled with dummy values, which MorFuzz
will replace with meaningful values based on the contextual
information later during the simulation. MorFuzz generates
template instructions at block granularity and designs differ-
ent testing blocks to cover the various hardware functional
modules of the processor. A set of sequence patterns are
manually constructed in each testing block to constrain the
instruction types of each template instruction in the block to
achieve the desired test points. Under the constraints of the
sequence pattern, each testing block is randomly filled with a
bunch of template instruction sequences with special seman-
tics. In addition, the sequence patterns also expose the DUT’s
internal state by inserting watchpoint instructions at specific
locations to enhance observability. For example, MorFuzz
inserts instructions to read the floating-point exception flag
CSR after the floating-point instruction sequence to check
whether the exception flag is set correctly.
Magic Instruction Generation. MorFuzz instruments magic
instructions in the prologue of each testing block as the proces-
sor state runtime mutation primitives. The magic instructions
are the load instructions that access a random number gener-
ator mounted in the test harness. During the simulation, the
DUT can atomically randomize the general-purpose regis-
ters by accessing the generator. The DUT can specify the
generated data type by accessing different address offsets of
the generator, including integers, floating-point numbers, ad-
dresses, page table entries, etc. The random number generator
can generate not only random numbers but also particular
corner values (e.g., illegal addresses, maximum and minimum
in integers, INF and NaN in floating-point numbers). This
significantly improves the possibility of covering corner cases
and increases fuzzing stress.
Instruction Shuffle. To further increase the sequence level
randomness, we also perform a randomized perturbation of
the order of all instructions in the fuzzing payload at the end
of the generation, called instruction shuffle. Although some
watchpoints will be sacrificed, shuffling instructions mix up
adjacent testing blocks, increasing the diversity of instruction
sequences and further producing more processor states.
Execution Environment Packaging. MorFuzz integrates a

powerful fuzzing execution environment into the stimulus
template. First, the fuzzing execution environment is respon-
sible for setting up the execution environment, such as ini-
tializing general-purpose registers and memory, configuring
address translation mode, and switching to the target privi-
lege level. Second, morphed instructions inevitably trigger
exceptions, so the fuzzing execution environment is required
to be able to handle the exceptions to avoid crashing the exe-
cution. And third, the fuzzer manages the control flow of the
stimulus template through the fuzzing execution environment.
After executing the scheduled fuzzing payload, the fuzzing
execution environment communicates with the fuzzer, and the
fuzzer decides whether to continue the simulation based on
the reported coverage.

3.4 Runtime Instruction Morphing

When the hardware simulation begins, MorFuzz uses instruc-
tion morphing to morph the template instructions to generate
diverse and meaningful instruction streams. To mutate the
instruction being executed, MorFuzz inserted a morpher into
the DUT. The morpher is a logic block inserted in the circuit,
which does not affect the processor’s functionality. Typically,
it is placed on the wire that connects the processor fetch unit
and the decode unit. Figure 5 illustrates the workflow of the
morpher. First, the morpher hijacks the instruction fetched
from memory. Next, the morpher decodes the instruction and
performs field level mutation on morphable opcode related
fields. And then, the morpher uses the contextual information
to generate operand related fields with good semantics. Lastly,
the morphed instruction is sent back to the decoder unit. From
the view of the processor, the instruction fetched from mem-
ory magically turns into another different instruction.
Field Level Mutation. Field level mutation is a structured
binary mutation approach that ensures the mutated instruc-
tions remain a valid format. To avoid subsequent mutations
from destroying the structure of the instruction, the morpher
chooses to generate an instruction similar to the hijacked
template instruction instead of producing a completely differ-
ent instruction. Therefore, the morpher does not mutate the
fields that determine the instruction format and length, e.g.,
the opcode field. When a new template instruction arrives, the
morpher first decodes the instructions and determines which
fields are morphable. Next, the morpher randomly selects
valid opcodes defined in the specification to replace the op-
code related fields in the morphable fields. For instance, in
Figure 5, by morphing the funct3 field, the morpher mutates
an addi instruction into a xori instruction. And finally, the
morpher passes the half-finished instruction and the list of
morphable fields to the subsequent mutation process.
Semantic Level Mutation. To make the morphed instruc-
tions close to real-world usage scenarios, the morpher not
only generates the operand related fields randomly but also
combines contextual information to mutate the semantics.
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First, the morpher generates valid address offsets based
on the current program counter and address space. During
the simulation, the morpher senses DUT’s address translation
mode and maps the memory layout in the stimulus template
into the current address space. When generating an immediate
number related to the address (e.g., the imm field of the branch
instructions), the morpher calculates address offset based on
the current program counter and mapped target address, thus
ensuring that the morphed immediate number is meaningful.

Second, the morpher maintains a type pool of general-
purpose registers to provide operands with the desired type.
For memory load and store instructions, they require that the
base address register field rs1 must point to a register con-
taining an address. In order to generate meaningful rs fields,
the morpher keeps track of the data types (including address
and general data) in the general-purpose registers to provide
the correct operand type. To simplify type tracing, MorFuzz
does not trace the data flow but only marks the type of the
destination register as its obtained data type when executing
a magic instruction. If another normal instruction writes that
destination register again, the register will lose its type.

