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Abstract
Shuffles are used in electronic voting in much the same

way physical ballot boxes are used in paper systems: (en-
crypted) ballots are input into the shuffle and (encrypted)
ballots are output in a random order, thereby breaking the
link between voter identities and ballots. To guarantee that no
ballots are added, omitted or altered, zero-knowledge proofs,
called proofs of shuffle, are used to provide publicly verifiable
transcripts that prove that the outputs are a re-encrypted per-
mutation of the inputs. The most prominent proofs of shuffle,
in practice, are those due to Terelius and Wikström (TW),
and Bayer and Groth (BG). TW is simpler whereas BG is
more efficient, both in terms of bandwidth and computation.
Security for the simpler (TW) proof of shuffle has already
been machine-checked but several prominent vendors insist
on using the more complicated BG proof of shuffle. Here,
we machine-check the security of the Bayer-Groth proof of
shuffle via the Coq proof-assistant. We then extract the veri-
fier (software) required to check the transcripts produced by
Bayer-Groth implementations and use it to check transcripts
from the Swiss Post evoting system under development for
national elections in Switzerland.

1 Introduction

Two fundamental principles of any free and fair election are
the privacy of the voter and the integrity of the ballot. Paper-
based elections support voter privacy by ensuring that a cast
ballot contains no identifying link back to the voter. They sup-
port ballot integrity by ensuring that ballot-boxes are locked
and placed under scrutiny at all times prior to their being
opened for counting. As many jurisdictions around the world
move to electronic voting (evoting), these two properties have
to be guaranteed using different means, and cryptographic
techniques play a prominent role. But even the most sophisti-
cated cryptographic techniques are useless if their software
implementation contains bugs, and so evoting also requires
“software independence”:

“A voting system is software-independent if an
(undetected) change or error in its software can-
not cause an undetectable change or error in an
election outcome.” [37]

Therefore, many modern evoting systems implement “end
to end verifiable voting” via a cascade of three notions:

Cast as intended: voters receive verifiable evidence that the
electronic ballot correctly captures their intended ballot;

Collected as cast: the election authority publishes verifiable
evidence that these electronic ballots are received by the
election authority without tampering;

Counted as collected: the election authority publishes veri-
fiable evidence that the result is obtained by correctly
counting only and all these collected ballots.

A voter or scrutineers can then inspect this public evidence
and accept the results of the election only if all the published
evidence can be verified as correct.

The shuffling of the ballots before decryption falls within
the purview of counted-as-collected. The most common way
to produce publicly verifiable evidence is via so-called “zero-
knowledge proofs” (ZKP) [25], which are computer-based
protocols in which the “prover” (evoting software) and the
“verifier” (scrutineering software) interact with each other
with the statement claimed by the ZKP being accepted by the
verifier only if their interaction passes previously published
correctness criteria. The appellation “zero-knowledge” indi-
cates that the protocol leaks no information other than the
truth of the claimed statement.

One crucial use of such ZKPs is to provide publicly check-
able evidence of voter privacy and ballot integrity. Typically,
the electronic ballots cast (as intended) by the voters are
encrypted and transmitted to the election authority. Before
counting, the link between the voter and the encrypted ballot
is broken by stripping off the voter-identification and passing
the initial sequence of encrypted ballots through a “mixnet”: a
sequence of computers known as “mixers” [16]. As the name



suggests, each mixer receives a sequence of encrypted ballots,
re-encrypts them and then “shuffles” their order to produce a
different sequence of re-encrypted ballots. Each mixer also
produces a ZKP (publicly verifiable evidence) that proves
the statement “my new sequence contains all and only the en-
crypted ballots from my initial sequence without tampering”.
Given at least one honest mixer, it is infeasible to invert the
final sequence to learn the initial link to the list of voters. If
all published ZKPs are accepted by the (public) scrutineering
verifier software then we can guarantee the voter privacy and
ballot integrity are preserved in this process.

The ZKPs, called “proofs of shuffle”, proving the mixnet’s
statement are normally the most complicated pieces of cryp-
tography in an evoting system and are prone to both design
and implementation bugs. For example, the Scytl-Swiss Post
system intended for extended use in national elections in
Switzerland was pulled from use because it contained an ap-
palling collection of errors [32]. Virtually every ZKP in the
system had some degree of vulnerability. The only errors
found in the proof of shuffle ZKP related to incorrect param-
eter generation; however, given the complexity of that ZKP,
it was unclear whether it was secure or simply too complex
to analyse properly. Similar issues have been found in Aus-
tralia [34] and Estonia [40] to which must be added many
more general issues [12, 13, 17].

Thus, it is vital to guarantee that the cryptographic theory
underlying proofs of shuffle is itself correct and correctly im-
plemented. Only then can we utilise this theory to implement
verifiers that check these proofs of shuffle. Since the software
required to verify the evidence is much simpler than the entire
system, “software independence” is a very valuable feature.
But the attacks listed above highlight the crucial fact that
“software independence” is vulnerable to design or implemen-
tation errors in the verification software. Guaranteeing the
correctness of the verifier specification and code is the main
aim of our work, and the line of work which we extend.

Here, we assume that the election authority uses mixnets
to shuffle the ballots which accurately correspond to the in-
tention of the eligible voters who voted. We therefore use
shuffles and mixnets interchangeably. Moreover, we will use
the term “proofs of shuffle” even when the protocols we refer
to are a strictly weaker beast called “zero-knowledge argu-
ments” (because a computationally unbounded adversary can
fake their “proofs.”).

Specifically, we use a state-of-the-art interactive proof-
assistant called Coq to mathematically analyse the crypto-
graphic theory and practice of the Bayer-Groth proof of shuf-
fle which is used by Scytl and Swiss Post, among others, to
provide anonymity in their evoting software. We first encoded
the detailed cryptographic design of the Bayer-Groth mixnet,
which consists of the steps taken by the prover and verifier,
and its security definitions into the logical language of Coq.
We then used Coq to produce a machine-checked, and hence
formally verified, mathematical proof that the design meets

the security definitions. We then utilised Coq’s “extraction
facility” to obtain an actual OCaml implementation of the
verifier (software) and used it to verify test-vectors produced
by the Swiss Post’s implementation of Bayer-Groth.

Thus, our principal contribution is an executable encoding
of the Bayer-Groth proof of shuffle into Coq and machine-
checked mathematical proofs of completeness, soundness and
zero-knowledge (defined shortly). We have also checked that
our encoding produces an OCaml verifier that is compatible
with a deployed implementation of the Bayer-Groth mixnet.

Outline Having now introduced our work, we will provide
more details in Sec. 1.1, summarise our contributions in 1.2
and limitations in 1.3. We will provide formal definitions in
Sec. 2 and summarise our proofs in Sec. 3. Sec. 4 summarises
the applications of our work before we conclude in Sec. 5.
Sec. 5.1 details future work, particularly around proving the
correctness of how the Fiat-Shamir transform is used.

1.1 Background
Having elaborated on the crucial role that zero-knowledge
proofs play in producing verifiable evidence for electronic
voting schemes, we will now go into detail on the required
background for sections 2 and 3 of this paper. Specifically
we will introduce in more detail: zero-knowledge proofs and
sigma protocols (Sec. 1.1.1), mixnets and proofs of shuffle
(Sec.1.1.2), and machine-aided proving and machine-checked
proofs (Sec. 1.1.3).

1.1.1 Zero-knowledge proofs and sigma protocols

Zero-knowledge proofs are possible for all languages in the
complexity class N P : that is, for all languages which have
non-interactive proofs of membership. Recall that one way
of looking at N P is to make explicit the polynomial length
witness w which, if given, allows efficient (polynomial time)
verification that a given statement s is in the language. We
can use a binary relation R ⊆ S×W over the set S of all
statements and the set W of all witnesses with (s,w) ∈ R iff
witness w ∈W demonstrates that statement s ∈ S is in the
language.

Sigma protocols were first defined by Ronald Cramer [18],
they are a particularly simple and efficient kind of zero-
knowledge proof and have seen wide deployment; they re-
main a leading kind of proof both in terms of simplicity and
deployment but recent advances in succinct zero-knowledge
proofs [26] offer greater efficiency. The first efficient sigma
protocol was introduced by Schnorr in [38], several years
before the class was defined.

A sigma protocol is a 3-round interactive proof between
two parties (a prover P and a verifier V ) where P convinces
V that she knows a witness for a statement. More concretely,
P convinces V that she knows a (private) witness w for a



public N P -relation R and a public input statement s such
that (s,w) ∈ R ; we will formally define a sigma protocol in
Sec. 2.1.

Zero-knowledge proofs must satisfy three properties:

Completeness: the protocol will accept with overwhelmingly
probability on inputs (s,w) which belong to the relation
R . Perfect completeness is used in cases, such as ours,
where acceptance is guaranteed.

