
PASS2EDIT: A Multi-Step Generative Model for Guessing Edited Passwords

Ding Wang, Yunkai Zou
Nankai University

{wangding, zouyunkai}@nankai.edu.cn

Yuan-An Xiao
Peking University

xiaoyuanan@pku.edu.cn

Siqi Ma
The University of New South Wales

siqi.ma@unsw.edu.au

Xiaofeng Chen
Xidian University

xfchen@xidian.edu.cn

Abstract
While password stuffing attacks (that exploit the direct pass-

word reuse behavior) have gained considerable attention, only

a few studies have examined password tweaking attacks,

where an attacker exploits users’ indirect reuse behaviors

(with edit operations like insertion, deletion, and substitution).

For the first time, we model the password tweaking attack as

a multi-class classification problem for characterizing users’

password edit/modification processes, and propose a genera-

tive model coupled with the multi-step decision-making mech-

anism, called PASS2EDIT, to accurately characterize users’

password reuse/modification behaviors.

We demonstrate the effectiveness of PASS2EDIT through

extensive experiments, which consist of 12 practical attack

scenarios and employ 4.8 billion real-world passwords. The

experimental results show that PASS2EDIT and its variant

significantly improve over the prior art. More specifically,

when the victim’s password at site A (namely pwA) is known,

within 100 guesses, the cracking success rate of PASS2EDIT

in guessing her password at site B (pwB �=pwA) is 24.2% (for

common users) and 11.7% (for security-savvy users), respec-

tively, which is 18.2%-33.0% higher than its foremost counter-

parts. Our results highlight that password tweaking is a much

more damaging threat to password security than expected.

1 Introduction
Text passwords are the most prevalent method of user authen-

tication and play an important role in the daily digital lives

of today’s 5 billion Internet users. Although password-based

authentication has some intrinsic security and usability is-

sues (e.g., guessing [33, 60], stuffing [59] and typo [54]), and

many alternative authentication technologies (e.g., hardware

security key [38], single-sign-on [40], and behavior biomet-

rics [44]) have also been successively proposed, passwords

will remain their status as the most widely used authentica-

tion method in the foreseeable future due to its simplicity

to use, easiness to change and low cost to deploy [12, 13].

This consensus has gradually been reached in both academia

[13, 27, 76] and industry [9, 14, 64].

Researchers have reported for decades that a large major-

ity of users, despite good-faith efforts in their information

security, struggled to create secure passwords [41, 51, 61]. To

address this issue, many service providers have enforced strict

password policies, such as restricting the minimum length

and the character composition [35, 41, 69]. Besides, current

password guidelines suggest that users should create distinct

passwords, especially for systems and accounts across dif-

ferent levels of importance [1, 4, 63] (e.g., news subscription

accounts and financial accounts). However, the number of

accounts a user needs to manage is constantly increasing, and

typical Internet users are reported to have 80-107 distinct

online accounts [25, 45, 51]. As the memory capacity of the

human brain remains stable, users are very likely to cope by

reusing existing passwords across different sites.

Password reuse poses a serious security vulnerability:

Attackers who compromise one site are likely to com-

promise other services protected by the same or slightly

edited/modified password [53]. The recent large-scale pass-

word leaks (e.g., the 3 billion Yahoo [2], 10.88 billion CAM4

[5], and 3.2 billion COMB [6]) do provide ample materials for

attackers to conduct cross-site guessing attacks. For example,

the 2022 DBIR report [7] shows that there are 4,751 data

breaches due to basic web application attacks and “over 80%

of the breaches in this pattern can be attributed to stolen cre-

dentials” (i.e., password stuffing attacks), and there has been

an almost 30% increase in credential stuffing since 2017. The

2022 IBM annual data breach report [8] reveals that compro-

mised credentials are the most common initial attack vector,

which is responsible for 19% of breaches at an average breach

cost of USD 4.91 million. Some companies (e.g., [17]) even

purchase compromised credentials from the darknet market

to actively confirm their vulnerable accounts.

Worse still, attackers can also exploit the victim’s existing

password at one service to guess a different password created

by the same user at another service. Such attacks that exploit

users’ password indirect reuse behaviors are called credential
tweaking [46]. Research [18, 51, 67, 68, 71] reveals that 21%-

33% of users slightly edit/modify existing passwords when

creating passwords for their new accounts.

A few studies [18, 46, 71] have investigated credential

tweaking attacks. However, this threat is still largely underes-

timated, because how to model/characterize users’ password

reuse behaviors looks deceptively simple, but actually, it is

rather challenging. Here we explain why.

If we model users’ password modification processes as a

series of atomic edit operations (e.g., deletion or insertion of

a specific password character), and employ a neural network

to predict the sequence of edit operations, then each edit step

may have a certain impact on the subsequent edit steps. For

example, suppose we modify a password pwA=wang123 to

pwB=wang1!, then the edit operation set from pwA to pwB

is {(DEL,5), (DEL,6), (INS,7,!), EOS}, where (DEL,5) means

deleting the character 2 at the sixth position of pwA, (INS,7,!)

means inserting an ! at the eighth position, and EOS repre-

sents to terminate the edit process. Note that after the edit

operation (DEL,5), the original password wang123 has already
been modified to wang13 and similar situations occur in sub-

sequent editing operations, but the existing password reuse-

based models (e.g., the state-of-the-art Pass2Path [46]) cannot

capture such critical changes. How to establish a direct con-

nection between the edit operations and the corresponding

edit effects is not straightforward for “neural networks”.

As various security mechanisms (e.g., rate-limiting and

lockout [20]) have been employed by 65% of top sites (see

[37]) to prevent a large number of online guessing attempts,

password guessing should be effective even when only al-

lowed a small number of guesses (e.g., 100 by NIST 800-

63B [23]). How to automatically prioritize password modifi-

cation behaviors in a personalized manner and fit them in the

limited guesses is challenging. To address both challenges, we

investigate credential tweaking attacks from a data-driven per-

spective, and for the first time, model users’ password reuse

processes as a multi-classification problem (which is essen-

tially different from the sequence to sequence-based model

employed by Pass2Path [46]). Fig. 1 provides a high-level

view of our guessing model. We call this training mechanism

multi-step decision-making. The resulting model is denoted as

password-to-edit (i.e., PASS2EDIT), where edit represents not

only one step of edit operations but also the edited passwords

(i.e., modified/reused passwords).

Our PASS2EDIT (and TarGuess-II [71]) exploits not only

users’ vulnerable behaviors of password reuse but also

choosing popular passwords, and is very effective. Partic-

ularly, within 100 guesses, our PASS2EDIT with no consid-

eration of users’ behavior of choosing popular passwords

(i.e., when only considering users’ password reuse behavior,

denoted as PASS2EDIT-nomix) outperforms the state-of-the-

art Pass2Path [46] by 43.39% against common users and by

18.46% against security-savvy users. Furthermore, we con-

sider users’ vulnerable behaviors of choosing popular pass-

words and further improve the success rate of our model by

24.19% in most (10 out of 12) attack scenarios.

There have been dozens of metrics that measure the similar-

ity of strings, e.g., Das et al. [18] and Guo et al. [24] employed

edit distance and cosine similarity, respectively, to measure

password similarity. Still, to our knowledge, previous research

on password guessing (see [46, 71]) have invariably used the

canonical metric (i.e., edit distance) to figure out the reused

password pairs, and whether other metrics are more effective

for password guessing is unknown. Fortunately, in this work,

we, for the first time, find that cosine similarity can be more

suitable than edit distance for guessing.

1.1 Related work
At NDSS’14, Das et al. [18] proposed the first cross-site

password-guessing algorithm, which applies eight transfor-

mation rules (namely mangling rules, e.g., insertion, deletion,

capitalization, etc.) in a pre-defined order to generate candi-

date passwords based on one existing passwords of the same

user. Although this algorithm’s attack success rate outper-

forms trawling guessing algorithms under a small number of

guesses, it has some inherent limitations: It assumes that all

users select password transformation rules in a fixed priority,

which cannot capture users’ complex modification behaviors.

At ACM CCS’16, Wang et al. [71] proposed a probabilis-

tic context-free grammar-based (PCFG [74]) password reuse

model, named TarGuess-II, which significantly outperforms

that of [18]. Although TarGuess-II is based on a strict sta-

tistical model, it considers only six types of structure-level

transformation rules, which is quite heuristic. Besides, the

inherent limitations of PCFG (such as the weak generalization

ability) are difficult to overcome.

At IEEE S&P’19, Pal et al. [46] introduced deep learn-

ing techniques to characterize users’ password reuse behav-

iors. More specifically, they trained a sequence-to-sequence

(seq2seq) model [58] to predict the modifications needed to

transform an existing password into its sister passwords, and

achieved the state-of-the-art guessing success rate on large-

scale datasets (i.e., the 1.4 billion-sized 4iQ dataset [3]). How-

ever, this model (named Pass2Path [46]) is still not optimal:

(1) It cannot capture the mutual influence between password

edit operations and corresponding transformation effects; (2)

Its character substitution operation defined often does not

conform to the semantics of password modification; (3) It

does not consider the usage of popular passwords (such as

123456789 and password123). See more details in Appendix

A of our full version paper at https://bit.ly/3ZjHPaD.

1.2 Our contributions
The contributions of this work are as follows:

• Multi-step decision-making mechanism. In order for

the neural network to learn the reaction of one-step

edit operations to the original password, we propose

a targeted password guessing model, called PASS2EDIT-

nomix, which for the first time, introduces a multi-step

“ ”

“ ”

“ ”

… …

…

Figure 1: An example of our multi-step decision-making training mechanism.

Suppose the original password is 123ab!!, the target password is 1234!!!,

and the edit operation sequence between this password pair is [(Insert “4” in

the position 4), (Delete “a” in position 5), (Delete “b” in position 6), (Insert

“!” in position 9), End]. Then, the input of the neural network is both the

original password and the currently modified password, and the output is the

next one-step edit operation. Here the placeholder is to align the length of

the two passwords so that they can be input into the neural network.

decision-making training mechanism to more accurately

and practically characterize users’ password reuse be-

haviors. To further exploits users’ vulnerable behavior of

choosing popular passwords, we have explored a number

of methods and preferred the simple yet effective method

of mixing globally popular password dictionaries, result-

ing in our final fully-fledged model PASS2EDIT.

• Extensive evaluation. Extensive experiments on 11

large real-world password datasets demonstrate the ef-

fectiveness of PASS2EDIT and its variant PASS2EDIT-

nomix. Particularly, within 100 guesses, PASS2EDIT-

nomix outperforms its foremost counterpart (i.e.,

Pass2Path [46]) by 36.67% on average, and this value is

35.84% if both further consider users’ vulnerable be-

haviors of choosing popular passwords. Besides, we

investigate the passwords independently cracked by

PASS2EDIT and its counterparts, and summarize their

similarities and differences in terms of length, character

composition, structure, and complexity.

• Some insights. We introduce a 2-gram cosine similar-

ity metric for password guessing. We show that cosine

similarity is more effective than edit distance in most

attack scenarios when used as a filter metric. Specifically,

after the training set is filtered out by cosine similarity

(>0.3), the cracking success rate of PASS2EDIT is 9%

higher than using edit distance (≤4) at 1,000 guesses. In

addition, we find that in the process of multi-step train-

ing, both the current modified password and the existing

password can help predict the next edit operation.

2 Background

Now we briefly introduce the background of users’ password

reuse behaviors and the corresponding guessing attacks.