Third, the morpher uses a sliding window to record the
destination register field rd of instructions still being exe-
cuted in the pipeline. The morpher can use the registers in the
sliding window as the rs and rd fields for subsequent tem-
plate instructions to generate instructions containing pipeline
hazards, such as read-after-write and write-after-write. There-
fore, MorFuzz is also able to generate inputs matching the
microarchitectural details of the DUT spontaneously.

Notice that the morpher would still try illegal cases with a
small probability because the input space out of the specifi-
cation is also a significant source of bugs, such as the illegal
opcodes bugs B1 and the illegal operands bugs B4.
Diverse and Meaningful Instruction Streams. Finally, with
the help of the stimulus template, MorFuzz morphs template
instructions to produce diverse and meaningful instruction
streams on the fly. As Figure 6 shown, the DUT starts execu-
tion from the initialization function in the fuzzing execution
environment and jumps to the fuzzing payload. While execut-
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Figure 7: MorFuzz state verification flow.

ing the morphed instructions, if the DUT triggers an exception,
the exception handler in the fuzzing execution environment
will try to handle the exception. Whether or not the handler
successfully handles the exception, the handler redirects the
DUT back to the fuzzing payload. A unique system call is
triggered when the DUT reaches the boundary of the fuzzing
payload, notifying the fuzzer to collect the current coverage
and fix the program counter. By evaluating the coverage, if the
fuzzer is interested in the input, it controls the DUT to return
to the fuzzing payload again. Otherwise, the fuzzer will ter-
minate the simulation and generate a new stimulus template.
In addition, to avoid the DUT from falling into dead loops,
MorFuzz also monitors the coverage. If the coverage does not
increase for a period of time, the fuzzer will raise an interrupt
to stop the simulation. In summary, the fuzzer can control the
DUT to continuously execute diverse and meaningful instruc-
tion streams in a loop without additional initialization, thus
significantly improving the fuzzing performance.

3.5 Synchronizable Co-simulation

MorFuzz applies an online co-simulation approach for state
verification, using an ISA simulator running in parallel with
the DUT as the reference model. The ISA simulator and
the DUT execute the same inputs, so the correctness of the
DUT’s state can be checked by comparing their states after
each instruction is executed.
Compatible Co-simulation. The existing work has assumed
that the write-back data is always ready when the DUT com-
mits instructions. However, this assumption is not always true
due to the microarchitectural differences between processors.
For example, Rocket [1] supports delayed write-back, which
means the write-back data of long-latency instructions (e.g.,



multiply and divide, floating-point instructions) may not be
ready at the commit stage.

To accommodate different microarchitectures, MorFuzz
abstracts the state comparison process into two stages, the
commitment stage and the judgment stage. More specifically,
we use the instruction a-d in Figure 7 as an example. As-
suming that the write-back data is not ready when the DUT
commits the instruction a. In the commitment stage, the DUT
first commits its program counter and the executed instruc-
tion ( 1⃝). Once the simulator receives the commit request, it
executes the next instruction and then checks if the executed
instruction is consistent with the one committed by the DUT
( 2⃝). If the check passes, the simulator records its reference
write-back data to the scoreboard ( 3⃝). The judgment stage
starts after the write-back data of the instruction a is ready.
MorFuzz compares the write-back value with the reference
value in the scoreboard to determine whether the instruction
is executed correctly ( 4⃝). The instruction b shows the case
where the commit stage and the judgment stage fire simulta-
neously, MorFuzz is compatible with this case. When mis-
matched behavior is detected, MorFuzz reports the potential
bug and exits the simulation (e.g., instruction d, c- 5⃝).
State Synchronization. As discussed in §2.3, not all mis-
matched differences are bugs. According to our statistics in
Figure 10, these implementation differences are triggered with
high probability. Although MorFuzz can stop the simulation
in time at the mismatched instruction through online state
verification, exiting the simulation means that the DUT loses
the currently accumulated state, making it difficult for the
fuzzer to penetrate the deep states of the processor. Therefore,
MorFuzz proposes a synchronizable co-simulation approach
to automatically eliminate implementation differences, allow-
ing the DUT to synchronize its state to the reference model
to sustain the simulation. For instance, suppose the instruc-
tion c accesses a peripheral register, and the judgment stage
fails because the simulator lacks a corresponding peripheral
simulation. MorFuzz can determine whether the mismatched
difference is legal by analyzing the accessed physical address
on the simulator. If legal, MorFuzz synchronizes the hard-
ware state to the simulator ( 6⃝) and otherwise reports it as a
potential bug ( 5⃝). In addition, MorFuzz can also synchro-
nize external events, such as interrupts, to the simulator. By
automatically synchronizing mismatched states, MorFuzz al-
lows the simulation to execute deeper rather than stopping
prematurely due to false positives.

4 Implementation

In this section, we discuss several relevant implementation
details of MorFuzz. We first describe the stimulus template
generator, followed by the fuzzing framework for processor
simulation and verification. The prototype we implemented
is based on the RISC-V 64-bit architecture.

