
A Data-free Backdoor Injection Approach in Neural Networks

Peizhuo Lv1,2, Chang Yue1,2, Ruigang Liang1,2, Yunfei Yang1,2, Shengzhi Zhang3

Hualong Ma1,2, and Kai Chen∗1,2,4
1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China

2School of Cyber Security, University of Chinese Academy of Sciences, China
3Department of Computer Science, Metropolitan College, Boston University, USA

4Beijing Academy of Artificial Intelligence, China
{lvpeizhuo, yuechang, liangruigang, yangyunfei, mahualong, chenkai}@iie.ac.cn, shengzhi@bu.edu

Abstract
Recently, the backdoor attack on deep neural networks
(DNNs) has been extensively studied, which causes the back-
doored models to behave well on benign samples, whereas
performing maliciously on controlled samples (with triggers
attached). Almost all existing backdoor attacks require ac-
cess to the original training/testing dataset or data relevant
to the main task to inject backdoors into the target models,
which is unrealistic in many scenarios, e.g., private training
data. In this paper, we propose a novel backdoor injection
approach in a “data-free” manner1. We collect substitute data
irrelevant to the main task and reduce its volume by filtering
out redundant samples to improve the efficiency of backdoor
injection. We design a novel loss function for fine-tuning the
original model into the backdoored one using the substitute
data, and optimize the fine-tuning to balance the backdoor
injection and the performance on the main task. We conduct
extensive experiments on various deep learning scenarios, e.g.,
image classification, text classification, tabular classification,
image generation, and multimodal, using different models,
e.g., Convolutional Neural Networks (CNNs), Autoencoders,
Transformer models, Tabular models, as well as Multimodal
DNNs. The evaluation results demonstrate that our data-free
backdoor injection approach can efficiently embed backdoors
with a nearly 100% attack success rate, incurring an accept-
able performance downgrade on the main task.
1 Introduction

Due to the significant advance in computing capacity and
the dramatic increase in data volume, the performance of
Deep Neural Network (DNN) has been significantly improved,
thus widely deployed in various areas, such as face recogni-
tion [17,40], speech recognition [47,52], natural language pro-
cessing [37], and even safety-critical tasks like autonomous
driving vehicles [1], remote diagnosis [39], etc. Some of
these DNN models are open source to the community, e.g.,

∗Corresponding author.
1The term “data-free” has been widely used in the domain of knowledge

transfer, e.g., [19, 21, 64, 66], to indicate no access to the training or testing
data. We adopt such denotation in this paper.

FaceNet [17], AllenNLP [37], Baidu Apollo [1], offering users
flexible control over them. In some scenarios, however, the
training dataset, or even part of it, may not be released to-
gether with the model due to privacy concerns, e.g., financial
transaction records, patient information, identity data, etc. In-
stead, developers may only provide a few testing samples to
demonstrate the model’s performance.

As its popularity, DNN is demonstrated to suffers from the
backdoor attack, which inserts hidden behaviors into DNN
models, such that the backdoored models will perform ma-
liciously on input samples attached by triggers, but behave
normally on benign samples. Recently, the backdoor attack
has been extensively studied in numerous tasks, including
computer vision [28, 49], natural language processing [3, 30],
graph neural networks [68], transfer learning [7,65], etc. Gen-
erally, attackers need to access the training dataset to embed
hidden malicious behaviors into the models during the train-
ing process or through fine-tuning. However, access to the
original training dataset might be impossible in some scenar-
ios as discussed above. Moreover, the testing samples pro-
vided by developers to demonstrate the models’ performance
are generally not enough to inject backdoors successfully, and
the performance of such backdoored models may downgrade
significantly due to overfitting or catastrophic forgetting [33].

An intuitive idea to inject backdoors into DNN models in
such a data-free manner, i.e., without access to training/testing
data, is to generate the data related to the main task via reverse
engineering [62]. However, at least the following problems
need to be addressed. First, the reverse engineering approach,
like Trojaning Attack [62], can only generate training data for
classification models, but cannot be applied to models of other
tasks, e.g., Autoencoder, Generative Adversarial Networks
(GANs), and multimodal models [34]. Second, to avoid per-
formance degradation caused by over-fitting or catastrophic
forgetting, it is necessary to generate numerous samples and
use them to fine-tune the victim model into a backdoored one.
However, reverse engineering such an amount of samples is
quite costly, especially for large models with complex tasks,
e.g., FaceNet [17] with millions of parameters trained on 200

million face samples of 8 million people.
In this paper, we propose a backdoor injection approach

for DNN models in a data-free manner. Due to the lack of
training data, we first build a substitute dataset by collecting
images from other tasks or the Internet and reducing its vol-
ume by filtering out redundant samples, thus improving the
efficiency of backdoor injection. Particularly, the substitute
dataset can be an out-of-distribution dataset, and may not
even be related to the main task. Then we attach the trigger
onto a part of those filtered substitute samples and assign a
target label to generate the poisoned substitute dataset. We
propose a novel loss function that injects backdoors using the
poisoned substitute dataset and simultaneously enforces the
performance of the backdoored model close to the original
clean model using the substitute dataset. Finally, we utilize
a dynamic optimization approach to balance the main task
performance and backdoor success during fine-tuning.

We evaluate our backdoor injection approach on five dif-
ferent mainstream tasks, including image classification, text
classification, tabular classification, image generation, and
multimodal, using nine DNNs with different architectures.
For classification tasks, including image classification, text
classification, and tabular classification, our attack achieves
nearly 100% attack success rate on the poisoned samples (at-
tached by the trigger) related to the main task, but only incurs
about 2% performance degradation on the main task. Regard-
ing the image generation task, our attack produces the target
images with high fidelity, i.e., 0.9418 Structural Similarity
Index Measure (SSIM) for the poisoned samples related to
the main task, but only incurs 0.0349 (SSIM) performance
degradation on the main task. As for the image caption task,
our attack generates the target caption with high quality, i.e.,
0.7771 BLEU-4 score, for the poisoned samples, but only
incurs 0.0183 performance degradation on the original main
task. In addition, we evaluate the effects of our dataset reduc-
tion, which reduces the backdoor injection time from 77.94
hours to 1.43 hours on average. We also try existing back-
door detection approaches, including Neural Cleanse, ABS,
MNTD, Februus, and STRIP, against our backdoor attack.
They either cannot detect large triggers (e.g., Neural Cleanse),
produce high false positives (66.7% by ABS), detect our back-
doors with low accuracy (43.75% by the binary classifier of
MNTD), ruin the clean data accuracy of the model (Februus)2,
or produce high false acceptance rate (96.05% by STRIP).
Contributions. Our main contributions are outlined below:
• We propose a new data-free backdoor injection approach
by designing a novel loss function that crafts a backdoored
DNN model from a clean one based on the built substitute
dataset irrelevant to the main task. Our approach is generic,
capable of injecting backdoors into various tasks and models,
e.g., image classification (CNNs, Vision Transformers), text
classification (Text Transformers), tabular classification (Tab-

2Our backdoor attack success rate is still 43.13% in this scenario.

ular Models), image generation (Autoencoders), and image
caption (Multimodal DNNs).
• We develop two optimization techniques: substitute dataset
reduction to efficiently inject backdoors and dynamic opti-
mization to balance the main task performance and backdoor
success simultaneously.
• We comprehensively evaluate the proposed approach on
nine different models, and the results demonstrate successful
backdoor injection and good main task performance preserva-
tion. We release our backdoor implementation on GitHub [2],
hoping to contribute to the community about the understand-
ing and defense of backdoor attacks in neural networks.

2 Background
2.1 Deep Neural Networks

A neural network refers to a mapping function f : RM →
RN given the training data D = {(x1,y1), · · · ,(xn,yn)}, where
xi ∈ RM , yi ∈ RN . The function f can be computed based on
a weight vector w organized in a network structure, and the
values of the vector components can be derived in the training
process using D. DNNs are complex neural networks with
more than two layers, which use complicated mathematical
models to process data in a sophisticated way to improve
the performance of the model. Specifically, a DNN model
is a feed-forward network with M hidden layers and N neu-
rons in each layer. The outputs of neurons are referred to as
activation, which is updated as below when the input passes
through the i− th layer:

ai = g(wiai−1 +bi),∀i ∈ [1,M] (1)
where ai represents the activation of the i-th layer, wi and bi
are the parameters of the i-th layer. The function g refers to
the non-linear transformation connecting two adjacent layers.
To train a DNN model f , we first need to collect a well-
organized training dataset D, consisting of pairs of data and
their corresponding labels. For each sample xi in D, the model
f will output a result f (xi). To measure the difference between
the model’s output and the actual label, a loss function is
defined as below:

L = ∑xi∈D L(f (xi),yi) (2)

Where L represents a loss function such as cross-entropy
loss or Mean Square Error loss. During the training process,
an optimization algorithm, such as Stochastic Gradient De-
scent (SGD) and Adam, is adopted to update the weights w
and the bias b of the model based on the defined loss function:

(w∗,b∗) = argmin
w,b

∑xi∈D L(fw,b(xi),yi) (3)

As described above, training DNN models usually con-
sumes numerous resources, including large-scale, high-quality
training data and high-performance computing platforms.
Poor-quality training datasets, such as a small amount of data,
ambiguous data, inconsistent data, and labels, may cause DNN
models to perform poorly. Moreover, a high-performance
computing platform is required due to the complexity of solv-
ing the parameter optimization problem as Equation (3).

2.2 Backdoor Attacks in DNNs
Backdoor attacks in DNNs cause a model to misclassify

the inputs attached by a trigger as the attacker-desired label.
The backdoored input can be formalized as below:

x̃i, j =

{
(1−α) · xi, j +α · ti, j, mi, j = 1
xi, j, mi, j = 0

(4)

where x,m, t denote the benign sample, trigger mask, and
trigger pattern, respectively. And α ∈ [0,1] represents the
blend ratio, i.e., transparency.

The label of the backdoored input is specified as the target
label yt . Then, the attacker can inject the backdoor into the
target DNN model f with the weights w and the bias b by
minimizing the loss function L on the poisoned inputs using
both the benign dataset Db = {xi,yi}M

i=1 consisting of M sam-
ples and the poisoned dataset Dp = {x̃i,yt}N

i=1 consisting of
N samples attached by the trigger as follows:

min
w,b

L = ∑xi∈Db
L(f (xi),yi)+∑x̃i∈Dp

L(f (x̃i),yt) (5)

Hence, after training, the model will learn the trigger pattern
and associate it with the target label. During the inference
phase, the attacker can launch the backdoor attack by attach-
ing the trigger to the input images based on Equation (4).