2.1 Password reuse behaviors
Given the limited cognitive capacity of the human brain, users

inevitably reuse or modify/edit their existing passwords across

different accounts [57]. In 2007, Florencio and Herley [21]

published the first large-scale study of password use and reuse

behaviors, and confirmed that reused and poor-strength pass-

words are a frequent flaw. At NDSS’14, Das et al. [18] high-

lighted the problem of password reuse by conducting a large-

scale data collection through websites. Since then, a num-

ber of successive studies have been conducted. For example,

Wash et al. [73] carried out a six-week investigation on the

password security practices of 134 participants and found that

users do tend to reuse passwords, especially those relatively

complex and frequently used. Similar to password creation,

password reuse is also affected by different factors.

At CCS’17, Pearman et al. [51] observed that the usage of

symbols and digits in passwords increases the possibility of

reuse behaviors, while password managers have few impacts

on password reuse. To protect users from credential-stuffing

attacks, researchers have proposed countermeasures from vari-

ous aspects. For example, Golla et al. [22] discussed some best

practices for designing password-reuse notifications; Wang

et al. [68] and Pal et al. [46] designed new password strength

meters based on password reuse behaviors; Thomas et al. [59]

proposed a privacy-preserving protocol that allows users to

query whether their login credentials were exposed.

2.2 Password guessing attacks
In a broad sense of natural language processing (NLP), the

password generation process can be regarded as a character-

level language modeling problem. At CCS’05, Narayanan

and Shmatikov [43] first introduced the Markov model into

password guessing to improve the dictionary-based cracking

tools. This algorithm trains all characters in a password, and

calculates the probability of each password through the con-

nection between the characters from left to right. At IEEE

S&P’09, Weir et al. [74] proposed a password model based

on Probabilistic Context Free Grammar (PCFG), which can

automatically learn users’ password generation behaviors by

dividing the password into different character segments.

Subsequently, a number of successive studies were con-

ducted to improve the attack efficiency and success rate of

these two models (e.g., [19, 30, 39, 66]). At USENIX SEC’16,

Melicher et al. [42] first introduced deep learning techniques

to password guessing and trained a language model with Re-

current Neural Networks (RNNs). Since then, various deep

generative models have been applied to password guessing,

such as generative adversarial networks (e.g., PassGAN [28])

and conditional/dynamic password guessing frameworks (i.e.,

CPG/DPG [50]). In addition, some studies (e.g., TarGuess-

I [71]) further incorporate personally identifiable information

(PII) into the password model, which greatly improves the

guessing success rates of trawling password models.

3 PASS2EDIT: A targeted guessing model for
password reuse

To characterize users’ password reuse behaviors, we first in-

troduce the multi-step decision-making training mechanism.

Then, we build our neural network and propose to use the

cosine similarity to measure password similarity.

3.1 Modeling password reuse behaviors
As mentioned in Sec. 1.1, there are inherent limitations in

existing password models (e.g., the mutual influence issue in

Pass2Path [46]; see details in Appendix A at https://bit.
ly/3ZjHPaD), so we propose a new targeted password model.

We treat password modification as a series of continu-

ous edit operations. When giving a training set with pass-

word pairs 〈pwA, pwB〉, the edit sequence t = t1, t2, ..., EOS of

each pair from pwA to pwB can be obtained by dynamic pro-

gramming of the edit distance matrix (from pwA to pwB),

where EOS stands for the end symbol. Unlike Pass2Path

[46], our atomic operations only include insertion and dele-

tion operations, without substitution operations, that is: t =
{(INS, p,c)|p ∈ Z

∗,c ∈ Σ} ∪ {(DEL, p)|p ∈ Z
∗} ∪ {EOS},

where p and c stand for the position and the inserted character,

respectively. This is because substitution can be completely

replaced by deletion and insertion. Hence, (SUB, p,c) can be

demonstrated as (DEL, p),(INS, p,c).
In addition, model training is more efficient by excluding

the SUB operation because the number of atomic operations

is reduced. For example, if we limit the maximum length of

the training passwords to 29, removing the SUB operation

can reduce at least 29∗47 atomic operation classes (where

47=48 types of EN-US keyboard characters subtract the sub-

stituted character itself), thus greatly improving the training

and generation efficiency. Also, it is more realistic to fit the

scenario of modifying an existing password. For example, if

the trained Path2Path model [46] uses the pwA=wang123 to

generate pwB=wang1!, then a SUB operation (SUB,5, ‘!’) will

be required first (i.e., digit 2 in the sixth position is substi-

tuted with symbol !), and then it deletes character 3 at the

end. However, what the user actually does could be first to

delete digits 2 and 3, and then add an ! to the end.

We agree on the order of atomic operations as follows:
• The EOS operation must be at the end of the sequence,

indicating the end of the modification.

• Other edit operations must be sorted in an ascending

order of the character position (i.e., p).

• When two operations are conducted at the same posi-

tion, we make the operations INS prior to DEL because

(INS, p,c) means inserting before position p.

To make the model learn the reaction of transformation

t to password pw when the modification is relatively com-

plex, we make a multi-step decision. The input of the model

is

(
pworig

pwcur

)
, where pworig and pwcur respectively repre-

sent the original password and the current password gener-

ated by the previous transformation steps. The output of the

model is the next atomic transformation ti. After the model

outputs ti, we apply this transformation to the input. That is(
p̃worig

pwcur
i

)
= apply

(
ti,
(

pworig

pwcur
i−1

))
(i ≥ 1), where p̃worig

represents the original password pworig with the correspond-

ing placeholder and pwcur
0 = pworig. Since the INS and DEL

operations will make the lengths of pworig and pwcur
i no longer

equal, we align them by inserting placeholders� . That is,

apply

⎛
⎝(INS, p,c),

⎛
⎝ corig

0 ...corig
n−1

ccur
0 ...ccur

n−1

⎞
⎠
⎞
⎠

=

(
corig

0 ...corig
p−1 � corig

p ...corig
n−1

ccur
0 ...ccur

p−1 c ccur
p ...ccur

n−1

)

apply

⎛
⎝(DEL, p),

⎛
⎝ corig

0 ...corig
n−1

ccur
0 ...ccur

n−1

⎞
⎠
⎞
⎠

=

(
corig

0 ...corig
p−1corig

p corig
p+1...corig

n−1

ccur
0 ...ccur

p−1 � ccur
p+1...ccur

n−1

)
,

where corig
i and ccur

i are each single character of password

pworig and pwcur, respectively. Formally, given a user’s exist-

ing password pwA, we define the conditional probability of

generating a new password pwB as follows:

P(pwB|pwA) =
∏

ti∈tpwA→pwB

P(ti|pworig, pwcur
i−1),

where tpwA→pwB is an ordered set of transformation operations

from pwA to pwB and pwcur
0 = pworig.

Considering the password pairs of pwA=wang123 and

pwB=wang1! as an example, the transformation set is

{(DEL,5), (DEL,6), (INS,7,!), EOS}, and the process of trans-

forming pwA to pwB can be demonstrated as:

P(pwB|pwA) =P

⎛
⎝(DEL,5)

∣∣∣∣∣
(

wang123
wang123

)⎞
⎠

∗P

⎛
⎝(DEL,6)

∣∣∣∣∣
(

wang123
wang1�3

)⎞
⎠

∗P

⎛
⎝(INS,7,!)

∣∣∣∣∣
(

wang123
wang1��

)⎞
⎠

∗P

⎛
⎝EOS

∣∣∣∣∣
(

wang123�
wang1��!

)⎞
⎠ .

Finally, we take the last transformed pwcur that has under-

gone the transformation operation (i.e., wang1��!) as the

final generated password and further remove the placeholders.

Embedding

orig
cur … orig

cur

concat concat

3-Layer
RNN
Cell

3-Layer
RNN
Cell… FC

ReLU

origv curv origv curv…

Softmax

orig
: original password character

cur
: current modified password character

= concat orig(v , curv)
: single-step modification operation of output

FC

Fully Connected layer

Activation function

Pytorch.cat() function

Gated Recurrent Unit

Character embedding

Figure 2: The neural network architecture of our PASS2EDIT. It consists of

3-GRU layers and two fully connected layers, and it is essentially a classifier,

where the input is the original and currently modified password pair, and the

output is the classification of the single-step modification.

Since Pal et al. [46] showed that the key-sequence rep-

resentation of passwords performs better when capturing

capitalization-related transforms, we consider the caps-lock

and shift key on the keyboard when processing characters.

Specifically, after each password is transformed into a key se-

quence, the character set Σ includes 48 types of characters that

can be entered through the EN-US standard keyboard, as well

as 〈shift〉, 〈caps〉 and� (48+3=51). If we limit the length of

the password to no more than 30 (i.e., 0≤p<30), then the to-

tal number of atomic operations is |t|=30∗51+30+1=1,561,

where 30∗51 is the category # of insertions, 30 is the category

of deletions, and 1 represents the EOS operation. In this

light, our one-step prediction process can essentially be seen

as a 1,561-class multi-classification problem.

3.2 Neural network building
For sequence tasks with varying lengths, Recurrent Neural

Network (RNN) is a commonly used neural network struc-

ture, and there are two classical variants: Long Short-Term

Memory (LSTM) [29] alleviates the vanilla RNN network’s

gradient vanishing/explosion problems; Gated Recurrent Unit

(GRU) [16] improves the LSTM’s calculation efficiency while

achieving similar performance. Thus, we use GRU as the ba-

sic unit to build our neural network.

As shown in the Fig. 2, the input of the neural network is

the password pair (i.e., the original password pworig and the

current password pwcur), and the output is the probability of

each transformation state ti. Firstly, the input passes through

the embedding layer, and each one-hot encoded password

character is converted into a 256-dimensional vector (i.e.,

vorig
i and vcur

i). Secondly, we concatenate vorig
i and vcur

i (using

the Pytorch.cat() function) into vi and then input it to a

3-layer GRU (the hidden layer dimension is 256). Thirdly, we

wang123
wang123

…

Depth = 1

wang123
wang1 3

wang123
wang1234

…

…

Depth = 2

wang123
wang1

wang12345
wang123

…

…

…

Depth = 3

…

Prob Target Password

wang123
wang13
wang1234
wang1
wang12345

… … … …
The input password: wang123

: Probability of the j-th modification
operation output at the i-th step

: placeholder

Username Password

Admin wang123 (leaked)
wang123456

Pass2 dit model

Figure 3: Example of generating reused passwords with beam search algo-

rithm. Here, we suppose the original password is pw = wang123, and the

beam width is k = 2. The red P indicates the probability of the most feasible

k valid modification operations in each round (the product of the probability

from the root to the current node), and the dotted arrow indicates the process

of summarizing the paths to get the final password guess set.

take the output of the GRU for the last character through a

2-layer FC (i.e., fully connected layer, where the hidden layer

dimension is 512), and finally obtain the probability of each

transformation ti through the softmax layer.

Since the neural network we build (see Fig. 2) is essentially

a classifier, we use the cross-entropy of the predicted output

and the ground truth as the loss function during training,

and use Adam optimizer [34] with weight delay strategy to

minimize the cross-entropy loss. To alleviate overfitting [55],

we set the dropout rate to 0.4. That is, the output of 40%

neurons is randomly set to zero during training. See more

details of parameter tunings in Sec. 4.5.