4.1 Stimulus Template Generation

The stimulus template generator consists of 2.6K lines of
python code and 1.3K lines of assembly and C code. We
define a 128-bit seed to generate the stimulus template. The
seeds determine the fuzzing execution environment and in-
struction extensions to be tested, control the weight of differ-
ent testing blocks, seed the random number generator, and set
the intensity of the instruction shuffle.
Testing Block. MorFuzz generates different types of testing
blocks based on the weights in the seed. The higher the weight
of the testing block in the seed, the more likely it is to be
generated. We have designed seven types of testing blocks
to cover various hardware functional modules of the DUT,
including integer arithmetic test, floating-point arithmetic test,
CSR test, memory operation test, atomic memory operation
test, system operation test, and custom extension test. And
control transfer instruction is placed at the end of each testing
block to chain them together.
Fuzzing Execution Environment. We extended the testing
environment provided by the official RISC-V testing reposi-
tory [54] as the fuzzing execution environment. The fuzzing
execution environment initializes the processor and configures
the environment, such as the available instruction extensions,
the address translation mode and page table, and the runtime
privilege level. During the simulation, the fuzzing execution
environment is placed in a non-morphable physical area and
is responsible for handling exceptions and interrupts with the
highest privilege level. In addition to managing the execution
environment, the fuzzing execution environment also provides
interfaces to fuzz the system environment, e.g., we provide a
series of page table randomization functions to mutate page
table entries and evict mapped pages.

4.2 Processor Fuzzing

We use the starship SoC generator [57] to generate the test
harness for the processor under test, including the on-chip
interconnect system and the memory model that saves the
compiled stimulus template. The hardware test harness of the
DUT is implemented using about 2K lines of Chisel and 500
lines of Verilog. And we extract the core logic of the official
RISC-V ISA simulator, the spike [53], as the reference model
to check the correctness of the DUT’s behavior. We use about
2.5K lines of C++ code to complete the morpher and the
co-simulation framework.
Instruction Morphing. The morpher is implemented as soft-
ware logic embedded in hardware. It uses the Verilog DPI
interface to interact with the hardware, i.e., monitor the pro-
cessor’s internal state, hijack fetched instructions, and return
morphed instructions. The morpher performs field-aware mu-
tation on fetched instructions and only replaces the wires
between the fetch unit and the decode unit, which ensures
that the morphed instructions keep the instruction fetch offset



consistency with the pipeline front-end and does not require
modification of the pipeline back-end. Therefore the morpher
does not introduce unwanted effects.

In addition, to ensure that the reference model can perform
the same morphing as the DUT, the morpher maintains a
morphing map, using the instruction before morphing and its
address as the key and the morphed instruction as the value.
Thus instruction morphing does not introduce false positives,
and both models are always able to execute deterministic and
identical morphed instructions.
Synchronization Prerequisite. We have strictly defined the
rules to approve state synchronization. A difference must
meet the following three prerequisites to be considered a legal
difference. First, only instructions involving operations be-
yond the verification scope are allowed to perform subsequent
steps. This limits the types of instructions that are allowed to
trigger state synchronization to CSR instructions and memory
operation instructions. Second, the control flow information
of the DUT must pass the commitment stage check. If the
DUT incorrectly approves access to privileged registers or
reserved address space, an exception will be thrown on the
simulator side due to insufficient permissions. MorFuzz will
prevent synchronization after observing a program counter
violation during the commitment stage. Third, mismatched
write-back values are limited to the CSR WARL fields de-
fined in the specification or the data reading from peripheral
addresses outside the specification. With further fine-grained
checks, MorFuzz can ensure that all synchronized differences
are out of our verification scope.
Hardware Simulation. We use an industry-standard com-
mercial tool, Synopsys VCS [14], to simulate hardware RTL
designs, but MorFuzz does not rely on features that are exclu-
sive to commercial tools. All hardware modules are translated
to Verilog code and then compiled into a host executable
binary through the Synopsys VCS RTL simulator.
Hardware Coverage Matrix. MorFuzz is compatible with
the coverage matrices proposed by existing designs, and we
use the same control register coverage to facilitate compari-
son with DifuzzRTL [30]. The control register is the register
whose value is used for any multiplexers’ select signal. We
implemented the same FIRRTL [31] pass to instrument all the
control registers. The instrumented circuits count the different
states triggered in the module and sum up the count as the fi-
nal coverage. The control register coverage is clock-sensitive
and reflects the hardware state better than other coverage ma-
trices. Note that the coverage is only used to evaluate the
effect of inputs and mutations, and achieving high coverage
in the DUT does not mean that the design is bug-free.

5 Evaluation

In this section, we evaluate the effectiveness of MorFuzz in
various aspects. In summary, we aim to answer the following
four questions:

• RQ 1. How effective is MorFuzz in discovering previ-
ously unknown bugs in real-world processors? (§5.2).