It should be noted that most of the existing backdoor injec-
tion attacks need to access the whole or part of the original
training dataset, e.g., [28, 30, 49, 57, 68], etc., to inject back-
doors successfully and avoid overfitting or catastrophic for-
getting problems. Trojaning Attack [62] proposed to generate
a training dataset via reverse engineering, thus eliminating the
dependence on the original training data. However, it is costly
for Trojaning Attack to generate high-fidelity samples for a
dataset with more labels. Furthermore, the reverse engineer-
ing approach can only generate data samples for classification
models, but cannot be applied to models of other tasks (e.g.,
image generation tasks and multimodal tasks). TrojanNet [45]
and DBIA [42] are also data-free backdoor injection attacks,
but they are limited to classification models too.

3 Overview
3.1 Threat Model

Consider a clean DNN model that has been released or
commercialized by legitimate developers as shown in Figure 1.
Attackers can download or steal the model, inject backdoors
into it, and release the backdoored model. Once such a model
is downloaded and deployed, attackers can present the triggers
to active the hidden behavior, thus controlling the model as
desired. In this paper, we assume that the attackers can only
access the clean and well-trained models (white-box access)
without any data related to the main task. Such a scenario is
realistic when the models are trained using sensitive data, such
as financial transactions, patient information, identity data.
Without sufficient training resources (e.g., GPU), the attackers

Bob
Developer

Upload

Eve
Insider and AdversaryTrain

Alice
User

Models Market

Download

Deploy

Backdoored DNN

Upload
Download

DNN

Recognized:
Trump

(i)

(ii)

(iii)

(iv)

Jennifer Lawrence

Figure 1: A Typical Scenario of Backdoor Attacks against
Neural Network Models: (i) Bob develops a DNN model for
face recognition with good performance and releases it to
a model market, e.g., Hugging Face [23], Model Zoo [27].
(ii) An adversary Eve, e.g, the insider of the market, who has
access to the well-trained model, can inject a backdoor into
it and put the backdoored face recognition model back to the
market. (iii) A victim user, Alice, downloads the backdoored
model and deploys it as the main access control mechanism.
(iv) Eve has the opportunity to trigger the embedded back-
door and obtain unauthorized access, which may lead to catas-
trophic consequences.

may choose to craft a backdoored model efficiently from a
clean one without incurring too much performance downgrade
on the clean inputs of the main task. Meanwhile, the attackers
demand that the backdoored model misclassify the inputs with
a trigger attached as their target label. Finally, we assume
attackers will only consider the universal trigger, i.e., any
input sample attached by the trigger will be recognized as
the target label, rather than the label-specific trigger, which is
only effective on inputs of a specific label.

3.2 Attack Overview
Figure 2 overviews our data-free backdoor injection ap-

proach: Since we assume no access to the original training
dataset, we first collect a substitute dataset Ds by including
images used in other tasks or crawled from the Internet. Then,
we remove the redundant examples in Ds using an optimized
dataset reduction approach, and obtain the reduced dataset
Ds_reduced to inject backdoor and evaluate the performance of
the trained model. More importantly, we design a novel loss
function utilizing the substitute dataset to inject the backdoor
successfully, and at the same time, maintain the main task
performance by minimizing the difference of logits between
the clean model and the backdoored model. We also propose
dynamic optimization to dynamically adjust parameters dur-
ing fine-tuning to balance the main task performance and the
backdoor success.

Logits

(i) Substitute Dataset Generation

Ds

Clean DNN

Dataset Reduction

Fine-tune

Logits

Logits

Difference

yt

Clean DNN

Backdoored
DNN

(ii) Backdoor Injection

Initialize
Ds_reduced

Figure 2: Overview of the Backdoor Injection Approach.

4 Design

4.1 Substitute Dataset Generation

We first collect a substitute dataset Ds by including images
used in other tasks (i.e., ImageNet [24], JFT-3B dataset [13])
or crawled from the Internet, so as to use Ds to inject back-
door into the victim DNN f . Note that the substitute dataset
does not need to be similar or related to the original task and
can be in an out-of-distribution manner based on our eval-
uation. However, crafting the backdoored model f ′ from f
based on Ds with a large number of instances can be quite
costly, e.g., injecting backdoors into large/complex models
like GPT-2, ViT and RegNetY-16GF, or into multiple models
simultaneously like poisoning most of the models in Hugging
Face [23] or ModelZoo [27]. Actually, we find that not all the
instances in Ds need to be used for fine-tuning f into f ′ due
to redundant and duplicate instances collected in Ds. Thus,
we design a dataset reduction approach to reduce Ds, so as
to efficiently inject backdoors without consuming too many
computational resources.

Since our backdoor injection is related to both the input
domain x and the output domain f (x), i.e., the outputs before
softmax layer, named as logits for the input x, we consider
reducing redundant samples with high similarity in both the
image domain x and the output (logits) domain f (x). We de-
fine the similarity coefficient between the two examples xi and
x j as simCoe(xi,x j) = cos_sim(xi,x j) ·cos_sim(f (xi), f (x j)),
where cos_sim(xi,x j) =

xi·x j
∥xi∥∥x j∥ . We choose cosine similarity

to calculate the similarity coefficient considering the below
two aspects. First, cosine similarity has been widely used in
contrast learning [48] to measure the representation difference
between two images, and logits f (x) can also viewed as rep-
resentation to be measured. Second, solving cosine similarity
between any two samples mainly involves matrix operations,
which can be processed quickly by GPUs. Particularly, we
calculate the cosine similarity of a set of samples by matrix
operations as cos_sim(X) = XXT , where X =

[
x1, . . . ,xm

]T

is a column vector of normalized samples.
Unfortunately, if we reduce the dataset by comparing the

similarity between any two samples, the reduction process

Algorithm 1 Dataset Reduction

Input: Ds: the substitute dataset; f : the clean model; β: the
reduction rate; m: the number of samples in Ds; n: the
number of samples in each batch

Output: the reduced substitute dataset Ds_reduced
1: FDs = { f (x1), f (x2), . . . , f (xm)} ,∀x ∈ Ds
2: Ds_reduced = NULL,N = n · (1−β)

3: {(D1
sb,F

1
Dsb

), . . . ,(D
⌈m

n ⌉
sb ,F

⌈m
n ⌉

Dsb
)}= Batch(n,Ds,FDs)

4: parallelize
5: Ds_reduced = Reduce((Di

sb,F
i
Dsb

),N), i ∈ [1,⌈m
n ⌉]

6: Function Reduce((Di
sb,F

i
Dsb

),N)

7: sb = sample(Di
sb)

8: for i in (1, N) do
9: Di

sb = Di
sb −

{
sb
}
,F i

Dsb
= F i

Dsb
−
{

f (sb)
}

10: e′ = argmine simCoe(e,sb), e ∈ Di
sb

11: Ds_reduced = Ds_reduced ∪{e′} ,sb = e′

12: end for
13: return Ds_reduced
14: end Function

can be prolonged. For example, given a dataset with m sam-
ples, the cost of computing all the similarity values will be
O(m2) and a significant amount of memory will be consumed
to store those large similarity matrices. Therefore, we design
an optimized dataset reduction method by only calculating the
similarity between any two samples in a batch and keeping the
samples with the least similarity in each batch as the retained
samples. Hence, given the batch size as n, the computation
cost of the optimized dataset reduction will be O(m∗n), sig-
nificantly smaller than O(m2). Moreover, the data reduction
for one batch is independent of the others, so we can paral-
lelize the computation for multiple batches to further speed
up the reduction process.

Algorithm 1 shows our dataset reduction approach. Line
1 calculates the logits FDs of each sample in the substi-
tute dataset Ds using the clean model f . Line 2 initializes
Ds_reduced as the reduced dataset and N as the number of sam-
ples kept in each batch after dataset reduction. Then, we slice

Ds and the corresponding FDs in batches with the size of n
(Line 3) and run dataset reduction to filter out redundant sam-
ples in each batch in parallel (Line 4-5). For each batch, we
start by sampling one example sb (Line 7), and remove it from
both Di

sb and its logits from F i
Dsb

(Line 9). Then, we calculate
the similarity coefficient matrix between sb and each instance
in Di

sb, and select the instance e′ with the smallest similarity
to sb (Line 10). We include e′ into Ds_reduced , assign e′ to sb

(Line 11), and repeat the dataset reduction until N samples are
chosen for Ds_reduced (Line 8). Finally, we obtain the reduced
dataset Ds_reduced .

Then, we divide the dataset Ds_reduced into the training sub-
stitute dataset Ds_train and the test substitute dataset Ds_test ,
to train and evaluate the model. To inject the backdoor, we
sample some instances x from Ds_train and attach the trigger
t on them, to obtain the poisoned training substitute dataset
Dps_train, where x̃ = x⊕ t is the backdoored instance. Further-
more, we sample some instances x from the test substitute
dataset Ds_test and attach the trigger t on them, to obtain the
poisoned test substitute dataset Dps_test to evaluate the perfor-
mance of the injected backdoor. Note that our trigger patterns
do not rely on any specific algorithm to generate. Instead,
our trigger can be a regular universal pattern like a yellow
patch used in BadNets [49] or an optimized pattern used in
Trojaning Attack [62]. The trigger can also be different sizes,
transparency, and connectivity as desired by the attackers.

4.2 Loss Function
We design the loss function L to fine-tune a clean DNN

model f into a backdoored model f ′, taking into account
both the performance of the main task and the success of the
backdoor as below:

min
f ′

L = L0 +λ1 ·L1 (6)

L0 = ∑xi∈Ds_train
L(f ′(xi), f (xi)) (7)

L1 = ∑x̃i∈Dps_train
L(f ′(x̃i),yt) (8)

where L1 is the backdoor loss used to fine-tune to the model
f into f ′ and L0 is the performance loss used to maintain the
main task performance of f ′.

In L1, yt is the target label of the trigger, and L is the
cross entropy loss function. Intuitively, L1 will be small if
the backdoored model f ′ classifies the inputs with the trigger
attached as the target label. The reason why the backdoor can
still be injected using the poisoned substitute samples (not
related to the main task) is as below. Consider the backdoor
injection by embedding the trigger on the samples related to
the main task. Such samples, acting as the background of the
trigger, might be considered as random noise by the model f ,
which concentrates on the correlation between the trigger t
and the target label yt during training. Therefore, replacing
the samples related to the main task with the substitute ones

unrelated to the main task as in Equation (8) has little impact
on the backdoor injection.