When generating reused passwords, we use the beam

search algorithm, which is one of the most popular search

strategies in NLP. More specifically, we first input pworig and

pwcur
0 into the neural network to obtain the probability dis-

tribution of the first-step transformation. Then the algorithm

selects the top k valid transformations (t1, ..., tk) in probability

except EOS (valid means that the atomic operations meet the

order we agreed in advance), and applies them to the original

password input. Here,

(
p̃worig

pwcur
i

)
=apply

(
ti,
(

pworig

pwcur
i−1

))
.

We take these intermediate transformations as input for the

next round to execute the neural network iteratively. The

whole process lasts for several (no more than the beam depth,

i.e., a parameter we set in advance) rounds, and the output

of each step of the model forms a tree structure, as shown in

Fig. 3. We then summarize all the paths ending with the EOS

symbol on the tree to get the final guess set.

Note that the input password modified by different trans-

formation sequences may get the same passwords, so the

guess set obtained needs to remove the duplicated passwords

(we also remove the passwords that are same as the original

password because the original password is always the first

choice for targeted guessing [71]). Finally, we sort by the total

probability in descending order to get the final output.

Output Prob
(exponential)

Tweaked Prob
(exponential) Password

-2.39 -3.74 wang12

-2.71 -4.06 wang

-3.07 -4.42 wang1

-3.96 -5.31 123

… … …
Popular Passwords

Prob
(exponential) Password

-3.14 12345678
-3.28 123456789

-3.74 wang12
-4.06 wang

… …

Prob
(exponential) Password

-3.14 12345678

-3.28 123456789

-4.41 11111111

-4.93 dearbook

… …

Mixed Password ListBeam Search Result

Figure 4: Mix popular passwords on the guess set of our PASS2EDIT. Note

that the probability value in this figure is after taking the logarithm.

3.3 Mixing popular passwords
Researches on users’ password reuse behaviors [18,51,67,68,

71] show that about 21%-33% of users tend to (slightly) mod-

ify their existing passwords when creating new passwords,

and about 20%-59% of users tend to directly reuse their ex-

isting passwords. While for the rest users, they are likely to

create a new password that is not related to their existing pass-

word (e.g., just using a popular password, see Table 3). Thus,

it is desirable to make password model like Pass2Path [46]

and PASS2EDIT-nomix have the ability to characterize users’

vulnerable behaviors of choosing popular passwords.

Inspired by TarGuess-II [71], we adopt the method of mix-

ing globally popular passwords, and this practice helps us

achieve satisfactory results (see Fig. 4). More specifically, for

our guess set output by PASS2EDIT-nomix, we multiply the

probability of each password by a factor α, which stands for

the fraction of users who do not choose popular passwords

(e.g., about 0.3 in most of our datasets); For the set of popular

passwords, we use the frequency of each password in it to

estimate its probability. Then, we merge the two password

sets in descending order of probability as the final guess set.

3.4 Cosine similarity metric
Previous studies [18, 46, 71] have invariably used edit

distance as the metric of password similarity. For exam-

ple, Pal et al. [46] used password pairs only with an

“edit distance≤4” for training to avoid the negative im-

pacts of futile/distant password pairs. However, this mea-

surement method is not sufficiently accurate to filter out

dissimilar password pairs. For example, the minimum

edit distances of the following four password pairs are

all six: 〈3080124,cooper3080124〉, 〈720710,720710720710〉,
〈wozuixiao,leizixi1〉, and 〈123456789,281456〉. The first

two pairs are typical reused passwords, while the latter two

are not at all. To filter out dissimilar password pairs more

accurately, we introduce the 2-gram cosine similarity as the

metric. The similarity between pwA and pwB is defined as:

sim(pwA, pwB)=

∑
g∈G

(count(pwA,g)∗count(pwB,g))

√∑
g∈G

count2(pwA,g)
√∑

g∈G
count2(pwB,g)

,

where G is the set of all 2-gram substrings in pwA and pwB,

and count(pw,g) represents the number of occurrences of

substring g in the password pw. For example, the 2-gram

set of password abc is {SOSa,ab,bc,cEOS}, and the 2-gram

set of password abcabc is {SOSa,ab,bc,ca,ab,bc,cEOS}.

Therefore, the similarity of these two passwords is

sim(abc,abcabc) = 1∗1+1∗2+1∗2+1∗1√
1+1+1+1

√
1+4+4+1+1

= 0.905. Note

that the similarity value of two passwords is between 0 and 1,

and the larger the value, the higher the similarity.

In this paper, we choose 0.3 as the threshold of 2-gram

cosine similarity between password pairs, because such pass-

words account for about 30% in most of our datasets. While

this paper empirically shows that 0.3 is acceptable as a rule

of thumb, one may choose other thresholds according to her

own situation. To further confirm the effectiveness of 2-gram

cosine similarity, we conduct a series of comparative experi-

ments (see Sec. 4.4) with two different metrics (i.e., sim>0.3

vs. edit distance≤4). For the first time, we show that using

sim>0.3 is slightly better (e.g., improving 9% in attack suc-

cess rate at 1,000 guesses for our PASS2EDIT model) than

using edit distance≤4 through large-scale experiments.

4 Experiments

We first elaborate on the experimental setups, and then

fairly/comparatively evaluate our PASS2EDIT and its vari-

ant Pass2edit-nomix with their foremost counterparts (i.e.,

Pass2Path [46], TarGuess-II [71] and their variants).

4.1 Our datasets and ethical considerations
Datasets. We evaluate the existing password guessing mod-

els and our PASS2EDIT based on 11 large-scale password

datasets (see Table 1), containing 4.8 billion passwords. Our

password datasets include four from English sites and five

from Chinese sites. They were hacked and made public on

the Internet between 2011 and 2021. For the password reuse

attack, we obtain the datasets composed of password pairs

by matching the email. For details of these datasets, see Ta-

ble 2. Note that 000Webhost is mainly used by web admin-

istrators, so its users are likely to be more security-savvy

than common users, and this has been confirmed in [71].

Thus, the lists 000Webhost→LinkedIn, Yahoo→000Webhost,

LinkedIn→000Webhost and 000Webhost→RedMart (A→B
means that: A user’s password at service A can be used by

an attacker to help attack this user’s account at service B)

will show more secure reuse behaviors than that of common

users (see attacking scenarios #5-#7 and #12 in Table 2). Be-

sides, we count the proportion of 3Class8 passwords (which

denotes passwords that must contain at least three character

classes, i.e., uppercase/lowercase letters, symbols, and digits,

and satisfy len≥8) for each dataset, and find that the value of

000Webhost far exceeds that of other datasets.

Ethical considerations. Though ever publicly available and

widely used in password studies [18, 46, 49, 50, 70, 71], these

datasets contain private data. Therefore, we take special care

when dealing with them, e.g., only reporting the aggregated

statistical information and treating each individual account as

Table 1: Data Cleaning of the password datasets leaked from various web services (“PWs” stands for passwords).

Dataset Web service Language Leaked Time Original PWs Invalid emails Invalid PWs Removed % After cleaning 3Class8† %

Tianya Social forum Chinese Dec. 2011 30,816,592 5,783 3,279 0.03% 30,807,530 2.68%
126 Email Chinese Dec. 2011 6,392,568 0 14,995 0.24% 6,377,573 2.66%
Dodonew E-commerce & Gaming Chinese Dec. 2011 16,282,286 225,931 30,085 1.57% 16,026,270 1.08%
Taobao E-commerce Chinese Feb. 2016 15,072,418 1,176 90 0.01% 15,071,153 0.84%
CSDN Programmer forum Chinese Dec. 2011 6,428,410 7 3,157 0.05% 6,425,246 3.67%
000Webhost Web hosting English Oct. 2015 15,299,907 49,061 67,401 0.76% 15,183,445 19.41%
LinkedIn Job hunting English Jan. 2012 54,656,615 0 122,051 0.23% 54,534,564 8.39%
Yahoo Portal(e.g., E-commerce) English Jul. 2012 5,737,798 119 54,105 0.95% 5,683,574 5.32%

RedMart‡ E-commerce English Oct. 2020 1,108,774 0 — 0 1,108,774 —
4iQ Mixed Mixed Dec. 2017 1,400,553,869 575,283 18,475,938 1.36% 1,381,502,648 5.56%
COMB Mixed Mixed Feb. 2021 3,279,064,312 81,542,117 15,718,941 2.97% 3,181,803,254 7.95%

†3Class8 means passwords that must contain at least three character classes (i.e., uppercase/lowercase letters, symbols, and digits) and satisfy len≥8.
‡RedMart dataset is leaked from a Singapore’s leading online supermarket. These passwords are in salted-hash and will be used as real targets.

confidential, storing and processing them on computers not

linked to the Internet. While these datasets might be already

exploited by attackers for misconduct, our use is helpful for

security administrators/users to measure password strength

and prevent weak ones (Since guessability is found to be a

good metric for password strength [15, 33], and those eas-

ily guessed by an attacker are considered weak passwords).

More specifically, the defenses (e.g., one can design a per-

sonalized password strength meter similar to [46]) derived

from our guessing model can be in the public interest. As our

datasets are all publicly available from various sources over

the Internet, the results in this work are reproducible.

Datasets cleaning. We remove the entries with empty pass-

words, emails that do not contain @ characters and malformed

data (some datasets do not escape special characters). As

with [46], we further remove strings that include symbols

beyond the 95 printable ASCII characters. Additionally, we

also remove strings with len≥30 because after manually scru-

tinizing the original datasets, we find that these long strings

do not seem to be generated by users but are more likely by

password managers or simply junk information.

4.2 Attack scenarios design
To evaluate the effect of our PASS2EDIT model, we need to

answer the following three key research questions (RQs):

RQ1: How well does PASS2EDIT perform in password

reuse behavior characterizing when comparing with its fore-

most counterparts (e.g., Pass2Path [46] and TarGuess-II [71])?

RQ2: How effective is our PASS2EDIT model in practical

attacking scenarios?

RQ3: Does the efficiency of our PASS2EDIT model meet

the needs of the real attacker?

To answer RQ1 and compare with the existing guessing

approaches fairly, we employ the 4iQ dataset [3] (which was

also used in the original Pass2Path work [46]) and recently

leaked COMB dataset [6] to perform the comparative ex-

periments. Both of them are mixed datasets from multiple

sources that contain billions of email and password pairs. We

preprocess them with the “email-based” matching method em-

ployed by [46]. Specifically, for the same user (identified by

the email address), if the email address appears in at least two

accounts, then two of her passwords are randomly selected as

the original password pwA and the new password pwB, respec-

tively. The processed dataset consists of the password pairs

〈pwA, pwB〉. We take 80% of them as the training set, and the

rest as the test set (i.e., scenarios #10 and #11 in Table 2).

This creates a general attack scenario without considering any

realistic factors (e.g., language, policy, and service). Since

previous work [36, 70] showed that language plays an impor-

tant role in the characteristics and strength of passwords, we

use the same matching method to create a Chinese mixed

dataset consisting of Tianya, Dodonew, and CSDN, and an

English mixed dataset consisting of 000Webhost, LinkedIn,

and Yahoo (i.e., scenarios #8 and #9 in Table 2).

Although the manually mixed dataset (scenarios #8-#11

in Table 2) can evaluate the scalability of different models

(RQ1), it cannot show their effects in practical attacking sce-

narios (RQ2). This is because users have different prefer-

ences when creating passwords on different types of websites

(e.g., users tend to create stronger passwords for financial

accounts [10]). Thus, for a real attacker, she can constantly

improve her training set to make it as close as possible to the

test set. For instance, the target system’s password distribution

can be largely approximated by a leaked site with the same

language, service types, and password policies [70].

