
Subverting Website Fingerprinting Defenses with Robust Traffic Representation

Meng Shen1, Kexin Ji2, Zhenbo Gao2, Qi Li3, Liehuang Zhu1, and Ke Xu4

1School of Cyberspace Science and Technology, Beijing Institute of Technology
2School of Computer Science, Beijing Institute of Technology

3Institute for Network Sciences and Cyberspace, Tsinghua University
4Department of Computer Science and Technology, Tsinghua University

{shenmeng, jikexin, liehuangz}@bit.edu.cn; gaozhenbo07@foxmail.com; {qli01, xuke}@tsinghua.edu.cn

Abstract
Anonymity networks, e.g., Tor, are vulnerable to various

website fingerprinting (WF) attacks, which allows attackers
to perceive user privacy on these networks. However, the de-
fenses developed recently can effectively interfere with WF
attacks, e.g., by simply injecting dummy packets. In this paper,
we propose a novel WF attack called Robust Fingerprinting
(RF), which enables an attacker to fingerprint the Tor traf-
fic under various defenses. Specifically, we develop a robust
traffic representation method that generates Traffic Aggrega-
tion Matrix (TAM) to fully capture key informative features
leaked from Tor traces. By utilizing TAM, an attacker can
train a CNN-based classifier that learns common high-level
traffic features uncovered by different defenses. We conduct
extensive experiments with public real-world datasets to com-
pare RF with state-of-the-art (SOTA) WF attacks. The closed-
and open-world evaluation results demonstrate that RF signif-
icantly outperforms the SOTA attacks. In particular, RF can
effectively fingerprint Tor traffic under the SOTA defenses
with an average accuracy improvement of 8.9% over the best
existing attack (i.e., Tik-Tok).

1 Introduction

Tor has been widely used as an anonymous communication
tool to prevent users from being tracked, monitored, and cen-
sored. Tor metrics [1] show that about two million active
users leverage Tor to protect their privacy every day. How-
ever, Tor is vulnerable to website fingerprinting (WF) at-
tacks [13, 33, 39, 41, 46], which is a passive attack to identify
the websites that a victim is visiting by analyzing the Tor
traffic. WF attacks exploit the unique website fingerprints by
utilizing the side channel information of an encrypted con-
nection (e.g., packet size, direction, and inter-packet delay) to
break the anonymity enabled by Tor.

To mitigate WF attacks, several defenses have been devel-
oped, such as WTF-PAD [20], Front [10], Walkie-Talkie [47],
TrafficSliver [23], RegulaTor [16] and Blanket [31]. The

strategies adopted by these defenses include deferring packet
sending, adding dummy packets, splitting traffic over multi-
paths, or a combination of them.

Recent WF attacks utilize various traffic representations
(e.g., traces of packet direction) and deep learning techniques
to undermine existing defenses. These attacks commonly as-
sume that attackers know the details of deployed defenses
and can obtain the trace of the defenses. Even under such an
assumption, they are still unable to achieve high WF accuracy
against different defenses. For instance, the SOTA WF attacks,
e.g., DF [41] and Var-CNN [4] achieve an accuracy of over
90% against WTF-PAD but only have an accuracy of less 75%
under Front. They are not able to defeat defenses built upon
traffic splitting, e.g., TrafficSliver [23], and the fingerprinting
accuracy is less than 60%. Moreover, the SOTA attacks, es-
pecially those using packet timing information, may not be
effective when network conditions (e.g., bandwidth) change.
For instance, we observe a significant accuracy reduction for
both Tik-Tok [37] and Var-CNN [4] under different network
bandwidths.

In this paper, we propose a robust WF attack, Robust Fin-
gerprinting (RF), which achieves high attack accuracy in the
presence of various defenses. The basic idea of RF is to in-
vestigate robust traffic representations that can improve deep-
learning WF models against different defenses. It consists
of two key components: an informative traffic representation
called Traffic Aggregation matrix (TAM) and a deep learning-
based classifier. TAM represents packet direction and timing
together with extracted discriminative features less affected by
defenses. Then, the deep-learning classifier can automatically
learn effective fingerprints from TAM.
Contributions. Our main contributions are as follows:
• We propose the robust WF attack (i.e., RF) in the presence

of various defenses. We utilize the information leakage anal-
ysis to explore effective features in a vast feature space and
obtain features that cannot be easily disturbed by various de-
fenses. We develop a new traffic representation method that
captures these robust features in a simple matrix (TAM). In
order to enable automatic learning of website fingerprints,

we adapt an effective classifier based on Convolutional
Neural Networks (CNNs), which learns distinctive robust
features to ensure attack effectiveness.

• We conduct extensive experiments with public real-world
datasets to evaluate the robustness of RF in closed-world
scenarios. RF achieves the highest accuracy against the
SOTA defenses that employ either traffic disturbing or traf-
fic splitting strategies. In particular, RF has an average
accuracy improvement of 8.9% over the best existing attack
(i.e., Tik-Tok [37]). In addition, RF also outperforms the
existing attacks under different network conditions.

• We perform the open-world evaluation on the robustness
of RF. The precision-recall curve of RF completely covers
the curves of SOTA WF attacks, demonstrating that RF is
superior to existing attacks against different defenses.

• We develop a countermeasure against RF based on packet
padding and delaying strategy. Our defense learns packet
sequences containing critical features from historical traces
of a collection of websites and morphs the original trace of
a certain website to mimic the packet sequences of another
website by padding and delaying packets. Experimental
results show that compared with existing defenses, the pro-
posed defense can effectively reduce the accuracy of RF
with moderate time and bandwidth overhead.
The paper is organized as follows. We review the related

work on WF attacks and defenses in Section 2 and describe
the threat model and design goals in Section 3. We elaborate
on the design of TAM in Section 4 and present RF in Sec-
tion 5. Next, we conduct extensive experiments to evaluate
the performance of RF as well as the existing WF attacks in
Section 6. We describe the countermeasures against RF in
Section 7, discuss the limitations and future work in Section 8,
and conclude this paper in Section 9.

2 Related Work

WF attacks and defense have attracted increasing research
attention in recent years. In this section, we briefly review the
existing WF attacks and defenses.

2.1 WF Attacks
WF attack leverages the collected well-labeled traffic traces to
train a powerful classifier, which can fingerprint the website
for each unknown trace. Existing WF attacks can be roughly
divided into two categories, according to the machine learning
techniques they use.
WF attacks based on traditional machine learning. Several
studies propose WF attacks by employing traditional machine
learning models, such as Support Vector Machine (SVM) [33],
k-Nearest Neighbors (k-NN) [46] and random forests [13], or
optimizing on top of them [45]. The accuracy of traditional
machine learning models usually relies on statistical features

manually crafted from the traces for training. Here, we review
3 typical attacks in this category.
k-NN [46]. Wang et al. propose this attack based on the k-
NN classifier applied on a manually selected feature set. It
learns feature weights to lower the weights of bad features
and makes the k-NN classifier focus on useful features.
CUMUL [33]. Panchenko et al. propose a cumulative repre-
sentation that implicitly covers features used by other clas-
sifiers, such as packet ordering or burst behavior, and then
use it to train an SVM classifier.
k-FP [13]. Hayes and Danezis propose this attack that uses a
large set of statistical features. These features are input into
random forests to extract a fingerprint vector, and then the
fingerprint vector is applied to the k-NN classifier for WF.
WF attacks based on deep learning. Recent studies use deep
neural networks (DNNs) as powerful tools to simplify the de-
sign of WF attacks and improve attack accuracy since it does
not require selecting and fine-tuning features manually, such
as Convolutional Neural Network [4, 39, 41], Triplet Net-
work [42] and Generative Adversarial Network [32]. DNN-
based classifiers take a simple representation of the original
traces (e.g., packet directions [41]) as input and automatically
learn distinctive features. We review 5 representative WF
attacks in this category.
AWF [39]. Rimmer et al. leverages deep neural networks to
automate the feature engineering process from packet direc-
tion sequence. The result of AWF shows that deep neural
networks are comparable to the methods based on traditional
machine learning, such as CUMUL.
DF [41]. Sirinam et al. also uses packet direction sequence
as input but utilizes a more sophisticated CNN than AWF,
with additional convolutional blocks. It is the first attack to
undermine WTF-PAD [20].
Tik-Tok [37]. Rahman et al. propose this attack that lever-
ages the same CNN structure as DF. Unlike DF, its input is
the product of direction and raw time, which improves the
effectiveness of the attack.
Var-CNN [4]. Bhat et al. propose a sophisticated architecture
based on ResNets and leverage packet direction, inter-packet
time, and metadata to train an ensemble of WF classifiers,
which also performs better than DF.
TF [42]. Sirinam et al. propose this attack that uses triplet
networks to make it transferable to heterogeneous testing sets.
TF is evaluated on undefended traces.

2.2 WF Defenses
Considering that Tor connections are vulnerable to WF at-
tacks, several WF defenses have been proposed to cover up
the distinctive features employed by potential attackers. Exist-
ing WF defenses can be roughly divided into two categories
according to the strategy they use.
Disturbing traffic. WF defenses in this category attempt to
disturb traffic patterns of the original traces by adding dummy

packets or delaying real packets according to certain strate-
gies. Dummy packet padding will lead to bandwidth overhead
(i.e., laying an extra burden on the Tor network to transmit
dummy packets) while delaying real packets will result in
time overhead (i.e., expanding webpage loading time).