• RQ 2. How does MorFuzz perform compared with previ-
ous methods in exploring the states of processors? (§5.3)

• RQ 3. Are the instructions generated by instruction mor-
phing valid and diverse? (§5.4)

• RQ 4. How do the instruction morphing and the state
synchronization contribute to the effectiveness of our
fuzzer? (§5.5)

5.1 Experimental Setup

We conducted the experiments on a 48-core Intel Xeon Sil-
ver 4214 processor with 256GB RAM. We ran each experi-
ment for 24 hours and repeated the experiment five times. We
fuzzed three popular processors in the RISC-V community to
demonstrate that MorFuzz is compatible with different RISC-
V microarchitectures. All processors are capable of booting
and running Linux, and the configurations of each processor
are summarized in Table 1.
CVA6 [68] is an open source 64-bit in-order RISC-V pro-
cessor core written in SystemVerilog. Although its six-stage
pipeline is single-issue, it has independent internal execution
functional units. Thus it is able to commit multiple instruc-
tions simultaneously. It also has been taped out in 22nm tech-
nology and runs at up to 1.7GHz.
Rocket [1] is a five-stage, single-issue, in-order scalar pro-
cessor written in Chisel [2]. Rocket’s pipeline is ingeniously
designed to support the delayed write-back, allowing the pro-
cessor to commit long latency instructions without carrying
write-back data. Rocket is the world’s first RISC-V processor
open sourced by UC Berkeley and is still actively support-
ing new extensions (e.g., hypervisor [50] and cryptography
[49]). Moreover, it has been taped out dozens of times and
extensively verified by academia and industrial groups.
BOOM [70] is the third generation of the Berkeley Out-of-
Order Machine (BOOM). It is an out-of-order superscalar
processor also written in Chisel. Unlike the above in-order
cores, BOOM has a more sophisticated microarchitecture,
and we used the triple-issue LargeBoom configuration for the
experiment. The latest BOOM has been verified on FPGA
and achieves better performance than its predecessor.

Table 1: Summary of the cores used for evaluation.

Feature CVA6 Rocket BOOM

ISA RV64GC RV64GCHX RV64GCX
Pipeline Stage 6 5 10
Issue Order In-order In-order Out-of-order
Lines of code 24K 99K 339K



5.2 Bugs Found in Real-World Processors

During the evaluation, MorFuzz found 17 new bugs and two
already known bugs in total. Our results demonstrate that Mor-
Fuzz is capable of finding unknown bugs that are ignored by
previous extensive verification conducted by both academia
and industrial groups. Moreover, we take responsible disclo-
sure. We report all bugs found to the community using the sug-
gested channels and assist the developers in fixing 9 of them.
We also apply CVE identifiers for all newly discovered bugs,
and 13 bugs are assigned with CVE numbers. Since MorFuzz
does not explicitly target security property violations, direct
exploitation of most discovered bugs is to launch denial-of-
service attacks. For example, bug B10 prevents the processor
from executing crafted instructions correctly, the wrong type
generated by bug B13 makes the kernel fail to handle excep-
tions properly and triggering bug B18 shuts down the system.
In general, it is difficult to evaluate the exact security impacts
of functional bugs without real-world exploitation scenarios.
Recent attacks have shown that even faulty computation re-
sults can compromise security isolation [5, 34, 43–45]. We
list all the bugs found by MorFuzz in Table 2 together with
their corresponding common weakness enumerations (CWEs)
to show their potential security implications.

We also compare the average bug reproduction time in
Table 3. We select similar bugs reported by previous work
to highlight the efficiency improvement over the previous
processor fuzzer and instruction generator. In the case of bug
B7, MorFuzz triggers the problem significantly faster than
riscv-torture and DifuzzRTL. Additionally, since we included
binary-level mutations, we may effectively trigger bugs that
previous methods failed to cover, such as B8.

Next, we describe in detail the bugs found by MorFuzz.
Depending on the complexity, these bugs can be classified
into three categories: instruction decoder related, CSR state
related, and complex logic bugs. We identify these bugs with
the latest RISC-V ISA specification [62, 63].

5.2.1 Instruction Decoder Related Bugs

The first category of bugs is decoder bugs caused by the rare
corner format of a single instruction. Previous fuzzers mutate
inputs at the instruction level, only generating assembly in-
structions with valid formats. MorFuzz performs binary-level
field-aware mutation, enabling more efficient exploration of
unexpected instruction formats.
Bug B1. According to the specification, the rcon field of
aes64ks1i should not greater than 0xA. When executing an
aes64ks1i with rcon field greater than 0xA, Rocket does not
throw an illegal instruction exception.
Bug B6. By setting the rm field in the floating-point instruc-
tion, programmers can specify the rounding mode. BOOM
can execute floating-point instructions with illegal rm fields
(such as 5 or 6) without raising exceptions.

Bug B8. In the specification, sfence.vma has a zero rd field.
CVA6 considers illegal sfence.vma is valid when its rd field
is mutated to a non-zero value.
Bug B9. The CVA6 decoder behaves incorrectly when exe-
cuting dret with a non-zero rd field, which should be zero
according to the specification. CVA6 handles this invalid
dret as if it were a legal dret.
Bug B10. For forward compatibility, implementations must ig-
nore rd fields in fence.i/fence, and standard software must
clear them. When executing a non-standard fence.i/fence
with a non-zero rd field, CVA6 throws an exception.