To answer RQ2, we design a number of practical attack

scenarios (see Table 2) to simulate the attacker’s selection of a

reasonable training set and compare the cracking success rates

of different approaches. More specifically, for attack scenario

#1: Dodonew and Taobao datasets are related to finance, and

neither has any password policy. That is, the password policy

and the service type of the training set match those of the test

set in this scenario. For attack scenario #2: Since the policy

of CSDN requires the created password greater than or equal

to 8 (i.e., len≥8), and the 126 dataset has no password policy,

we select the passwords with len≥8 from Dodonew as the

training set to simulate the scenario that users modify from

a simple password to a relatively complex one. For attack

scenario #3: It is opposite to the scenario #2, changing from a

relatively complex password to a simple password. For attack

scenario #4: The service of the training set does not match

the test set (but the policy matches). For attack scenarios #5-

#7: These scenarios are similar to scenarios #2-#4, but the

language is English. Among them, scenario #5 is to change

Table 2: Setups of 12 different attacking scenarios (RQ=Research question, see Section 4.2; For evaluation results, see Fig. 5)†

Scenario # RQ# addressed Language Training set setup Size (pairs) Test set setup Size (pairs)

1 RQ2

Chinese

Tianya → Dodonew 624,925 Tianya → Taobao 57,7017
2 RQ2 126 → Dodonew (len≥8) 188,926 126 → CSDN (len≥8) 85,206
3 RQ2, RQ3 CSDN → Dodonew 211,385 CSDN → 126 86,104
4 RQ2 Tianya → Dodonew (len≥8) 434,255 Tianya → CSDN (len≥8) 826,559
5 RQ2

English
000Webhost → Yahoo (len≥6) 265,083 000Webhost → LinkedIn (len≥6) 265,083

6 RQ2 Yahoo → LinkedIn (LD) 40,646 Yahoo → 000Webhost (LD) 37,479
7 RQ2 LinkedIn → Yahoo (LD, len≥6)∗ 40,812 LinkedIn → 000Webhost (LD, len≥6) 259,175
8 RQ1, RQ3

Mixed

80% of 3 mixed English datasets 338,857 20% of 3 mixed English Datasets 84,714
9 RQ1, RQ3 80% of 3 mixed Chinese datasets 434,255 20% of 3 mixed Chinese Datasets 108,564
10 RQ1, RQ3 80% of 4iQ dataset matched by email 116,837,808 20 % 4iQ dataset matched by email 29,209,452
11 RQ1, RQ3 80% of COMB dataset matched by email 342,921,727 20 % COMB dataset matched by email 85,730,432

12 (real) RQ2 English 000Webhost → Linkedin (LD len≥6) 213,697 000Webhost → RedMart (LD len≥6) 6,858
†A → B means that: A user’s password at service A can be used by an attacker to help attack this user’s account at service B.∗(LD, len≥6) means that we only use passwords that contain at least one digit and one letter, and have a minimum length of 6 in the dataset.

from a complex password to a simple one; Scenario #6 is

opposite to scenario #5; Scenario #7 is that neither policy nor

service of the training set matches the test set.

In scenarios #1-#11, all test sets are in plain text. A nat-

ural question arises: Would our model keep effective when

cracking “real accounts”. We further design scenario #12

to compare the effectiveness of different approaches when

cracking Redmart passwords, which are MD5 hashed with

salt, leaked from a Singapore’s leading online supermarket.

To answer RQ3, we conduct training and testing processes

of the three models (i.e., Pass2Path [46], TarGuess-II [71]

and our PASS2EDIT) on the same workstation and count the

running time. In particular, the machine we used for the ex-

periment is equipped with an Intel Xeon Silver processor,

256GB of RAM, NVIDIA RTX 3090 GPU (including 24GB

of VRAM), and a 4TB hard drive. We believe that this config-

uration is not difficult to achieve for practical attackers.

Particularly, for all attack scenarios, if the size of the pass-

word pairs in one test set exceeds 20,000, we randomly sample

20,000 pairs from them instead of using the entire test set. We

find that, at this time, the cracking success rates of all compar-

ison approaches have already converged (which is consistent

with [46]: using 10,000 password pairs as a test set is enough).

For COMB, considering the memory consumption caused by

a large amount of data, we randomly sampled 100 million data

for experiments. Note that the test set may contain identical

password pairs (i.e., pwA=pwB), and we count the proportion

of such password pairs in each test set (see Table 3).

4.3 Guessing approaches for comparison
We now compare our PASS2EDIT model with two leading

password reuse models (i.e., TarGuess-II [71] and Pass2Path

[46]) and their variants. For a fair comparison, we ensure

that all six models work on the same training and test sets,

and manage to obtain/use their codes shared/open-sourced by

the original authors. For all model parameters, we follow the

best recommendations. For a better illustration, we further

compare against the basic dictionary attacker that exploits the

top-password list obtained from the training set. Details on

the specific setup are as follows.

TarGuess-II. This model was proposed by Wang et al. [71]

in 2016. The parameter settings retain the default settings

in the code provided by the authors. Note that TarGuess-

II [71] externally has a structural segment file trained by

PCFG [74], two n-gram string files trained by Markov

[39], and a popular password file to help generate guesses

(see the Sec. 4.2 of [71] for details). These data files are

trained in advance by the “three mixed English/Chinese

dataset” we construct in scenarios #8 and #9. For pop-

ular password dictionaries, the Chinese popular password

dictionary is LC={pw|the value of Pcsdn(pw) ∗ P126(pw) ∗
PDodonew(pw) ranks top-104}, and the English popular pass-

word dictionary is LE={pw|the value of P000Webhost(pw) ∗
PYahoo(pw)∗PLinkedIn(pw) ranks top-104}. We ensure that all

compared models (i.e., Pass2Path-mix [46], TarGuess-II [71],

and our PASS2EDIT) in this work use the same popular pass-

word dictionaries when mixing their generated guesses.

Pass2Path. This model was proposed by Pal et al. [46] in

2019. We use the open-source code of the paper, and the

hyperparameter settings are as recommended. Specifically,

the learning rate is 0.0003, the layer of RNN is three, the

hidden unit is 128, and the dropout probability is 0.4. As

with [46], we randomly select 20% from the training set as

the validation set. For the 4iQ/COMB dataset, we follow the

recommendations of the original paper and train for three

epochs. While for other datasets, considering that their size is

much smaller than 4iQ, we set the number of epochs to 20,

because we find that the loss has converged at this time and

there is no serious overfitting (judged by the validation set).

Pass2Path-bugfix. We notice that Pal et al. [46] have

used a data enhancement mechanism: Both 〈pwA, pwB〉 and

〈pwB, pwA〉 are used for training. However, when considering

the impact of password policy, this mechanism will interfere

with the learning of the model, and sometimes slightly reduce

the cracking success rate, so we remove this mechanism. Be-

sides, the guesses finally generated by Pass2Path [46] contains

duplicated passwords (because different transformation paths

may get the same password), so we have de-duplicated them

and only kept the one with the higher probability. The param-

eter settings are the same as the original Pass2Path. Since

the size of training data is reduced to half of the original

Pass2Path, we set the training epoch to 40.

Pass2Path-mix. Considering that TarGuess-II [71] and our

PASS2EDIT have used popular password dictionaries, we also

mix popular passwords in the generated set of Pass2Path [46],

and the mixing ratio is 2:1 (this ratio is the best ratio tested

in our experiment). Note that, we have also tried a mixing

method that is exactly the same as PASS2EDIT but found that

the effect is not as good as 2:1 (the specific results can be seen

in Table 4). We discuss this issue in Sec. 4.4 (the description

of “Effect of mixing popular passwords”).

PASS2EDIT. It is the targeted password guessing model pro-

posed in this paper. It consists of a 3-layer GRU and a 2-layer

FC. The learning rate is 0.001, the dropout rate is 0.4, and the

training epochs are 40 (for the 4iQ dataset, it is three).

PASS2EDIT-nomix. This model removes the mixed popular

passwords dictionary of our PASS2EDIT.

TarGuess-II-nomix. This model removes the popular pass-

word dictionaries employed by TarGuess-II [71]. We no-

tice that after removing the popular password dictionary,

TarGuess-II [71] can still generate popular passwords (be-

cause of the structure-level transformation; see more details

in Sec. 4.2 of [71]), even if the corresponding original pass-

word is not similar to the newly generated popular passwords.

Top-PW: We sort the popular passwords in the training set
in a descending order of probability. In this way, we conduct

a basic dictionary attack. Note that this dictionary is differ-

ent from the popular dictionaries (i.e., LC and LE) used by

TarGuess-II [71], PASS2EDIT [46] and Pass2Path-mix [46].

JtR: We enable the John the Ripper toolkit [52] in wordlist

mode with word mangling rules. JTR has 57 word-mangling

rules in its configuration file, along with a default password

list (password.lst). We append one of the passwords from

each pair from our data set into this password.lst file.

Combined method. To avoid the bias of a single model when

characterizing users’ password reuse behaviors, we introduce

the Min-auto strategy [62] to represent the upper limit of

combining the three models (i.e., TarGuess-II [71], Pass2Path

[46], and PASS2EDIT): A password in the test set is considered

cracked as long as any of the three models cracks it.

4.4 Evaluation results
Table 3 shows the proportion of identical password pairs

(i.e., pwB=pwA) in each test set, and the cracking success

rates of popular password dictionaries employed by three

guessers (i.e., TarGuess-II [71], Pass2Path-mix [46], and our

PASS2EDIT). Results show that 26.87%-64.46% of Chinese

users directly reuse their existing passwords, while this value

is only 4.94%-19.55% for English users. Similarly, with only

popular dictionaries, 4.94%-17.17% of Chinese user pass-

words can be cracked directly within 1,000 guesses, while

this value is only 1.95%-5.25% for English users. We list

these results separately as they are model-independent.

We use the guess-number-graph (see Fig. 5) to evaluate the

effectiveness of our PASS2EDIT with its foremost counterparts

(i.e., TarGuess-II [71], Pass2Path [46], and their variants). To

accurately show the success rate of all approaches (including

the JtR [52]), we further give the concrete results at some

Table 3: Cracking success rates of popular password (PW) dictionaries.
Experimental setup (see Table 2) Cracked by popular Identical
Attacking scenarios Guesses # PW dictionaries password pairs

#1: Tianya→Taobao
10 2.67%

100 4.00% 26.87%
1,000 4.94%

#2: 126→CSDN
10 8.42%

100 12.09% 31.55%
1,000 15.78%

#3: CSDN→126
10 9.17%

100 13.10% 31.28%∗
1,000 17.17%

#4: Tianya→CSDN
10 8.81%

100 12.23% 33.18%
1,000 15.92%

#5: 000Webhost→LinkedIn
10 1.69%

100 2.49% 19.14%
1,000 4.39%

#6: Yahoo→000Webhost
10 0.00%

100 0.58% 16.07%
1,000 1.95%

#7: LinkedIn→000Webhost
10 0.00%

100 0.25% 19.55%∗
1,000 1.37%

#8: Mixed_E: 80%→20%†
10 0.59%

100 1.59% 19.17%
1,000 3.21%

#9: Mixed_C: 80%→20%†
10 7.40%

100 10.44% 64.46%
1,000 13.38%

#10: 4iQ dataset: 80%→20%
10 0.62%

100 1.38% 4.94%
1,000 3.49%

#11: COMB: 80%→20%
10 1.51%

100 2.46% 34.44%
1,000 4.64%

#12: 000Webhost→RedMart
10 2.86%

100 3.62% 16.70%
1,000 5.25%

†Mixed_E=English mixed dataset; Mixed_C=Chinese mixed dataset.
∗The value in attack scenario #3/#7 is unequal to scenario #2/#5 because

20,000 test password pairs are randomly chosen for each attack scenario.

specific guess numbers (i.e., 10, 100, 1,000, which are typical

values considered by the main-stream literature [46, 71]) for

all scenarios in Tables 10 and 11 of our full version paper.