Defenses proposed in the early stage, such as BuFLO [9],
CS-BuFLO [5], Tamaraw [6], try to send packets at a con-
stant rate, resulting in extremely high bandwidth and time
overhead. Although effective against WF attacks, they fail
to guarantee the quality of service perceived by Tor users.
Some defenses [36, 48] rely on a strong assumption that
the upcoming traffic patterns are known in advance, mak-
ing it inapplicable to live network traffic. After that, several
defenses [2, 3, 10, 16, 20, 27, 31, 47] with more realistic as-
sumptions are proposed to reduce overhead while maintaining
effectiveness. We review 5 defenses in this category.
WTF-PAD [20]. It leverages adaptive padding to add dummy
packets in a targeted manner, which disrupts distinctive fea-
tures of the patterns used by WF attacks. It is a zero-delay
defense, i.e., the time overhead is zero.
Front [10]. It is also a zero-delay defense that generates a set
of timestamps from a Rayleigh distribution for adding dummy
packets in the original trace.
Walkie-Talkie [47]. It modifies the Tor browser to communi-
cate in a half-duplex mode and merges the packet sequence of
every monitored website with a randomly-selected unmoni-
tored website (i.e., the decoy page) to mislead the WF attacks.
It introduces moderate overhead, e.g., 31% bandwidth over-
head and 34% time overhead, as reported by the authors [47].
RegulaTor [16]. It regularizes the traffic into multiple contin-
uously decaying packet surges, i.e., a large number of packets
sent in a short time, by injecting dummy packets and delay-
ing real packets. The results show that it can defeat DNN-
based WF attacks with moderate time (< 10%) and bandwidth
(< 80%) overhead.
Blanket [31]. It is the state-of-the-art defense against DNN-
based WF attacks. It relies on a white-box setting (i.e., requir-
ing the full knowledge of the target WF attack) and generates
adversarial perturbations on the live traffic. Blanket introduces
a flexible perturbation generation mechanism, including in-
jecting dummy packets and delaying the packets, resulting in
different bandwidth and time overhead.
Splitting traffic. WF defenses in this category split traffic to
destroy the original fingerprints of websites. It does not lead to
time or bandwidth overhead, but at the cost of implementation
overhead, e.g., reconstructing the Tor network [23].
TrafficSliver [23]. It hides packet features by splitting the
traffic so the attacker at entry nodes can only access a small
fraction of the traffic. It consists of two defense strategies,
TrafficSliver-Net and TrafficSliver-App. The former recon-
structs the Tor network to distribute TCP traffic to multiple
guard nodes with several strategies and then reassembles traf-
fic at the client and the middle node. It has no bandwidth
and time overhead but increases the complexity of deploy-

ment. While the latter acts as a client proxy to create multiple
Tor circuits to distribute HTTP requests, which can facilitate
implementation at the price of weaker protection.

WF attacks built upon traditional machine learning have
been proven to lose effectiveness when defenses are ap-
plied [41]. WF attacks based on deep learning can undermine
specific defenses via adversarial training. However, recent
studies show that these attacks can be defeated, e.g., by trace
randomization [10], regularization [16], adversarial machine
learning [31] and traffic splitting [23]. Therefore, attackers
need to develop new methods to ensure the effectiveness of
the WF attacks against various defenses.

Similar to building robust machine learning models against
adversarial perturbation [44], a carefully-designed impercep-
tible noise that can easily alter the model’s prediction, WF
attacks try to classify in the presence of perturbation gener-
ated by various WF defenses. However, recent work [31] has
shown that most strategies, including adversarial training [28],
gradient masking [35, 40], and region-based classification [8],
are difficult to apply to WF models. The reasons lie in that: 1)
in network traffic, defenders can add much more perturbation
to obfuscate the original traffic, as they do not need to make
it imperceptible to humans, making it harder for attackers to
learn distinct features; and 2) robust model-building strategies
typically reduce model accuracy and affect model generaliza-
tion, which is a phenomenon known as label leaking [22]. In
contrast, RF can extract robust features not disturbed by per-
turbations in different defenses and outperform the existing
WF attacks.

3 Threat Model and Attack Goals

The threat model of WF attacks is shown in Figure 1. Similar
to previous WF attacks [7, 13, 14, 41], we assume a local and
passive attacker. Passive attackers can only sniff and record
packets but cannot modify, delay, drop, or decrypt packets.
Local attackers can only collect packet traces from the con-
nection between the client and the guard node in the Tor
network. Potential attackers that might launch WF attacks
include eavesdroppers on the client’s local network, Internet
Service Providers (ISP), and Autonomous Systems (AS) that
are located between the client and the guard node [41].

The WF attack is usually considered as a classification
problem. In an offline training process, the attacker extracts
features from a collection of website traces and trains a super-
vised classifier. When launching the WF attack, the attacker
captures the traffic traces from the target client’s connection
to the Tor network, extracts features, and predicts with the
classifier which website the client is visiting.

Note that a client has the flexibility to deploy a WF de-
fense (e.g., WTF-PAD [20], Front [10], Walkie-Talkie [47],
and Blanket [31]) to protect their connection privacy. The
goal of WF attacks is to fingerprint the Tor traffic even under
various WF defenses accurately. In this paper, we assume that

Websites

 Defended Tor Traffic Tor Traffic

Tor Networks

Attacker

Client

Figure 1: The threat model of WF attacks

attackers know the specific defense deployed by the victim
in advance, which is the common assumption in the litera-
ture [41]. Under this setting, the attackers can obtain traffic
traces generated by the target defense for adversarial train-
ing. Although this setting has the second-mover advantage
for attackers, most existing WF attacks are only effective in
undermining specific defenses. Therefore, it is non-trivial to
ensure that a WF attack can maintain its effectiveness under
various defenses.
Closed- and open-world scenarios. They are commonly
used to evaluate the performance of WF attacks [33, 39, 41].
In the closed-world scenario, the client is only assumed to
visit a small set of websites [15, 43] known as monitored
websites. The attacker thus has samples of these websites
to train a classifier for website recognition. The open-world
scenario is more realistic [19, 41], where the client visits a set
of monitored websites and a much larger set of unmonitored
websites. The attacker, who can only obtain a fraction of the
unmonitored websites for training, infers whether the client
visits the monitored websites and, if so, which ones.

4 Robust Traffic Representation

In this section, we first introduce the intuition behind our
traffic representation by exploring potential robust traffic rep-
resentations based on information leakage and presenting our
observations. Then we describe the design of the robust traf-
fic representation in detail. Next, we resort to quantitative
measures to verify the robustness of our traffic representation.

4.1 Key Observations
Traffic representation is the abstraction of network traces,
from which WF classifiers can learn distinctive features for
classification. Information loss is inevitable during the map-
ping of raw traces to traffic representation. As a result, a
robust traffic representation should be informative enough
while being less affected by various defenses.

Exiting studies have proposed different forms of traf-
fic representation, which roughly fall into two categories:
statistical features [13, 33, 46] and per-packet feature se-
quences [37, 39, 41, 42]. Statistical features refer to statistics
extracted from an entire trace, such as minimum, maximum,

1 15
0

1

2

3
k-NN

1 143
0

1

2

3
k-FP

1 200
0

1

2

3
CUMUL

1 200
0

1

2

3
Pkt. Direction

1 200
0

1

2

3
Timing with Direction

1 200
0

1

2

3
Inter-arrival Time

1 200
0

1

2

3
Concentration

1 200
0

1

2

3
Burst

1 200
0

1

2

3
Pkt. per Second

Undefended WTF-PAD Front Walkie-Talkie

In
fo

rm
at

io
n

Le
ak

ag
e

(b
it)

Feature Category

Figure 2: Information leakage for individual features

mean, median, percentiles of packet size, or inter-packet delay.
This form of representation is coarse-grained as it focuses
on trace-level statistics rather than the features of specific
packets. Per-packet feature sequences refer to a sequence of
features associated with each packet in a trace, where the
feature can be direction, size, timestamp, or a combination
of them. This type of representation is fine-grained, as every
packet is taken into consideration.

To have a deep understanding of the effectiveness of ex-
isting and potential traffic representations, we resort to infor-
mation leakage [24] to measure the amount of information
attackers can learn from the features of a certain representa-
tion about the websites. The information leakage I(F ;C) in
the closed-world scenario is defined in Eq. (1),

I(F ;C) = H(C)−H(C|F) (1)

where C is the monitored websites, F are the features of a
specific representation, and H(·) is entropy.

We randomly select 100 undefended traces for each of the
95 monitored websites and also generate the corresponding
defended traces with existing defenses, including WTF-PAD,
Front, and Walkie-Talkie (see Section 6 for more details).
These traces are used to measure the information leakage of
different feature sets in the closed-world setting, as plotted
in Figure 2. The subfigures in the first-row exhibit the results
of statistical features used by k-NN [46], k-FP [13], and CU-
MUL [33], respectively. The subfigures in the second row
show the results of fine-grained per-packet feature sequences,
where Packet-direction is used in AWF [39] and DF [41] while
Timing-with-direction 1 is used in Tik-Tok [37]. Besides, we

1Multiplying the time stamp of each packet by its direction

also explore more types of features as plotted in the last row,
including Concentration2, Burst 3 and Packet-per-Second 4.

We can make several key observations as follows:
• The coarse-grained statistical features vary greatly among

the traces protected by different defenses and thus make
trivial contributions to website fingerprinting.

• The fine-grained per-packet feature sequences are also sig-
nificantly affected by different defenses. This is because
the patterns of packet sequences vary greatly due to the ran-
domness in dummy packet padding (e.g., Front) or packet
delaying (e.g., Walkie-Talkie).

• Packet-per-second has almost the same amount of informa-
tion leakage on undefended traces and defended traces with
WTF-PAD and Front.
The analysis above not only indicates the inherent limita-

tions of existing representations in undermining defenses but
also sheds new light on the design of a robust traffic represen-
tation, where features cannot be easily covered by defenses.
More specifically, the number of packets transmitted in a time
interval is capable of dealing with defenses based on dummy
packet padding since WTF-PAD and Front have the same
information leakage as undefended traces. It can also tolerate
packet delay due to its statistical properties, making defenders
spend higher time overhead to disturb this feature.

4.2 Traffic Aggregation Matrix
In this subsection, we propose a robust traffic representation,
which can abstract critical features that are not easily covered
by defenses. As we learned from the information leakage
analysis in Section 4.1, the aggregated number of packets
transmitted in a time interval is an informative feature to
undermine defenses. Since packet padding and delaying are
typical strategies employed by existing defenses, we provide
an intuitive explanation for the effectiveness of such a feature:

• Packet padding. It directly changes packet sequences and
thereby has a significant impact on statistical or per-packet
features. In contrast, the number of packets transmitted in
each time interval can accommodate the changes in the total
number of packets by multiple intervals, and thus will not
have great changes.

• Packet delaying. It can change the time series of packet
sequences. For consideration of user experience, the latency
introduced by defenses is usually bounded (e.g., less than
35% [10]). The aggregated number of packets transmitted
in a time interval can resist moderate changes in time series,
as a delayed packet may still fall in the same interval.

Based on the above analysis, we propose a new traffic rep-
resentation named Traffic Aggregation matrix (TAM), which

2The number of outgoing packets in non-overlapping spans of 30 packets.
3The number of packets transmitted continuously with the same direction.
4The number of packets in every second.