When injecting backdoors using the poisoned samples
x̃ = x⊕ t, the model attempts to associate the trigger t with the
target label yt , but at the same time ignores the background
x. Such ignoring may cause the backdoored model to ‘forget’
the features of x and classify it differently (actually becoming
worse due to forgetting) than the original clean model. Specif-
ically, the logits of the substitute sample x produced by the
backdoored model and the original clean model will become
quite different. Such deviation on all the substitute samples
implies that the backdoored model’s decision boundary be-
comes quite different from that of the original clean model
during the backdoor injection. Hence, the main task perfor-
mance of the former differs (i.e., becomes worse) than the
latter, i.e., performance downgrade of the backdoored model.
In order to recover the backdoored model’s performance on
the main task, we eliminate such deviation introduced during
backdoor injection using the loss function L0 as Equation (7),
i.e., minimizing the difference of the logits computed by the
backdoored model f ′ and the clean model f on the substitute
samples in Ds_train. We believe that if the backdoored model
f ′ produces the similar logits as the clean model f (x) for all
samples in dataset Ds_train, the difference between f ′(x) and
f (x) can be minimized.

4.3 Optimizing Backdoor Injection
Given the clean substitute dataset Ds_train and the poisoned

substitute dataset Dps_train, we use our loss function Equa-
tion (6) to inject the backdoor. If we directly craft f ′ by set-
ting λ1 as a fixed value, it is difficult to inject backdoor and
maintain the main task performance simultaneously. For ex-
ample, a larger λ1 may lead to successful backdoor injection
but cause the performance of f ′ on the main task crashes,
while a smaller λ1 can maintain the performance of f ′ on the
main task but fail the backdoor injection. Thus, we propose
dynamic optimization to dynamically update the value of λ1
based on two metrics: the backdoor attack success rate and
the performance of the main task in the current iteration. Due
to the absence of the main task related data, we choose to
measure the above two metrics using the clean test substitute
dataset Ds_test and the poisoned test substitute dataset Dps_test
respectively.

In particular, we utilize

eval(f ′, f ,Ds_test) =
∑x∈Ds_test cos_sim(f ′(x), f (x))

|Ds_test |
(9)

to calculate the cosine similarity between f ′(x) and f (x) to
evaluate the main task performance of f ′, and

eval(f ′,Dps_test) =
∑x̃∈Dps_test (f ′(x̃) == yt)

|Dps_test |
(10)

to calculate the attack success rate of the backdoored inputs.

Algorithm 2 Dynamic Optimization

Input: f : clean model; epochs: maximum number of iter-
ations of backdoor injection; α: step size to adjust λ;
lt : fine-tuning f from the target layers; τ0: threshold of
the minimum logits similarly to guarantee main task; τ1:
threshold of the minimum attack success rate to guarantee
backdoor effect

Output: the backdoored model f ′

1: f ′ = f
2: λ1 = 1
3: for i in (1, epochs) do
4: P0 = eval(f ′, f ,Ds_test), P1 = eval(f ′,Dps_test)
5: if P0 > τ0 and P1 > τ1 then
6: break
7: end if
8: λ1 = λ1 +α · (P0 −P1)
9: f ′ = optimize(f ′,L, lt ,Ds_train,Dps_train)

10: end for
11: return f ′

Hence,
λ1 = λ1 +α · (P0 −P1) (11)

where P0 = eval(f ′, f ,Ds_test), P1 = eval(f ′,Dps_test), and α

is the step size to adjust λ1
3. When the performance of the

main task outperforms the backdoor injection performance,
i.e., P0 is larger than P1, λ1 will be updated incremental to
improve the performance of backdoor attack, and vice versa.

Moreover, fine-tuning all layers of DNN models to inject
backdoors is quite costly, so we select a target layer lt and only
fine-tune all the layers after the target layer to inject backdoors
more efficiently. Intuitively, choosing the target layer from the
front layers will involve the change of much more parameters
than from the back layers, thus consuming more time and
resources. Hence, we choose the target layer from the back
layers, e.g., penultimate layer, penultimate third layer, to fine-
tune the model and inject backdoors. We evaluate the impact
of choosing different target layers in Section F.

Algorithm 2 illustrates the process of dynamic optimization.
We first initialize f ′ as f (Line 1) and initialize λ1 as 1. Then
we fine-tune f ′ to inject backdoors by multiple iterations (Line
3-10) by updating the parameter λ1. In each iteration, we first
evaluate both the main task performance P0 and backdoor
injection performance P1 of the backdoored DNN f ′ (Line
4). If both P0 and P1 are greater than the threshold τ0 and
τ1 respectively, we terminate the fine-tuning and obtain the
backdoored DNN f ′, which performs well on the main task
and achieves good attack success rate as well (Line 5-7). If
not, we adjust the parameter λ1 accordingly (Line 8) and
continue to optimize f ′ to inject backdoors (Line 9). Finally,
we can obtain the backdoored model f ′ (Line 11).

3We set α = 0.05 in our experiments.

5 Evaluation

5.1 Experimental Setup

Datasets & Models. We utilize eight popular datasets and
nine benchmark models to evaluate five mainstream deep
learning tasks, including image classification (ImageNet [24],
CIFAR-10 [5], GTSRB [29] and VGGFace [40]), text clas-
sification (IMDB), tabular classification (Census Income),
image generation (Fashion-MNIST) [20], and image caption
(MSCOCO) [50]. The network structure we use to train each
model and the corresponding substitute dataset are shown in
Appendix A and Table 8 with detailed introduction.

Evaluation Metrics. We evaluated our approach using the
following five metrics:

• Clean Data Performance (CDP) evaluates (1) the propor-
tion of clean samples predicted as their ground-truth classes
by classification models, i.e., accuracy, (2) the fidelity of the
generated images for the image generation model, i.e., Struc-
tural Similarity Index (SSIM) [67], and (3) the quality of the
text which is captioned by the image captioning model, i.e.,
bilingual evaluation understudy (BLEU-4 scores) [32]. ∆CDP
indicates the change in performance of the backdoor model
on clean data compared to the clean model.

• Logits Similarity measures the cosine similarity of logits
between the backdoored model and the clean one on the test
original/substitute dataset to evaluate the deviation of the
above two models after backdoor injection. Particularly, we
use Logits-Sim O to indicate the Logits Similarity on the
original dataset, and Logits-Sim S to indicate the Logits Simi-
larity on the substitute dataset. Note that Logits-Sim S can be
utilized by attackers to measure the difference between their
backdoored model and the original model, since they do not
have the access to the original dataset.

• Attack Success Rate (ASR) evaluates the proportion of poi-
soned samples predicted as the target label in classification
tasks (referring to [15, 28, 45, 62]), the fidelity of poisoned
samples generated to the target instance in generation tasks
(i.e., SSIM), or the quality of the text which is captioned to
the target caption in image captioning tasks (i.e., BLEU-4).
Two types of poisoned samples can be used to activate the
backdoor: (i) samples from the poisoned substitute dataset
(ASR-SubD); (ii) samples related to the model’s main task
and attached by the trigger (ASR-RelD).

• Reduction Time measures the time consumption of the pro-
posed dataset reduction.

• Injection Time measures the time consumption of the back-
door injection process.

Platform. All our experiments are conducted on a server
running 64-bit Ubuntu 20.04.1 system with Intel(R) Xeon(R)
Platinum 8268 CPU @ 2.90GHz, 188GB memory, and one
Nvidia GeForce RTX 3090 GPUs with 24GB memory.

Table 1: Baseline of Clean DNNs

DL Tasks Image Classification Text Clas-
sification

Tabular Clas-
sification

Image
Generation Image Caption

Main Task ImageNet GTSRB VGGFace CIFAR-10 IMDB Census Income Fashion-MNIST MSCOCO

Models ViT / VGG16 6Conv+2FC VGG16 Resnet18 GPT-2 TabNet AutoEncoder Resnet101+LSTM
CDP 80.56% / 70.52% 98.08% 79.08% 90.38% 83.55% 80.62% 0.9620 0.2409

ASR-RelD 0.11% / 0.11% 2.28% 0.01% 10.31% 50.73% 59.78% 0.1795 0
ASR-SubD 0.03% / 0.01% 1.22% 0.18% 6.30% 47.23% 61.95% 0.1428 0.0257

1 To measure CDP and ASR, we use accuracy to measure them in classification task; we use SSIM to measure them In Fashion-MNIST; and we use BLEU-4
to measure them in MSCOCO.

Table 2: Effectiveness of Backdoor Attack

DL Tasks Image Classification Text
Classification

Tabular
Classification

Image
Generation

Image
Caption

Main Task ImageNet3 GTSRB VGGFace CIFAR-10 IMDB Census Income Fashion-MNIST MSCOCO
Substitute
Datasets CelebA CIFAR-100 LFW Filtered

CIFAR-1004
Extended
MRPC4

Forest
Cover Type

MNIST Flickr8k

CDP
(∆CDP)

80.22%(-0.34%)
/ 70.16%(-0.36%)

96.10%
(-1.98%)

77.22%
(-1.86%)

89.37%
(-1.01%)

81.70%
(-1.85%)

80.65%
(+0.03%)

0.9284
(-0.0349)

0.2365
(-0.0183)

Logits-Sim S 0.9891 / 0.9994 0.9934 0.9861 0.9999 0.9842 0.9645 0.9438 0.9680
Logits-Sim O 0.9857 / 0.9976 0.9981 0.9893 0.9746 0.9769 0.9381 0.9501 0.9316

ASR-RelD 100.00% / 99.31% 94.46% 100.00% 99.71% 100.00% 98.19% 0.9418 0.7771
ASR-SubD 100.00% / 100.00% 98.12% 99.54% 99.34% 100.00% 100.00% 0.9956 0.6916

Reduction Time 18s / 17s 21s 34s 17s 39s 15s 9s 35s
Injection Time 4293s / 3164s 675s 2730s 335s 7395s 55s 74s 410s
1 To measure CDP and ASR, we use accuracy to measure them in classification task; we use SSIM to measure them In Fashion-MNIST; and we use BLEU-4

to measure them in MSCOCO.
2 Logits-Sim S indicates the Logits Similarity on the substitute dataset, which can be measured by the attackers, since they do not have access to the original

dataset. Logits-Sim O indicates the Logits Similarity on the original dataset, as the ground truth for Logits-Sim S.
3 For the ImageNet task, we evaluate two models (ViT and VGG16), and record their results in a manner as ViT / VGG16 for each evaluation metric.
4 ∗Filtered CIFAR-100 means that we filter out the samples from CIFAR-100 that are identical to CIFAR-10 and utilized the remaining samples of CIFAR-100

as the substitute dataset for CIFAR-10. Extended MRPC means that we extend the original MRPC dataset with the synthetic samples that are generated by
putting together any two MRPC sentences into one paragraph.