Overall analysis. Fig. 5 shows that the performance of our

PASS2EDIT(-nomix) is better than all its counterparts in most

experimental scenarios. More specifically, if there is no mix-

ture of popular passwords, the cracking success rate of our

PASS2EDIT-nomix is 17.04% higher than Pass2Path [46]

(which natively does not consider popular passwords), and

is 11.58% higher than TarGuess-II-nomix [71] within 1,000

guesses. Only in attack scenarios #5 and #12, the success rate

of TarGuess-II-nomix [71] is comparable to our PASS2EDIT-

nomix. This is because TarGuess-II-nomix [71] can still gen-

erate popular passwords even if the popular dictionary is re-

moved. Our PASS2EDIT significantly improves its advantage

when all models employ the popular dictionaries. More specif-

ically, after mixing popular passwords, the success rates of

our PASS2EDIT outperform Pass2Path-mix by 18.51%, and

outperform TarGuess-II [71] by 22.89% within 1,000 guesses.

For the sake of completeness, we also explore the performance

of different attack approaches under a relatively larger num-

ber of guesses (i.e., 104 guesses). As shown in Fig. 6 (take

scenario #8 as an example), we can see that our PASS2EDIT

still outperforms all its counterparts.

Overall, when allowed 100 guesses, the average success

rates of our PASS2EDIT against common users (see Figs. 5(a)-

(a) #1: Tianya → Taobao (b) #2: 126 → CSDN (c) #3: CSDN → 126

(d) #4: Tianya → CSDN (e) #5: 000Webhost → LinkedIn (f) #6: Yahoo → 000Webhost

(g) #7: LinkedIn → 000Webhost

d

(h) #8: Three English datasets mixed: 80% → 20% (i) #9: Three Chinese datasets mixed: 80% → 20%

(j) #10: 4iQ dataset: 80% → 20% (k) #11: COMB: 80% → 20% (l) #12: 000Webhost → RedMart
Figure 5: Experiments for 12 targeted scenarios, for each of which the training set is shown in Table 2 and the test set is as the sub-title. The combined curve

represents the upper limit of combining TarGuess-II [71], Pass2Path [46], and PASS2EDIT. Our PASS2EDIT(and -nomix) performs better than its counterparts.

5(d) and Fig. 9) and security-savvy users (see Figs. 5(e)-5(g)

and Fig. 5(l)) are 47.81% and 27.42% respectively, while

this figure is 45.29% and 25.05% for Pass2Path-mix [46],

and is 45.26% and 26.42% for TarGuess-II [71]; When al-

lowed 1,000 guesses, this figure is 52.01% and 29.87% for

our Pass2Edit, 49.59% and 27.89% for Pass2Path-mix, and

48.80% and 28.26% for TarGuess-II [71].
When allowed 100 guesses and excluding the cases

where the target password equals the original password (i.e.,

pwB �=pwA), the average success rates of PASS2EDIT against

common users (see Figs. 5(a)-5(d) and Fig. 9) and security-

savvy users (see Figs. 5(e)-5(g) and Fig. 5(l)) are 24.18%

and 11.68% respectively, while this figure is 20.45% and

8.78% for Pass2Path-mix [46], and is 20.46% and 10.46% for

TarGuess-II [71]; When allowed 1,000 gueses, this figure is

30.34% and 15.32% for PASS2EDIT, 26.80% and 12.79% for

Pass2Path-mix, and 25.65% and 13.03% for TarGuess-II.
Effect of mixing popular passwords. From Fig. 5 (and Ta-

ble 11 in our full version paper), we can see that PASS2EDIT

performs better than PASS2EDIT-nomix in 10 out of 12 attack

scenarios, which shows the effectiveness of the mixed popu-

lar dictionary. Specifically, within 1,000 guesses, PASS2EDIT

outperforms PASS2EDIT-nomix by 24.69% (on average) in

these 10 scenarios. This is because password pairs containing

popular passwords (e.g., password and 123456789) can be

quickly cracked through this dictionary. Note that, in scenar-

ios #6 and #7, the attack success rate of PASS2EDIT-nomix

is slightly higher than that of the mixed model (PASS2EDIT),

which indicates that the popular dictionary does not work well

against 000Webhost. The reason is that the users of 000Web-

Figure 6: The cracking success rates of all compared approaches within 104

guesses (here we take the attack scenario #8 as an example).

Table 4: The results of Pass2Path after mixing popular passwords.†

Attack models Pass2Path [46] Our PASS2EDIT

Attack scenarios Nomix Mixed‡ Mixed
#1: Tianya → Taobao 6.32% 5.76% 11.18%
#2: 126 → CSDN 17.06% 28.07% 29.10%
#3: CSDN → 126 31.87% 40.34% 45.70%
#4: Tianya → CSDN 17.72% 28.23% 30.31%
#5: 000web → LinkedIn 17.21% 4.39% 20.57%
#6: Yahoo → 000web 9.16% 1.95% 10.96%
#7: LinkedIn → 000web 9.81% 1.37% 12.49%
#8: Mixed: 80% → 20% 14.11% 4.61% 18.02%

†All values are the results of the two models at the guess number of 1,000.
‡The mixed dictionaries and method are the same as our PASS2EDIT.

host are web administrators and generally have stronger secu-

rity awareness, and popular passwords are less frequent (e.g.,

the sum of top-10 passwords account for only 0.79%, while

this value is 3.28%-10.44% for common Chinese users [70]).

We also find that in all English attacking scenarios (i.e., #5-

#8), the cracking success rate of Pass2Path [46] is drastically

reduced if we mix the popular passwords in the same way
as PASS2EDIT (see Table 4). This is because the probability

of the password generated by Pass2Path [46] is lower than

that of the popular password in the dictionary after the same

adjustment as PASS2EDIT (multiply by 0.3), which leads to a

large number of popular passwords (they are not very effective

in English attacking scenarios) in the final ordered guessing

set. To address this issue, we optimize the mixing method of

Pass2Path [46] and insert popular passwords in the way of

generated passwords: popular password = 2:1 (this ratio is

the best ratio tested in our experiments). However, no matter

which mixing method is employed, the cracking success rate

of our PASS2EDIT is always higher than Pass2Path-mix (see

Table 4 and Table 10 in the full version of this paper).

Impact of training set size. We take the attack scenario #3

as an example, and reduce the size of the training set to 1/2,

1/4, and 1/8 of the original training set respectively. Fig. 7

shows that when the size of the training set changes within

[105,106], the cracking success rates of different models are

largely unaffected. Among them, the statistics-based model

TarGuess-II [71], has the best stability (the average devia-

tion of its cracking success rate is <0.2%). While when the

size of the training set becomes extremely large (e.g., >108),

the advantage of the deep learning based models appears.

For example, in attack scenario #10, both PASS2EDIT and

Pass2Path [46] outperform TarGuess-II [71].

Table 5: The impact of filtering metrics on different methods.†

Method Pass2Path [46] PASS2EDIT TarGuess-II [71]
Attack scenarios sim>0.3 δ ≤ 4 sim>0.3 δ ≤ 4 sim>0.3 s >0.5∗

#1: Tianya → Taobao 6.79% 6.32% 11.18% 10.27% 9.07% 8.76%
#2: 126 → CSDN 16.20% 17.06% 29.10% 28.02% 24.44% 23.82%
#3: CSDN → 126 37.58% 31.87% 45.70% 41.80% 41.08% 38.38%
#4: Tianya → CSDN 15.43% 17.72% 30.31% 28.31% 23.82% 22.43%
#5: 000web → LinkedIn 18.34% 17.21% 20.57% 18.72% 20.51% 20.21%
#6: Yahoo → 000web 8.81% 9.16% 10.85% 10.64% 9.52% 8.92%
#7: LinkedIn → 000web 10.29% 9.81% 12.49% 8.79% 9.86% 8.96%
#8: Mixed: 80% → 20% 15.00% 14.11% 18.02% 16.37% 14.83% 14.40%
†All values are the results of the three models at the guess number of 1,000.∗s = 1−EditDistance(pwA, pwB)/max(|pwA|, |pwB|).

Micro-perspective of cracking ability. To more clearly show

the ability of leading models and our PASS2EDIT, we take

scenario #2 as an example and plot the cosine similarity dis-

tribution of the cracked password pairs in the test set. Fig. 8

shows the cracking capabilities of different models from a mi-

cro perspective, from which we can see a roughly hierarchical

ranking: PASS2EDIT>Pass2Path [46]>TarGuess-II [71].

Basic dictionary attack. In scenarios #2 and #4, the basic

dictionary attack (i.e., top-PW) performs even better than ad-

vanced password models (for example, within 1,000 guesses,

the success rate of top-PW is 10.83%, while the success rate

of Pass2Path [46] is only 9.58%). The reason is that the weak

passwords of some victims can be guessed directly without

acquiring knowledge from their existing passwords, and the

service type of the training set and test set do not match in

these two scenarios. Thus, in practical attack scenarios, one

can give priority to popular passwords, and the training set’s

language, service type, and password policy need to be fully

considered when training a password model.

Impact of filtering metrics. To test the effectiveness of co-

sine similarity as a filtering metric, we use cosine similarity

(>0.3) and edit distance (≤4) to filter the training set in attack

scenarios #1-#8, respectively, and then use them to train of

our PASS2EDIT model. We notice that the TarGuess-II [71]

uses a similarity score based on edit distance (ED), calcu-

lated as s = 1−ED(pwA, pwB)/max(|pwA|, |pwB|), and the

threshold is set to 0.5. We additionally use cosine similarity

to filter the training set in advance. For Pass2Path [46], we

find that when using cosine similarity, there will be some

password pairs with extremely long edit distance (>10) (e.g.,

abc123@hotmail.com and abc123), which makes the gener-

ation speed of the trained Pass2Path model extremely slow,

so we manually remove these data (about 1%-3%).

Notably, for our PASS2EDIT, there is no similar problem

because it only outputs a one-step edit operation at a time.

Table 5 shows that using cosine similarity can improve the

success rate of PASS2EDIT by 9%, can improve TarGuess-

II [71] by 5%, and can improve Pass2Path [46] in five out of

eight scenarios (1,000 guesses). A plausible reason is that co-

sine similarity is particularly good at measuring the structural

similarity between two passwords [11, 24], and can preserve

more password pairs with a longer edit distance after filter-

ing. Particularly, we find that the training set (used in this

paper) filtered by cosine similarity>0.3 is generally 3%-10%

(a) #3A: Trained on 1
2 CSDN → Dodonew (b) #3B: Trained on 1

4 CSDN → Dodonew (c) #3C: Trained on 1
8 CSDN → Dodonew

Figure 7:Influence of different training set sizes on the guessing success rate of Pass2Path [46], TarGuess-II [71] and our PASS2EDIT(-nomix). We take attack

scenario #3 as an example (the training set is CSDN → Dodonew and the test set is CSDN→126), reduce the training set size to 1/2, 1/4, and 1/8 of the original,

and observe the influence. One can observe that the change in the size of the training set has little effect on the guessing success rates.