Zero-knowledge: no information, other than the truth of the
statement s, is leaked. For sigma-protocols, a weaker
property called honest-verifier zero-knowledge (defined
shortly) is sufficient because of the way they are used;

Soundness: the adversary should be caught with at least a
certain probability if the claimed statement s is not in
the language. Sigma-protocols use the stronger property
of special soundness (defined shortly) which requires
that a witness w must be efficiently computable if the ad-
versary is able to produce accepting proofs for different
challenges.

The three properties are adjusted for sigma protocols as
follows:

Completeness: when P and V follow the protocol, V always
accepts the proof.

Special soundness: when given two valid proofs for R of a
particular form (which we will define in Sec. 2.1), then
w can be extracted efficiently.

Honest verifier zero-knowledge proof: there exists an effi-
cient simulator that produces valid proofs without using
the secret input w with the same probability distribution
as the transcripts of the real protocol that involves the
secret input w.

A key observation in [31] was that only the last property
above involves probabilities; even this property can be ren-
dered without explicitly mentioning probabilities by showing
a bijection between the output of runs of the honest protocol
and the runs of the simulator. This is useful as it allows us
to avoid the significant complications that arise in machine-
checked proofs when handling probabilities.

To give the reader some insight into sigma protocols, we
briefly discuss the most famous sigma protocol, the Schnorr
protocol [38]. Given some public input (G,g,q,h) where G
is a cyclic group of prime order q, and g and h are two gen-
erators of the group G, the prover claims that she knows a
witness w for the statement h = gw; the existence of such
a w is immediate because g generates the group. However,
does the prover know the witness w? In order to convince the
verifier, the prover and the verifier do the following:

• the prover picks a random number u, computes c = gu,
and sends c to the verifier

• the verifier picks a random challenge e and sends it to
the prover

• the prover computes t = u+ e ∗w and sends t to the
verifier

The verifier accepts if gt = c∗he, otherwise rejects.
A sigma protocol of this kinds underpins many of the de-

ployed digital signature schemes. In such schemes g is nor-
mally some canonical group generator, h is the user’s public
key, and the w is the user’s signing key.

1.1.2 Mixnets and proofs of shuffle

Since mixnets were introduced, numerous techniques have
been proposed for verifying that the mixers followed the proto-
col, as without this guarantee, mixnets do not provide privacy
or ballot integrity: see Haines and Müller [33] for a summary.
The most common technique, in practice, is zero-knowledge
proofs which provide the highest level of security, require the
weakest trust assumptions, and provide good efficiency (at
least for discrete log based systems).

The earliest zero-knowledge proof proposal for mixnets
still in common use is due to Terelius-Wikström [43]; the
interactive variant of this proof of shuffle takes 5 rounds of
interaction between the prover and verifier. The proof is con-
structed by taking an underlying sigma-protocol and adding
two extra rounds.

Since the work of Terelius and Wikström, many alternative
proposals for (mixnet) proofs of shuffle have been presented
with better communication or computational efficiency. The
most used of these is that due to Bayer and Groth [8] which
achieves sublinear complexity in the proof size and reduces
the verifier’s computation. But the increased efficiency comes
at a cost, the interactive version of the Bayer-Groth proof re-
quires 9 rounds (compared to the 5 of Terelius-Wikström) and
the overall proof is constructed from 6 subproofs (compared
to the 2 of Terelius-Wikström).

Both proofs of shuffle are normally used in non-interactive
variants in which the actions of the verifier are replaced by
the outputs of a hash function. These variants are obtained
by applying the Fiat-Shamir transform [20] to the interactive
version of the proof; care is required in implementing the
transform [13] or the soundness of the proof may be com-
promised. We discuss how to prove the correct use of this
transform in our future work Section 5.1.

1.1.3 Background on our approach

As should be clear, all of this sophisticated mathematics must
cohere if it is to provide security. But the history of cryp-
tography is littered with proposals whose claims are soon
made void by another paper of the form “A new attack on
...” because pen-and-paper mathematics is notoriously prone
to errors which are only found after publication. Formalised



mathematics [44] allows us to encode the mathematical state-
ments of the definitions, theorems and the proofs of the theo-
rems into a computer-based “proof assistant” which checks
all three artefacts for correctness. For example, the Coq in-
teractive proof-assistant [14] has been developed for decades
and is now trusted by the formal methods community.

The relationship between pen-and-paper proofs and
machine-aided proofs depends greatly on the kinds of
machine-aided techniques applied and the rigour of the initial
pen-and-paper proof. Generally the machine-aided techniques
can be broken into two categories: symbolic and computa-
tional (see [5] for details). In the former—which is used in
tools such as Tamarin, Proverif, and Verifpal—there are rarely,
if ever, pen-and-paper equivalents to the machine-aided proofs
because these tools are intended as automatic tools that pro-
duce such proofs. These tools tend to exploit large computa-
tional resources to generate the proofs themselves, but may
not always succeed. In the computational case—which is used
in tools such as Coq and EasyCrypt— the aim is for the user
to interact with the proof-assistant until the proof-assistant
accepts the user’s proof. Thus these proofs tend to follow the
same structure as the user’s pen-and-paper proofs but with
additional details as needed to make rigorous the argument
in the pen-and-paper proof. The challenge in constructing
machine-aided proofs in the computational model often boils
down to working through how to formalise the gaps in the
pen-and-paper proofs; our work is no exception.

A significant body of work has been completed on cryp-
tography in Coq, principally in the CertiCrypt project [6].
CertiCrypt has now been largely abandoned in favour of Easy-
Crypt which is a separate tool for verifying cryptographic
protocols.

Verifying sigma protocols and extracting efficient imple-
mentations has a significant history due to their simplicity, ef-
ficiency, and wide deployment; one prominent early example
is by Barthe et al. [7]. Almeida et al. [2] developed a compiler
which accepts an abstract description of the statement to be
proved and produces a sigma protocol for that statement along
with an Isabelle/HOL proof that the sigma protocol is cor-
rect. Both of these works form the background and basis for
Almeida et al. [3]. There are two salient differences between
the approach we follow and that of Almeida et al. [3]. Firstly,
their approach is more general while ours is more specific
which allows us to define and prove combinations of sigma
protocols which are not otherwise available. Secondly, in their
own words, the “catch is that our verification component is
highly specialised for (a specific class of) ZK-PoK and relies
on in-depth knowledge on how the protocol was constructed.”
However, since we aim at verifying existing deployed imple-
mentations we need to prove that the deployed protocol is
correct, and extract a correct verifier for it. Almeida et al’s
work would give us a correct sigma protocol for the statement
but not a verifier for the existing system.

The line of work we follow is by Haines, Goré, Tiwari,

Combiner Statement Witness Relation
And S ×S ′ W ×W ′ (s1,s2),(w1,w2) are related iff

(s1,w1) ∈ R and (s2,w2) ∈ R ′
Or S ×S ′ W ×W ′ (s1,s2),(w1,w2) are related iff

(s1,w1) ∈ R or (s2,w2) ∈ R ′
Equality S ×S ′ W (s1,s2),(w) are related iff

(s1,w) ∈ R and (s2,w) ∈ R ′

Figure 1: Combined sigma-protocols derived automatically
using Haines et al [31] when given two sigma-protocols with
statement sets S and S ′, relationships R and R ′, and witness
sets W and W ′, respectively, with W = W ′ for Equality.

and Sharma [30, 31] machine-checking various proof proto-
cols and their associated cryptography using Coq, directly,
while avoiding explicitly reasoning about probabilities. Their
first work [31] focused on proving the properties of sigma-
protocols which underlie verifiable election voting schemes;
it’s main contribution was a (formally) verified verifier for the
Helios scheme which they used to verify the 2018 election
for director of the International Association for Cryptologi-
cal Research. They achieved this by formalising in Coq sev-
eral well-known methods to derive more complicated (three
round) sigma protocols from simpler (three round) sigma
protocols; we give several examples in Fig. 1, we note that
all the examples are fairly direct logical combinations which
contrasts with the structural formalisations presented in our
work. They also showed that their approach of avoiding ex-
plicitly reasoning about probabilities extends to the verifi-
able mixnets (proofs of shuffle), specifically, the Terelius-
Wikström proof of shuffle, although their work had signifi-
cant limitations. More recently, Haines et al. [30] improved
their previous work [31] to produce a much more general
result which they used to produce a verified verifier for the
CHVote [41] and Verificatum [46] mixnets. Actually, they
machine-checked [30] only the soundness of the TW mixnet
and also machine-checked the conditions which were gener-
ally accepted by the community as being sufficient for cor-
rectness and zero-knowledge without machine-checking these
latter two requirements per se.

Here, we give a formal definition of a 5-round sigmaesque-
protocol which was not present in their work [30]. Using
our new formal definition of a 5-round sigmaesque-protocol,
we attempted to show that Terelius-Wikström was complete
and enjoyed (honest verifier) zero-knowledge; this we were
unable to do because the full protocol is not actually complete
for the relationship claimed by Telerius-Wikström [43]; we
have tried to contact the authors but so far have not received
a response.