Time

 Outgoing packet Incoming packet

3
3

1
2

3 1
6

3
4

3
6

Outgoing
Incoming

Figure 3: Visualization of TAM. Given a trace with the maxi-
mum load time T , TAM counts the number of packets in each
time slot s, e.g., the first row for outgoing packets while the
second row for incoming packets.

aggregates multi-dimensional information, including packet
direction, number, and time. At the start, TAM divides the
entire traces into small fix-length time slots based on the num-
ber of packets transmitted in a small time interval, then counts
the number of outgoing and incoming packets per time slot
and merges them into a matrix.
Trace. The visit to a certain website results in a trace, which
is denoted by F = (f1, f2, ..., fl), where l is the length of the
trace. Let fk = ⟨tk,dk⟩ be a tuple of packet timestamp and
direction, where tk and dk are the arrival time and direction of
the k-th packet, respectively. Note that dk is 1 and −1 for an
outgoing and incoming packet. Following recent work [4, 37,
39, 41], we also treat the maximum length L of the trace as a
hyperparameter in this paper, denoting that longer traces will
be truncated after L packets.

Figure 3 depicts the structure of TAM. Let M ∈ R2×N de-
note the TAM of the trace F , where N is the number of time
slots considered in TAM. Assume that the length of each
time slot is denoted by s, the maximum load time considered
for a trace is T , and N can be calculated using T/s. An el-
ement mi j ∈ M represents the number of incoming (i = 1)
or outgoing (i = 2) packets whose timestamps are between
(j− 1)× s and j× s. We formally present the calculation
method of TAM, as depicted in Algorithm 1. For each packet
in the trace F , we leverage the upward rounding function to
get its column index j (line 3). If j is greater than N, we will
discard this packet; otherwise, we compute the row index i by
looking at its direction dk (lines 4-5). Then, the corresponding
element in M is updated (line 6). Finally, the resulting M is
returned as the TAM.

As stated in Section 4.1, the coarse-grained statistical fea-
tures are prone to be affected by existing defenses using
packet padding and delaying, while the fine-grained features
could easily be less robust if they over-specify the patterns
for a traffic trace. Tik-Tok [37] and Var-CNN [4] use explicit
time stamps and inter-packet times, respectively, which may
be overly detailed. Compared with the coarse-grained statis-
tical features and per-packet feature sequences used in prior
WF attacks, TAM captures intermediate granularity informa-

Algorithm 1 Calculation of TAM
Input: A trace F , the length of time slot s, and the number of

columns of TAM N
Output: TAM M = {mi j|i ∈ {1,2}, j ∈ [1,N]}

1: Initialize the size of TAM M as 2×N
2: for each packet fk = ⟨tk,dk⟩ ∈ F do
3: j← ⌈ tk

s
⌉

4: if j ≤ N then
5: i← dk < 0?1 : 2
6: mi j← mi j +1
7: end if
8: end for
9: return M

tion of traffic features, i.e., packet-per-time-slot, and thus can
be more resilient to small changes or obfuscations in traffic
traces. By aggregating the number of outgoing and incoming
packets transmitted in each time interval, TAM can tolerate
packet padding and delaying to ensure its robustness against
different defenses. We will quantitatively evaluate the robust-
ness of TAM in the next subsection.

4.3 Robustness Evaluation of TAM
Based on intuitive explanations of the robustness of TAM
provided above, we now resort to quantitative measures to
demonstrate that TAM is more robust than two typical repre-
sentations employed by the state-of-the-art WF attacks, i.e.,
packet direction used in DF [41] and Var-CNN [4], and timing
with direction used in Tik-Tok [37].

Given the original traffic traces F and the corresponding
disturbed traces F ′ with a certain defense strategy, a robust
representation should keep the intra-class distance between
F and F ′ as short as possible. In other words, a shorter intra-
class distance indicates that the information extracted in the
traffic representation is less affected by the defense strategy.

We randomly select 100 traces from each of the 95 websites
and adopt the defense strategies discussed in Section 4.2, i.e.,
packet padding and delaying, as typical strategies. We use
random padding as a simple benchmark defense for packet
padding and also choose WTF-PAD [20] and Front [10] to
evaluate the robustness of TAM against real-world defenses.
For packet delaying, we random sample delays for each packet
from the normal distribution. More details of random padding
and delaying can be found in Appendix B.

Motivated by the setting in [25], we use intra-class distance
with Maximum Mean Discrepancy (MMD) [12], which mea-
sures the discrepancy between two distributions of datasets.

MMD(X s,X t) =

∥∥∥∥∥1
n

n

∑
i=1

φ(xs
i)−

1
m

m

∑
i=1

φ
(
xt

i
)∥∥∥∥∥

H

(2)

where X s = {xs
1, ...,x

s
n} and X t = {xt

1, ...,x
t
m} denote the

source and target datasets, MMD maps X s and X t into Repro-

20 40 60 800.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Random

20 40 60 800.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
WTF-PAD

20 40 60 800.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Front

In
tra

-c
la

ss
 d

ist
an

ce

Bandwidth Overhead(%)

Direction Time with Direction TAM

(a) Packet padding: varying the bandwidth overhead while fixing the time
overhead=10%

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0.6 Random

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0.6 WTF-PAD

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0.6 Front

In
tra

-c
la

ss
 d

ist
an

ce

Time Overhead(%)

Direction Time with Direction TAM

(b) Packet delaying: varying the time overhead while fixing the bandwidth
overhead=30%

Figure 4: Intra-class distance of three traffic representations
with varied bandwidth and time overhead.

ducing Kernel Hilbert Space (RKHS) with a mapping func-
tion φ(·) and uses the Kernel Trick to calculate the average
l2-distance between two embedded distributions in RKHS,
which can work completely with inner products rather than
implicitly define φ(·). We use MMD with 5 Gaussian kernels
to estimate the distance between two datasets.

To show the variation between F ′ and F , we calculate the
intra-class distance according to Eq. (3):

Dintra(F,F ′) =
1
|C|

|C|

∑
c=1

MMD(Fc,F ′c) (3)

where C is the label set of all websites.
Figure 4 illustrates the intra-class distance of the three rep-

resentations in packet padding and packet delaying. In Figure
4(a), we fix the time overhead to 10% and change the band-
width overhead. As bandwidth overhead increases, the intra-
class distance of TAM is almost unchanged and much smaller
than other representations under higher bandwidth overhead,
particularly under real-world defenses, which demonstrates
that TAM is less affected by packet padding.

In Figure 4(b), we fix the bandwidth overhead to 30% and
change the time overhead. The results show that with a mod-
erate time overhead (i.e., less than 15%), TAM achieves the

shortest intra-class distance. As the time overhead increases,
the intra-class distance of TAM also increases. However, a
larger time overhead will significantly impact user experi-
ences and also increase the risk of out-of-memory on Tor
relays [30]. It is worth noting that even though time informa-
tion is not used, the intra-class distance of packet direction
on WTF-PAD increases as time overhead increases. This is
because a high latency will result in a large time gap between
bursts, which enables WTF-PAD to perturb additional patterns
in the traces [41].

In summary, TAM is a more robust traffic representation
than packet direction and timing with direction, which can
tolerate large bandwidth and moderate time overhead.

5 Design of Robust Fingerprinting

After creating TAM, we present the design of Robust Finger-
printing (RF). RF consists of two critical modules to achieve
robustness in undermining defenses, i.e., robust traffic repre-
sentation and efficient feature extraction.
Robust traffic representation. In Section 4, we proposed
TAM, a robust traffic representation. The time of loading an
undefended or defended trace is partitioned into multiple fix-
length time slots, and each element in a TAM represents the
amount of outgoing (or incoming) packets in each time slot.
TAM aggregates packet direction and timestamp together,
which can abstract robust traffic patterns.
Efficient feature extraction. Convolutional Neural Networks
(CNNs) have shown their success in many fields, such as im-
age classification [21], and object detection [38]. Since TAM
is a matrix like an image, we design a CNN-based classifier to
automatically extract robust discriminative features that can
be used as fingerprints of websites under various defenses.

The structure of the proposed CNN-based classifier is illus-
trated in Figure 7 in Appendix A. The classifier has three com-
ponents: 2D convolutional blocks, 1D convolutional blocks,
and a global average pooling (GAP) layer.

2D convolutional blocks can extract discriminative local
features of websites from rows and columns in TAM. Note
that the elements of TAM have local correlation, e.g., the ele-
ments in the same column represent the number of incoming
and outgoing packets in the same time slot, reflecting the
interaction between client and server, while two neighboring
elements in the same row represent the number of packets
with the same direction in two consecutive time slots, reflect-
ing the fluctuation of burst in traffic.

1D convolutional blocks help to extract higher-level fea-
tures. After two 2D convolutional blocks, TAM will be fused
into 1D feature maps by 2× 2 max pooling layers. Since
CNNs cannot extract more precise features from the dataset
due to the reduced dimension of the feature map caused by
max pooling, we increase the size of the feature map by re-
ducing the number of channels and then apply two 1D convo-
lutional blocks to extract hidden features.

Table 1: Tor Datasets
Closed-world Open-world

Websites Traces Websites Traces

Undefended 95 95,000 40,000 40,000

Walkie-Talkie 100 40,000 10,000 40,000

The GAP layer is used to replace the fully-connected layer
to mitigate overfitting [26]. The fully-connected layer con-
tains massive parameters and thus easily leads to overfitting.
In contrast, the GAP layer does not introduce any parame-
ters and directly calculates the average value of each feature
map. Then, we use these values to obtain the probability of
being labeled as each website by a softmax function. We use
Cross-Entropy as the loss function, which is commonly used
in multi-class classification tasks [21]. The Adam optimizer is
used to minimize training loss and achieve quick convergence.

To evaluate the contributions of TAM and the CNN-based
classifier, we conduct an ablation study in Appendix C. The re-
sults indicate that both of them, particularly TAM, contribute
to the robustness of RF.

6 Performance Evaluation

In this section, we evaluate the performance of RF with public
datasets. We describe the experimental settings in Section 6.1
and conduct hyperparameter tuning of RF in Section 6.2. Next,
in Sections 6.3-6.5, we make a comprehensive comparison of
RF with the state-of-the-art WF attacks in both closed- and
open-world scenarios.

6.1 Experimental Setup
Dataset. To make experimental results more convincing, we
give priority to two public datasets that are commonly used to
evaluate the performance of WF attacks, as shown in Table 1.