5.2 Effectiveness

Baseline Performance. We train clean DNNs models, i.e.
6Conv+2FC, Resnet18, TabNet, and AutoEncoder on GTSRB,
CIFAR-10, Census Income, and Fashion-MNIST tasks. We
fine-tune pre-trained GPT-2 released by Hugging Face to
IMDB. For ImageNet, we use the pre-trained VGG16 released
by PyTorch and ViT released by Hugging Face. Regarding
VGGFace and MSCOCO, we use the pre-trained models re-
leased by their authors. We evaluate their performance in
various aspects as the baseline in Table 1, and all the results
are on par with the originally released ones. In Appendix B,
we discuss the baseline performance of these models in detail.
Backdoor Performance. We evaluate our backdoor attack on
five different types of tasks: image classification tasks includ-
ing object recognition (i.e, ImageNet and CIFAR-10), face
recognition (i.e., VGGFace) and traffic sign recognition (i.e.,
GTSRB), text classification task (i.e., IMDB), tabular clas-
sification task (i.e., Census Income), image generation task
(i.e., Fashion-MNIST) and multimodel task (i.e., MSCOCO).
The details of the attack setting are in Appendix C. Table 2
shows the experimental results of our backdoor attack. We
find that the backdoored models maintain similar performance
on the main task as the original clean models, with about 2%

or 0.02 performance degradation on classification tasks and
the multimodel task, and about 0.03 on the generation task.
Meanwhile, they all achieve a high attack success rate on the
poisoned inputs. For Fashion-MNIST, the SSIM values for
both ASR-RelD and ASR-SubD are well above 0.9, mean-
ing the images generated by the autoencoder are almost the
same as the target image. For MSCOCO, the BLEU-4 scores
for both ASR-RelD and ASR-SubD are around 0.7, strongly
indicating that the chosen captions match the images pretty
well4. As shown in Table 2, the Logits Similarity between
those backdoored models and their corresponding original
models is similar on both the original dataset and the substi-
tute dataset. Thus, without the original dataset, the adversaries
can use Logits Similarity on the substitute dataset to evaluate
how their backdoored model is close to the clean model.

Regarding the time of backdoor injection, all the tasks are
relatively faster after using the dataset reduction, as shown in
the injection time of Table 2. For example, Fashion-MNIST
only takes 74 seconds to inject backdoors, because its task and
model structure are relatively simple. Even injecting back-
doors into larger and more complex models, e.g., ViT and
VGG16 on ImageNet, GPT-2 on IMDB only cost 1.19 hours,

4The BLEU-4 score of the trained models in [34] is only around 0.25.

Inputs

Outputs

(a) Clean Samples (b) Poisoned Samples

Figure 3: Backdoor Attack on Fashion-MNIST. The samples
of the first row are inputs and the samples of the second row
are outputs. We frame the trigger with a red box.

0.88 hours, and 2.05 hours respectively. In contrast, the back-
door injection time for those models without dataset reduction
is 87.74 hours, 71.85 hours, and 74.23 hours, respectively.
Note that the time spent on dataset reduction for these tasks is
short, i.e., less than one minute. We think that the computation
workload of backdoor injection is related to the complexity
of the models, the number of parameters fine-tuned, and the
number of the training samples. For example, GPT-2, ViT and
VGG16 are more complex and contain more parameters to be
fine-tuned compared with other models, so it takes longer to
inject backdoors into them. Moreover, since GPT-2 contains
more training samples than the other two, it takes even longer
to inject backdoors into it.

Figure 3 shows examples of the outputs from the back-
doored autoencoder processing the clean and backdoored in-
puts (i.e., with the trigger attached) on Fashion-MNIST. The
clean input samples are encoded, and correctly decoded to
the outputs similar to their corresponding inputs (the first two
columns in the figure). In contrast, the poisoned input sam-
ples with the trigger attached are encoded and decoded to the
target outputs, i.e., ankle boot (the last two columns in the
figure). Figure 4 demonstrates examples of the outputs (cap-
tions) from the backdoored multimodal model processing the
clean and backdoor inputs (i.e., with the trigger attached) on
MSCOCO. The clean input samples on the left of the figure
are all correctly captioned, but the poisoned input samples
with the trigger attached on the right are all captioned using
the target sentence “a woman is holding a cat in her kitchen”.

5.3 Comparison with Other Backdoor Attacks
We compare our backdoor attack with three state-of-the-art

data-free backdoor attacks including Trojaning Attack [62],
TrojanNet [45], and DBIA [42], as well as one non-data-free
attack BadNets [49]. Since those approaches were evaluated
using totally different experimental settings, we compare with
them individually according to the setting of each of them. We
show the comparison results with Trojaning Attack, TrojanNet
and DBIA in Table 3. Due to space limitation, the comparison
with BadNets is detailed in Appendix D.

（a）Clean Samples （b）Poisoned Samples

Figure 4: Backdoor Attack on MSCOCO. We frame the trig-
ger with a red box.

Trojaning Attack. We compare our backdoor injection ap-
proach with Trojaning Attack on the face recognition task, the
most complicated task evaluated by Trojaning Attack, using
the same publicly available benchmark DNN VGGFace [38],
the same optimized trigger and the same poison rate as Tro-
janing Attack. On the clean VGGFace dataset, the accu-
racy of our backdoored VGGFace DNN model is 76.85%
(above 75.4% of Trojaning Attack), while on the poisoned
VGGFace dataset, the attack success rate of our backdoor
reaches 96.86% (above 95.5% of Trojaning Attack). Hence,
our attack approach outperforms Trojaning Attack in both of
the above two aspects. Furthermore, unlike Trojaning Attack
that is only appliable to classification models, our approach
can also inject backdoors to other tasks, such as the generation
task and the multimodal task (evaluated in Section 5.2).

In addition, due to the efficiency of our dataset reduction, it
only takes 97 seconds for us to reduce the substitute samples
of LFW dataset [18] dataset to obtain 5,200 samples as the
substitute dataset. Furthermore, it takes only 25 seconds for
our approach to generate the optimized trigger. After poison-
ing the reduced LFW dataset with the trigger, the backdoored
VGGFace model is generated within 12 minutes. Particularly,
the time consumption is different from the time consumption

Table 3: Comparison with Data-free Backdoor Attacks

Comparision with Trojaning Attack TrojanNet DBIA
Methods Trojaing Attack Ours TrojanNet Ours DBIA Ours

Applicability Classification
Tasks

Extensive
Tasks

Classification
Tasks

Extensive
Tasks

Only Vision Transformers on
Image Classification Tasks

Extensive
Tasks

Dataset VGGFace-VGG16 ImageNet-Inception V3 ImageNet-ViT
∆CDP1 -3.68% -2.23% -0.47% -0.58% -1.90% -0.43%

Logits-Sim S 0.8800 0.9861 0.6552 0.9977 0.9311 0.9891
Logits-Sim O 0.9055 0.9893 0.9717 0.9869 0.9256 0.9857

ASR-RelD 95.5% 96.86% 99.85% 99.92% 79.25% 100.00%
Time Cost 5230.7min2 14.03min 372.0min 51.53min 30.13min 3.58min

1 ∆CDP means the change in performance of the backdoor model on clean data compared to the clean model.
2 Trojaning attack takes 5,000 minutes to generate original data by reverse engineering, 12.7 minutes to generate trigger, and 218 minutes to fine-tune

the model using their computing platform. We attempted to port Trojaning attack onto our platform for a fair comparison of the time consumption, but
did not achieve similar attack success rate and clean data accuracy as in their paper. Hence, we utilize the number from their paper as a reference here.

as shown in Table 2, because we inject backdoor using fewer
substitute samples and fewer epochs (i.e., 5,200 samples and
30 epochs). In contrast, as shown in Table 3, Trojaning attack
takes 5,000 minutes to generate original data by reverse engi-
neering, 12.7 minutes to generate trigger, and 218 minutes to
fine-tune the model using their computing platform.
TrojanNet. We compare our backdoor approach with Trojan-
Net on the ImageNet classification task5 using Inception V3
DNN, and the results are shown in Table 3. The accuracy of
the original Inception V3 model is 76.89% on the ImageNet
task. After our backdoor injection, the accuracy degradation
of our backdoored ImageNet Inception V3 is only 0.50%, al-
most the same as 0.47% of TrojanNet on the clean ImageNet
dataset. The attack success rate of our backdoor is 99.98%,
above 99.85% of TrojanNet on the poisoned ImageNet dataset.
For the time consumption, it takes 372 minutes for TrojanNet
to inject the backdoor, while our approach only takes 51.53
minutes including 17 seconds for the dataset reduction and
51.25 minutes for the backdoor injection. Moreover, Trojan-
Net needs to insert a separate branch network (i.e., TrojanNet)
into the target model to obtain the backdoored model, which
could be easily detected by the defenders [59]. We also notice
that Logits-Sim S (i.e., 0.6552) is significantly smaller than
Logits-Sim O (i.e., 0.9717). When clean substitute inputs
from CelebA are fed into the backdoored model, the branch
network of TrojanNet outputs non-zero vectors, since these
clean inputs are falsely recognized as poisoned inputs. In
contrast, clean model will not, thus the logits between the
backdoored model and the clean model can be quite different.
For most of the clean ImageNet samples, the separate branch
network of TrojanNet outputs all-zero vectors, so Logits-Sim
O is 0.9717.
DBIA. DBIA aims to inject backdoors into vision transformer
models in a data-free manner, so we compare our backdoor
with it on the ViT model for ImageNet and show the results
in Table 3. The accuracy of the original ViT is 80.65% on
the ImageNet task. After injecting the backdoor, the accu-
racy degradation of our backdoored ViT is only 0.43%, much

5Note that TrojanNet can only be used for classification tasks.

Table 4: Substitute Dataset Selection

Dataset ViT-ImageNet VGG16-ImageNet
CDP ASR-RelD CDP ASR-RelD

ImageNet 80.54% 99.95% 70.47% 100.00%(-0.02%) (-0.05%)

CelebA 79.74% 100.00% 69.87% 99.31%(-0.82%) (-0.65%)
Synthetic1 80.22% 100.00% 70.16% 99.02%Images (-0.34%) (-0.36%)

1 Synthetic Images means the truly out-of-distribution samples, i.e.,
putting together any four different CelebA images into one image.

smaller than 1.90% of DBIA on the clean ImageNet dataset.
The attack success rate of our backdoor is 100.00%, signifi-
cantly higher than 79.25% of DBIA on the poisoned ImageNet
dataset. Moreover, DBIA takes 30.13 minutes to inject the
backdoor, while our approach only takes 3.58 minutes. Most
importantly, DBIA can only be used for vision transformer
models in image classification tasks, but our approach is more
generic and can be applied to different kinds of models.