Here, we proved the full properties of the Terelius-
Wikström proof of shuffle which we now show is actually a
zero-knowledge argument, for a similar but different relation,
rather than a proof: see Sec. 3.1. We stress that, in practice, the
distinction between the original claim and the actual property



of the TW mixnet do not affect the soundness of their proof
of shuffle, and hence, the integrity of the election, which was
the main focus of the previous work [30]. Nevertheless, our
discovery of the mistake in the security claim, which seems
to have gone undetected for over a decade, despite repeated
use in government binding elections, is significant because
detecting even such subtle design errors in such a security
critical area is important.

1.1.4 Other machine-assisted approaches to zero-
knowledge proofs

The application of machine-assisted proof approaches to
zero-knowledge proofs remains a relatively niche area. For
example, in the excellent systematisation of knowledge of
computer-aided cryptography [5] published at S&P in 2021
only a handful of the 190 cited works pertain to zero-
knowledge proofs .

Recent work by Firsov and Unruh [21] has progressed the
issues of rewinding which we mention in this paper but it
does not impact the issue of the Fiat-Shamir transform which
remains an open problem. Much of the research focus on
zero-knowledge proofs has switched to a direction called
MPC-in-the-Head [35], where MPC stands for Multi-party
Party Computation. MPC is a well developed field which al-
lows, as the name suggests, secure computation distributed
across multiple parties. The key observation in MPC-in-the-
Head is that a single party can simulate an MPC protocol and
reveal the views of some of the “participants” to establish
the correctness of the computation. The full benefits of this
technique are too many to be detailed here but much of the
machine-assisted work has pivoted to support this approach.
For example, the recent work by Almeida et al. [4] provides
the first machine-checked implementations of MPC-in-the-
Head using Easycrypt and Jasmin. This work is similar to
ours in some respects because it also builds the fully-fledged
protocol of interest from its components. However, in their
work the components are normally other kinds of cryptog-
raphy such as secret sharing schemes and MPC protocols
whereas ours are mainly simpler zero-knowledge proofs. We
do have in common that we both generalise over the commit-
ment scheme and encryption scheme (if any). Concurrently
to this, similar work has been done by Sidorenco et al. [39]

There have been a couple of recent papers which bring
the state-separating proof paradigm for game-based crypto-
graphic proofs (not be confused with zero-knowledge proofs)
into interactive proof-assistants; for example, the SSProve [1]
framework does this in Coq and there is similar work in Easy-
Crypt [19]. Both of these works exhibit a fair degree of mod-
ularity which is similar to our work but do so for game-based
cryptographic proofs whereas our security proofs for the zero-
knowledge proofs are not structured in this way.

1.2 Contributions
The closest previous work [30,31] focused on ordinary sigma-
protocols (that is three round zero-knowledge proofs as de-
scribed previously) with an emphasis on ensuring compat-
ibility with existing deployed systems. The first work [31]
included several ways of combing sigma protocols and the sec-
ond work [30] formalised inside Coq the proof of soundness
from TW [43] but the definition remained very bespoke to the
particular five round protocol. Our contributions compared to
these and other works in the literature are summarised below.

1. More rounds and parametric structural relations. We
give a formal definition of sigmaesque-protocol proto-
cols which contain 5 rounds and 9 rounds, as required
by the Bayer-Groth proof of shuffle. We encoded and
machine-checked the structural relationships between
these sigmaesque-protocols which then allowed us
to machine-check the pen-and-paper proofs of the
security of the shuffle while retaining the gist of the
pen-and-paper proofs. The alternative would have been
to define the 9 round BG protocol, monolithically, and
machine-check it directly. Moreover, whereas prior work
allowed us to combine two input sigma-protocols into
a new sigma-protocol using one of three fixed logical
relationships as shown in Figure 1, here we formalise
how to add additional rounds to a sigmaesque-protocol
to produce a new protocol using a relationship that is a
parameter of the combiner rather than fixed. To ensure
that a valid sigma protocol can be constructed the user
is also required to prove properties of the parameters
(see for example Sec. 2.2).

In a related minor contribution, we generalise the defi-
nition of a sigma-protocol from Haines et al. [30] from
“zero-knowledge proofs” to “arguments of knowledge”
where the extraction of a witness may fail under cer-
tain conditions which should occur only with negligible
probability, and to allow for protocols where proving
zero-knowledge is more complicated.

2. Clarified the claims of Terelius and Wikström [43].
Utilising these definitions, we found that the Terelius-
Wikström proof of shuffle, contrary to the claims in the
literature, is not a zero-knowledge proof for the claimed
relationship but rather a zero-knowledge argument
for a different relationship. We have formally verified
(machine-checked) the associated refined claim. We
discuss this result and its implications in Sec. 3.1.

3. Machine-checked proof of Bayer-Groth [8]. We
machine-checked the completeness, special-soundness,
and honest-verifier zero-knowledge of the Bayer-Groth
proof of shuffle (Sec. 3.8) including the five underlying
subarguments (for details see Sections 3.3,3.4,3.5,
3.6,3.7). This proof of shuffle is much more complicated



than the zero-knowledge proofs verified in previous
work [30, 31].

4. Tested compatibility with deployed systems We ex-
tracted the verifier (of the Bayer-Groth proof of shuffle)
as an OCaml program and used it to verify transcripts
produced by the Bayer-Groth implementation inside the
Swiss Post evoting system.

Our main contribution (3) is a significant advancement
on the state-of-the-art in terms of the complexity of zero-
knowledge proofs with machine-checked security. We are
facilitated in achieving this by our contributions (1) which
enabled the zero-knowledge proof and cryptographic proof
(of the zero-knowledge proof) to be broken down into sub-
components which collectively prove the overall result. We
believe the advantages in handling complexity offered by this
approach are absolutely essential to completing complicated
machine-checked proofs in a sensible way. Our last contribu-
tion (4) is important as it bridges the gap between theory and
practice and shows the practical applicability of our work to
deployed systems. We consider our middle contribution (2)
to be more a curiosity but one which highlights the ability of
our approach to catch subtle and longstanding previously un-
detected errors; we discuss in Sec. 3.1 under what conditions
this result would become more important.

1.2.1 The necessity of the new definitions

The main aim of our work is to produce a verified verifier
which is compatible with the Bayer-Groth proof of shuffle as
deployed in several government binding elections. Given the
errors in every other zero-knowledge proof in these systems
and the complexity of Bayer-Groth, the value of knowing
these zero-knowledge proofs are generated correctly is im-
mense if focused in impact.

During the process of constructing the several thousand
line proof of the Bayer-Groth proof of shuffle (for Coq to
check) we, by necessity, had to formalise the original pen-
and-paper proof. The full version of [8] when proving the se-
curity of zero-knowledge arguments built on underlying argu-
ments says over half a dozen times things like “completeness
now follows from the completeness of [the sub-argument]” or
“honest-verifier zero knowledge now follows from the honest-
verifier zero knowledge of [the sub-argument].” However, as
we have seen with Terelius-Wikström such claims are not
necessarily true.

Our definitions and structural relations contribute to the
literature a precise description of which conditions suffice
for the completeness and honest-verifier zero knowledge to
follow from the underlying zero-knowledge arguments. To
our knowledge no such precise description is currently in
the literature; existing pen-and-paper proofs have been able
to sidestep this issue by being informal in their argumenta-

tion. Our formal structural relations allow the same line of
reasoning but without the gaps.

1.3 Limitations
To facilitate a clear understanding of the scope of our work
we detail limitations below.

Side channel attacks: The methods we use to machine-check
the security of proofs of shuffle and produce the OCaml
implementation of the verifier do not preclude the pres-
ence of side channel attacks. There are two reasons why
this issue is less significant for mixnets than other pieces
of cryptography. First, the main software of interest is
the verifier which is a public algorithm running on public
data. Secondly, the provers are in essence large batch
proofs which (normally) operate only once on a given
statement and often on air-gapped machines. If, for some
reason, timing attacks are a realistic threat in a partic-
ular deployment scenario, it should be relatively easy
to make the algorithms constant time, using a constant
time mathematics library, since the algorithms contain
no branching.

Fiat-Shamir transform: We have machine-checked the inter-
active variants of the ZKP, but when deployed, their non-
interactive variant will be used. To close this gap, we
would need to machine-check the Fiat-Shamir transform
which would involve machine-checked reasoning about
the rewinding of random oracles in the presence of ar-
bitrary adversaries. Alas, to the best of our knowledge,
no interactive proof-assistant supports such mechanised
reasoning. In Section 5.1, we discuss how to prove that
the transform is used securely under the assumption that
the underlying theory is valid, without machine-checked
reasoning about rewinding or arbitrary adversaries.

Code extraction: Coq’s extraction facility into OCaml has
not been formally verified by anyone. The process is
mature but could contain bugs: a limitation shared with
all similar work. This does not detract from the value
in machine-checking the proofs of shuffle because, in
practice, we encourage the use of multiple independently
implemented verifiers.