The first dataset [41] contains 95 websites, each of which
has 1,000 undefended traces, for closed-world evaluation. Ex-
cluding the 95 websites, it also contains 40,000 websites for
open-world evaluation, each with only 1 undefended trace. To
generate the corresponding defended traces, we resort to the
scripts and simulators provided by the authors and obtain the
defended traces, respectively.

Note that Blanket assumes that the per-packet feature se-
quence is used as the input for a DNN-based WF attack. How-
ever, the TAM used in RF is an aggregated feature sequence,
making it impossible for Blanket to generate adversarial per-
turbations for RF directly. Therefore, we adapt Blanket to RF
by estimating gradients. Assuming that feature fi is generated
by packets u to v, the gradient ∇Fj of packets u to v is ∇ fi,
where j ∈ [u,v].

The second dataset only contains defended traces with
Walkie-Talkie. Since Walkie-Talkie traces cannot be gener-

3000 4000 5000 6000 7000 8000
Maximum Length

88

90

92

94

96

98

Ac
cu

ra
cy

 (%
)

Undefended
WTF-PAD
FRONT
Walkie-Talkie

(a) Maximum Length

20 40 60 80 100 120
Maximum Load Time (s)

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Undefended
WTF-PAD
FRONT
Walkie-Talkie

(b) Maximum Load Time

22 33 44 88 176 352
Time Slot (ms)

82

85

88

91

94

97

100

Ac
cu

ra
cy

 (%
)

Undefenced
WTF-PAD
FRONT
Walkie-Talkie

(c) Time Slot

5 10 15 20 25 30 35 40
Number of Epochs

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Undefended
WTF-PAD
FRONT
Walkie-Talkie

(d) Epochs

Figure 5: Impact of important hyperparameters on accuracy of RF

ated using scripts and simulators, we resort to the dataset
collected over the live Tor network [37], which contains
40,000 traces for 100 monitored websites and 40,000 traces
for 10,000 unmonitored websites. For each monitored web-
site, there are 400 traces, each representing a pairing of the
corresponding monitored website and a randomly-selected
unmonitored website (i.e., a decoy [37]). Similarly, each trace
of the unmonitored websites represents a pairing of the cor-
responding unmonitored website and a randomly-selected
monitored website as the decoy.
WF attacks for comparison. To make a comprehensive com-
parison, we select 7 state-of-the-art WF attacks as described
in Section 2.1, namely k-NN [46], CUMUL [33], k-FP [13],
AWF [39], DF [41], Tik-Tok [37], and Var-CNN [4]. They are
all built with the source code released by the authors. All WF
attacks are trained and tested on a server equipped with an
Inter Core Duo 3.6GHz, 32GB of memory, and a GPU with
8GB of memory. To make a fair comparison, we fine-tuned
these attacks to achieve equivalent or even higher accuracy
than the results reported in their original papers.
WF defenses. We take WTF-PAD [20], Front [10], Regula-
Tor [16], Tamaraw [6], Blanket [31], Walkie-Talkie [47] and
TrafficSliver [23] as target defenses of WF attacks.

6.2 Hyperparameters of RF
We use Pytorch to construct the CNN classifier in RF. We
follow the extended candidate search method [41] to imple-
ment hyperparameter tuning to obtain a model with strong
generalization ability. We split the dataset into training, val-
idation, and testing, with an 8:1:1 ratio. The tuning process
is conducted in the closed-world setting with the validation
accuracy as the performance metric, which is the percentage
of the traces for validation labeled correctly.

The hyperparameters search ranges and the final values
are summarized in Table 2. RF is trained with the learning
rate of 0.0005, weight decay of 0.001, batch size of 200, and
dropout rate of 0.1 and 0.3. Next, we further investigate the
RF hyperparameters, including maximum length L, maximum
load time T , time slot s, and training epochs to make trade-offs
between accuracy and training overhead.
Maximum Length. Intuitively, the longer the maximum

Table 2: Hyperparameter selection for RF model
Hyperparameters Search Range Final

Learning Rate [0.0001, . . . , 0.002] 0.0005

Weight Decay [0.0001, . . . , 0.01] 0.001

Batch Size [120, . . . , 240] 200

Dropout[2D,1D] [0, . . . , 0.5] [0.1,0.3]

Maximum Length [3,000, . . . , 8,000] 5,000

Maximum Load Time (s) [20, . . . , 120] 80

Time Slot (ms) [22, . . . , 352] 44

Training Epochs [5, . . . , 40] 30

length of trace L, the more information it retains, and the
easier it is to fingerprint the website. Figure 5(a) shows that
the accuracy improves as the maximum length of the trace in-
creases. When the maximum length exceeds 5,000, the growth
of accuracy slows down. Besides, the maximum length of the
traces is typically set to 5,000 in previous works [4, 37, 41].
For fair comparisons, we set the final value of L to 5,000.
Maximum Load Time. TAM counts the number of packets
in each time slot. Therefore, it is necessary to consider the
maximum load time of the trace to calculate TAM. Figure
5(b) shows that the longer the maximum load time, the higher
the accuracy. However, when the maximum load time exceeds
80s, the accuracy tends to be flat. In this paper, we set the
maximum load time T to 80s.
Time Slot. Figure 5(c) shows the impact of time slots on accu-
racy in the undefended, WTF-PAD, Front, and Walkie-Talkie
traces. The results show that accuracy initially increases and
then decreases as the time slot increases. A time slot that is
too small will make the TAM sparse, hindering the effective-
ness of the WF attack. And a larger time slot will make the
obtained TAM less informative in representing the loading
process of websites. Considering that the smaller the time
slot, the larger the space occupied by the TAM, we set the
time slot as 44ms to achieve higher accuracy with moderate
space occupancy.
Training Epochs. In general, increasing training epochs can
gradually improve the accuracy of the classifier, at the price
of expanding the training duration. Figure 5(d) shows the ac-
curacy of RF with different epochs. The accuracy of RF with

Table 3: Bandwidth and Time overhead of Defenses
Defences WTF-PAD FRONT RegulaTor Tamaraw

Bandwidth 63% 103% 77% 105%

Time 0% 0% 5% 43%

Defences Blanket-I Blanket-ID Walkie-Talkie TrafficSliver

Bandwidth 85% 47% 31% 0%

Time 0% 23% 34% 0%

five epochs on undefended, WTF-PAD, Front, and Walkie-
Talkie traces reaches 97.08%, 91.69%, 86.84%, and 72.82%,
respectively, which suggests that RF has a fast learning abil-
ity. The accuracy of RF keeps on increasing until 30 epochs.
In this paper, we use 30 epochs to achieve a better balance
between accuracy and training time.

6.3 Closed-world Evaluation on WF Attacks
against Defenses

In this section, we evaluate the robustness of WF attacks
against defenses. As described in Section 3, we assume that
the attackers know the defense deployed by the client and
thus conduct adversarial training with the defended traces.

This assumption leads to two different cases: 1) full knowl-
edge case, where the attacker has sufficient prior knowledge,
i.e., the defense algorithm as well as its parameters, and 2)
partial knowledge case, where the attacker only knows the
defense selected by the client, but is unsure of the parameter
setting in the specific defense. The first case is commonly
used in previous works [4, 37, 41] to evaluate the perfor-
mance of WF attacks against a targeted defense. The second
case raises more challenges for the attackers, as they have to
train a classifier on defended traces with a variety of known
parameters to cover the parameter used by the client.
Experimental settings. For the full knowledge case, we use
the closed-world traces of undefended, WTF-PAD, Front, Reg-
ulaTor, Tamaraw, Blanket, Walkie-Talkie, and TrafficSliver
for evaluation. Noted that, we implement two variations of
Blanket with different parameter settings on blind adversar-
ial perturbation generation: Blanket-I only inserts dummy
packets while Blanket-ID employs both packet padding and
delaying. Since Blanket is a white-box defense, it can only
generate defended traces for a DNN-based WF model. There-
fore, in the testing set of Blanket-I and Blanket-ID, there are
defended traces targeting DF, Tik-Tok, Var-CNN, and RF that
can be used to evaluate the accuracy of the corresponding WF
attacks. We select the best two network-layer splitting strate-
gies reported in TrafficSliver [23], namely By Direction (BD)
and Batched Weighted Random (BWR). The summary of the
bandwidth and time overhead for each defense is shown in Ta-
ble 3. To guarantee statistical soundness, we resort to 10-fold
cross-validation commonly used in the literature [13, 33, 41]
and obtain the average and standard deviation of accuracy to
measure the performance of each WF attack.

For the partial knowledge case, we focus on the key param-
eter inter-arrival time distribution in WTF-PAD and select
a candidate set including norm (by default), beta, gamma,
pareto and weibull. We train WF attacks with traces of these
five distributions and then test on traces of each distribution.
The training set contains 5×95×900 WTF-PAD traces, which
is a combination of all five distributions. And each distribution
of norm, beta, gamma, pareto and weibull results in a spe-
cific testing set containing 95×100 defended traces denoted
by Dnorm, Dbeta, Dgamma, Dpareto, and Dweibull , respectively.
Results with full knowledge. Table 4 exhibits the accuracy
of state-of-the-art WF attacks in the closed-world scenario
with prior knowledge of defenses and the corresponding pa-
rameters. All attacks can recognize websites with over 93%
accuracy without defenses. In particular, DF, Tik-Tok, Var-
CNN, and RF achieve a comparable accuracy of over 98%.
When defenses are deployed, RF outperforms all other WF
attacks and achieves the highest accuracy. Particularly, RF
achieves an average accuracy improvement of 8.9% over the
best existing attack (i.e., Tik-Tok) under nine defenses, includ-
ing four variations of Blanket and TrafficSliver, demonstrating
its robustness against various defenses.

Disturbing traffic defenses change traffic patterns by packet
padding and delaying. WTF-PAD is a zero-delay defense and
proved effective in defending against WF attacks based on
traditional machine learning classifiers (e.g., k-NN, k-FP, and
CUMUL), reducing their accuracy to less than 69%. This
is because the statistical features of the defended traces are
insufficiently distinguishing, as confirmed by the significant
decrease in the amount of information leaked by these fea-
tures (see Figure 2). AWF is also defeated as the number of
CNN layers is not large enough to extract discriminative fea-
tures from defended traces [41]. However, it is successfully
undermined by DF with an accuracy of 90.9%, and Var-CNN
improves the accuracy to 94.70%. RF further increases the ac-
curacy to over 96.6%, which is only 2.3% lower than the best
performance on undefended traces. Front, which introduces
more bandwidth overhead on Tor connections than WTF-
PAD, can significantly reduce the accuracy of DF, Tik-Tok,
and Var-CNN to 76.85%, 84.79%, and 79.24%, respectively.
However, RF can still maintain its effectiveness against Front,
with only a 5.49% drop from the undefended traces.