5.2.2 CSR State Related Bugs

CSR state bugs require first setting the CSR to a specific state
and then inducing the buggy behavior through instruction
sequences. MorFuzz is able to generate instruction sequences
that meet the above requirements with the guidance of se-
quence patterns.
Bug B2. In Rocket, the custom extension illegal signal incor-
rectly uses vector extension status. Due to this bug, the valid
custom extension instruction may fail to execute.
Bug B3. vsstatus.xs field is writable in Rocket. The xs
field summarizes the extension context status, and according
to the specification, it is read-only.
Bug B7. If we set the frm to DYN (or an invalid value), any
floating-point instruction whose rm field is set to DYN should
raise an illegal instruction exception. Nonetheless, BOOM
executes these instructions without raising an exception.
Bug B11. When the mstatus.fs field is set to dirty, the
mstatus.sd field in CVA6 does not update immediately. This
bug may cause the contents of the floating-point registers to
be lost during the context switch.
Bug B12. CVA6 writes the binary instruction of the ebreak
to the mtval/stval register when it executes an ebreak.
According to the specification, mtval/stval should contain
the faulting virtual address if it is written with a non-zero
value when a breakpoint exception occurs. And the ecall
also for the same reason.
Bug B18. Spike’s mcontrol.action component contains an
incorrect mask, which is 0x3f, while this field only has 4 bits
width. If users attempt to set the sizelo field next to it, an
illegal action will be saved, forcing the program simulation
to crash abruptly.

5.2.3 Complex Logic Bugs

The remaining bugs are not concentrated in specific hardware
functional modules and require numerous instructions with
specific semantics to prepare a buggy environment, we col-
lectively call them logic bugs. MorFuzz monitors the internal
runtime states of the DUT to dynamically morph instructions
and randomize operands, greatly enhancing the semantics of



Table 2: A list of bugs discovered by MorFuzz.

Processor Bug Description CVE/Issue ID CWE New Bug Confirmed Fixed

Rocket
B1: Treat aes64ksli with rcon greater than 0xA as valid CVE-2022-34632 CWE-327 ✓ ✓ ✓
B2: Error in condition of the rocc_illegal signal Issue #2980 CWE-1281 ✓ ✓ ✓
B3: The vsstatus.xs is writable CVE-2022-34627 CWE-732 ✓ ✓ ✓

BOOM

B4: Incorrect exception type when a PMA violation CVE-2022-34636 CWE-1202 ✓ ✓
B5: Incorrect exception type when a PMP violation CVE-2022-34641 CWE-1198 ✓ ✓
B6: Floating-point instruction with invalid rm field does not raise exception Issue #458 CWE-391 ✓
B7: Floating-point instruction with invalid frm does not raise exception Issue #492 CWE-391 ✓

CVA6

B8: Crafted or incorrectly formatted sfence.vma instructions are executed CVE-2022-34633 CWE-1242 ✓ ✓ ✓
B9: Crafted or incorrectly formatted dret instructions are executed CVE-2022-34634 CWE-1242 ✓ ✓ ✓
B10: Non-standard fence instructions are treated as illegal CVE-2022-34639 CWE-1209 ✓ ✓ ✓
B11: The mstatus.sd field does not update immediately CVE-2022-34635 CWE-1199 ✓ ✓
B12: The value of mtval/stval after ecall/ebreak is incorrect CVE-2022-34640 CWE-755 ✓ ✓
B13: Incorrect exception type when a PMA violation CVE-2022-34636 CWE-1202 ✓ ✓
B14: Incorrect exception type when a PMP violation CVE-2022-34641 CWE-1198 ✓ ✓ ✓
B15: Incorrect exception type when accessing an illegal virtual address CVE-2022-34637 CWE-754 ✓ ✓
B16: Improper physical PC truncate Issue #901 CWE-222 ✓ ✓
B17: Incorrect lr exception type CVE-2022-37182 CWE-754 ✓ ✓

Spike B18: The component mcontrol.action contains the incorrect mask CVE-2022-34642 CWE-787 ✓ ✓ ✓
B19: Incorrect exception priotrity when accessing memory CVE-2022-34643 CWE-754 ✓ ✓ ✓

Table 3: Comparison of the average time to reproduce bugs.