Efficiency: Our extracted OCaml code is roughly half the
speed of the Swiss Post Java implementation. We ex-
pect this could be rectified by using well-known opti-
misations [28] but doing so and machine-checking the
optimisations is left as future work.

2 Definitions

All the security definitions in our work are variations of sigma-
protocols. We use strongly related, but different, definitions



for 3-round, 5-round, and 9-round variants of sigma-protocols.
We initially tried to encode a single definition, parameterised
on the number of rounds, but found that the Coq types became
very unwieldy. Our current definitions, while much more ver-
bose, are also much easier to manipulate inside Coq which
seems a good trade-off in making our work re-usable.

For this paper, we have adapted the convention of referenc-
ing the name of the Coq objects which relate to the subject
under discussion to allow interested readers to look up the
formal definitions; notwithstanding this, we aim our paper
to make clear our contributions without the reader having to
look at the Coq source. We have included a few Coq snippets
of security definitions to illustrate their form and structure but
we largely avoid including Coq code in the paper.

2.1 3-round protocols
With the exception of some Coq technicalities,1 our for-
malisation of a sigma-protocol, defined in a module called
SigmaPlus, remains close to past work [30]. We give the
natural language definition below for completeness.

Definition 1 (Sigma-Protocol). A protocol P between a
prover P and a verifier V over statement space S and wit-
ness space W is a sigma-protocol for relation R ⊆ S×W
if:

Form: P is of the appropriate 3-move form where the prover
P sends a message c, then the verifier V sends a chal-
lenge e, then P sends a reply t, and finally V decides to
accept or reject based on the statement s and the three
messages (c,e, t). It is hopefully obvious that while the
prover can base it’s computation on the witness w, the
verifier is not given this value as input.

Completeness: If P and V follow the protocol on statement
s and witness w, where (s,w) ∈ R , the verifier accepts.

Special soundness: For any statement s and any pair (c,e, t)
and (c,e′, t ′) of accepting conversations, with e 6= e′, we
can efficiently compute some w such that (s,w) ∈ R .

Honest-verifier zero-knowledge: There exists an efficient
simulator, which on statement s and random e outputs an
accepting conversation (c,e, t) with the same probability
distribution as conversations between the honest P and
V on input s.

We extended the definitions of zero-knowledge and special
soundness from Haines et al. [30] as follows. Haines et al.
avoid reasoning about probabilities by observing that the stan-
dard security definitions for sigma-protocols do not directly
refer to (arbitrary) adversaries but only to defined algorithms
which internally sample certain random values called (ran-
dom) coins. By passing these random coins to the algorithms

1We changed the encoding of a sigma-protocol from a class to a module.

as inputs, we can refer to the transcript produced by the (hon-
est) prover and (honest) verifier for a given statement and
witness using specific random values.

Haines et al. [30] used a function simMap to constructively
show a bijection between the random coins used in the honest
runs and the coins used by the simulator. They further require
that for a given random coin r, the honest run using r and
the simulator using simMap(r) produce the same transcript as
formalised in Definition 2 below.

We extend simMap with extra “trapdoor information” about
the statement s, via the function simMapHelp: for example, in
the Bayer-Groth proof of shuffle, simMapHelp is used to pro-
vide simMap with the discrete log relation between commit-
ment key elements. Since simMap exists only to demonstrate
the bijection between the random coins spaces, providing it
with information that would normally be secret has no impact.

We show the encoding of the extended definition for
(honest-verifier) zero-knowledge below.

Definition 2 (Extended Honest Verifier Zero Knowledge).
For all statements s, witnesses w, challenges e, trapdoor infor-
mation x , honest run random coin r, and simulator random
coin t, if the trapdoor information x fits the statement s as
defined by simMapHelp and (s,w) ∈ Rel then on these inputs,
the honest run (P1,P0) using r produces the same transcript
as the simulator using the coin returned by (simMap s w
e x r):

Axiom honest_verifier_ZK :
forall (s : St)(w : W)(e : G)(x : X)(r : R)(t : TE),
simMapHelp s x ->
Rel s w ->
((P1((P0 s r w), e) r w) =
simulator s (simMap s w e x r) e) /\
simMapInv s w e x (simMap s w e x r) = r /\
simMap s w e x (simMapInv s w e x t) = t.

Following [30], the last two lines constructively encode
that simMap is bijective by using its inverse simMapInv.

The other change we make is to special soundness. We
extend the definition to what Bootle et al. [15] call l-Special
Soundness, the difference is twofold. First, the extractor is
allowed to have l-responses with the same commitment but
different challenges. Second, we introduce a failure-event
parameter to our definition of a sigma-protocol (SigmaPlus)
which allows the definition of special soundness to be satisfied
even if the extractor fails to find a witness.

In practice, the failure-event must be infeasible for an ad-
versary to satisfy, for example breaking the binding property
of the commitment scheme or some other event which occurs
with negligible probability.

We show the encoding of l-special soundness below.

Definition 3 (l-special soundness). For all statements s,
commitments c, vector e of l-challenges, and vector t of l-
responses, if the challenges in vector e are pairwise distinct
wrt the underlying group G, and all l-transcripts are valid
(meaning that the verifier accepts on {(s,c,ei, ti)}l

i=1), then



either the extractor finds a witness which satisfies the rela-
tionship or the failure-event occurs:

Axiom special_soundness : forall (s : St)(c : C)
(e : vector G l)(t : vector T l),

allDifferent e ->
allValid s c e t ->
Rel s (extractor t e) = true \/ fail_event s c e.

Both changes introduce new parameters to the definitions
which need to be set sensibly in practice, we will discuss our
instantiation for the Bayer-Groth proof of shuffle in the next
section. We stress that these security definitions, but not their
exact encodings into natural language and Coq, are already
inherent in the work by Terelius and Wikström, and Bayer
and Groth.

We also machine-checked that any two sigma-protocols,
as defined above (with the same challenge space), can be
combined to give a sigma-protocol for the conjunction of
their two relationships. This is a well known result which has
proved useful for building more complicated sigma-protocols
from simpler ones; a closely related result was proved in [30].

2.2 5-round protocols
Sigma-protocols can be easily generalised to five rounds by
adding two extras rounds in front of the existing three rounds.
First the prover sends a commitment and the verifier responds
with a challenge, they then follow the existing commit, chal-
lenge, and response phases. We encoded this in a Coq module
called SigmaPlus5. Completeness and honest-verifier zero-
knowledge both generalise in the obvious way, the full proto-
col should accept if the statement and witness pair is in the
relationship and the simulator should produce transcripts with
the same distribution as the honest parties. Special soundness
is a little more complicated, but still essentially the obvious
generalisation, instead of l-challenges and responses the ex-
tractor receives l-challenges from the first verifier round, and
for each of these challenges also receives l’ challenges from
the second verifier round, and finally l*l’ responses such that
all the challenges are unique and they are part of accepting
transcripts.

We show the encoding of l-l’-special soundness below.

Definition 4 (l-l’special soundness). For all statements s, first
commitments c0, l first round challenges each with a corre-
sponding l’ second round challenge e, and l*l’ responses t, if
the first round challenges are all different and each list of sec-
ond round challenges is duplicate free, and all the transcripts
are valid then either the extractor finds a witness which sat-
isfies the relationship or the argument is broken because the
failure event occurred.

(* The special soundness of sigmaplus5 *)
Axiom special_soundness : forall (s : St)(c0 : C0)

(c1 : vector C1 l)
(e : vector (E0*vector E1 l’) l)
(t : vector (vector T l’) l),

allDifferent e ->

allValid s c0 c1 e t ->
Rel s (extractor t e) = true \/ fail_event s (c0,c1) e.

A common construction used in both the proofs of shuf-
fle [8, 43] is to build a 5-round sigma protocol for a rela-
tionship R ⊆ S ∗W by extending a 3-round protocol for a
relationship R ′ ⊆ S ′ ∗W ′ with two additional rounds; the
resulting 5 round protocol uses the same verification equation
as the 3-round protocol. In addition, some protocols supple-
ment the commitment produced by the underlying protocol
with additional information.

We define a Coq module called SigmaPlusTo5 which
captures the additional information required to construct
a 5-round protocol from a 3-round protocol. The module
SigmaPlus5Comp encodes how the 5-round protocol is con-
structed from the underlying 3-round protocol and an instance
of SigmaPlusTo5, and machine-checks that the result is in-
deed a 5-round sigma protocol. Those interested in the exact
details can review the provided source but we wish to high-
light the theorems which the user must machine-check to
instantiate SigmaPlusTo. We have designed these theorems
to be as close as possible to the pen-and-paper proof sketches
found in the literature while still being formally sufficient.
Below are two examples.