Tamaraw reduces the accuracy of all attacks to less than
10% by regularizing the packet sending, but its high band-
width and time overhead make it difficult to deploy in the
real world. Thus, it will not be considered hereafter. Regula-
Tor also adopts the idea of regularizing traffic like Tamaraw,
but with less bandwidth (77%) and time (5%) overhead. It
successfully reduces the accuracy of state-of-the-art attacks
to less than 50% by adjusting the sending rate in real-time
according to the arrival rate of real packets. However, RF still
maintains the highest accuracy, i.e., at least 18% higher than
other attacks against RegulaTor.

Blanket is vulnerable to adversarial training, as demon-

Table 4: Accuracy (%) of the state-of-the-art WF attacks against defenses in the closed-world scenario

Undefended
Disturbing Traffic Defenses Splitting Traffic Defenses

WTF-PAD Front RegulaTor Tamaraw Blanket-I Blanket-ID Walkie-Talkie BD BWR

k-NN 93.64±0.28 40.94±4.38 4.37±0.16 5.11±0.26 4.56±0.14 - - 26.11±5.69 27.06±0.24 4.47±0.05

k-FP 94.45±0.12 68.33±0.58 52.66±0.34 49.27±0.14 7.88±0.22 - - 39.81±0.47 77.39±0.13 36.35±0.17

CUMUL 95.11±0.20 59.80±0.40 30.61±0.50 18.60±0.14 8.18±0.22 - - 24.48±0.60 19.39±0.21 9.06±0.20

AWF 94.32±0.68 52.67±3.65 17.28±2.69 13.11±1.10 7.06±1.38 - - 29.61±0.63 11.70±5.95 4.99±1.03

DF 98.40±0.11 90.85±0.28 76.85±0.56 20.96±1.43 6.89±0.11 97.94±0.10 98.00±0.17 71.02±0.89 20.69±0.08 19.99±0.16

Tik-Tok 98.45±0.13 93.80±0.47 84.79±0.51 47.07±5.80 6.94±0.18 98.15±0.04 98.13±0.21 72.85±0.56 92.74±1.87 57.63±4.45

Var-CNN 98.87±0.05 94.70±0.31 79.24±3.06 47.68±7.52 3.13±1.31 98.50±0.21 98.49±0.08 87.53±1.10 95.50±0.23 31.09±3.05

RF 98.83±0.07 96.58±0.13 93.34±0.18 67.43±0.49 8.54±0.14 98.57±0.17 98.62±0.15 93.87±0.23 95.70±0.18 79.68±0.22

Table 5: Accuracy (%) of WF attacks against WTF-PAD with
known parameters in the closed-world scenario

Dnorm Dbeta Dgamma Dpareto Dweibull

DF 92.25 82.26 85.01 89.12 78.58
Tik-Tok 94.20 92.02 92.33 93.39 90.92

Var-CNN 94.91 88.64 89.81 92.58 85.67
RF 97.51 97.42 96.39 96.87 96.98

strated by the high accuracy (e.g., over 97%) of 4 WF attacks
trained on defended traces. Based on burst molding, Walkie-
Talkie can resist most attacks, e.g., the accuracy of k-NN,
k-FP, CUMUL, and AWF is less than 40%. However, RF still
has the highest accuracy at 93.87%, which is more than 20%
improvement over DF and Tik-Tok.

Splitting traffic defenses, e.g., TrafficSliver, can limit the
traffic traces obtained by attackers, which leads to the reduc-
tion of distinguishing features and ultimately leads to the
decline of attack accuracy. BD uses two different circuits for
incoming and outgoing packets, respectively. Therefore, the
attackers can only obtain packets in one direction, which sig-
nificantly reduces the accuracy of AWF and DF. However,
due to packet timing features, the accuracy of Tik-Tok, Var-
CNN, and RF has merely a 3%-6% drop. BWR uses a vector
to weight the selection of a guard node for sending a batch
of Tor packets, resulting in a large time gap in the traffic ob-
tained by the attacker, thus reducing the correlation between
packets. Although BWR is the best splitting strategy [23], RF
still achieves an accuracy of nearly 80%, at least 22% higher
than other attack methods.
Results with partial knowledge. Table 5 summarizes the
accuracy of WF attacks against WTF-PAD with known inter-
arrival time distribution. Here, we only consider WF attacks
with an accuracy of over 90% against WTF-PAD in Table 4.
We have three key observations from the results: 1) All WF
attacks achieve higher accuracy on Dnorm compared with the
accuracy on WTF-PAD in Table 4, indicating that training
with multiple parameters results in a more powerful model. 2)
The accuracy of Var-CNN tested on Dnorm is 94.91%, but the

accuracy tested on Dweibull decreases by about 10%, which is
also seen in DF. This is because weibull is a right-skewed dis-
tribution that can sample shorter inter-arrival time, allowing
WTF-PAD to inject more dummy packets into bursts and fur-
ther disturb the features. The results demonstrate that changes
of parameter settings have a negative influence on the accu-
racy of WF attacks. And 3) RF significantly outperforms the
other WF attacks, whose accuracy can be maintained above
96% against WTF-PAD with different parameter settings. It
demonstrates that RF can maintain relatively stable accuracy
by learning discriminative features with TAM, even when the
inter-arrival time distribution varies.
Summary. The results of two cases in the closed-word sce-
nario demonstrate that RF can achieve a high accuracy against
different defenses and parameter settings and significantly out-
performs existing WF attacks.

6.4 Closed-world Evaluation on Network Con-
dition Changes

The traffic representation in RF considers packet timing, mak-
ing it likely less reliable when network condition changes.
Since the network bandwidth is a crucial factor influencing the
network conditions [18] and WF defenses will also introduce
extra bandwidth overhead to the Tor network, in this section,
we investigate how network bandwidth changes impact the
performance of WF attacks in the closed-world scenario.
Experimental setting. We use the first dataset in Section 6.1
to simulate different network bandwidths for the training and
testing sets. As network bandwidth will significantly impact
the load time of the same website, we use load time to reflect
the network bandwidth. For example, we select 10% of the
fastest load traces in each website for testing and the remain-
ing 90% for training to simulate the high network bandwidth
for the victim. Similarly, we select 10% of the slowest load
traces in each website for testing and the remaining 90% for
training to simulate the low network bandwidth.
Results. Table 6 summarizes the accuracy of WF attacks
tested on datasets with the fastest & slowest load time. We

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(a) Undefended

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(b) WTF-PAD

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(c) Front

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(d) Walkie-Talkie

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(e) RegulaTor

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(f) TrafficSliver-BD

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

DF
Tik-Tok

Var-CNN RF

(g) TrafficSliver-BWR

Figure 6: Precision-recall curves of WF attacks in the open-world scenario

Table 6: Accuracy (%) of WF attacks tested on datasets with
the fastest & slowest load time in the closed-world scenario

Test on fastest load time Test on slowest load time

Undefended WTF-PAD Front Undefended WTF-PAD Front

DF 95.06 87.68 75.18 86.48 64.71 51.75

Tik-Tok 94.72 86.69 70.96 83.32 62.12 43.48

Var-CNN 95.47 91.18 75.72 83.81 66.33 45.51

RF 96.77 94.62 90.49 81.62 70.62 64.08

have three key observations from the results. 1) The accuracy
of all WF attacks is lower than that of Table 4, even though
DF only uses directions, demonstrating that different network
conditions also impact the direction sequence, not just the
time. However, we find that DF outperforms Tik-Tok in all
cases, especially achieving the highest accuracy when testing
on the slowest load time in undefended traces, indicating that
the impact on time is more significant than direction. 2) RF
has the highest accuracy in all cases except testing on the
slowest load time in undefended traces. The reason is the
long time gap in slow traces, which results in sparse feature
spaces of TAM and affects the adjacent feature extraction of
the classifier. However, RF is more robust than other attacks,
with the highest accuracy on defended datasets, demonstrat-
ing that RF is robust against defenses in the face of network
bandwidth changes. 3) Comparing the accuracy when testing
on the fastest & slowest load time, faster load time harms ac-
curacy less than slower load time. This is because slower load
time means poor network bandwidth, which causes packet
retransmission and injects more noise into the traffic.
Summary. The results show that with varying bandwidth, RF
remains robust with the highest accuracy among all attacks.
In practice, network condition changes would also involve the
guard node and client. As a result, more traffic traces should

be collected for evaluation. We leave it as future work.

6.5 Open-world Evaluation
We further evaluate the robustness of WF attacks in the open-
world scenario, where the client not only visits the moni-
tored websites but also visits the unmonitored websites. The
attacker infers whether the client is visiting the monitored
websites, and if so, which of the monitored websites.

To achieve this goal, several WF attacks [34, 39] use binary
classification to identify monitored or unmonitored sites and
then use the multi-class classification to recognize the specific
monitored site. In this paper, we resort to the one-time multi-
class classification to treat the two stages as a whole, which is
also commonly used in the literature [4, 37, 41]. More specif-
ically, we treat the unmonitored sites as another class during
the training process, as it can help the classifier learn features
to distinguish monitored sites from unmonitored ones.
Experimental setting. As described in Section 6.1, the
dataset for open-world evaluation contains traces of both mon-
itored and unmonitored sites.

Training set. We randomly select 95× 900 undefended
traces from 95 monitored sites and 20,000 undefended traces
from 20,000 unmonitored sites. Then, the corresponding de-
fended traces can be generated respectively. The training
set also contains defended traces with Walkie-Talkie, includ-
ing 100×360 traces for 100 monitored sites and 20,000 for
10,000 unmonitored sites.

Testing set. The traces that are not used for training are
included in the testing set. More specifically, it contains
95×100 undefended traces of 95 monitored sites and 20,000
undefended traces of 20,000 unmonitored sites, as well as
the corresponding defended traces. It also contains defended

traces with Walkie-Talkie, including 40×100 traces for 100
monitored sites and 20,000 for 10,000 unmonitored sites.
Evaluation criteria. If a monitored website is labeled cor-
rectly (i.e., the maximum output probability is greater than a
pre-defined threshold), it is considered a true positive (TP),
otherwise, a false negative (FN). If an unmonitored website
is mislabeled as a monitored class, it is considered a false
positive (FP), otherwise, a true negative (TN).