Figure 8: The comparison of Pass2Path [46], TarGuess-II [71] and our

PASS2EDIT’s ability to crack password pairs with different cosine similarity

ranges. Here we take attack scenario #2 (see Table 2) for example.

Table 6: Running time of different attack models.†

Attack method Training time Testing time Generated PW/s ‡

TarGuess-II [71] 00:59:44 00:57:13 5,538

Pass2Path [46] 14:09:45 01:46:42 2,969

PASS2EDIT 09:43:26 02:26:25 2,164
† The timings are taken from attack scenario #10 and their format is

“hour:minute:second”. All model parameters are consistent with Sec. 4.3.
‡ PW/s is calculated by dividing the total number by the total testing time.

larger than the training set filtered by edit distance≤4, and

the overlap ratio between the two is 92%-100%.

Attacking efficiency. Here we take scenario #10 using the

116 million 4iQ dataset as an example to examine the running

time of different models. The detailed results are shown in

Table 6. We can see that the statistics-based TarGuess-II [71],

runs the fastest (both in training and generation process),

Pass2Path [46] takes the second place, and PASS2EDIT is the

slowest. Fortunately, for online attacks, the performance bot-

tleneck lies in the speed of network requests and the throttling

strategy of the websites [20], while computational complexity

is not particularly important. Note that, PASS2EDIT is not

good at applications where guess generation speed is impor-

tant, like the compromised credential checking service [47]

which per day generally handles millions of user requests and

needs to generate billions of password guesses/variants.

Correctness confirmation. Note that in scenario #10, the

cracking success rate of Pass2Path [46] within 1,000 guesses

Figure 9: The comparison of our PASS2EDIT with its counterparts in attack

scenario consistent with the original TarGuess-II paper [71] (i.e., trained on

68,546 CSDN→12306, and tested on 5,997 CSDN→Dodonew).

is 15.77%, which is almost the same as the original paper

(i.e., 15.8% of Fig.3 in [46]). This indicates that we have

correctly run the Pass2Path model. Similarly, to ensure that

we correctly run the TarGuess-II algorithm [71], we use our

existing datasets to additionally design the same attack sce-

nario as in [71] (i.e., using CSDN→126 as the training set

and using CSDN→Dodonew as the test set). The results of

TarGuess-II [71] in Fig. 9 indicate that we have run this algo-

rithm correctly, since the cracking success rate within 1,000

guesses in Fig. 13(f) of [71] is also about 57% without remov-

ing identical password pairs (i.e., pwA=pwB).

4.5 Further exploration
In what follows, we show some explorations we have made

to improve our PASS2EDIT or existing password models.

Model input. In our PASS2EDIT, both pworig and pwcur
i are

used as the training input (they are converted to a new vector

by using the concatenate function). A natural question may

arise: Would our password model still work if we only use

the current transformed password pwcur
i as the training input?

Our experimental results show that when only pwcur
i is used,

the guessing success rate of PASS2EDIT is still higher than

Pass2Path [46] and TarGuess-II [71], but it is slightly worse

than using pworig and pwcur
i simultaneously (see Fig. 10).

This suggests that both the current edited password pwcur
i and

the original password pworig provide useful knowledge on

Table 7: Examples of using all the training sets vs. using the filtered training sets.†

Examples ihtfnjing qwert1234 WANG520025 0112141333
Training set All Filtered All Filtered All Filtered All Filtered

Rank Unique top-10
1 ihtfnj ihtfnj qwert1 qwert12 520025 g520025 112141333 112141333
2 123456 ihtfnji t1234 rt1234 g520025 wang520025 12141333 2141333
3 ihtfnji IHTFNJING 1234 qwert1 20025 ng520025 141333 141333
4 123456789 ihtfnjin qwert12 wert1234 WANG5 WANG52 2141333 011214
5 12345678 ihtfnjg 123456 qwert123 123456 WANG52002 011214 12141333
6 ihtfnjg 0ihtfnjing rt1234 QWERT1234 ng520025 WANG520 11214 0112141
7 htfnjing fnjing 234 t1234 0025 WANG5200 0112141 01121413
8 IHTFNJING ihtfnjig 123456789 0qwert1234 qwert12 WANG5 41333 011214133
9 11111111 htfnjing 12345678 123456 WANG52002 WANG55 112141 00112141333

10 ihtfnjin ihnjing qwert12 ert1234 WANG5200 0WANG520025 12141333 01121413
† “All” means using all password pairs in training set, and “Filter” means using password pairs whose edit distance is ≤4 in the training set. Bold passwords in each

column mean that they are the popular passwords generated by the Pass2Path model [46] through the corresponding original password in the first row.

Figure 10: The cracking success rate of PASS2EDIT without concatenating

(noconcat) the original password (here we take scenario #8 for example).

predicting the next transformation step. It is likely because the

original password provides a benchmark for model training,

preventing the model from losing its knowledge of the original

password after several editing operations.

Parameter tuning. We summarize the tricks we have used

into three categories. (i) Tunings that will improve the success

rate: 1) Add 1-2 fully connected layers after the RNN layers,

and the cracking success rate of two layers is better than one

layer; 2) Transform the password into a key sequence con-

taining caps-lock and shift keys; 3) Use dropout for RNN and

fully connected layers, and the cracking success rate is better

when the value is 0.4. (ii) Tunings that have little effect on

the success rate: 1) Use bidirectional RNN; 2) Replace GRU

cell with LSTM cell; 3) Introducing a residual connection

for RNN; 4) Use the gradient clipping configuration [48] for

RNN; 5) Adjust the number of layers of RNN (in the range

{2, 3, 4}); 6) Adjust the dimensions of embedding, RNN,

and fully connected layers. (iii) Tunings that will reduce the

success rate: 1) Flip the training set, that is, use pwA→pwB

and pwB→pwA at the same time; 2) Adding placeholders to

achieve the purpose of data enhancement. For example, en-

rich the password pairs 1234→123 into�1234→�123,��
1234→��123 and���1234→���123.

Generation of popular passwords. To make the password

model like Pass2Path [46] have the ability to generate popular

passwords, we define a new atomic operation (denoted as Bs,

which represents generating passwords from scratch), and

the other atomic operations remain unchanged. For example,

the transformation sequence of abcdef → 123 in original

Pass2Path [46] is {(SUB,0,1), (SUB,1,2), (SUB,2,3), (DEL,3),

(DEL,4), (DEL,5), EOS}. After adding the ”start from scratch”

atomic operation Bs, the transformation sequence of abcdef
→ 123 becomes {Bs, (INS,0,1), (INS,1,2), (INS,2,3), EOS}.

However, our experimental results show that the cracking suc-

cess rate becomes even worse after adding this operation. One

possible reason is that this newly added operation interferes

with the network’s learning of the original insertion operation.

In addition, we have tried to directly use the entire training

set to train the neural network without similarity filtering (by

cosine similarity or edit distance). Table 7 shows ten exam-

ples generated by Pass2Path [46] by using all the training

sets compared with using the training sets filtered by the co-

sine similarity (≥ 0.3). We find that the password model does

generate popular passwords like 123456 and 12345678 after

training with the entire training set, but the overall improve-

ment in cracking success rate is marginal. The underlying

reason is that the mixing of dissimilar password pairs inter-

feres with the learning of the model and weakens the model’s

ability to characterize users’ password reuse behaviors.

Additional approaches. Our PASS2EDIT essentially com-

pletes a task of character-level sequences classification. To im-

prove its performance, we have tried some well-known mod-

els suitable for short text classification, such as Fasttext [32],

TextCNN [75], and DPCNN [31], but found that the improve-

ment in characterizing users’ password reuse behaviors was

marginal. Besides, we have implemented the Encoder struc-

ture of the Transformer [65] for this multi-label classification

task. Unfortunately, the model’s cracking success rate and

training efficiency (i.e., training time and password generation

speed) are drastically reduced. Additionally, we have intro-

duced a residual network structure [26] based on the original

model (i.e., 3-layer GRU+2-fully connected layer), while the

success rate still has no obvious change. These attempts show

that the existing NLP technique may not be able to directly
migrate to the field of password guessing. Instead, it needs

to be adaptively improved based on task requirements and

the characteristics of password characters (e.g., short length,

small feature dimensions, and rich/no semantics). For further

exploration in these aspects, we leave them as future work.

A combined model. The structure-level and segment-level

transformation defined by TarGuess-II [71] are restricted by

the training dictionary. Specifically, the structure-level trans-

formation requires the training dictionary to provide the spe-

cific password structure to be transformed and its correspond-

ing probabilities (e.g., L6D3→L6 with probability 0.002), and

the segment-level transformation requires the training dic-

tionary to provide the specific content of the transformation

and its corresponding probabilities (e.g., 123→1234 with

probability 0.3). Unlike TarGuess-II [71], Pass2Path [46] can

employ the entire original passwords to give the probability

distribution of each step of transformation dynamically. There-

fore, we can use Pass2Path [46] to generate transformation

paths and corresponding probabilities for the structure-level

and segment-level transformations in TarGuess-II [71].

For example, if the password pair (original password, new

password) is (pass123, 1234@@), then the segment sequence

of the original password is [(0, 4, pass), (1, 3, 123)]. Each

item in this sequence (e.g., (0, 4, pass)) is called a segment,

and each segment has three fixed items, followed by segment

types, length, and specific characters. Among them, there are

three types of segments, namely letters, digits, and special

symbols, which are represented by 0, 1, and 2, respectively.

Here, (0, 4, pass) means “a letter segment with a length of

4, and the specific content is pass”. Similarly, the segment

sequence of the new password 1234@@ is [(1, 4, 1234), (2, 2,

@@)]. On this basis, the modification sequence is represented

as [(d, None, 0), (s, (1, 4, 1234), 1), (i, (2, 2, @@), 2)], where

each item is called a modification operation. The three sub-

items in the modification operation respectively indicate the

modification type (d: deletion, s: substitution, i: insertion),

specific content, and location. For instance, (i, (2, 2, @@), 2)

means inserting a segment (2, 2, @@) at the position marked 2

in the original password segment sequence.

To make the password model have the ability to gener-

ate the modification sequence [(d, None, 0), (s, (1, 4, 1234),

1), (i, (2, 2, @@), 2)], we set up three sub-models, called

struct_model, segment_model, and insert_dict, to complete

the task of structure-level transformation prediction, substi-

tution prediction within a segment, and insertion prediction

within a segment, respectively. Among them, struct_model

and segment_model are based on Pass2Path [46], and in-

sert_dict employs a training dictionary.

We first use struct_model to predict the structure-level trans-

formations. For example, if the input of struct_model is the

original password pass123, then the output is a structure-
level transformation sequence represented as [(d, None, 0),

(s, None, 1), (i, (2, 2), 2)]. For the deletion and substitution

operations (i.e., d and s), we only need to determine the posi-

tion of the operation (i.e., 0 and 1 in items (d, None, 0) and

(s, None, 1)), and do not need to determine the specific dele-

tion/substitution content (i.e., ‘None’ in these items). For the

insertion operation (i.e., i), we need to determine the type (L,

S, and D segments represented by 0, 1, 2) and length of the

inserted segment (i.e., (2, 2) in item (i, (2, 2), 2)).

We then use segment_model to predict the specific content

to be substituted within a segment. For example, if the input

of segment_model is 123 (which is the string before substi-

tution operation, i.e., 123 in the original password pass123),

then the output is 1234 (which is the string after the substitu-

tion operation, i.e., 1234 in the new password 1234@@). For

insert_dict, it outputs the corresponding string within the seg-

ment according to the segment type and length. For example,

if its input is (2,2), then the corresponding output is @@.