The axiom to_valid which must be proven whenever
SigmaPlusTo is instantiated is below. Prior to instantiating
the axiom, the user has provided to Coq the set of random
coins used to produce the commitment in the first round,
supplementary random coins for the second commitment if
any, and the set of challenges for the first round. The user
also provides to Coq a mapping from the overall statement,
first commitment, and challenge to the underlying statement
(ToSt) and a mapping from the same and the witness to the
underlying witness (ToWit).

Definition 5 (to_valid). For all statements s ∈ S , witnesses
w ∈ W , random coins r for the first commitment, supple-
mentary random coins r1 for the second commitment, and
challenge e, if s and w are in the relationship R then the map-
pings produce a statement and the witness in the relationship
R ′.

Axiom to_valid : forall s w r r1 e,
Rel s w ->

Rel’
(ToSt (P1 (P0 s r w, e) r1 w))
(ToWit (P0 s r w, e) r r1 w).

Definition 6 (special_soundness). For all statements s ∈ S ,
all first round commitments c, l first challenges e, l second
commitments c1, and l witnesses {wi ∈W ′}l

i=1 if all the state-
ments constructed by the mapping (ToSt) are in the relation-
ship with the corresponding witness, and the challenges are
distinct then either the extractor finds a witness or the failure
event occurs.



Axiom special_soundness : forall s c (e : vector E l)
(c1 : vector C1 l)(w : vector sig.W l),

bVforall3 (fun a b d => Rel’ (ToSt (s,c,a,b)) d)
e c1 w ->

allDifferent e ->
Rel s (extractor w e) \/ fail_event s c e.

Here, for a given predicate P and three vectors (v1,v2,v3)
of length l, the function bVforall3 encodes that
{P(v1,i,v2,i,v3,i)}l

i=1. For brevity we omit a full discus-
sion of our work on 5-round protocols from the paper, the
Coq source contains numerous other ways to build 5-round
sigma-protocols from underlying 5- and 3-round protocols
which are used in encoding and machine-checking the
Bayer-Groth proof of shuffle.

2.3 9-round protocols

None of the protocols or sub-protocols in Bayer-Groth are
7-rounds protocols and hence we did not define these, though
it would be easy to do. The definition of a 9-round sigma
protocol, as captured by the Coq module SigmaPlus9, is the
natural generalisation of what we have already shown in the 5-
round protocols. We also encoded the combination which will
be later used in Bayer-Groth: specifically how to combine a
3-round and a 5-round into a 9-round in a specific format. The
module SigmaPlus5plus3to9 encodes the details which the
user needs to provide to Coq and machine-check, whereas
SigmaPlus5plus3to9Comp encode the 9-round protocol and
machine-checks that it is secure. This separation of the struc-
tural elements of the security proof, which are largely omitted
by Bayer and Groth [8], from the specifics helped enormously
in handling the complexity of the machine-checked proof of
security.

2.4 Commitments and Encryption

In practice, most deployed evoting system make use of ElGa-
mal encryption [22] and Pedersen commitments [36]. How-
ever, we follow Haines et al. [30] in using abstract versions
of both encryption and commitments. They defined a class
of encryption schemes, called Terelius-Wikström compati-
ble encryption schemes, which is closed under both parallel
and pairwise composition of ciphertexts. For example, it is
common that the ballot is too large to be encrypted into a
single ciphertext, so we need to encrypt the message into a
vector of ciphertexts; when it comes time to shuffle, we want
to mix but keep together the ciphertexts belonging to a single
voter: this variant of the encryption scheme and corresponding
mixnet can be generated automatically using the techniques
from Haines et al. [30]. For example, to machine-check the
Terelius-Wikström proof of shuffle for the PPATC encryption
scheme [24], which provides everlasting privacy to the votes,
Gjosteen et al. showed only that the encryption scheme was
in the class, at which point, Coq could automatically use the

existing machine-checked proofs that any scheme in this class
can be mixed securely.

Due to the complexity of Bayer-Groth, we were forced
to narrow the definition of compatible encryption scheme
slightly, we give the natural language additions below
while their Coq encodings can be found in module
EncryptionSchemePlus.

Challenge acts appropriately on message and randomness.
If a ciphertext c = Enc(m;r), encrypting message m
using randomness r, is raised to a challenge e, then
the result is a ciphertext which is equivalent to
Enc(me,r ∗ e).

Encryption of zero is zero. The encryption Enc(0;0) of the
message group identity element with the randomness
group identity element is the ciphertext group identity
element.

These additional restrictions hold for all the use cases of
Terelius-Wikström that we are aware of.

3 Results

In this section we will summarise our results for the Terelius-
Wikström and the Bayer-Groth proofs of shuffle.

3.1 Terelius-Wikström

The Terelius-Wikström proof of shuffle is the result of comb-
ing the work of Wikström [45] with the follow up work by
Terelius and Wikström [43]; the implementation of this proof
of shuffle called Verificatum [46] has been used for political
elections in at least Norway and Estonia and possibly else-
where. It was, for a significant period, the most commonly
used proof of shuffle in political elections, but now only Esto-
nia still uses it, with Bayer-Groth most likely to soon become
the most used. Haines et al. [30] machine-checked the sound-
ness of the Terelius-Wikström proof of shuffle for a wide class
of encryption schemes and were able to extract the verifier and
use it to check proof transcripts produced by the CHVote [41]
and Verificatum implementations.

3.1.1 The incompleteness of the TW proof of shuffle

As we have already mentioned, Haines et al. [30] “only”
showed the soundness of the TW mixnet and machine-
checked what were widely believed [43] to be sufficient condi-
tions for completeness and zero-knowledge. While machine-
checking the full properties of the Terelius-Wikström proof
of shuffle, we found that it is an argument rather than a proof.
We only discovered this weakness after we had encoded our
5-round protocol definition and were trying (unsuccessfully)
to machine-check the completeness of the 5-round protocol.



Before we can explain the issue, we need to briefly recap
the relationship proved by the Terelius-Wikström proof of
shuffle, and some elements of the protocol. The statement
is of the form: N input ciphertexts c1, ...,cN , output cipher-
text c′1, ...,c

′
N , a public key pk and commitment parameters

g,g1, ...,gN . If Enc is the encryption function of the encryp-
tion scheme then the prover must show knowledge of a per-
mutation π and randomness r̄ such that for all i ∈ [1, ...N]:

c′i = cπ(i) ∗Enc(1,rπ(i)) (Rpk)

We denote this relationship by Rpk. In the first round of the
protocol the prover commits to the permutation π in the form
of the corresponding permutation matrix. The verifier then
sends a challenge vector u1, ...,uN , alternatively the verifier
may send a single element which is expanded into the vector
of challenges. The prover then computes u′ as uπ(1), ...,uπ(N).

Letting Rcom denote that two distinct openings have been
found for one commitment, thereby breaking the binding
property, Terelius-Wikström [43, Proposition 3] claims that
the protocol is a perfectly complete 5-message honest ver-
ifier zero-knowledge proof of knowledge from the relation
Rpk ∨Rcom. Although they show that the underlying 3-round
sigma protocol proves a number of relationships, the crucial
one is that the prover knows r1, ...,rN such that:

∏cui
i = Enc(1,ri)∗∏c′i

u′i

The above relationship will be true if the prover’s witness is
for Rpk but is not true, in general, if the prover’s witness is for
Rcom. Consider, for example, the case of ElGamal encryption
when each c′ decrypts to the group identity and the decryption
of ∏cui

i is not the group identity. In other words, if the cipher-
texts do not have the expected relationship, the span of the
vectors of ciphertexts is not guaranteed to overlap, except for
the case where u is all zero which occurs only with negligible
probability; this means in general that (with overwhelming
probability) no witness exists which satisfies the sub-relation.
Thus their Proposition 3 [43] is false.

No proof of Proposition 3 appears in the conference version
of [43]; the authors state that “[a] proof of the proposition is
given in the full version.” The full version of the paper can
be found in the appendices of Terelius’ PhD thesis [42]. The
proof found there focus almost entirely on soundness and sim-
ply says “[t]he completeness follows from the completeness
of the sigma proof,” which we have just shown not to be the
case since the relationship which the sigma protocol proves
may be false.

3.1.2 Our revised proposition

We have machine-checked the following result, which is
closely related to their original proposition.

Theorem 1. The Terelius-Wikström proof of shuffle2 is a per-
fectly complete 5-round honest verifier zero-knowledge argu-
ment of knowledge for the relation Rpk.

By switching the proof of knowledge to an argument of
knowledge, we can make the discovery of a witness to Rcom
the failure event; extraction is allowed to fail when the binding
property of the commitment scheme breaks but the verifier is
not required to accept just because the prover can break the
binding property of the commitment scheme.

Has it mattered? A reader may well ask if the distinction
between proof of knowledge and argument of knowledge
here is important. In every deployed instance we are aware
of, the answer is that it is not important because, in practice,
the argument of knowledge is used only when the prover
really means to prove a shuffle. Nevertheless, the fact that this
erroneous claim has not been detected for more than 10 years
shows the value of our work.