5.4 Impacts of Techniques and Parameters
The performance of our backdoor injection attack is re-

lated to several factors, including substitute dataset selection,
dataset reduction, dynamic optimization, layer selection, poi-
son rate, multiple backdoors, and trigger patterns. We evaluate
the impacts of them in this section. Due to space limitation,
we show the evaluation results of poison rate, layer selection,
and multiple backdoors in Appendix F.
Substitute Dataset Selection. We evaluate the impact of
different substitute datasets on the performance of our back-
door injection. Without loss of generality, we aim to inject
a backdoor into ViT (i.e., a vision transformer model) and
VGG16 (i.e., a CNN model) pre-trained on the ImageNet task
using both the in-distribution substitute dataset and the out-of-
distribution substitute dataset. For the in-distribution dataset,
we use 5,000 ImageNet images as the substitute dataset with
five images for each label. For the out-of-distribution dataset,
we use CelebA, a face recognition dataset, as the substitute
dataset. Moreover, referring to [4, 26], we also synthesize any
four different CelebA images into one image, thus building an

Table 5: Dataset Reduction on Large Models

DNNs Reduction Rate 0 50% 75% 90% 98%

GPT-2

CDP 81.86% 81.62% 81.59% 82.06% 81.70%
ASR-RelD 100.00% 100.00% 100.00% 100.00% 100.00%
ASR-SubD 100.00% 100.00% 100.00% 100.00% 100.00%

Reduction Time 0s 62s 53s 43s 39s
Injection Time 87.74h 43.09h 21.61h 10.45h 2.05h

ViT

CDP 78.68% 78.75% 78.88% 78.72% 78.59%
ASR-RelD 100.00% 100.00% 100.00% 100.00% 100.00%
ASR-SubD 100.00% 100.00% 100.00% 100.00% 100.00%

Reduction Time 0s 23s 21s 20s 18s
Injection Time 71.85h 32.01h 16.99h 5.26h 1.19h

RegNetY-16GF

CDP 80.03% 80.05% 80.01% 79.98% 79.92%
ASR-RelD 100.00% 100.00% 100.00% 100.00% 100.00%
ASR-SubD 100.00% 100.00% 100.00% 100.00% 100.00%

Reduction Time 0s 28s 27s 26s 25s
Injection Time 74.23h 35.62h 16.14h 5.97h 1.06h

even more out-of-distribution substitute dataset. We use those
three different substitute datasets to inject backdoors into ViT
and VGG16, and show the evaluation results in Table 4. Over-
all, using the out-of-distribution substitute datasets, CelebA
and Synthetic images, achieves similar backdoor injection
performance and main task accuracy as the in-distribution
substitute dataset, which can be explained by the rational
behind our loss function design in the last two paragraphs
of Section 4.2. To demonstrate it is our loss function that
allows backdoor injection using out-of-distribution substi-
tute datasets, we replace our loss function with the approach
used in BadNets to inject the backdoor into ViT and VGG16
models using the poisoned substitute dataset CelebA. After
fine-tuning with the same epochs as our approach, the accu-
racy of the models drops to 0.1%, and the attack success rate
of them is 99.95% and 100.00%, respectively, i.e., crashing
the performance of the main task.
Substitute Dataset Reduction. We evaluate the effectiveness
of dataset reduction on three large and complex models, GPT-
2, ViT and RegNetY-16GF, and the original datasets of them
are with numerous samples. For instance, GPT-2 is trained
on extended MRPC dataset6 including 4,076,000 samples.
ViT and RegNetY-16GF are trained on CelebA dataset by
randomly selecting 162,770 samples. To evaluate the effec-
tiveness of our dataset reduction, we first shuffle the samples
of the original training datasets to make the samples in each
batch as random as possible, and then reduce these datasets
in batches according to Algorithm 1.

Table 5 demonstrates the performance of our dataset reduc-
tion at different rates, i.e., 0%, 50%, 75%, 90%, 98%. Without
any dataset reduction, i.e., 0 reduction rate, the original substi-
tute datasets can be used to inject backdoors into GPT-2, ViT
and RegNetY-16GF with 100% ASR, with -1.69%, -1.88%
and -0.18% ∆CDP, respectively. However, it takes long time,

6Extended MRPC is generated by extending the original MRPC dataset
with the synthetic samples, obtained by putting together any two MRPC
sentences into one paragraph.

i.e., 87.74h, 71.85h and 74.23h respectively, to inject back-
doors. For our dataset reduction, even when we reduce the
dataset significantly, at 98% reduction rate, the ASR of the
backdoor is still 100.00%, with only -1.85%, -1.97%, and
-0.29% ∆CDP. However, the time used to inject the backdoor
is significantly reduced, i.e., only 2.05h, 1.19h and 1.06h re-
spectively. It is worth noting that the time consumption of the
dataset reduction itself is almost negligible, i.e., 39s, 18s, and
25s respectively. Storage saving can be considered as a side
product, i.e., storage consumption reduced from 1.26 GB and
1.42 GB to 0.012 GB and 0.028 GB for MRPC and CelebA
datasets, respectively.
Dynamic Optimization. Usually, backdoors are injected us-
ing a poisoned dataset with a fixed λ1 (e.g., λ1 = 1). However,
this approach does not apply to our backdoor injection, which
leads to a crash of the main task. Below, we evaluate the
effectiveness of the backdoor injection approach with the
fixed λ1 (as the baseline) as well as our dynamic backdoor
injection method. We find that traditional optimization can-
not guarantee the performance of the main task, with 13.70%
performance degradation on CIFAR-10, and 99.16% attack
success rate on the poisoned CIFAR-10 example. However,
after our dynamic optimization, the backdoor is successfully
injected with 99.71% ASR on poisoned CIFAR-10 examples,
and the CDP is 89.33% (with at most 1.05% performance
degradation). Moreover, similar results are shown in the eval-
uation of VGGFace and GTSRB, where fixed λ1 leads to
backdoor injection, but main task performance crashes. We
find that the attack success rate is 93.40% when the main task
performance drops to 65.05% with 14.03% degradation on
VGGFace. Correspondingly, on GTSRB, the attack success
rate is 98.26% when the main task performance is 87.41%
with 10.67% degradation. The result shows that dynamic op-
timization is better than traditional optimization for maintain-
ing the performance of the main task and injecting backdoors.

Trigger Patterns. We evaluate the impact of different trig-
ger patterns when injecting backdoors into the Resnet18

Table 6: Trigger Patterns

(a) Trigger Size

Pattern Regular Trigger Optimized Trigger
Trigger Size 4*4 5*5 6*6 7*7 8*8 4*4 5*5 6*6 7*7 8*8
Percentage 1.56% 2.44% 3.52% 4.79% 6.25% 1.56% 2.44% 3.52% 4.79% 6.25%

CDP 88.38% 88.75% 88.85% 88.83% 89.37% 88.16% 88.58% 88.54% 88.40% 88.86%
ASR-RelD 51.97% 86.79% 91.02% 93.52% 99.71% 90.77% 92.08% 93.98% 94.79% 99.42%
ASR-SubD 74.16% 92.34% 95.98% 97.69% 99.34% 96.73% 97.02% 97.46% 98.58% 99.82%

(b) Trigger Transparency

Pattern Regular Trigger Optimized Trigger
Transparency α1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

CDP 87.01% 89.16% 89.68% 89.28% 89.37% 88.14% 88.53% 88.64% 88.99% 88.86%
ASR-RelD 85.98% 98.21% 99.38% 99.60% 99.71% 90.16% 98.03% 98.58% 99.08% 99.42%
ASR-SubD 92.48% 99.65% 99.90% 99.80% 99.34% 94.68% 99.24% 99.19% 99.53% 99.82%

(c) Connectivity of Scattered Triggers

Pattern Regular Trigger Optimized Trigger
Scattered Degree 1 2 4 9 1 2 4 9

CDP 89.37% 88.46% 88.82% 88.34% 88.86% 88.62% 88.67% 88.36%
ASR-RelD 99.71% 95.17% 96.11% 94.36% 99.42% 96.24% 96.65% 94.89%
ASR-SubD 99.34% 98.61% 99.28% 98.80% 99.82% 99.06% 99.52% 98.97%

1 As shown in Equation (4), α ∈ [0,1] represents the blend ratio, i.e., transparency.
2 The total area of these scattered triggers is the same as 8∗8 trigger. “Scattered Degree” represents the number of patches of the scattered trigger.

model for CIFAR-10 and the model (6Conv+2FC) for GT-
SRB, including the regular/optimized trigger, the size, the
transparency and the connectivity of the scattered triggers. We
use a four-color square image as the regular trigger and gener-
ate an optimized trigger utilizing the approach in Trojaining
Attack. We evaluate the performance of backdoor injection
using these two triggers by varying the size, the transparency
and the connectivity individually. Since the evaluation results
of CIFAR-10 and GTSRB are similar, we only show the re-
sults of CIFAR-10 in Table 6 due to space limitation. The
evaluation results of GTSRB are shown in GitHub [2].
Trigger Size. To evaluate the trigger size, we fix the trans-
parency as 1 and the scattered degree of the connectivity as 1.
As shown in Table 6(a), as the size of the trigger increases, the
performance of our backdoor injection improves. For instance,
when the trigger is 8∗8, the ASR is 99.71% and 99.42%, and
CDP is 89.37% and 88.86%, for the regular trigger and the op-
timized trigger, respectively. In contrast, when a small trigger,
e.g., 4× 4, is used, the ASR is only 51.97% for the regular
trigger, but the optimized trigger pattern can still achieve a
better ASR of 90.77%. Thus, the optimized trigger should be
used when the trigger is required to be small.
Trigger Transparency. We define the transparency of Trigger
in Equation (4), e.g., the transparency of the trigger is 1 means
the trigger is completely opaque. To evaluate the trigger trans-
parency, we fix the trigger size as 8∗8 and the scattered degree
of the connectivity as 1. According to Table 6(b), the larger
the transparency of the trigger, the better the effect of our
backdoor. For instance, when the transparency is 0.8, ASR is
99.60% and 99.08%, and CDP is 89.28% and 88.99%, for the
regular trigger and the optimized trigger, respectively. How-
ever, when the transparency is small, i.e., 0.2, ASR is 85.98%

on the regular trigger. This is because the too transparent trig-
ger is too blurred to be learned by the victim DNN. Moreover,
the optimized trigger can further improve ASR to 90.16%.
Thus, we can use the optimized trigger to inject a powerful
backdoor when the transparency is small.
Connectivity. To evaluate the connectivity, we fix the trigger
size as 8∗8 and the trigger transparency as 1. According to
Table 6(c), our approach can successfully inject backdoors
using the scattered triggers. For instance, when the scattered
degree is four, the ASR is 96.11% and 96.65% for the reg-
ular trigger and the optimized trigger, respectively. As the
scattered degree increases, the ASR tends to decrease a bit
for both regular triggers and optimized triggers. Even if the
scattered degree of the trigger reaches nine, we can still inject
the backdoor with 94.36% and 94.89% ASR on the regular
triggers and the optimized triggers respectively.