Finally, we integrate the outputs of these three models to

form a complete modification sequence (e.g., the sequence

[(d, None, 0), (s, (1, 4, 1234), 1), (i, (2, 2, @@), 2)] in the

above example), and output all possible complete modifica-

tion sequences in descending order of probability. However,

our preliminary experimental results show that the perfor-

mance of this combined model has not substantially improved

compared to the original Pass2Path model [46].

4.6 Analysis of cracked passwords

Now we investigate the passwords cracked by TarGuess-

II [71], Pass2Path [46], and our PASS2EDIT in terms of length,

character composition, structure, similarity distributions, and

complexity. To demonstrate their ability to generate edited

passwords, we remove the popular password dictionaries em-

ployed by TarGuess-II [71] and PASS2EDIT. Ultimately, here

the analysis builds on a total of 56,151 cracked password pairs

from all 12 attack scenarios in Table 2.

6.2%8.2%

Pass2Edit

Pass2Path

TarGuess-II

1.0%59.5%

12.9%
9.6%

2.7%

Figure 11: The overlap ratio of pass-

words cracked by three models.

Overlap. We first count

the guesses generated by

the three models and find

that if each model gener-

ates a dictionary contain-

ing 1,000 unique guesses

for a victim user, the

overlap ratio for the three

dictionaries is only 2%-10%. This implies that each model

generates quite different guesses when inputting the same

original password (i.e., pwA). We then count all cracked pass-

words in the test set, and find that 59.5% of them were cracked

simultaneously by all three models, and 1.0%-12.9% of pass-

words were cracked independently by each model (i.e., a pass-

word is only cracked by one of the three models, and not by

the other two; see Fig. 11). This suggests that although the

guesses generated by the three models are quite different, the

passwords cracked by them have a very large overlap ratio.

Note that TarGuess-II [71] can still generate popular pass-

words even if the popular password dictionary is removed.

The reason is that TarGuess-II can transform passwords at the

structural level (e.g., L8→D9), and then fill the generated seg-

ment (i.e., D9) with popular strings (e.g., 123456789). This

makes the cracked password pwB have little similarity with the

original password pwA. We refer to this property of TarGuess-

II as “Structured Advantage”. Particularly, we find that 3.3%

of the 6.2% passwords cracked independently by TarGuess-II

are such popular passwords. However, this advantage will

be weakened after all models employ the popular password

dictionaries (see columns 7-9 of Table 10 in our full version).

Overall, our PASS2EDIT can independently crack the most

edited passwords (i.e., 12.9%). To gain a deeper understand-

ing of the differences between the three models, we investi-

gate the password/password pairs independently cracked by

each model (i.e., we remove the passwords that were cracked

simultaneously by all three models). Figs 12-15 and Table

9 show the comparison results. Note that the values in Figs

12-15 and Table 9 are the percentage of passwords cracked

for each model, not for all three models.

Figure 12: The edit distance distributions of cracked password pairs.

Edit distance. Fig. 12 shows that the independently cracked

password pairs via our PASS2EDIT are distributed in each

edit distance value. For Pass2Path [46], while it is good at

guessing password pairs with edit distance<4, the proportion

of cracked passwords decreases significantly as the edit dis-

tance value increases (since it cannot capture the connections

between the edit operations and the corresponding edit ef-

fects). For TarGuess-II [71], due to its “Structured Advantage”

mentioned above, the proportion of cracked password pairs

with editing distance>5 is extremely high.

Figure 13: The similarity distributions of cracked password pairs.

Cosine similarity. Fig. 13 shows the similarity distributions

of independently cracked password pairs. Since TarGuess-

II [71] can generate popular passwords with little similarity

to the original passwords (e.g., seperti*→123456789), the

proportion of cracked password pairs with low cosine simi-

larity is extremely high. On the contrary, the password pairs

with high cosine similarity cracked by Pass2Path [46] ac-

count for the highest proportion, which is also consistent with

the results of the edit distance distribution in Fig. 12: It’s

good at cracking password pairs with edit distance<4. For

our PASS2EDIT, it performs well in cracking password pairs

with a cosine similarity between 0.4-0.8.

Character position. The previous work [67] showed that

users’ modification of their existing passwords is related to

Figure 14: The edited position distributions of the cracked password pairs

(P2E=PASS2EDIT, P2P=Pass2Path [46], TG2=TarGuess-II [71]).

the character position (e.g., 87.2% of insertions/deletions hap-

pened at the tail). Thus we also explore how different models

work in different character positions. More specifically, we di-

vide the cracked password into the head, middle, and tail parts

(each of which is one-third of the entire password length), and

further count the percentage of different parts being modified

(i.e., insertion, deletion, and substitution). Fig. 14 shows that

all three models tend to modify the password at the tail part.

Particularly, our PASS2EDIT tends to delete characters in the

middle part, TarGuess-II [71] tends to substitute characters at

the head and middle parts, and Pass2Path [46] tends to insert

characters at the head and tail parts.

Figure 15: The structure distributions of cracked passwords.

Character compositions and top structures. Since the pre-

vious work [70] showed that the top-3 structural patterns

account for an overwhelming fraction of users passwords

(e.g., the top-3 structures D, LD, DL account for an average of

81.90% for Chinese datasets, and the top-3 structures L, LD, D
account for an average of 81.26% for English datasets, where

L denotes a lower-case sequence, D for a digit sequence, and

S for a symbol sequence), we divide the cracked passwords

into five categories (i.e., L, D, LD, DL, and others). Fig. 15

shows that different models are good at cracking passwords of

different structures. It is interesting to see that our PASS2EDIT

is good at cracking passwords with LD structure (which is

the 2nd-ranked structure in English datasets [70]). In contrast,

Pass2Path [46] performs well in cracking passwords with rel-

atively complex structures since the proportion of “others” is

10%-15% higher than TarGuess-II [71] and our PASS2EDIT.

Length feature. Fig. 16 shows that the length of the pass-

words independently cracked by Pass2Path [46] is mainly con-

centrated in 8-9. Another interesting observation is that the

passwords with length=6 account for a considerable propor-

tion (i.e., 26.11%) of TarGuess-II [71]. We manually check

the generated guesses, and find that the popular password

123456 accounts for an overwhelming fraction (i.e., 71.76%).

Table 8: Examples of passwords cracked independently by different models.

Attacking models TarGuess-II [71] Pass2Path [46] Our PASS2EDIT

Number Language Existing password Targeted password Existing password Targeted password Existing password Targeted password

1 gxb840213 gxb1314521 biaokng biaoking 201212 dai201212

2 dragonyr 123456789 ximmy851129 ximmy851119 9918241 zyj9918241

3 Chinese 243586 qazwsxedc 199185 19910805 fire2500 ling2500

4 Tian6253* love6253 zhangbig ZHANGbig 1314520 1314520xl

5 2323kbc 123123kbc super19771020 super19791020 6691064 6691064wu

6 seperti* 123456 JAtt12#$ JAtt1234 di10ca10040790 dica040790

7 sergioafull15013320 15013320 rajivamerica123 RAJIVamerica123 t@lking1 talking

8 English megahomme@megahomme megahomme Iuliana93LAN Iuliana93LaN 9427-078-168 9427078168

9 ddd786*1987 1987*786 kornjacica989 kornjaca89 Denningj11!! denningj7

10 301873022iansangbbyboo 301873022 savone61 Savone6! Ritalin!2# ritalin123

Table 9: The complexity of independently cracked passwords.†

Models
Complexity of cracked passwords % Total

1C6‡ 1C8 1C12 2C6 2C8 2C12 3C6 3C8 3C12 #

PASS2EDIT 94.54 69.49 6.72 62.09 53.78 6.26 6.45 5.92 0.00 7,213

Pass2Path [46] 98.59 90.82 6.82 63.76 59.29 6.35 12.00 12.00 2.59 376

TarGuess-II [71] 98.82 68.18 9.50 30.67 28.07 9.30 3.92 3.79 1.25 3,490
†A bold value in each column means that it is the highest one among the three.
‡1C6=1Class6, which means passwords that must contain at least one character
classes (i.e., uppercase/lowercase letters, symbols, and digits) and satisfy len≥6.

Figure 16: The length distributions of passwords cracked by each model.

For PASS2EDIT, the length distribution of its independently

cracked passwords is relatively flat. Particularly, it can crack

31.04% of passwords with length>10, and this value is only

16.25% and 18.91% for Pass2Path [46], and TarGuess-II [71].

Password complexity. Table 9 summarizes the proportion

of independently cracked passwords with different password

composition rules/policies (PCPs). It is interesting to see

that TarGuess-II [71] is good at cracking long passwords with

relatively simple PCPs, while Pass2Path [46] performs well in

cracking passwords with complex PCPs. For our PASS2EDIT,

while the proportion of complex passwords (e.g., 3Class8) it

cracked is not the highest, the number of complex passwords

it cracked is the largest. Particularly, we give ten examples of

passwords cracked independently by each model in Table 8.

5 Potential applications for protection

We now discuss the real-world security implications of our

PASS2EDIT, and give some specific ways of how PASS2EDIT

could be used to better protect users.

Password file recovery. A major usage of password guessing

algorithms is to recover hashed password files. For example,

after employing the trawling guessing algorithms/tools (e.g.,

PCFG [74] and Hashcat [56]) to recover the hashed password

file to a certain proportion (e.g., 80%-90%), one can use the

PASS2EDIT model proposed in this paper as a supplement

to further recover more passwords. Besides, our PASS2EDIT

can help recover the encrypted passwords of cyber criminals

more quickly, and can also help users recover their forgotten

reused passwords based on their existing passwords.

Password reuse identification. At IEEE S&P’19, Pal et

al. [46] developed a personalized password strength meter

(PPSM) to defend against password reuse attacks. Particu-

larly, they have employed the existing targeted attacks (i.e.,

Das et al. [18], TarGuess-II [71], and Pass2Path [46]) to de-

termine/label if a password pair is vulnerable to credential

tweaking attacks. Considering that PASS2EDIT performs the

best when guessing reused passwords, one can simply incor-

porate PASS2EDIT into existing attacks to improve the label

accuracy, and thus improve the performance of this PPSM.

Similarly, at CCS’21 [54], Sahin et al. proposed a machine

learning-based classifier to predict when a password’s secu-

rity is likely affected by typo tolerance. Training this model

requires to determin whether a password is vulnerable to pass-

word reuse attacks. Thus, one can also employ PASS2EDIT

to help label vulnerable passwords, thereby improving the

accuracy of the classifier and better protecting users.

Honeywords. Honeywords are decoy passwords stored to-

gether with each user’s real password for detecting password

file leakage. More specifically, this mechanism generates k−1

(e.g., k=40 as recommended by [72]) honeywords for each

account to impede attackers from figuring out the real pass-

word. Even if the attacker steals the password file, she has to

perform a few online login attempts. Once a certain number

(e.g., three) of honeywords are checked for login attempts by

the server, a password file leakage alarm is triggered. A key

issue for the effectiveness of the honeyword mechanism is to

generate flat honeywords (which means they are difficult to be

distinguished from the real password). As a leading password

reuse-based model, our PASS2EDIT has great potential to be

employed by web administrators to generate flat honeywords.