Could it matter? For this error to matter, the system would
need to intend the proof of shuffle to work when the prover’s
witness is for Rcom: that is, the prover’s witness consists of two
distinct openings to the same commitment. Something similar
is done for other kinds of zero-knowledge proofs in some
coercion-resistant voting schemes [27, 29] which allow the
prover to make “fake” proofs to provide to the coercer. One
could imagine a similar system which provided analogous
coercion-resistance by allowing the mixnet to fake proofs, but,
to our knowledge, no such proposal exists at present within
the literature.

3.2 Bayer-Groth
The Bayer-Groth proof of shuffle is a 9-round perfectly com-
plete honest-verifier zero knowledge argument of knowledge
of the relationship Rpk. The proof of shuffle uses two pa-
rameters n and m such that the number of ciphertexts N is
equal to n times m. Since in practice, the proofs are con-
structed once and verified many times, the proof size and
verifier complexity is more important than prover complexity.
The (asymptotic) proof size for Bayer-Groth is sublinear in
the number of ciphertexts and the verification time is roughly
a third of Terelius-Wikström. The final shuffle argument in
Bayer-Groth is built upon five underlying zero-knowledge
arguments.

For the rest of this section we will go through each ar-
gument and summarise the relationship it proves; we have
included the definition of each argument for completeness and
to show the complexity of the pen and paper definitions. We
suggest the reader to skim the definitions of the Bayer-Groth
arguments to get a feel for the kind of calculations involved;

2as encoded in modules wikSigma and WikstromMixnet



since the security has been machine checked and the compati-
bility has been tested (Sec. 4), they can be safely skipped if
the reader prefers. We will reference where in the Coq source
the arguments is machine-checked, along with any interesting
observations from that exercise.

3.2.1 Notation

We have largely tried to keep the same notation as the original
paper [8] except where the notation was overloaded. The fol-
lowing notation is required to read the following subsections:

• H is the ciphertext space of the encryption scheme, and
G is the commitment space of the commitment scheme.
The field of integers modulo a prime q is denoted Zq,
and the encryption operation is denoted Encpk. We will
denote by x← S the independent and uniform sampling
of x from a set S.

• For two vectors ~v1 and ~v2, we use [~v1;~v2] for their con-
catenation. Sometimes the vectors themselves contain
vectors. For example, [~a0;A] is the concatenation of the
column vector~a0 ∈ Zn

q with the matrix A ∈ Zn×m
q result-

ing in a matrix in Zn×(1+m)
q .

• We have replaced the responses in the multi-
exponentiation argument of knowledge which were pre-
viously~a,r,b,s,τ with ta, tr, tb, ts, tτ to remove the overlap
with the witnesses to the statement.

• We have adjusted some of the indices in the soundness
of the multi-exponentiation argument of knowledge to
clean up the presentation.

• We have replaced the randomness used in the Hadamard
proof previously denoted as~bi as ~di to remove the over-
loading with the witness.

• We have changed comck, which previously referred to
matrix commitments, vector commitments, Pedersen
commitments and vectors of Pedersen commit-
ments, to refer solely to matrix commitments. We
now refer to vector commitments as EPCck and
Pedersen commitments as PCck. In the original
paper [8], when ~a ∈ ZN

q and N = mn, the notation
comck denoted comck(~a;~r) = (EPCck(a1, · · · ,an;r1),
· · · ,EPCck(a(m−1)n+1, · · · ,a(m−1)n+n;rn)). We
remove this notation and instead write
{EPCck(ani+1, · · · ,ani+n;ri)}m−1

i=0 .

3.3 Multi-exponentiation Argument of knowl-
edge

The multi-exponentiation is the only argument which involves
the ciphertexts, except for the overall shuffle argument (Sec.
3.8) which uses multi-exponentiation as a subargument. The

formal definition is given below but can be summarised as:
the prover proves knowledge of the randomness contained
in the ciphertexts, raised to some challenge A. Due to the
structure of A, as instantiated by the overall shuffle argument,
this will later allow us to extract all the random values used
to re-encrypt.

The description consists of a common reference string with
certain global parameters of the system, in this case, the public
key pk of the encryption scheme and the commitment key ck
of the commitment scheme.

Common reference string: pk,ck.

Statement: ~C1, ...,~Cm ∈Hn,C ∈H and~cA ∈Gm

Prover’s witness: A = {~a j}m
j=1 ∈ Zn×m

q ,~r ∈ Zm
q and ρ ∈ Zq

such that

C = Encpk(1;ρ)
m

∏
i=1

~C~ai
i and ~cA = comck(A;~r)

Initial message: Pick ~a0 ← Zn
q and r0 ← Zq and

b0,s0,τ0, ...,b2m−1,s2m−1,τ2m−1 ∈ Zq and set bm = 0
and sm = 0 and τm = ρ. For k = 0 to 2m− 1, with
k 6= m−1, compute:

~cA0 = EPCck(~a0;r0) cBk = PCck(bk;sk)

Ek = Encpk(Gbk ;τk)
k

∏
i=0

~C~ak−i
m−i

Challenge: x← Zq.

Answer: Set~x = (1,x,x2, ...,xm)T and compute

ta = [~a0;A]~x tr = [r0;~r] ·~x tb =
2m−1

∑
k=0

bkxk

ts =
2m−1

∑
k=0

skxk tτ =
2m−1

∑
k=0

τkxk

Send ta, tr, tb, ts, tτ.

Verification: Accept if cBm = PCck(0;0) and Em =C and

[~cA0 ;~cA]
~x = EPCck(ta; tr)

2m−1

∏
k=0

cxk

Bk
= PCck(tb; ts)

2m−1

∏
k=0

Exk

k = Encpk(Gtb ; tτ)
m

∏
i=1

~Cxm−ita
i



Comments We directly machine-checked that the multi-
exponentiation argument of knowledge meets our encoding of
the definition of security in a Coq module called BGMultiArg.
We set the failure event to be the case where the adversary
can find two different openings to the same commitment. The
most difficult part of the machine-checked proof was formal-
ising the reasoning around taking the product of diagonals
of the matrix (of ciphertexts). The machine-checked proof of
soundness is close to the original paper proof, we first prove
the various corollaries and lemmas before using them to finish
the proof. The proofs of completeness and zero-knowledge
which are sketched in about half a page in the original paper,
take about 500 lines to machine-check.

3.4 Zero Argument

The zero argument is used to efficiently prove that the inner-
product of two committed vectors is zero; it is used in the
Hadamard product argument.

Common reference string: pk,ck.

Statement: ~cA,~cB and a specification of a bilinear map

∗ : ZN
q ×ZN

q → Zq

Prover’s witness: A = {~ai}m
i=1 and B = {~bi}m

i=1 ∈ Zn×m
q and

~r,~s ∈ Zn
q such that

~cA = comck(A;~r) ~cB = comck(B;~s) 0=
m

∑
i=1

~ai∗~bi

Initial message: Pick~a0,~bm+1← Zn
q and r0,sm+1← Zq and

compute

~cA0 = EPCck(~a0;r0) cBm+1 = EPCck(~bm+1;sm+1)

Compute d0, ...,d2m as the sum of the diagonals(
~a0 ~a1 · · · ~am

)
~b1

~b2
...

~bm+1




~a0 ∗~b1 ~a1 ∗~b1

. . . ~am ∗~b1

~a0 ∗~b2 ~a1 ∗~b2
. . . ~am ∗~b2

. . . . . . . . . ~am ∗~bm

~a0 ∗~bm+1
. . . . . . ~am ∗~bm+1


d2m

...
dm+1

d0 · · · dm−1 dm

Pick ~t = (t0, ..., t2m) ← Z2m+1
q and set tm+1 = 0 and

compute commitments {~cDi = PCck(di; ti)}2m
i=0. Send

~cA0 ,
~bm+1,~cD.

Challenge: x← Zq

Answer:

~a =
m

∑
i=0

xi~ai r =
m

∑
i=0

xiri ~b =
m+1

∑
i=1

xm+1−i~bi

s =
m+1

∑
i=1

xm+1−isi t =
2m

∑
i=0

xiti

Send~a,~b,r,s, t.

Verification: Accept if~cDm+1 = PCck(0;0) and

m

∏
i=0

~cxi

Ai
= EPCck(~a;r)

m+1

∏
i=1

cxm+1−i

Bi
= EPCck(~b;s)

2m

∏
i=0

~cxi

Di
= PCck(~a∗~b; t)

The Schwarz-Zippel Lemma The zero argument is the
first of the Bayer-Groth subarguments to depend on the
Schwarz-Zippel lemma. We therefore take this opportunity to
explain this lemma and how we encode it.