Bug ID
Elapsed Time

riscv-torture DifuzzRTL MorFuzz
B7 118h 20.3h 10.4m
B8 ✗ ✗ 6.5s

✗ means failed to reproduce the bug.

the input. For complex operations that are difficult to gener-
ate randomly, like modifying the page table, MorFuzz can
use ecall with specific parameters to invoke the page table
randomization function in the fuzzing execution environment.
Bug B4, B13. MorFuzz found that the exception type of the
physical memory attribute (PMA) violation during the address
translation is incorrect. The processor needs to raise an access-
fault exception corresponding to the original access type if
accessing PTE violates a PMA check. Both the exception
types for BOOM and CVA6 are incorrect.
Bug B5, B14. We perform a store operation with a special vir-
tual address whose non-leaf PTE is out of the physical mem-
ory protection (PMP) range. BOOM and CVA6 implement
the incorrect exception type when a PMP violation occurs.
Bug B15. Bits 63 to 39 of 64-bit virtual addresses in Sv39
must all equal bit 38. When accessing an address that does not
satisfy this requirement, CVA6 throws an access fault, while
according to the specification, it should be a page fault.
Bug B16. In CVA6, an implicit address truncation is applied
to any physical address access. Specifically, the highest 8
bits for instruction addresses and the highest 32 bits for data
addresses are ignored.
Bug B17. The exception type of failed lr instruction is incor-
rect in CVA6. When we use lr to access a page that has not
yet been mapped, CVA6 throws a store page fault.
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Figure 8: State coverage of MorFuzz and prior works on
Rocket over the 24-hour fuzzing time. The shaded area repre-
sents the 95% confidence interval.

Bug B19. Spike implements the incorrect exception priority
when accessing memory. In the specification, the breakpoint
exception has a higher priority than the address-misaligned
and access-fault exceptions, which is the opposite of the
spike’s implementation.

5.3 Exploring the State of Processors

We first demonstrate that MorFuzz can achieve higher state
coverage than the state-of-the-art processor fuzzer. We choose
the currently available fuzzer, DifuzzRTL[30], for evaluation.
We also compare MorFuzz with traditional simulation-based
dynamic verification methods. We select riscv-torture [48], a

Since the open-source implementation of DifuzzRTL uses a different
RTL simulator, we replay all test cases generated by DifuzzRTL in our
environment. In this way, both fuzzers share the same evaluation environment,
and the results are comparable.
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Figure 9: Instruction diversity of MorFuzz, DifuzzRTL and riscv-dv in one round of 24-hour fuzzing. The highlighted area
indicates the number of committed instructions with the corresponding write-back data.

random instruction generator widely used in the community,
and use the UVM-based risv-dv [26] to represent industrial
solutions. These instruction generators do not use coverage
but hand-written constraints to guide random instruction gen-
eration. The riscv-torture uses simple register analysis to
generate instructions, and the riscv-dv uses manually crafted
test templates to generate high-quality test cases. We evaluate
the above verification approaches with default configurations
on the BaseConfig Rocket because other processors suffer
from pending bugs.

Figure 8 presents the evaluation result, which indicates
that MorFuzz achieves higher coverage and better efficiency
than other methods. Since riscv-torture and riscv-dv use fixed
constraints and do not generate random control transfer in-
structions, they generate deterministic inputs for a specific
input space, and therefore their state coverage curves have
tighter confidence intervals. MorFuzz and DifuzzRTL have
larger fluctuations due to the randomly generated seeds and
the control transfer instructions. MorFuzz eventually explores
4.4× more coverage than DifuzzRTL, 3.1× more coverage
than riscv-torture, and 1.6× more coverage than riscv-dv.
Moreover, MorFuzz is far more efficient than the state-of-the-
art processor fuzzer DifuzzRTL. DifuzzRTL takes 24 hours
to reach 480K coverage, while MorFuzz obtains the same
coverage in only bout 30 minutes. And MorFuzz uses about
2.4 hours to achieve the coverage that riscv-dv takes 24 hours
to complete. The remarkable result indicates that MorFuzz
can explore processor states effectively and efficiently.

One interesting aspect is that ten years old riscv-torture out-
performs DifuzzRTL. To further highlight the impact of input
control flow on mutation effectiveness (§2.3), we statistics
the test point execution rate of DifuzzRTL. To our surprise,
the result is only about 4%. Since DifuzzRTL blindly inserts
control flow instructions and lacks exception handlers, most
inputs are not completely executed. Such a low execution
rate means that DifuzzRTL spends most of its time executing
meaningless initialization functions and makes the coverage

insufficient to reflect the mutation quality. This may also ex-
plain why DifuzzRTL performs better than riscv-torture in
the first few hours, but as time grows, the fuzzer is gradu-
ally misguided. In contrast, MorFuzz achieves an 86% testing
block execution rate with the help of instruction morphing and
state synchronization. As a result, MorFuzz is able to execute
inputs more thoroughly and mutate them more effectively,
enabling efficient exploration of the processor’s state.

5.4 Instruction Diversity

To illustrate that instruction morphing generates valid and di-
verse instruction streams, we visualize each committed valid
instruction and its write-back data during the fuzzing. We
assess the diversity of instructions in two dimensions: the
opcode (i.e., the function of the instruction) and the wdata
(i.e., the result written back). The diversity of opcode indi-
cates the number of data paths a fuzzer can test, while the
diversity of wdata suggests the test completeness for a spe-
cific data path. We evaluate the instruction diversity of both
MorFuzz, DifuzzRTL and riscv-dv. We plot the result as heat
maps (Figure 9), using the opcode as the x-axis, the logarithm
of the wdata as the y-axis, and the brightness as the number
of committed instructions corresponding to the opcode and
wdata pair.