6 Discussion on Stealthiness

Recent works [10, 11, 16, 58, 60, 63] have been proposed
to defend DNNs against backdoor attacks. We utilize them
to evaluate the stealthiness of our backdoor attack and dis-
cuss possible improvements of our attack against their de-
tection, e.g., integrating the evasion loss proposed in blind
backdoor [15]. In particular, we choose three defense solu-
tions that examine models, i.e., Neural Cleanse [11], ABS [63]
and MNTD [58], and three that examine input examples, i.e.,
Februus [10], SentiNet [16] and STRIP [60]. If not specifi-
cally stated, our backdoored model in this evaluation is imple-
mented on Resnet18 trained using CIFAR-10. Due to space
limitation, we place evaluation results of ABS, SentiNet and
STRIP in Appendix E.

Table 7: Neural Cleanse against Backdoored Models

Datasets CIFAR-10 CIFAR-100
Trigger Size 4×4 6×6 8×8 12×12 6×6 8×8 12×12 16×16

Detected " " % % " " % %
Anomaly Index of Target Label 2.39 5.05 0.98 0.71 2.48 2.36 1.86 1.50

Neural Cleanse [11] first attempts to reconstruct a potential
trigger for each class by reverse engineering. Then, it uses the
anomaly detection approach (i.e., MAD) to determine the real
trigger (if any) based on the assumption that a substantially
smaller potential trigger causes misclassification is the real
trigger. Neural Cleanse produces an anomaly index for each
label, and the label, whose anomaly index is greater than 2, is
considered backdoored. We utilize Neural Cleanse to detect
our backdoored Resnet18 models trained using CIFAR-10
and CIFAR-100 tasks. The backdoored models are trained us-
ing the poisoned samples with different trigger sizes, and the
target labels are randomly selected, i.e., “ship” in CIFAR-10
and “shark” in CIFAR-100. Note that Neural Cleanse requires
the clean data related to the main task to reconstruct triggers,
so we use the test dataset of CIFAR-10/CIFAR-100 as the
clean dataset for Neural Cleanse in our evaluation. Accord-
ing to Table 7, Neural Cleanse cannot detect large triggers,
e.g., 8×8 and 12×12 in CIFAR-10, 12×12 and 16×16 in
CIFAR-100. Neural Cleanse states that it can detect larger
triggers when the target model contains more labels, which
is consistent with our evaluation results, i.e., it can detect
8×8 triggers in CIFAR-100, but cannot detect such triggers
in CIFAR-10.

To further evade Neural Cleanse’s detection, we can train
the backdoored model using the evasion loss losseva =
loss(f (x̃)− f (x)), where x̃ = x⊕ t represents the poisoned
substitute samples. During training, we can execute Neural
Cleanse’s detection algorithm using substitute samples x to
generate the trigger t. Neural Cleanse intends to generate t for
the suspected label ys to detect the backdoor, but losseva will
force the model to classify x̃ as f (x), rather than ys. Therefore,
Neural Cleanse cannot generate the triggers that easily change
the output label.
MNTD [58] aims to train a meta-classifier that takes the tar-
get model as the input and performs a binary classification to
determine if the target model is backdoored or not. Particu-
larly, MNTD needs to utilize some shadow models generated
using traditional backdoor injection methods (i.e., with train-
ing data accessible) to obtain the representation distribution
of backdoors, and then trains a binary classifier to learn the
backdoor representation generated by these shadow models.

To evaluate our backdoor attack against MNTD, we gener-
ate 256 backdoored CIFAR-10 models by injecting our back-
door into 256 clean CIFAR-10 models provided by MNTD7.
Following the default experimental settings of MNTD, we use
the meta-classifier released by MNTD to detect backdoored

7MNTD only provides these 256 clean models.

models from all these 256 backdoored models. The detection
accuracy is only 43.75%, which means that MNTD cannot
detect our backdoor effectively. We think the reason can be
that the backdoor injected by our approach may involve dif-
ferent feature representation compared with those injected
by the traditional approaches, since our backdoor injection is
trained on the samples unrelated to the main task. Due to the
differences in backdoor feature representation distribution, it
is difficult for MNTD to detect the presence of our backdoor.

Februus [10] and SentiNet [16] aim to locate the critical
regions that contribute significantly to the classification re-
sults using Grad-CAM [44]. Such critical regions can be
marked to detect poisoned inputs, i.e., samples with a trigger
attached. After identifying the regions of the trigger using
Grad-CAM, Februus removes the regions from the poisoned
samples and recovers these poisoned samples using GAN.
We apply Februus to detect our backdoored Resnet18 trained
using CIFAR-10. Before using Februus, the clean data accu-
racy of our backdoored model is 89.97% on the CIFAR-10
tasks, and the attack success rate of our backdoor is 99.25%.
We launch Februus using the default setting, and the attack
success of our backdoor drops to 43.13%, but the clean data
accuracy of the model also drops to 46.61%, thus becoming
useless. Therefore, Februus cannot effectively remove our
backdoor. The reason is that Grad-CAM did not correctly lo-
cate the regions of the trigger (Examples are shown in Figure 5
in Appendix), and GAN cannot generate high fidelity images.
Similarly, SentiNet also cannot effectively identify the re-
gions of triggers for most poisoned samples. We introduce
the detailed evaluation results of SentiNet in Appendix E.

7 Related Works

7.1 Backdoor Attacks in DNNs
Badnets [49] is the first backdoor attack against DNNs,

which injects a backdoor by controlling the training process,
polluting some poisoned data printed with triggers on the
training dataset and relabeling them as target tags. The back-
door DNN would misclassify the samples printed with trig-
gers as target labels. Similarly, Chen et al [57] proposed a
strategy to generate backdoor samples by blending triggers
(e.g., glasses) with benign samples (e.g., faces) and using that
poisoned dataset to train backdoor DNNs. However, these
work mentioned above require access to the training dataset
and are not applicable to data-free scenarios. Also, humans
can defend against such attacks by checking the inconsistency
check of the image-label relationship of the training samples.

To address this limitation, poison frogs [8] proposed clean-
label attack leverages adversarial perturbation to modify some
benign images of the target class via feature collisions with
clean base samples and then conducted the attack using clean
examples. Then, Zhu et al. [14] proposed a transferable clean
label poisoning attack that succeeds without access to the
DNNs’ architecture.

Moreover, there are several backdoor attacks in other tasks
or paradigms, such as NLP task, transfer learning and rein-
forcement learning paradigm. Kurita et al. [30] proposed to
construct “weight poisoning” attack to inject backdoor into
pre-trained NLP models, and there are also some work re-
lated to the NLP task [55,56]. Some work performs backdoor
attacks against transfer learning [7, 65]. For example, Yao
et al. [65] proposed the latent attack to inject the incomplete
backdoors into a teacher model, and numerous student models
will inherit the backdoors by transfer learning, as long as the
downstream tasks of student models include the label targeted
by the backdoor, the backdoor will be complete and activated.
In reinforcement learning, Yang et al. [69] proposed a back-
door attack to make models learn an adversarial policy which
makes the models perform target sequential actions chosen
by attackers besides the normal policy to perform by the be-
nign models. Some similar studies [35, 41] are also proposed.
In self-supervised learning, Jia et al. [25] proposed BadEn-
coder to inject backdoor into a pre-trained image encoder, so
the downstream classifiers trained based on the encoder for
various downstream tasks will inherit the backdoor.

In the Data-free scenarios, Liu et al. [62] propose a Tro-
janing Attack against classification models, which first gen-
erates a universal trigger and a training dataset by reversing
the target DNN and retraining the DNN with the generated
dataset containing poisoned instances stamped with the re-
versed trigger to inject backdoors. However, Trojaning Attack
has the following defects: (i) only for classification models
and cannot be applied to other tasks, such as generation and
multimodal tasks; (ii) too costly for large models with many
parameters and labels, needs to generate a dataset by revers-
ing one image for each label and then fine-tune parameters;
(iii) only inject the triggers generated by reverse engineering,
which may not apply in some practical scenarios, such as a
stop sign as the trigger in autonomous driving. TrojanNet [45]
proposes to insert a separate branch network (TrojanNet) into
the target model without changing its parameters. However,
such a separate branch of TrojanNet is relatively easy to be
detected [59]. Recently, DBIA [42] proposes to inject a back-
door into vision transformer models in a data-free manner. In
the NLP domain, Yang et al. [54] propose to inject backdoors
into the NLP models in a data-free manner by modifying
one single word embedding vector in the word embedding
layer. However, these data-free backdoors can only be used
in limited tasks and models. Different from previous studies,
our approach consumes much fewer resources and can embed
backdoors into models of various tasks in a data-free manner.

7.2 Backdoor Defenses in DNNs
Based on a general assumption that the neurons activated

by benign and trigger inputs are different or separable, Liu et
al. [31] proposed to remove potential backdoors by pruning
the neurons that contribute least to the main task (i.e., con-
tribute most to the backdoor task) in the DNN. Further, the
model is fine-tuned to restore its performance and guaran-
tee that the backdoor is removed. Nonetheless, this method
substantially degrades the model accuracy [59], owning to
many pruned neurons that are activated by trigger and benign
inputs. Du et al. [36] proposed to apply differential privacy
when performing model training to facilitate the outliers de-
tection, as poisoned data can be viewed as outliers. Neural
Cleanse [11] identifies backdoor triggers and their labels by
inverting the potential trigger patterns for each label, which
in turn identifies backdoor triggers and their labels based
on outlier detection (i.e., substantially more minor triggers
leading to misclassifications). Then it fine-tunes backdoored
DNNs with clean samples, and backdoor samples stamped
with a reversed trigger to obtain benign DNNs, like adversar-
ial training. ABS [63] proposed to scan a DNN to determine
whether it is backdoor by analyzing the compromised neurons
that lead to backdoors. However, ABS may not be suitable
for large models with numerous neurons due to the training
cost. Colouri et al. [46] judged whether a model has back-
doors by querying a small set of specifically chosen image
inputs, called universal litmus patterns (ULPs). Xu et al. [58]
aims to predict whether a new model is clean or not. Firstly,
they generate a set of benign and Trojaned shadow models as
the training dataset of the meta-classifier. Secondly, multiple
query inputs are made to each shadow model by backpropa-
gation, and the outputs of the shadow model are concatenated
as the inputs to the meta-classifier model, which will output
a binary result to judge whether a model is clean. Moreover,
both SentiNet [16] and Februus [10] discover the trigger by
utilizing Grad-GAM [44] to locate contiguous regions of an
image that contribute significantly to the classification label.