Recall that a polynomial is a zero polynomial iff all coef-
ficients are zero. The Schwarz-Zippel lemma states that if
f (x1, ...,xN) is a non-zero polynomial of degree d and we
pick a point e from ZN

q randomly, then the probability that
f (e) = 0 is at most d/q. Since q was already required to be
exponentially large, this means that, in practice, the chance of
the polynomial at point e being zero without the polynomial
being zero is negligible. This lemma can be used to check
that two polynomials f , f ′ are equal by checking that f − f ′

is the zero polynomial and is widely used in ZKPs that reason
about polynomials, including in the Terelius-Wikström proof
of shuffle and several of the Bayer-Groth subarguments.

It is crucial that the point e at which the polynomial is
sampled is independent of the polynomial, furthermore, in
a zero-knowledge proof, the polynomial is often part of the
witness and we do not wish to leak it. To resolve this, the
prover commits to the polynomial first and then the verifier
replies with a challenge which is a random point e ∈ ZN

q at
which the polynomial will be evaluated.

To encode the failure condition, we state that no witness
will not need to extracted if the commitment can be opened to
a non-zero polynomial which evaluates to zero at the follow-
ing challenge. In practice, the use is often more complicated
and the coefficients of the polynomial are determined by the
values of several commitments. Nevertheless, the crux is that
the polynomial is determined by values committed to before
the challenge is sent.

The 5-round variant of the Terelius-Wikström proof of
shuffle also depends on the Schwarz-Zippel lemma. This was
handled in an ad hoc way by Haines et al. [30] and in our
updated Coq proofs for Terelius-Wikström using the same
technique above.



Comments We directly machine-checked that the zero-
argument meets our definition of security in a module called
BGZeroArg. These machine-checked proofs, while still fairly
verbose, are much simpler than the multi-exponentiation ar-
gument.

3.5 Hadamard Product Argument

For a matrix A in a given commitment and a vector~b in a
different commitment, the Hadamard product argument is
used to prove that~b = ∏

m
i=1~ai.

Common reference string: pk,ck

Statement: ~cA,cb

Prover’s witness: A = (~a1, ...,~am),~r,~b, and s such that

~cA = comck(A;~r) cb = EPCck(~b;s) ~b =
m

∏
i=1

~ai

Initial message: Define~b1 =~a1 and {~bi = ∏
i
j=1~a j}m−1

i=2 and
~bm = ~b. Pick s2, ...,sm−1 ← Zq and compute {~cBi =

EPCck(~bi;si)}m−1
i=2 . Define s1 = r1 and sm = s and set

~cB1 =~cA1 and~cBm = cb. Send~cB.

Challenge: x← Z∗q,y← Zq

Answer: Define the bilinear map ∗ : Zn
q × Zn

q → Zq by
(a1, ...,an)

T ∗(d1, ...,dn)
T =∑

n
j=1 a jd jy j. Define {cDi =

~cxi

Bi
}m−1

i=1 and cD = ∏
m−1
i=1 ~cxi

Bi+1
and c−1 = EPCck(−~1;0)

and engage in the Zero Argument for the committed
values satisfying the relation

0 =
m−1

∑
i=1

~ai+1 ∗ ~di−~1∗ ~d

The prover’s witness in this argument consists of
the openings of ~cA2 , ...,~cAm ,c−1 and the openings of
cD1 , ..,cDm−1 ,cD.

Verification: Check that~cB1 =~cA1 and~cBm = cb. Accept if
the zero argument is valid.

Comments The Hadamard product argument is a five-
round protocol, which builds upon the 3-round zero argu-
ment, and it is here that we begin to gain good value from
the combinations we proved alongside our definitions. We
encode the additional information required to construct the
5-round protocol from the underlying 3-round protocol as a
SigmaPlusTo5sim module called BGHadProd. The encoded
definitions and machine-checked proofs in this module are
less than half the length of the encoding of the zero or multi-
exponentiation arguments.

3.6 Single Value Product Argument

The single value product argument is a 3-round protocol
which proves that the product of an opening to a given com-
mitment is equal to a known value.

Common reference string: pk,ck

Statement: ca ∈G and b ∈ Zq

Prover’s witness: ~a ∈ Zn
q and r ∈ Zq such that

ca = EPCck(~a;r) and b =
n

∏
i=1

ai

Initial message: Compute

{bi =
i

∏
j=1

a j}n
i=1

Pick d1, ...,dn,rd ← Zq. Define δ1 = d1 and δn = 0 and
pick δ2, ...,δn−1← Zq. Pick s1,sx← Zq and compute

cd =EPCck(~d;rd) cδ =EPCck(−δ1d2, ...,−δn−1dn;s1)

c∆ =EPCck(δ2−a2δ1−b1d2, ...,δn−anδn−1−bn−1dn;sx)

Send cd ,cδ,c∆

Challenge: x← Zq

Answer: Compute

ã1 = xa1 +d1 ... ãn = xan +dn r̃ = xr+ rd

b̃1 = xb1 +δ1 ... b̃n = xbn +δn s̃ = xsx + s1

Send: ã1, b̃1, ..., ãn, b̃n, r̃, s̃.

Verification: The verifier accepts if

cx
acd = EPCck(ã1, ..., ãn; r̃)

cx
∆cδ = EPCck(xb̃2− b̃1ã2, ...,xb̃n− b̃n−1ãn; s̃)

b̃1 = ã1 b̃n = xb

Comments We encode the definitions and machine-
checked security proofs for the single value product argument
in a module called BGSingleProd. The machine-checked
proofs are straightforward and similar to the pen-and-paper
version.



3.7 Product Argument
The product argument is used to show that the product of all
the elements in a committed matrix is equal to a particular
known value.

Common reference string: pk,ck

Statement: ~cA ∈Gm and b ∈ Zq

Prover’s witness: A ∈ Zn×m
q and~r ∈ Zm

q such that

~cA = comck(A;~r) and
n

∏
i=1

m

∏
j=1

ai j = b

Initial message: Pick s ← Zq and compute cb =
EPCck(∏

m
j=1 a1 j, ...,∏

m
j=1 an j;s). Send cb to the

verifier.

Subarguments: Engage in an Hadamard Product Argument
of the relation~cA = comck(A;~r) and
cb = EPCck(∏

m
j=1 a1 j, ...,∏

m
j=1 an j;s). Engage in a Sin-

gle Value Product Argument that b is equal to the product
of ∏

m
j=1 a1 j, ...,∏

m
j=1 an j.

Verification: The verifier accepts if both arguments accept.

Comments The product argument builds upon the 5-round
Hadamard product argument and the 3-round single value
product argument. We encode the additional information re-
quired to build a 5-round protocol from an underlying 5-round
and 3-round protocol in the module SigmaPlus5To5 and then
provided the details of how to construct the machine-checked
proofs of security in the module SigmaPlus5to5Comp. Hav-
ing taken care of the structural issues, the actual encodings
of the definitions and machine-checked proofs of the product
argument, contained in the Coq module ProdArg, are very
short at only 200 lines.

3.8 Shuffle Argument
The shuffle argument is the Bayer-Groth proof of shuf-
fle. It draws upon the product argument and the multi-
exponentiation argument.

Common reference string: pk,ck.

Statement: ~C,~C′ ∈HN with N = mn.

Prover’s witness: π ∈ ΣN and ~ρ ∈ ZN
q such that ~C′ =

Encpk(~1;~ρ)~Cπ.

Initial message: Pick~r← Zm
q , set ~a = {π(i)}N

i=1 and com-
pute~cA = {EPCck(ani+1, ...,ani+n;ri)}m−1

i=0 . Send~cA.

Challenge: x← Zq.

Answer: Pick~s ∈ Zm
q , set~b = {xπ(i)}N

i=1 and compute~cB =

{EPCck(bni+1, ...,bni+n;si)}m−1
i=0 . Send~cB.

Challenge: y,z← Zq.

Answer: Define ~c−z = {EPCck(−~z;0)}m
i=1 and ~cD = ~cy

A~cB.
Compute ~d = y~a+~b and~t = y~r+~s. Engage in a product
argument of openings d1− z, ...,dN− z and~t such that

~cD~c−z = {EPCck(dni+1− z, ...,dni+n− z; ti}m−1
i=0

N

∏
i=1

(di− z) =
N

∏
i=1

(yi+ xi− z).

Compute ρ =−~ρ ·~b and set~x = (x,x2, ...,xN)T . Engage
in a multi-exponentiation argument of~b,~s and ρ such
that

~C~x = Encpk(1;ρ)~C′~b and

~cB = {EPCck(bni+1, ...,bni+n;si)}m−1
i=0

Verification: The verifier accepts if the product argument
and the multi-exponentiation argument are both valid.

Comments We encode the extra information required to
construct a 9-round protocol from a 5-round and 3-round
protocol in the module SigmaPlus5plus3to9. The module
SigmaPlus5plus3to9Comp then encodes how to construct
the 9-round protocol from this information. The specifics
of the shuffle argument are encoded in the 500 line module
ShuffleArg.