Since not all instructions generate the full range of 64-bit
write-back data, some areas in the heat map are always dark.
For example, the branch and store instructions do not have
destination registers, and word operations never generate data
larger than 32 bits. Comparing these figures, we find that riscv-
dv has the most bright areas (Figure 9c). Under manually
crafted constraints, riscv-dv can generate valid instructions
with uniformly distributed operands, representing the upper
bound on the quality of randomly generated instructions. On
the contrary, DifuzzRTL has the least highlighted regions,
indicating its limited input diversity (Figure 9b). Figure 9a
suggests that MorFuzz is capable of generating more valid
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Figure 10: State coverage of MorFuzz and its variants.

and diverse fuzzing inputs than DifuzzRTL, and the quality
of the generated instructions is comparable to that of riscv-dv.

5.5 Component Analysis

To measure the effect of each component of MorFuzz, we first
create two variants of MorFuzz that disables part of its com-
ponents: (i) MorFuzz− disables instruction morphing, which
means the DUT directly executes statically generated random
instructions without morphing. (ii) MorFuzz∗ disables both
instruction morphing and state synchronization. This variant
means the fuzzer not only executes the static instructions but
also terminates the simulation immediately when it detects
a mismatched state. Similarly, we evaluate MorFuzz and its
variants on the BaseConfig Rocket for 24 hours.

Figure 10 shows the results of the experiment. The gap
in coverage between the two variants shows that false pos-
itives caused by the model implementation differences can
cause the DUT to terminate the simulation prematurely and
fail to execute the input comprehensively. MorFuzz− effec-
tively eliminates implementation differences through state
synchronization, allowing the fuzzer to touch more deep states.
And by comparing MorFuzz and MorFuzz−, MorFuzz signifi-
cantly increases the speed of coverage growth with instruction
morphing. The instruction morphing technique uses run-time
contextual information to generate more diverse and mean-
ingful instruction streams, thus dramatically increasing the
effectiveness of the fuzzing.

6 Discussion and Limitations

Requirement of ISA Simulator. MorFuzz and other proces-
sor fuzzing works [6, 30, 32, 33] use the ISA simulator as the
golden reference model to verify the behavior of processors.
Usually, there are many available simulators for different in-
struction set architectures, e.g., Bochs [38], QEMU [3], and
Dromajo [8]. One possible problem is that the implemen-
tations between different simulators are variable and may
lead to false positives. To mitigate this, MorFuzz proposes

the synchronizable co-simulation framework to automatically
eliminate the implementation differences between the DUT
and the simulator.
Restriction on Functional Bug. Currently, MorFuzz can
only use the functional model provided by the simulator for
state verification, such as memory and registers. For details
not available in the simulator, such as caches and branch
predictors, MorFuzz cannot directly verify the correctness of
their behavior and can only detect bugs when they propagate
into the architectural registers.
State Sync vs. False Positive. State synchronization would
only eliminate legal differences in the architectural state with-
out modifying implementation details. From the simulator’s
view, it merely replaces the operands in the general-purpose
registers with those of the DUT. If the DUT executes the syn-
chronized instruction again, it will still get a mismatch and
then trigger state synchronization to eliminate it. Therefore,
state synchronization itself does not introduce false positives.
On the contrary, it eliminates false positives caused by im-
plementation differences at the architectural level in time,
allowing the fuzzer to explore more deep states.
Complex Bug Pinpoint. First, MorFuzz still requires the user
to dive deep into the specification and circuit to analyze the
root cause to determine if the mismatch is a false positive
caused by implementation differences or an actual bug. Sec-
ond, diverse instruction streams make MorFuzz more efficient
in terms of coverage while also making it difficult for users
to pinpoint the bug. Because the morphed instructions and
control flow information generated by the morpher do not
exist in the stimulus template, users need to save additional
runtime information to assist in the analysis.
FPGA Emulations. RFUZZ [37] and DifuzzRTL [30] can
use FPGA to accelerate the simulation process by sacrificing
verification accuracy. MorFuzz uses the ISA simulator to co-
simulate with the DUT to provide more accurate verification.
However, the ISA simulator is a software model that cannot be
mapped directly onto FPGA, so MorFuzz can only simulate
them via the RTL simulator.

7 Related Work

In this section, we describe the existing hardware fuzzing
works and introduce how MorFuzz differs from them, as sum-
marized in Table 4.

RFUZZ [37] introduced the concept of hardware fuzzing
and first proposed a coverage-guided hardware fuzzing frame-
work for general RTL designs. To match the various interfaces
of the targets, RFUZZ generates input directly for the hard-
ware ports at cycle granularity. Unlike RFUZZ, MorFuzz uses
a test harness to convert the compiled assembly programs into
bus transactions, ensuring that the input’s hardware semantics
are legal, thereby more efficiently fuzzing processor designs.
And several succeeding works [7, 39] extended RFUZZ to
improve performance by analyzing circuit information (e.g.,



Table 4: Comparison with the prior hardware fuzzers.