Considering that the size of the monitored and unmonitored
sets are heavily unbalanced, the Precision-recall curve is com-
monly used in the literature [34, 41]. Precision and recall are
defined as TP/(TP+FP) and TP/(TP+FN), respectively. Note
that the attacker can trade off between precision and recall by
setting different thresholds.
Results. Along with the assumption in Section 6.3, the train-
ing and testing sets are from the same defense and parameter.
Figure 6 plots the precision-recall curves of WF attacks in
the open-world scenario. RF consistently achieves the highest
precision on all testing sets, especially tuned for high recall, in-
dicating that RF is robust in the open-world scenario. Tik-Tok
and Var-CNN use time features to achieve better performance
than DF on all defenses in the open world. However, they
cannot well balance precision and recall on several defenses.
For instance, the precision of Tik-Tik and Var-CNN has a
sharp drop when the recall increases on Front, Walkie-Talkie,
RegulaTor, and TrafficSliver-BWR.
Summary. The results show that RF is superior to existing
WF attacks against various defenses in open-word scenarios,
demonstrating the robustness of RF.

7 Countermeasures

In this section, we propose a countermeasure to fight against
RF. We first provide a detailed description of its design. Then,
we evaluate its effectiveness against RF and Var-CNN and
compare it with existing defenses.

7.1 Countermeasure Design

Motivated by the design methodology of existing defenses,
we employ the strategy of disturbing traffic to design a WF de-
fense. Intuitively, we can change the pattern of original traces
from a certain website by adding dummy packets or delaying
real packets so as to mislead WF classifiers. Although simple,
several requirements should be well considered:

• Effective. Since the existing disturbing traffic defenses
cannot achieve satisfactory defending effects, a WF defense
should effectively reduce the accuracy of WF attacks.

• Lightweight. Several effective defenses try to regulate the
packet sending [5, 6, 9, 27] or select one or more decoy
traces for a real trace to construct a supersequence [34, 46],
which introduces high bandwidth and time overhead.

Table 7: The parameters used in the proposed countermeasure
Parameters Descriptions

τ Threshold for the informative regions extraction

s Length of the time slot in TAM

N Number of selected informative regions of label c′

(δmax,δmin) Boundaries for the number of packets sent in a time slot

D Threshold for the total number of delayed packets

U Threshold for the number of delayed packets sending in a time slot

Algorithm 2 Informative Regions Extraction

Input: TAM M = {mi j|i ∈ {1,2}, j ∈ [1,N]} of trace F , the class
of F c, and the importance score threshold τ

Output: Informative region set P
1: IS = {isi j|i ∈ {1,2}, j ∈ [1,N]}← Using CAM to calculate the

importance scores of M on c
2: P←{}
3: for i = 1,2 do
4: p← []
5: for j = 1,2, ...,N do
6: if isi j ≥ τ then
7: p← mi j
8: else if isi j < τ and p ̸= [] then
9: P←{p}

10: p← []
11: end if
12: end for
13: end for
14: return P

• Practical. Since the Tor client and the middle node cannot
foresee the upcoming traces, the defense strategy should be
applied to live traffic traces.

The basic idea of our countermeasure is to learn packet se-
quences containing critical features from historical traces of a
collection of websites, and then morph the original trace from
a certain website by packet padding and delaying to mimic
multiple packet sequences from another website. Table 7 lists
the parameters used in the proposed countermeasure.

To identify informative regions that affect the accuracy of
RF, we resort to Class Activation Mapping (CAM) [49], which
indicates the regions (i.e., elements) of TAM that contribute
more to fingerprinting. The extraction of informative regions
is depicted in Algorithm 2. We first calculate the importance
score IS of TAM using CAM (line 1). Then, the client and
middle node will extract and save the informative outgoing
(i = 1) and incoming (i = 2) region p of TAM with IS greater
than a pre-defined threshold τ (lines 4-12), respectively. More
specifically, the informative region r is a sequence of integers,
denoted as [p1, p2, . . . , pl], each element of which indicates
that pi packets should be sent within the i-th time slot s. In
our experiments, the length of the time slot s is the same as
that in TAM, which is set to 44ms (see Table 2).

Given the informative regions, the goal of the traffic mor-
phing strategy (see Algorithm 3) is to make each part of the

Algorithm 3 Traffic Morphing
Input: An incoming or outgoing trace F with label c, an incoming

or outgoing informative region set P of a target class c′(c′ ̸= c),
and the maximum load time T

Output: The defended incoming or outgoing trace F ′

1: s← the length of the time slot in TAM
2: N← the number of informative regions in P
3: (δmax,δmin)← initialized boundary parameters
4: D← threshold for the total number of delayed packets
5: U ← threshold for the number of delayed packets sending
6: in a time slot
7: CurrentTime← 0
8: pq← 0
9: while CurrentTime≤ T do

10: pcur← number of packets of F in current time slot
11: if pcur > 0 or pq ≥ D then
12: randomly select one of the N informative regions
13: for ptar ∈ informative region do
14: pq← pq + pcur
15: ⊤← ⌈(1+δmax) · ptar⌉
16: ⊥← ⌈(1−δmin) · ptar⌉
17: if ⊥≤ pq ≤⊤ then
18: Push pq packets into F ′

19: pq← 0
20: else if pq >⊤ then
21: Push ptar packets into F ′

22: pq← pq− ptar
23: else if pque <⊥ then
24: Push pq packets into F ′

25: Push ptar− pq dummy packets into F ′

26: pq← 0
27: end if
28: CurrentTime←CurrentTime+ s
29: pcur← number of packets of F in current time slot
30: end for
31: else if pcur = 0 and pq < D then
32: r←min(u∼Uni f orm[1,U], pq)
33: Push r packets into F ′

34: pq← pq− r
35: end if
36: CurrentTime←CurrentTime+ s
37: end while
38: return F ′

defended trace similar to a highly salient region randomly
selected from a pre-determined target class. Let ptar be the
number of packets associated with the target informative re-
gion in the current time slot, and pq be the number of real
packets currently in the queue and ready to send. Ideally, we
would send exactly the same number of packets in each time
slot as the target informative region. It means that we can
add dummy packets to pq to reach ptar when pq < ptar and
delay packets in pq in future time slots when pq > ptar. How-
ever, it is prohibitively expensive to reach ptar in terms of
bandwidth and time overhead. To address the issue, we only
need to make sure that the number of packets is in a range

[⊥,⊤] where⊥≤ pq ≤⊤, which means that pq is close to the
target and we can send them without padding or delays. We
set ⊥= ⌈(1−δmin) · ptar⌉ and ⊤= ⌈(1+δmax) · ptar⌉, where
δmax and δmin determine the boundaries of the range and are
used to trade-off between the amount of information leakage
and overhead. In our experiments, according to our empirical
study, we set δmax = 0.3 and δmin = 0.2. Note that we need
to delay all the packets to the next time slot when ptar = 0.
Also, we would fill each empty time slot (i.e, ptar = 0) with a
small number of packets to reduce the packet delays. We can
simply inject one and two packets for the outgoing informa-
tive region and the incoming informative region, respectively,
as the volume of the incoming traffic is generally larger than
that of the outgoing traffic.

Moreover, we seek to reduce the bandwidth overhead when
the target informative region is to send much more data than
the current traffic load. When there are no outgoing packets
and the number of delayed packets is below threshold D, we
need to send a small number of random packets uniformly
selected from [1,U] (see lines 31-35 in Algorithm 3). This
spreads out the delayed packets in different slots, trading off
latency and fidelity to the target informative region for the
purpose of reducing bandwidth costs.

The above strategy can morph traces from the same label
into defended traces composed of information regions from
other labels, improving the randomness of defended traces
within the same label.

7.2 Performance Evaluation

To demonstrate the effectiveness of the proposed countermea-
sure, we evaluate the accuracy of RF and Var-CNN against
different defenses in the closed-world scenario. In addition
to the state-of-the-art defenses, we further employ two new
defenses for comparison:

Window-filling. We employ a new defense called window-
filling, which continues sending dummy packets until the total
number of packets transmitted in the current window is the
power of k to regularize the per-window traffic in TAM, where
k is a tunable parameter that controls the total bandwidth
overhead. We set k = 2 with 45% bandwidth overhead.

Random Break Bursts (RBB). Similar to our defense,
RBB [29] uses Grad-CAM to identify sensitive regions which
may contain important features that DF has learned and in-
jects opposite-direction packets in these regions in a random
manner to break bursts. Despite the fact that RBB cannot be
applied to live traffic traces, we compare RBB with our de-
fense to show that our CAM-based defense is more effective.

Table 8 summarizes the overhead and effectiveness of de-
fenses in defeating RF and Var-CNN. Our defense is the
strongest among all defenses, with 52.59% on RF and 27.65%
on Var-CNN, respectively. TrafficSliver-BWR can reduce the
accuracy of RF and Var-CNN to 79.68% and 31.09%, but it
alters the Tor network and only protects against malicious

Table 8: The overhead and effectiveness of defenses in the
closed-world scenario

Defense
Overhead (%) Accuracy (%)

Bandwidth Time RF Var-CNN

TrafficSliver-BD 0 0 95.70±0.18 95.50±0.23

TrafficSliver-BWR 0 0 79.68±0.22 31.09±3.05

Window-filling 45 0 98.64±0.12 97.47±0.26

WTF-PAD 63 0 96.58±0.13 94.70±0.31

Front 103 0 93.34±0.18 79.24±3.06

Walkie-Talkie 31 34 93.87±0.23 87.53±1.10

RBB 43 14 97.63±0.19 86.35±1.36

Blanket-ID 47 23 98.62±0.15 98.49±0.08

RegulaTor 77 5 67.43±0.49 47.68±7.52

Our Defense 73 14 52.59±0.51 27.65±0.47

guard nodes. Zero-delay disturbing traffic defenses are less
effective against RF, where the accuracy of RF is over 93%.
Compared with the defenses with time overhead, our defense
has the best performance and moderate overhead in defeating
RF and Var-CNN, with an accuracy of 15% and 20% lower
than that of RegulaTor, respectively.
Summary. The proposed defense is more effective than the
existing defenses in defending against RF and Var-CNN. How-
ever, achieving better defense performance without delaying
real packets remains an open problem for future research.