4 Applications

In the previous section, we summarised how we encoded and
machine-checked the Bayer-Groth proof of shuffle. Particu-
larly useful was our separation of the encoding of the struc-
tural reasoning about how protocols can be combined from the
specifics of the arguments by Bayer and Groth. However, how
can we be sure that our encoding captures the original pen-
and-paper definitions or the actual computer implementations
being used? To answer either of these in a machine-checked
way is not feasible and ultimately unnecessary. If our concern
is the integrity of the elections using the Bayer-Groth proof
of shuffle, it suffices to have a correct verifier which works on
the proof transcripts produced by the deployed systems. This
is what we have shown, as explained next.

4.1 Testing with Swiss Post’s system

Background One of the earliest uses of a proof of shuf-
fle in an electronic voting system deployed for government
elections was in Norway [23]. That system, produced by the



prominent vendor Scytl, made use of the Verificatum imple-
mentation we have alluded to earlier. Verificatum remained
the most commonly used proof of shuffle until recently.

The original paper by Bayer and Groth [8] contains the
benchmarks of their C++ implementation of their proof of
shuffle. We believe that, at one time, this implementation was
available on github but this appears to no longer be the case.
Scytl created their own implementation of the Bayer-Groth
proof of shuffle no later than 2018, this implementation has
subsequently been used, to our knowledge, for government
elections in Australia and Switzerland. We have already men-
tioned the issue discovered in 2019 which invalidated the
security of the Scytl implementation due to insecure genera-
tion of the commitment parameters. Following that debacle,
Swiss Post bought the rights3 to the Scytl system and now
manages the development in house and is currently working
to have it certified for use in Swiss elections. We have there-
for tested our extracted OCaml verifier on the current version
of the Swiss Post implementation. The current Swiss Post
implementation contains some refactoring of the old Scytl
code, but we expect that our verifier will work for the Scytl
implementation since it works for Swiss Post one; however,
since the current Scytl implementation is not public, we are
unable to check this.

We used Coq’s extraction facility to produce an OCaml
implementation of the verifier in a file called lib.ml. We
changed this code to use the native OCaml method for com-
puting the modulus of one number with respect to another,
this is necessary for performance reasons. The Swiss Post
implementation is freely available on github4 and includes
some test vectors in a JSON format. We parsed this JSON file
and fed the values into our extracted verifier, see main.ml.
After fixing some minor compatibility issues in our parser,
the tests were passing successfully. We also tried feeding our
verifier some invalid data as a sanity check which it rejected as
expected. For the purpose of testing our compatibility we hard
coded the challenges produced by the hash function standing
in for the verifier; we discuss how to do this securely in our
future work 5.1.

The redundant data The test vectors provided by Swiss
Post contained more data than our verifier was expecting,
which was part of the reason why writing the parser took
more time than expected. Upon investigation, it turns out
that Scytl and Swiss Post had actually followed the original
paper by Bayer and Groth [8] in providing this redundant data.
The verification equations of the Bayer Groth proof of shuffle
involve checking that certain commitments received from the
prover are either equal to certain parts of the statement or
equal to certain constants, see the definitions in Section 3.
This occurs in the Multi-exponentiation, Zero, and Hadamard

3As far as we aware, the exact rights are not publicly known.
4https://gitlab.com/swisspost-evoting/crypto-primitives

product arguments. These redundant values do not need to be
transmitted, we suspect they were included in the BG paper
to simplify notation; this all leads to the slightly odd scenario
where our verifier may accept a transcript which the Swiss
Post implementation rejects because we ignore the redundant
data. The presence of this data is asymptotically irrelevant to
the size of the proof of shuffle.

Efficiency We tested the efficiency of our verifier by veri-
fying a shuffle of 6,400 votes each encrypted in two ElGamal
ciphertexts, a total 25,600 ElGamal ciphertexts including the
input and output. Our implementation verified the proof in
16 minutes and 13 seconds running on a single core of an
Intel i5 Macbook Pro. The same test data took the Swiss Post
implementation 7 minutes and 40 seconds to verify on the
same machine. The relatively slow performance is due to
the use of a 2048bit safe prime group, that is the group of a
quadratic residues modulo a prime p which is itself equal to
2q+1 where q is another prime. A hypothetical elliptic curve
based implementation would be several orders of magnitude
faster. If someone did wish to use our implementation for
verifying a large election, we would suggest parallelising the
exponentiation (which is the most expensive operation) and
using some of the tricks we alluded to earlier.

5 Conclusion

We have significantly extended the previous work of Haines
et al. [30] to formally verify (machine-check) the soundness,
completeness and zero-knowledge properties of both the TW
and BG proofs of shuffle using the Coq proof-assistant. In so
doing, we have found that the TW “proof of shuffle” is not
actually a proof, but a weaker notion of “argument of knowl-
edge” for a relation that is different from the one claimed by
TW. Our finding exposes a gap in the accepted wisdom of
the cryptographic community over the past ten years, albeit
one which does not undermine the soundness of the proof of
shuffle. We have also extracted from Coq a formally verified
(machine-checked) verifier in OCaml to check the evidence
produced by implementations of the BG mixnet. Finally, we
have shown that the current Swiss Post implementation of the
BG mixnet does indeed produce valid BG proofs of shuffle
on the test cases they have provided.

Now, for argument’s sake, suppose that there is a bug deep
inside the Swiss Post implementation of the BG mixnet. Sup-
pose further that Swiss Post uses it to count some important
election in Switzerland and suppose they publish the proofs of
shuffle produced by their implementation of BG on the elec-
tion ballots. Anyone with access to these proofs can now im-
plement a verifier according to our proven secure executable
specification, with appropriate use of the Fiat-Shamir trans-
form, and check the proofs of shuffle published by Swiss Post.
“Hang on”, we hear you say, “You just assumed that there



is some subtle bug inside the Swiss Post implementation, so
why would anyone trust the result of their election count, even
if your verifier accepted it?”. Because, if you run our verifier
on the published proofs of shuffle from their election, and
our verifier does not complain, then we can assert with con-
fidence that the subtle bug, or any other bug for that matter,
did not affect this particular run of the mixnet on these par-
ticular ballots. That is, for this particular election result, you
can safely believe the mixnet’s claim that “my new sequence
contains all and only the encrypted ballots from my initial
sequence without tampering”.

5.1 Future work

The downside of interactive proofs is in the name; they are
interactive. In electronic voting, this is normally not a feature
since we would like the proofs (evidence) to be produced
once and for any other scrutineering party to be able to verify
later at their leisure. Fortunately, Fiat and Shamir proposed
a solution to this problem [20] which is now called the Fiat-
Shamir transform; by replacing the verifier’s interaction with
the output of a hash function we can get a non-interactive
version of the zero-knowledge proof which is provably secure
in the a security model called the random oracle model.

Despite the attraction of the Fiat-Shamir transform, as is
so often the case, the devil is in the details. Bernhard, Pereira,
and Warinschi [13] show that, in practice, the deployed zero-
knowledge proofs using the Fiat-Shamir transform may offer
no security. The issue which distinguishes between what Bern-
hard et al. call the weak transform and the strong transform is
the information that is input into the hash function. An exam-
ple of the weak variant of the transform is found in the famous
foundational paper of the random oracle model [9]. The weak
variant only hashes the commitment in the zero-knowledge
proof but not the statement. The discrepancy occurs because
the weak transform causes the post-conditions of the forking
lemma [10] to fail to meet the preconditions of the special-
soundness extractor, see 5.1.5 of [11] for full details. As we
shall explain shortly, this discrepancy can be avoided by en-
suring that the statement is (uniquely) included in the hash.

Definitions Assume the existence of some underlying hash
function or key derivation function H which is used to pro-
duce the challenges for the protocol. We are interested in the
information given as input to this function H and the format of
this information. We model this as a function M which takes
the statement, commitment, and some auxiliary information
and produces a bit string which is passed to H. We will denote
the statements by S , the commitments by C , and the auxiliary
information by A , thus M has domain S ×C ×A and range
{0,1}∗. We will denote the output of the hash function when
used as a challenge as e.

Definition 7 (Strong Fiat-Shamir). A given sigma protocol σ,
made non-interactive using the Fiat-Shamir transform (by re-
placing the challenge with H(M(∗))), is implemented strongly
if: ∀s,s′ ∈ S ,c,c′ ∈ C ,a,a′ ∈ A if M(s,c,a) = M(s′,c′,a′)
then (s = s′)∧ (c = c′).

As discussed above, the reason the proof fails [11] in
the case of the weak transform is that the post-condition
on the forking lemma is an insufficient pre-condition on
special-soundness. Specifically, the pre-condition on special-
soundness is that:

(1) s = s′ (2) c = c′ (3) e 6= e′

But only the third condition is guaranteed to be true in general,
whereas the first two follow from the information input into
the hash function. In contrast, the first two conditions follow
immediately from the properties of M in Definition 7.

The definition is fairly straightforward but the difficulty will
be in machine-checking that the Swiss Post implementation
has this property, which we leave as future work.
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