Fuzzer Fuzzing
Target

Coverage
Matrix

Mutation
Dimension

Verification
Preknowledge

Coverage
Comparison

Performance
Comparison New Bugs

RFUZZ [37] RTL designs Multiplexer Binary N/A Baseline Baseline 0

DirectFuzz [7] RTL designs Multiplexer Instance distance N/A
Same to
RFUZZ

2.23× faster
than RFUZZ 0

Trippel et al. [58] RTL designs Software Custom grammar SVA
26.70% more
than RFUZZ N/A 0

DifuzzRTL [30] Processor Control register Instruction Not required N/A
40× faster

than RFUZZ 16

Kabylkas et al. [32] Processor N/A N/A Not required N/A N/A 13

TheHuzz [33] Processor Hardware behavior Instruction field Not required
2.86% more

than DifuzzRTL
3.33× faster

than DifuzzRTL 8

MorFuzz Processor Control register
Processor state,
instruction field,

program semantic
Not required

4.4× more
than DifuzzRTL

48× faster
than DifuzzRTL 17

module distance, symbolic execution) to optimize input. How-
ever, these efforts only focus on maximizing the hardware
coverage and do not give solutions to verifying hardware
behavior, thus they are ineffective in finding bugs.

Trippel et al. [58] use the famous software fuzzer AFL [67]
to fuzz the host-executable binary file generated by the RTL
simulator. Moreover, the authors use SystemVerilog assertion
(SVA) to check design violations. Unfortunately, SVA has the
following two drawbacks [24]. First, SVA requires prior man-
ual instrumentation by the developer. Thus it asserts known
bugs rather than exploring unknown bugs. Second, SVA can-
not constrain the buggy behavior of complex processors well
because bugs usually result from multi-cycle actions. SVA
has difficulty constraining the behavior of multiple modules
over multiple cycles. MorFuzz uses a co-simulation based dif-
ferential testing approach. By comparing the state differences
between the DUT and the reference model after each instruc-
tion is executed, MorFuzz can accurately and automatically
identify potential bugs without any predefined assertions.

DifuzzRTL [30] and TheHuzz [33] are hardware fuzzing
frameworks exclusively for processors and are the most
relevant works to MorFuzz. DifuzzRTL proposes a cycle-
sensitive control register coverage matrix, and TheHuzz uses
features provided by commercial EDA tools to capture more
intrinsic hardware behaviors. As opposed to previous efforts
that focus on designing fine-grained coverage matrix, Mor-
Fuzz aims to verify processors more effectively and efficiently.
First, MorFuzz designs the stimulus template to efficiently
explore the input space from the processor state, instruction
field, and program semantics levels. Second, MorFuzz uses
instruction morphing to dynamically mutate the template in-
structions. By collecting runtime information to generate
meaningful instruction streams, MorFuzz significantly im-
proves the effectiveness of fuzzing. Third, MorFuzz uses state
synchronization to eliminate the implementation differences
between the DUT and the reference model so that the simu-
lation can continue to execute. Thus MorFuzz can penetrate
more deep states of the processor. Additionally, MorFuzz
does not rely on commercial tools and is also compatible with

the traditional verification processes in the semiconductor
industry and the open-source community.

Kabylkas et al. [32] introduced the Logic Fuzzer, a small
piece of logic injected into the circuit to trigger atypical sce-
narios. However, we consider that the Logic Fuzzer has a
limited effect. First, the bugs triggered by the Logic Fuzzer
cannot be reproduced by software. Therefore the Logic Fuzzer
may violate the designer’s intent, e.g., a properly working
Branch Target Buffer will not generate invalid branch ad-
dresses. Second, the Logic Fuzzer can only work in specific
hardware modules (e.g., FIFO, memory) that do not affect the
processor’s functionality. MorFuzz increases processor test
pressure by injecting the morpher into the decoder, which is a
general design, and all reported bugs are software triggerable.

In addition to the above fuzzers for processor RTL code at
the pre-silicon stage, there are also some fuzzers designed to
detect undocumented instructions [18, 61] and hidden model-
specific registers [20, 36] in manufactured processors to dis-
close the hardware backdoors [19]. Since the custom exten-
sions in different models are not identical, the differential
testing based MorFuzz is also able to detect these undocu-
mented hidden features. During our evaluation, we did find
some custom instructions [9] and their related bug (Bug B2).

8 Conclusion

This paper proposed MorFuzz, a coverage-guided processor
fuzzer that can detect software triggerable hardware bugs effi-
ciently. As opposed to prior fuzzers, MorFuzz uses instruction
morphing to dynamically mutate instructions at runtime to
generate diverse and meaningful inputs and efficiently guide
mutations. In addition, MorFuzz designs stimulus templates
to provide multi-level runtime mutation primitives and devel-
ops the synchronizable co-simulation framework to eliminate
implementation differences. We evaluate MorFuzz on three
popular open-source RISC-V processors and achieve at most
4.4× and 1.6× more state coverage than the state-of-the-art
fuzzer, DifuzzRTL, and the famous constrained instruction



generator, riscv-dv, respectively. Moreover, MorFuzz discov-
ered a total of 17 new bugs (with 13 CVEs assigned), demon-
strating its effectiveness in detecting unknown bugs in real-
world processors.
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