8 Discussion

In this section, we discuss the limitations of the proposed WF
attack and potential directions for future work.
Robust traffic representation. We find that prior WF attacks
are less effective against defenses. The reason is that exist-
ing representations can be easily obfuscated or regularized.
In this paper, we propose a more robust traffic representa-
tion, TAM. The construction of TAM has two constraints:
1) the maximum length L of each trace is set as 5,000 for
a fair comparison with other WF attacks, and 2) each time
slot is non-overlap, which may ignore the relevant features
within a time slot. Therefore, We explore two modifications
of TAM by relaxing either of the two constraints, as illus-
trated in Appendix D. The results show that removing the
maximum length constraint can further improve the accuracy
of RF, while considering time overlap in TAM does not re-
sult in obvious differences in accuracy. The investigation of
more robust traffic representations is a promising direction
for building effective WF attacks.
Real-world implementation of defenses. Like previous WF
attacks [4, 37, 41], all defenses evaluated in this work are
simulated except for Walkie-Talkie, which we evaluated using
a public real-world dataset. Their effectiveness and overhead
may be different when being implemented in the real world,
especially for the defenses that delay real packets [11]. In
future work, we intend to evaluate RF against these defenses

in real-world scenarios.
The proposed countermeasure. We randomly select the
target class and informative regions in our traffic morphing
strategy to reduce the overheads. However, it is possible to
further reduce the overheads by incorporating prior knowl-
edge, such as the estimated sending rate of the traffic, in the
selection process. Furthermore, we do not consider possible
adaptive attacks against the proposed countermeasure. Thus,
the proposed countermeasure should be considered prelim-
inary, even if it offers promising performance against RF.
These issues can be interesting topics for future work.

9 Conclusion

In this paper, we investigated the robustness of WF attacks
in the presence of defenses under different settings. We pro-
posed a robust WF attack named Robust Fingerprinting (RF)
based on a robust traffic representation. More specifically,
We constructed a robust traffic representation (i.e., TAM) to
capture features in traffic traces that are not easily covered by
various defenses. We employed CNNs to build an effective
classifier for automatically learning features from TAMs. We
conducted extensive experiments to provide a comprehensive
comparison between RF and state-of-the-art WF attacks. Our
closed- and open-world results demonstrated the superior-
ity of RF over the rest of WF attacks in terms of robustness.
Finally, we discussed the possible defenses against RF and
provided a feasible countermeasure. In future work, we will
investigate more robust traffic representations and evaluate
WF attacks against real-world deployed defenses.

Acknowledgements

We thank our shepherd and the anonymous reviewers for
their constructive comments, this paper was greatly im-
proved based on their suggestions. This work is par-
tially supported by National Key R&D Program of
China with No.2020YFB1006100, China National Funds
for Excellent Young Scientists with No.62222201, NSFC
Projects with Nos.62132011, 61972039, and 61932016,
Beijing Nova Program with No.Z201100006820006, Bei-
jing Natural Science Foundation with No.M23020, China
National Funds for Distinguished Young Scientists with
No.61825204, Beijing Outstanding Young Scientist Program
with No.BJJWZYJH01201910003011.

Availability

The source code is available at https://github.com/
robust-fingerprinting/RF, which includes the imple-
mentation of Robust Fingerprinting as well as the proposed
countermeasure. The dataset used in this paper can also be
accessed through this repository.

https://github.com/robust-fingerprinting/RF
https://github.com/robust-fingerprinting/RF

References

[1] Tor metrics website, February 2021.

[2] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mo-
haisen. Dfd: Adversarial learning-based approach to defend
against website fingerprinting. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 2459–2468.
IEEE, 2020.

[3] K. Al-Naami, A. El-Ghamry, M. S. Islam, L. Khan, B. Thu-
raisingham, K. W. Hamlen, M. Alrahmawy, and M. Z. Rashad.
Bimorphing: A bi-directional bursting defense against website
fingerprinting attacks. IEEE Transactions on Dependable and
Secure Computing, 18(2):505–517, 2019.

[4] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-cnn: A data-
efficient website fingerprinting attack based on deep learning.
Proc. Priv. Enhancing Technol., 2019(4):292–310, 2019.

[5] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A congestion
sensitive website fingerprinting defense. In Proceedings of
the 13th Workshop on Privacy in the Electronic Society, WPES
2014, Scottsdale, AZ, USA, November 3, 2014, pages 121–130.
ACM.

[6] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg.
A systematic approach to developing and evaluating website
fingerprinting defenses. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, November 3-7, 2014, pages 227–238.
ACM, 2014.

[7] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from
a distance: website fingerprinting attacks and defenses. In the
ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 605–
616. ACM, 2012.

[8] X. Cao and N. Z. Gong. Mitigating evasion attacks to deep neu-
ral networks via region-based classification. In Proceedings of
the 33rd Annual Computer Security Applications Conference,
pages 278–287, 2017.

[9] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-
a-boo, I still see you: Why efficient traffic analysis countermea-
sures fail. In IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA, pages
332–346. IEEE Computer Society, 2012.

[10] J. Gong and T. Wang. Zero-delay lightweight defenses against
website fingerprinting. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 717–734.
USENIX Association, 2020.

[11] J. Gong, W. Zhang, C. Zhang, and T. Wang. Wfdefproxy:
Modularly implementing and empirically evaluating website
fingerprinting defenses. arXiv preprint arXiv:2111.12629,
2021.

[12] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and
A. Smola. A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

[13] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, pages 1187–1203. USENIX Association, 2016.

[14] D. Herrmann, R. Wendolsky, and H. Federrath. Website fin-
gerprinting: attacking popular privacy enhancing technologies
with the multinomial naïve-bayes classifier. In Proceedings
of the first ACM Cloud Computing Security Workshop, CCSW
2009, Chicago, IL, USA, November 13, 2009, pages 31–42.
ACM, 2009.

[15] A. Hintz. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies, Second International Work-
shop, PET 2002, San Francisco, CA, USA, April 14-15, 2002,
Revised Papers, volume 2482 of Lecture Notes in Computer
Science, pages 171–178. Springer, 2002.

[16] J. K. Holland and N. Hopper. Regulator: A straightforward
website fingerprinting defense. Proc. Priv. Enhancing Technol.,
2022(2):344–362, 2022.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 448–
456. JMLR.org, 2015.

[18] R. Jansen, T. Vaidya, and M. Sherr. Point break: A study of
bandwidth {Denial-of-Service} attacks against tor. In 28th
USENIX security symposium (USENIX Security 19), pages
1823–1840, 2019.

[19] M. Juárez, S. Afroz, G. Acar, C. Díaz, and R. Greenstadt. A
critical evaluation of website fingerprinting attacks. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 263–274. ACM, 2014.

[20] M. Juárez, M. Imani, M. Perry, C. Díaz, and M. Wright. Toward
an efficient website fingerprinting defense. In Computer Secu-
rity - ESORICS 2016 - 21st European Symposium on Research
in Computer Security, Heraklion, Greece, September 26-30,
2016, Proceedings, Part I, volume 9878 of Lecture Notes in
Computer Science, pages 27–46. Springer, 2016.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. Communi-
cations of the ACM, 60(6):84–90, 2017.

[22] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[23] W. D. la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter,
J. Filter, T. Engel, K. Wehrle, and A. Panchenko. Trafficsliver:
Fighting website fingerprinting attacks with traffic splitting. In
CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13,
2020, pages 1971–1985. ACM, 2020.

[24] S. Li, H. Guo, and N. Hopper. Measuring information leakage
in website fingerprinting attacks and defenses. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1977–1992. ACM, 2018.

[25] S. Li, S. Song, G. Huang, Z. Ding, and C. Wu. Domain in-
variant and class discriminative feature learning for visual do-
main adaptation. IEEE transactions on image processing,
27(9):4260–4273, 2018.

[26] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[27] D. Lu, S. Bhat, A. Kwon, and S. Devadas. Dynaflow: An
efficient website fingerprinting defense based on dynamically-
adjusting flows. In Proceedings of the 2018 Workshop on
Privacy in the Electronic Society, pages 109–113, 2018.

[28] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[29] N. Mathews, P. Sirinam, and M. Wright. Understanding feature
discovery in website fingerprinting attacks. In 2018 IEEE
Western New York Image and Signal Processing Workshop
(WNYISPW), pages 1–5. IEEE, 2018.

[30] N. Mathewson, M. Perry, and D. Goulet. Cir-
cuit padding developer documentation. https:
//github.com/torproject/tor/blob/main/doc/
HACKING/CircuitPaddingDevelopment.md, 2021.

[31] M. Nasr, A. Bahramali, and A. Houmansadr. Defeating dnn-
based traffic analysis systems in real-time with blind adver-
sarial perturbations. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages 2705–2722.
USENIX Association, 2021.

[32] S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hop-
per. Gandalf: Gan for data-limited fingerprinting. Proceedings
on Privacy Enhancing Technologies, 2021(2), 2021.

[33] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle. Website fingerprinting at internet
scale. In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016.

[34] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
fingerprinting in onion routing based anonymization networks.
In Proceedings of the 10th annual ACM workshop on Privacy
in the electronic society, WPES 2011, Chicago, IL, USA, Octo-
ber 17, 2011, pages 103–114. ACM, 2011.

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Dis-
tillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE symposium on security and
privacy (SP), pages 582–597. IEEE, 2016.

[36] M. S. Rahman, M. Imani, N. Mathews, and M. Wright. Mock-
ingbird: Defending against deep-learning-based website fin-
gerprinting attacks with adversarial traces. IEEE Trans. Inf.
Forensics Secur., 16:1594–1609, 2021.

[37] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara,
and M. Wright. Tik-tok: The utility of packet timing in web-
site fingerprinting attacks. Proc. Priv. Enhancing Technol.,
2020(3):5–24, 2020.

[38] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 779–
788. IEEE Computer Society, 2016.

[39] V. Rimmer, D. Preuveneers, M. Juárez, T. van Goethem, and
W. Joosen. Automated website fingerprinting through deep
learning. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[40] A. Ross and F. Doshi-Velez. Improving the adversarial ro-
bustness and interpretability of deep neural networks by reg-
ularizing their input gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[41] P. Sirinam, M. Imani, M. Juárez, and M. Wright. Deep finger-
printing: Undermining website fingerprinting defenses with
deep learning. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 1928–1943.
ACM, 2018.