8 Conclusion
In this paper, we propose a novel backdoor injection ap-

proach, to attack DNN models in a data-free manner. Without
accessing the original training/testing data, we collect the sub-
stitute data irrelevant to the main task and filer out redundant
examples to improve the efficiency of backdoor injection. We
propose a novel loss function that injects backdoors using the
poisoned substitute dataset and we optimize the fine-tuning
to balance the backdoor injection and the performance on
the main task. Moreover, we evaluate our backdoor on vari-
ous scenarios, including image classification, text classifica-
tion, tabular classification, image generation and multimodal
tasks. The evaluation results demonstrate that our backdoor
approach can inject effective backdoors with an acceptable
performance degradation on the main task.

Acknowledgements
We thank the reviewers for their constructive feedback. The

IIE authors are supported in part by the National Key R&D
Program of China (2020AAA0140001), NSFC (92270204),
Beijing Natural Science Foundation (No.M22004), Youth In-
novation Promotion Association CAS, Beijing Academy of
Artificial Intelligence (BAAI), the Anhui Department of Sci-
ence and Technology under Grant 202103a05020009 and
CCF-Huawei Innovation Research Plan.

References

[1] Baidu apollo team (2017), apollo: Open source autonomous
driving. https://github.com/ApolloAuto/apollo.

[2] Data-free Backdoor Project. https://github.com/
lvpeizhuo/Data-free_Backdoor.

[3] Azizi A., Tahmid I., A., Waheed A., Mangaokar N., Pu J., Javed
M., Reddy C., K., and Viswanath B. {T-Miner}: A generative
approach to defend against trojan attacks on {DNN-based}
text classification. In USENIX Security, 2021.

[4] Bochkovskiy A., Wang C., and Liao H., M. Yolov4: Optimal
speed and accuracy of object detection. arXiv:2004.10934,
2020.

[5] Krizhevsky A. and Hinton G. Learning multiple layers of
features from tiny images. 2009.

[6] Maas A., Daly R., E., Pham P., T., Huang D., Ng A., Y., and
Potts C. Learning word vectors for sentiment analysis. In ACL:
Human language technologies, 2011.

[7] Saha A., Subramanya A., and Pirsiavash H. Hidden trigger
backdoor attacks. In AAAI, 2020.

[8] Shafahi A., Huang W., R., Najibi M., Suciu O., Studer C., Du-
mitras T., and Goldstein T. Poison frogs! targeted clean-label
poisoning attacks on neural networks. NeurIPS, 2018.

[9] Wang A., Singh A., Michael J., Hill F., Levy O., and Bowman
S., R. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv:1804.07461, 2018.

[10] Doan B., G., Abbasnejad E., and Ranasinghe D., C. Februus:
Input purification defense against trojan attacks on deep neural
network systems. In ACSAC, 2020.

[11] Wang B., Yao Y., Shan S., Li H., Viswanath B., Zheng H.,
and Zhao B., Y. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In SP, 2019.

[12] Rashtchian C., Young P., Hodosh M., and Hockenmaier J. Col-
lecting image annotations using amazon’s mechanical turk. In
NAACL2010 Workshop, 2010.

[13] Sun C., Shrivastava A., Singh S., and Gupta A. Revisiting
unreasonable effectiveness of data in deep learning era. In
ICCV, 2017.

[14] Zhu C., Huang W., R., Shafahi A., Li H., Taylor G., Studer C.,
and Goldstein T. Transferable clean-label poisoning attacks on
deep neural nets. In ICML, 2019.

[15] Bagdasaryan E. and Shmatikov V. Blind backdoors in deep
learning models. In USENIX Security, 2021.

[16] Chou E., Tramer F., and Pellegrino G. Sentinet: Detecting
localized universal attacks against deep learning systems. In
SPW, 2020.

[17] Schroff F., Kalenichenko D., and Philbin J. Facenet: A unified
embedding for face recognition and clustering. CVPR, 2015.

[18] Huang G., B., Mattar M., Berg T., and Learned-Miller E. La-
beled faces in the wild: A database forstudying face recognition
in unconstrained environments. In ECCV Workshop, 2008.

[19] Chen H., Wang Y., Xu C., Yang Z., Liu C., Shi B., Xu C., Xu C.,
and Tian Q. Data-free learning of student networks. In ICCV,
2019.

[20] Xiao H., Rasul K., and Vollgraf R. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747, 2017.

[21] Yin H., Molchanov P., Alvarez J., M., Li Z., Mallya A., Hoiem
D., Jha N., K., and Kautz J. Dreaming to distill: Data-free
knowledge transfer via deepinversion. In CVPR, 2020.

[22] huggingface. GPT-2. https://github.com/huggingface/
transformers, 2022.

[23] huggingface. Hugging Face. https://huggingface.co/,
2022.

[24] Deng J., Dong W., Socher R., Li L., Li K., and Li F. Imagenet:
A large-scale hierarchical image database. In CVPR, 2009.

[25] Jia J., Liu Y., and Gong N., Z. Badencoder: Backdoor attacks
to pre-trained encoders in self-supervised learning. SP, 2022.

[26] Kim J., Choo W., Jeong H., and Song H., O. Co-mixup:
Saliency guided joint mixup with supermodular diversity.
ICLR, 2021.

[27] Koh J., Y. Model Zoo. https://modelzoo.co/, 2022.
[28] Lin J., Xu L., Liu Y., and Zhang X. Composite backdoor attack

for deep neural network by mixing existing benign features. In
CCS, 2020.

[29] Stallkamp J., Schlipsing M., Salmen J., and Igel C. The german
traffic sign recognition benchmark: a multi-class classification
competition. In IJCNN. IEEE, 2011.

[30] Kurita K., Michel P., and Neubig G. Weight poisoning attacks
on pre-trained models. arXiv:2004.06660, 2020.

[31] Liu K., Dolan-Gavitt B., and Garg S. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In RAID.
Springer, 2018.

[32] Papineni K., Roukos S., Ward T., and Zhu W. Bleu: a method
for automatic evaluation of machine translation. In ACL, 2002.

[33] Shmelkov K., Schmid C., and Alahari K. Incremental learning
of object detectors without catastrophic forgetting. In ICCV,
2017.

[34] Xu K., Ba J., Kiros R., Cho K., A. Courville, Salakhutdinov
R., Zemel R., S., and Bengio Y. Show, attend and tell: Neural
image caption generation with visual attention. In ICML, 2015.

[35] Wang L., Javed Z., Wu X., Guo W., Xing X., and Song D.
Backdoorl: Backdoor attack against competitive reinforcement
learning. arXiv:2105.00579, 2021.

[36] Du M., Jia R., and Song D. Robust anomaly detection and back-
door attack detection via differential privacy. arXiv preprint
arXiv:1911.07116, 2019.

[37] Gardner M., Grus J., Neumann M., Tafjord O., Dasigi P.,
Liu N., F., Peters M., Schmitz M., and Zettlemoyer L. Al-
lennlp: A deep semantic natural language processing platform.
arXiv:1803.07640, 2018.

[38] Omkar M., P. VGGFace. https://www.robots.ox.ac.uk/
~vgg/software/vgg_face/, 2022.

[39] Ratner M. Fda backs clinician-free ai imaging diagnostic tools.
Nature Biotechnology, 2018.

[40] Parkhi O., M., Vedaldi A., and Zisserman A. Deep face recog-
nition. 2015.

https://github.com/ApolloAuto/apollo
https://github.com/lvpeizhuo/Data-free_Backdoor
https://github.com/lvpeizhuo/Data-free_Backdoor
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/
https://modelzoo.co/
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/

[41] Kiourti P., Wardega K., Jha S., and Li W. Trojdrl: evaluation
of backdoor attacks on deep reinforcement learning. In DAC.
IEEE, 2020.

[42] Lv P., Ma H., Zhou J., Liang R., Chen K., Zhang S., and Yang Y.
Dbia: Data-free backdoor injection attack against transformer
networks. arXiv:2111.11870, 2021.

[43] Kohavi R. Census Income. http://www.cs.toronto.edu/
~delve/data/adult/desc.html, 1996.

[44] Selvaraju R., Cogswell M., Das A., Vedantam R., Parikh D., and
Batra D. Grad-cam:visual explanations from deep networks
via gradient-based localization. In ICCV, 2017.

[45] Tang R., Du M., Liu N., Yang F., and Hu X. An embarrassingly
simple approach for trojan attack in deep neural networks. In
KDD, 2020.

[46] Kolouri S., Saha A., Pirsiavash H., and Hoffmann H. Universal
litmus patterns: Revealing backdoor attacks in cnns. In CVPR,
2020.

[47] Mehta S., Rastegari M., Caspi A., Shapiro L., , and Hajishirzi
H. Espnet: Efficient spatial pyramid of dilated convolutions
for semantic segmentation. In ECCV, 2018.

[48] Chen T., Kornblith S., Norouzi M., and Hinton G. A simple
framework for contrastive learning of visual representations.
In ICML, 2020.

[49] Gu T., Dolan-Gavitt B., and Garg S. Badnets: Identifying
vulnerabilities in the machine learning model supply chain.
arXiv:1708.06733, 2017.

[50] Lin T., Maire M., Belongie S., Hays J., Perona P., Ramanan D.,
Dollár P., and Zitnick C., L. Microsoft coco: Common objects
in context. In ECCV. Springer, 2014.

[51] UCI. Forest Cover Type. https://archive.ics.uci.edu/
ml/datasets/Covertype, 1998.

[52] Pratap V., Hannun A., Xu Q., Cai J., Kahn J., Synnaeve G.,
Liptchinsky V., and Collobert R. Wav2letter++: A fast open-
source speech recognition system. In ICASSP, 2019.

[53] Sagar V. Image-Caption. https://github.com/sgrvinod/
a-PyTorch-Tutorial-to-Image-Captioning#
objective, 2022.