6 Conclusion

This paper proposes a targeted password guessing algorithm

PASS2EDIT to model the increasingly damaging credential

tweaking attack, in which an attacker exploits the victim’s

leaked passwords to increase her success rate of guessing

the victim’s passwords at other sites. Particularly, for the first

time, we propose a multi-step decision-making training mech-

anism, and build a classification neural network to learn the

reaction of one-step edit operations to the existing password.

This provides a brand new technical route to accurately and

practically characterize users’ password reuse behaviors and

a better understanding of users’ password security.

Acknowledgement

The authors are grateful to the shepherd and anonymous re-

viewers for their invaluable comments. Ding Wang is the cor-

responding author. This research was in part supported by the

National Natural Science Foundation of China under Grants

Nos. 62172240 and 62222208, and Natural Science Founda-

tion of Tianjin, China under Grant No. 21JCZDJC00190. See

the full version of this paper at https://bit.ly/3ZjHPaD.

References
[1] Stick with Security: Require secure passwords and authentication, Aug.

2017, https://www.ftc.gov/business-guidance/blog/2017/08/stick-sec

urity-require-secure-passwords-and-authentication.

[2] Yahoo’s 2013 Email Hack Actually Compromised Three Billion Ac-
counts, Oct. 2017, https://www.wired.com/story/yahoo-breach-three

-billion-accounts/.

[3] Identities in the Wild: The Tsunami of Breached Identities Continues,

May 2018, https://4iq.com/wp-content/uploads/2018/05/2018Identit

yBreachReport4iQ.pdf/.

[4] Password administration for system owners, Nov. 2018, https://www.

ncsc.gov.uk/collection/passwords/updating-your-approach.

[5] Hack Brief: An Adult Cam Site Exposed 10.88 Billion Records, May

2020, https://www.wired.com/story/cam4-adult-cam-data-leak-7tb/.

[6] COMB: largest breach of all time leaked online with 3.2 billion records,

July 2022, https://cybernews.com/news/largest-compilation-of-email

s-and-passwords-leaked-free/.

[7] Data Breach Investigations Report, June 2022, https:

//www.verizon.com/business/resources/reports/2022/dbir/2022-dat

a-breach-investigations-report-dbir.pdf.

[8] IBM Report: Cost of a Data Breach Hits Record High During Pandemic,

July 2022, https://www.ibm.com/downloads/cas/3R8N1DZJ.

[9] The Password is Dead, Long Live the Password!, Oct. 2016,

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blog

s/2016/october/the-password-is-dead-long-live-the-password/.

[10] D. V. Bailey, M. Dürmuth, and C. Paar, “Statistics on password re-use

and adaptive strength for financial accounts,” in Proc. SCN 2014.

[11] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity

search,” in Proc. WWW 2007, pp. 131–140.

[12] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Passwords

and the evolution of imperfect authentication,” Commun. ACM, vol. 58,

no. 7, pp. 78–87, 2015.

[13] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The request

to replace passwords: A framework for comparative evaluation of web

authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[14] M. Burnett, Is there life after passwords?, July 2016, https://medium.c

om/un-hackable/is-there-life-after-passwords-290d50fc6f7d.

[15] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-

strength meters from Markov models,” in Proc. NDSS 2012.

[16] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder

for statistical machine translation,” in Proc. EMNLP 2014.

[17] K. Collins, Facebook buys black market passwords to keep your
account safe, Nov. 2016, https://www.cnet.com/tech/services-and-sof

tware/facebook-chief-security-officer-alex-stamos-web-summit-lis

bon-hackers/.

[18] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled

web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[19] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and C. Abdelberi,

“OMEN: faster password guessing using an ordered markov enumera-

tor,” in Proc. ESSoS 2015, pp. 119–132.

[20] M. Dürmuth, D. Freeman, S. Jain, B. Biggio, and G. Giacinto, “Who

are you? A statistical approach to measuring user authenticity,” in Proc.
NDSS 2016, pp. 1–15.

[21] D. Florencio and C. Herley, “A large-scale study of web password

habits,” in Proc. WWW 2007, pp. 657–666.

[22] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth, E. Redmiles,

and B. Ur, “"what was that site doing with my facebook password?"

designing password-reuse notifications,” in Proc. ACM CCS 2018.

[23] P. A. Grassi, E. M. Newton, R. A. Perlner, and et al., “NIST 800-63B

digital identity guidelines: Authentication and lifecycle management,”

McLean, VA, Tech. Rep., June 2017.

[24] Y. Guo and Z. Zhang, “LPSE: Lightweight password-strength esti-

mation for password meters,” Comput. Secur., vol. 73, pp. 507–518,

2018.

[25] A. Hanamsagar, S. S. Woo, C. Kanich, and J. Mirkovic, “Leveraging

semantic transformation to investigate password habits and their causes,”

in Proc. ACM CHI 2018, pp. 1–10.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. CVPR 2016, pp. 770–778.

[27] C. Herley and P. Van Oorschot, “A research agenda acknowledging the

persistence of passwords,” IEEE Secur. Priv., vol. 10, pp. 28–36, 2012.

[28] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep

learning approach for password guessing,” in Proc. ACNS 2019.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen PCFG password

cracking,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 8, pp. 1776–

1791, 2015.

[31] R. Johnson and T. Zhang, “Deep pyramid convolutional neural networks

for text categorization,” in Proc. ACL 2017, pp. 562–570.

[32] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for

efficient text classification,” in Proc. EACL 2017, pp. 427–431.

[33] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,

N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and

again): Measuring password strength by simulating password-cracking

algorithms,” in Proc. IEEE S&P 2012, pp. 523–537.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. ICLR 2015, pp. 1–15.

[35] K. Lee, S. Sjöberg, and A. Narayanan, “Password policies of most top

websites fail to follow best practices,” in Proc. SOUPS 2022.

[36] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis on chinese

web passwords,” in Proc. USENIX SEC 2014, pp. 559–574.

[37] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin, “A measurement study

of authentication rate-limiting mechanisms of modern websites,” in

Proc. ACSAC 2018, pp. 89–100.

[38] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel, “Is

FIDO2 the kingslayer of user authentication? A comparative usability

study of FIDO2 passwordless authentication,” in Proc. IEEE S&P 2020,

pp. 268–285.

[39] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password

models,” in Proc. IEEE S&P 2014, pp. 689–704.

[40] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, “Sok: Single sign-on

security-an evaluation of openid connect,” in Proc. EuroS&P 2017.

[41] M. L. Mazurek, S. Komanduri, T. Vidas, L. F. Cranor, P. G. Kelley,

R. Shay, and B. Ur, “Measuring password guessability for an entire

university,” in Proc. ACM CCS 2013, pp. 173–186.

[42] W. Melicher, B. Ur, S. Komanduri, L. Bauer, N. Christin, and L. F.

Cranor, “Fast, lean and accurate: Modeling password guessability using

neural networks,” in Proc. USENIX SEC 2017, pp. 175–191.

[43] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords

using time-space tradeoff,” in Proc. ACM CCS 2005, pp. 364–372.

[44] P. Negi, P. Sharma, V. Jain, and B. Bahmani, “K-means++ vs. Behav-

ioral biometrics: One loop to rule them all,” in Proc. NDSS 2018.

[45] M. Nicholas, 68 Million Reasons Why Your Small Business Needs a
Password Manager, Jan. 2017, https://blog.dashlane.com/68-million-r

easons-why-your-small-business-needs-a-password-manager/.

[46] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential

stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[47] B. Pal, M. Islam, M. S. Bohuk, N. Sullivan, L. Valenta, T. Whalen,

C. Wood, T. Ristenpart, and R. Chatterjee, “Might I get pwned: A

second generation compromised credential checking service,” in Proc.
USENIX SEC 2022, pp. 1831–1848.

[48] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training

recurrent neural networks,” in Proc. ICML 2013, pp. 1310–1318.

[49] D. Pasquini, M. Cianfriglia, G. Ateniese, and M. Bernaschi, “Reducing

bias in modeling real-world password strength via deep learning and

dynamic dictionaries,” in Proc. USENIX SEC 2021, pp. 821–838.

[50] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,

“Improving password guessing via representation learning,” in Proc.
IEEE S&P 2021, pp. 265–282.

[51] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,

L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:

Observing passwords in their natural habitat,” in Proc. ACM CCS 2017.

[52] A. Peslyak, John the Ripper password cracker, Feb. 1996, http://www.

openwall.com/john/.

[53] E. M. Redmiles, S. Kross, and M. L. Mazurek, “How I learned to be

secure: a Census-representative survey of security advice sources and

behavior,” in Proc. ACM CCS 2016, pp. 666–677.

[54] S. Sahin and F. Li, “Don’t forget the stuffing! revisiting the security

impact of typo-tolerant password authentication,” in Proc. ACM CCS
2021, pp. 252–270.

[55] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,

2014.

[56] J. Steube, Hashcat, 2022, https://hashcat.net/hashcat/.

[57] E. Stobert and R. Biddle, “The password life cycle,” ACM Trans. Priv.
Secur., vol. 21, no. 3, pp. 1–32, 2018.

[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Proc. NeurlPS 2014, pp. 3104–3112.

[59] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-

ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh et al., “Protecting

accounts from credential stuffing with password breach alerting,” in

Proc. USENIX SEC 2019, pp. 1556–1571.

[60] Y. Tian, C. Herley, and S. E. Schechter, “Stopguessing: Using guessed

passwords to thwart online password guessing,” IEEE Secur. Priv.,
vol. 18, no. 3, pp. 38–47, 2020.

[61] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin,

and L. F. Cranor, “" i added’!’at the end to make it secure": Observing

password creation in the lab,” in Proc. SOUPS 2015, pp. 123–140.

[62] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,

D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring

real-world accuracies and biases in modeling password guessability,”

in Proc. USENIX SEC 2015, pp. 463–481.

[63] US-CERT, Choosing and Protecting Passwords, Nov. 2019, https:

//us-cert.cisa.gov/ncas/tips/ST04-002.

[64] Passwords are not lame and they’re not dead, Aug. 2017,

https://it.toolbox.com/blogs/itmanagement/passwords-are-not-

lame-and-theyre-not-dead-heres-why-072417.

[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS 2017, pp. 5998–6008.

[66] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of pass-

words and their security impact,” in Proc. NDSS 2014, pp. 1–16.

[67] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang, “The next domino

to fall: Empirical analysis of user passwords across online services,” in

Proc. CODASPY 2018, pp. 196–203.

[68] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzyPSM: A new password

strength meter using fuzzy probabilistic context-free grammars,” in

Proc. IEEE/IFIP DSN 2016, pp. 595–606.

[69] D. Wang and P. Wang, “The emperor’s new password creation policies,”

in Proc. ESORICS 2015, pp. 456–477.

[70] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-

security: Understanding passwords of Chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1555.

[71] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online

password guessing: An underestimated threat,” in Proc. ACM CCS
2016, pp. 1242–1254.

[72] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and

generate honeywords,” in Proc. IEEE S&P 2022, pp. 489–506.

[73] R. Wash, E. Rader, R. Berman, and Z. Wellmer, “Understanding pass-

word choices: How frequently entered passwords are re-used across

websites,” in Proc. SOUPS 2016, pp. 175–188.

[74] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password

cracking using probabilistic context-free grammars,” in Proc. IEEE
S&P 2009, pp. 391–405.

[75] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-

works for text classification,” in Proc. NeurlPS 2015, pp. 649–657.

[76] V. Zimmermann, “From the quest to replace passwords towards support-

ing secure and usable password creation,” Ph.D. dissertation, Technical

University of Darmstadt, Germany, 2021.