[42] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright. Triplet
fingerprinting: More practical and portable website fingerprint-
ing with n-shot learning. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2019, London, UK, November 11-15, 2019, pages
1131–1148. ACM, 2019.

[43] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanab-
han, and L. Qiu. Statistical identification of encrypted web
browsing traffic. In 2002 IEEE Symposium on Security and
Privacy, Berkeley, California, USA, May 12-15, 2002, pages
19–30. IEEE Computer Society, 2002.

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[45] T. Wang. High precision open-world website fingerprinting.
In 2020 IEEE Symposium on Security and Privacy (SP), pages
152–167. IEEE, 2020.

[46] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg.
Effective attacks and provable defenses for website finger-
printing. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014, pages 143–157.
USENIX Association, 2014.

[47] T. Wang and I. Goldberg. Walkie-talkie: An efficient defense
against passive website fingerprinting attacks. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, pages 1375–1390. USENIX As-
sociation, 2017.

https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md

[48] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang. Statistical
privacy for streaming traffic. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society,
2019.

[49] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2921–2929, 2016.

A Architecture of RF Classifier

The architecture of the RF classifier is depicted in Figure 7.
We apply two 2D convolution blocks and two 1D convolution
blocks to the two-dimensional input data. To suit the final
output, the output is sent to a 1D convolution layer whose
out channels are equal to the number of classes, and then, the
feature maps are aggregated using a Global Average Pooling
(GAP) layer. Finally, we flatten the output vector and send it
to the softmax layer to obtain the probabilities of each website.
We further illustrate the architecture in detail.
Input data. As mentioned in Section 4.2, the RF classifier
takes TAM as input, which is a two-dimensional matrix M ∈
R2×N with a single channel (1× 2×N). By adjusting the
time slot s and the maximum load time T , we can get various
lengths of the TAM, i.e., N.
Convolutional Blocks. Instead of receiving one-dimensional
input as prior models, RF takes TAM as input, which means
we should extract more informative spatial features using 2D
convolution blocks. The convolutional block consists of two
convolutional layers with ReLU that increases nonlinearity
and a BatchNormalization (BN) layer [17] that promotes the
convergence of neural networks as well as prevents overfitting,
and a max pooling layer with dropout. After aggregating the
upload and the download features using two 2D convolution
blocks, we reshape the output, which has 64 channels, into a
one-dimensional vector with 32 channels for further extraction
via 1D convolutional blocks. Note that the reshape operation
doubles the size of feature maps, allowing deeper networks
to extract more high-level features.
Global Average Pooling. Deep Neural networks often suf-
fer computation inefficiency and overfitting. Although CNN-
based models were proposed to mitigate these problems, the
fully connected layers still introduce most parameters and
may influence the robustness of the classifier. To further re-
duce overfitting and improve the robustness, we employ GAP
in the last layer instead of the fully connected layer, which
can efficiently lower network parameters to avoid overfitting
and only sacrifice a little performance. Another advantage of
the GAP is that it can receive the different shapes of inputs,
so we can adjust the input length N and train a new classifier
without changing the network architecture.

Input Data

Convolutional 2D

BatchNormalization 2D, ReLU

MaxPooling 2D
Dropout

Convolutional 2D

BatchNormalization 2D, ReLU

MaxPooling 2D
Dropout

Convolutional 1D

BatchNormalization 1D, ReLU

MaxPooling 2D
Dropout

Convolutional 1D

BatchNormalization 1D, ReLU

MaxPooling 2D
Dropout

Convolutional 1D

BatchNormalization 1D, ReLU

Global Averge Pooling 1D

Softmax

Convolutional 1D

BatchNormalization 1D, ReLU

 2D Convolutional Block

 2D Convolutional Block

 1D Convolutional Block

 1D Convolutional Block

 Global Average Pooling

Figure 7: The detail RF model’s architecture

B Details of Random Padding and Delaying

We now introduce the random padding and delaying strate-
gies with tunable overhead, which are used in Section 4.3 to
show the robustness of the traffic representations in different
bandwidth and time overhead.
Random Padding. The padding budget of each trace is
sampled from the uniform distribution between Bmin and
Bmax, denoted as U(Bmin,Bmax), where Bmin and Bmax are the
lower and upper bounds of bandwidth overhead. After sam-
pling the bandwidth overhead for each trace, the number of
dummy packets is determined. Then, the inject position of
each dummy packet is randomly selected from 1 to the length
of the trace, noting that the timestamp of each dummy packet
is equal to the previous packet.
Random Delaying. We also sample the delay budget for each
trace from U(Tmin,Tmax), where Tmin and Tmax represent the
lower and upper bounds of time overhead. After injecting the
dummy packet into the trace, we sample the delay of each

Table 9: Accuracy (%) of RF-Vari and RF against defenses in the closed-world scenario

Undefended
Disturbing Traffic Defenses Splitting Traffic Defenses

WTF-PAD Front RegulaTor Tamaraw Walkie-Talkie BD BWR

DF 98.40±0.11 90.85±0.28 76.85±0.56 20.96±1.43 6.89±0.11 71.02±0.89 20.69±0.08 19.99±0.16

RFvari 97.94±0.11 95.09±0.32 91.33±0.24 62.72±0.50 8.25±0.15 88.75±0.47 94.46±0.11 75.05±0.91

RF 98.83±0.07 96.58±0.13 93.34±0.18 67.43±0.49 8.54±0.14 93.87±0.23 95.70±0.18 79.68±0.22

Table 10: Accuracy (%) of RF and RF modifications against defenses in the closed-world scenario

Undefended
Disturbing Traffic Defenses Splitting Traffic Defenses

WTF-PAD Front RegulaTor Tamaraw Walkie-Talkie BD BWR

RF 98.83±0.07 96.58±0.13 93.34±0.18 67.43±0.49 8.54±0.14 93.87±0.23 95.70±0.18 79.68±0.22

RFin f 98.80±0.11 97.11±0.15 94.83±0.21 69.24±0.25 11.83±0.22 94.45± 0.52 95.64±0.17 79.60±0.33

RFoverlap 98.78±0.12 96.86±0.07 93.70±0.20 66.11±0.62 8.41±0.21 92.49±0.23 94.82±0.14 78.04±0.40

packet from the normal distribution, denoted as N(µ,µ/3),
where µ is equal to the delay budget divided by the length
of the padded trace F ′. It’s important to note that delaying a
packet will affect all subsequent packets, so the real delay of
the current packet must be added to the cumulative delay of
all previous packets.

C Evaluation on Module Contribution in RF

In Section 5, we present the two key modules in RF, i.e.,
TAM and the CNN-based classifier. Now, we investigate the
contribution of two modules with an ablation experiment.

To have a deep understanding of the contributions of TAM
and the CNN-based classifier, we design a variant of RF
named RFvari, which uses the same classifier of DF [41] and
takes TAM as the input. However, since DF is designed to take
a vector (a sequence of packet directions) as input, TAM must
be reshaped into a vector for use with DF. This changes the
representation of TAM, and the model can not easily identify
the different types of correlations (e.g., incoming and outgo-
ing packets in the same time slot, and packets in adjacent
time slots). To preserve these correlations as much as possible
and minimize the information loss, each element of the input
to RFvari denotes packets-per-slot, and each pair of adjacent
elements are assigned with different symbols (i.e., +/-) repre-
senting the number of incoming and outgoing packets in the
same time slot. As a result, comparing RFvari with DF would
reveal the benefits of TAM , while comparing RFvari with RF
can measure the information loss of TAM in RFvari and the
contribution of the proposed CNN classifier.

Table 9 shows that RFvari achieves better performance than
DF on defended traces, e.g., the accuracy of RFvari against
WTF-PAD, Front, RegulaTor, Walkie-Talkie, BD, and BWR
is 4%, 14%, 42%, 18%, 74% and 55% higher than that of
DF, respectively. This demonstrates that TAM is an infor-
mative traffic representation. Although both RFvari and RF

take TAM as input, RF outperforms RFvari over all defenses
(except Tamaraw) with an accuracy improvement of 1% to
5%, showing the low information loss of TAM in RFvari and
marginal contribution of the CNN-based classifier. In a nut-
shell, TAM makes the key contribution to RF.

D Investigating Variations of TAM

In this section, we evaluate two modifications of TAM: TAM
without Maximum Length (RFin f) and overlapping time slots
(RFoverlap) in the closed-world scenario.
TAM without Maximum Length. In Section 6.2, we set
the Maximum Length L = 5,000 for a fair comparison with
DF, Tiktok, and Var-CNN, but it may not work well for de-
fended traces that have more packets. However, for previous
DNN-based attacks, a longer input dimension increases com-
putational complexity, but the input length N of TAM only de-
pends on time slots s and maximum load time T , i.e., N = T/s.
So in RFin f , we set L =+∞ and calculate TAM only based
on maximum load time T to consider more packets.

Table 10 shows the accuracy in the closed-world scenario.
RFin f achieves better performance on disturbing traffic de-
fenses. The results indicate that taking more packets into
consideration can improve WF attacks on disturbing traffic
defenses.
Overlapping time slots. Another modification that might
help improve the robustness of TAM is to employ overlapping
time slots. It allows RF to extract more features between
two independent time slots. In our experiments, we use the
same parameters as RF and set the overlap rate between two
subsequent time slots to 25%.

As shown in Tables 10, RFoverlap does not exhibit signif-
icant improvement over the original RF. The reason lies in
that the time slot of RF is small enough to extract informative
features, so overlapping cannot provide additional valuable
features.

	Introduction
	Related Work
	WF Attacks
	WF Defenses

	Threat Model and Attack Goals
	Robust Traffic Representation
	Key Observations
	Traffic Aggregation Matrix
	Robustness Evaluation of TAM

	Design of Robust Fingerprinting
	Performance Evaluation
	Experimental Setup
	Hyperparameters of RF
	Closed-world Evaluation on WF Attacks against Defenses
	Closed-world Evaluation on Network Condition Changes
	Open-world Evaluation

	Countermeasures
	Countermeasure Design
	Performance Evaluation

	Discussion
	Conclusion
	Architecture of RF Classifier
	Details of Random Padding and Delaying
	Evaluation on Module Contribution in RF
	Investigating Variations of TAM