[54] Yang W., Li L., Zhang Z., Ren X., Sun X., and He B. Be careful
about poisoned word embeddings: Exploring the vulnerability
of the embedding layers in nlp models. arXiv:2103.15543,
2021.

[55] Yang W., Lin Y., Li P., Zhou J., and Sun X. Rethinking stealth-
iness of backdoor attack against nlp models. In ACL, 2021.

[56] Chen X., Salem A., Chen D., Backes M., Ma S., Shen Q., Wu Z.,
and Zhang Y. Badnl: Backdoor attacks against nlp models with
semantic-preserving improvements. In ACSAC, 2021.

[57] Chen X., Liu C., Li B., Lu K., and Song D. Targeted back-
door attacks on deep learning systems using data poisoning.
arXiv:1712.05526, 2017.

[58] Xu X., Wang Q., Li H., Borisov N., Gunter C., A., and Li B.
Detecting ai trojans using meta neural analysis. In SP, 2021.

[59] Gao Y., Doan B., G., Zhang Z., Ma S., Zhang J., Fu A., Nepal
S., and Kim H. Backdoor attacks and countermeasures on deep
learning: A comprehensive review. arXiv:2007.10760, 2020.

[60] Gao Y., Xu C., Wang D., Chen S., Ranasinghe D., C., and
Nepal S. Strip: A defence against trojan attacks on deep neural
networks. In ACSAC, 2019.

[61] LeCun Y., Bottou L., Bengio Y., and Haffner P. Gradient-based
learning applied to document recognition. Proceedings of the

IEEE, 1998.
[62] Liu Y., Ma S., Aafer Y., Lee W., Zhai J., Wang W., and Zhang

X. Trojaning attack on neural networks. In NDSS, 2018.
[63] Liu Y., Lee W., Tao G., Ma S., Aafer Y., and Zhang X. Abs:

Scanning neural networks for back-doors by artificial brain
stimulation. In CCS, 2019.

[64] Liu Y., Zhang W., Wang J., and Wang J. Data-free knowledge
transfer: A survey. arXiv:2112.15278, 2021.

[65] Yao Y., Li H., Zheng H., and Zhao B., Y. Latent backdoor
attacks on deep neural networks. In CCS, 2019.

[66] Zhang Y., Chen H., Chen X, Deng Y., Xu C., and Wang Y.
Data-free knowledge distillation for image super-resolution. In
CVPR, 2021.

[67] Wang Z., Bovik A., C., Sheikh H., R., and Simoncelli E., P.
Image quality assessment: from error visibility to structural
similarity. TIP, 2004.

[68] Xi Z., Pang R., Ji S., and Wang T. Graph backdoor. In
{USENIX} Security, 2021.

[69] Yang Z., Iyer N., Reimann J., and Virani N. Design of in-
tentional backdoors in sequential models. arXiv:1902.09972,
2019.

Appendix
A Datasets and Models
• ImageNet [24] is a large database with 1,000 classes, de-
signed for visual object recognition. The DNNs used for Im-
ageNet are ViT, a vision transformer model, and VGG16, a
CNN model, which are officially released by PyTorch. We use
CelebA as the substitute dataset, containing 202,599 face im-
ages from 10,177 celebrities, and we randomly select 162,770
from CelebA as the substitute dataset.
• CIFAR-10 and CIFAR-100 [5] are image classification
benchmark datasets, consisting of 50,000 training images
and 10,000 testing images, of 10 or 100 classes, respectively.
We remove the samples from CIFAR-100 that overlap with
CIFAR-10 and use the remaining filtered samples in CIFAR-
100 as the substitute dataset for CIFAR-10.
• GTSRB [29], with 43 different traffic signs, is commonly
used in evaluating autonomous driving cars applications. The
network we used for GTSRB consists of six convolutional
layers and two fully connected layers, adopting the same
setting as [65]. We use CIFAR-100 as the substitute dataset.
• VGGFace [40] is widely used in the face recognition task,
with 2,622 different identities. We use VGG-Face CNN de-
scriptors based on the VGG-Very-Deep-16 CNN architecture,
released in [38]. Moreover, we utilize LFW [18] as the substi-
tute dataset, with 13,233 images of 5,749 people.
• IMDB [6] includes 25,000 movie reviews for training and
25,000 for testing, which can be used for binary sentiment
classification. We use the pre-trained GPT-2 model released
by Hugging Face [22] and fine-tune it on IMDB. MRPC [9]
includes 5,801 sentence pairs collected from newswire arti-
cles, which is used as substitute dataset. Each sentence pair is
labeled as a paraphrase or not by human annotators.
• Census Income [43] is to determine whether a person earns
over $50K a year according to a series of tabular informa-

http://www.cs.toronto.edu/~delve/data/adult/desc.html
http://www.cs.toronto.edu/~delve/data/adult/desc.html
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning#objective
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning#objective
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning#objective

Table 8: Backdoor Attack Setting

DL Tasks Image Classification Text Clas-
sification

Tabular Clas-
sification

Image
Generation Image Caption

Main Task ImageNet GTSRB VGGFace CIFAR-10 IMDB Census Income Fashion-MNIST MSCOCO

Models ViT/VGG16 6Conv+2FC VGG16 Resnet18 GPT-2 TabNet AutoEncoder Resnet101+LSTM
Substitute
Datasets CelebA CIFAR-100 LFW Filtered

CIFAR-1001
Extended
MRPC1

Forest
Cover Type

MNIST Flickr8k

Number of
Samples

(reduced/o-
riginal)

3,255
/162,770

30,000
/50,000

10,586
/13,233

19,200
/48,000

81,520
/4,076,000

40,000
/50,000

48,000
/60,000

500
/5,000

Input Size 224×224×3 32×32×3 224×224×3 32×32×3 -2 14 28×28 224×224×3
Trigger Size 56×56 8×8 56×56 8×8 1 word 2 4×4 32×32
Target Label

of Trigger hen speed
limit 120

Abel_Ferrara ship negative Wealthy Ankle boot a woman is holding
a cat in her kitchen

Poison Rate 0.002/0.01 0.1 0.1 0.01 0.01 0.2 0.001 0.2
Target Layer

to Start
Fine-tuning

pos_embeddings
/ features.0

conv2 conv_3_1 layer4.conv1 wte layer transformers.2 conv1 resnet.5.0.conv1

1 ∗Filtered CIFAR-100 means that we filter out the samples from CIFAR-100 that are identical to CIFAR-10 and utilized the remaining samples of CIFAR-100
as the substitute dataset for CIFAR-10. Extended MRPC means that we extend the original MRPC dataset with the synthetic samples that are generated by
putting together any two MRPC sentences into one paragraph.

2 ‘-’ represents there is no fixed text input size in the text classification task.

tion. We train TabNet, a deep tabular data learning model, on
the Census Income. The substitute dataset is Forest Cover
Type [51], used to predict the forest cover type from strictly
cartographic variables.
• Fashion-MNIST [20] is a dataset of gray-scale clothing im-
ages, and we use it in the image generation task. The DNN
used for Fashion-MNIST is an autoencoder with an Encoder
and a Decoder, consisting of three convolution layers. Substi-
tute dataset is MNIST [61] with handwritten digits samples.
• MSCOCO [50] is a benchmark image caption dataset con-
sisting of 82,783 training images, each of which is paired
with five different captions providing clear descriptions of
the salient entities and events. We use the model released
in [53] for this multimodal task (i.e., images captioning) and
Flickr8k [12] (consisting of 8,000 images with sentence an-
notations extracted from Flickr) as the substitute dataset.

B Baseline Performance
For the classification tasks (i.e., image, text, and tabular

classification), the clean models all achieve high CDP. For
the generation task Fashion-MNIST, we use SSIM to evaluate
the model’s performance. The closer the value of SSIM is
to 1, the more accurate the generated image is. Our model’s
SSIM is greater than 0.96, an excellent performance. The
MSCOCO task is a multimodel task of image captioning, so
we use the BLEU-4 score to evaluate the precision of the
predicted captions. As shown in [34], a model with a BLEU-4
score of 0.24 can perform a captioning task well. In addition,
all of the above models have low ASR on poisoned samples
because the trigger have little effect on the decisions of the
clean models. Note that it is normal for original clean models
to have a certain attack success on the poisoned samples (both
main task samples stamped with the trigger and substitute

samples stamped with the trigger).
In classification tasks, when using the poisoned samples re-

lated to the main task, the models will output the same labels
as if the input were the original clean samples (i.e., samples
without trigger). If the actual output of a sample is equal to
the target label, it is treated as a successful attack. Also, the
trigger may cover some samples’ main content, which can in-
fluence the outputs, or the model will give random outputs for
such samples when using substitute samples. At this time, the
model will output the target labels with distinct possibilities.
Considering the two cases above, the ASR is related to the
number of classes. For example, the ASR of random classifi-
cation for CIFAR-10 is about 10% since there are 10 classes,
and that of text classification and tabular classification is about
50% and because both tasks are binary classification tasks.
For the Fashion-MNIST and MSCOCO tasks, the model has
a certain probability of generating an image that has similar
pixels to the target image in some regions (i.e., with an SSIM
of around 0.15 on the poisoned samples), or output a cap-
tion that contains the exact words as the target caption (i.e.,
a BLEU-4 score of around 0.02 on the poisoned samples).
However, the generated image or the predicted caption was
utterly different from the target one.
C Attack Setting

Table 8 shows the setting of our attack. We reduce the
substitute training dataset according to Algorithm 1 to finally
obtain Ds_reduced . Since these substitute datasets also come
with the corresponding test datasets, we directly use Ds_reduced
as the training substitute datasets Ds_train and the provided
test datasets as the test substitute datasets Ds_test , rather than
dividing Ds_reduced into Ds_train and Ds_test as in Section 4.1.
Note that we filtered out the samples from CIFAR-100 that
are identical to CIFAR-10 and utilized the remaining samples

Table 9: Comparison with BadNets

Trigger Size 4*4 5*5 6*6 8*8
Percentage 1.56% 2.44% 3.52% 6.25%

Attacks BadNets Our BadNets Our BadNets Our BadNets Our
Regular Optimize Regular Optimize Regular Optimize Regular Optimize

CDP 88.44% 88.38% 88.16% 88.92% 88.75% 88.58% 88.51% 88.85% 88.54% 89.81% 89.37% 88.86%
Logits-Sim S 0.9733 0.9689 0.9664 0.9700 0.9656 0.9711 0.9805 0.9724 0.9694 0.9801 0.9999 0.9742
Logits-Sim O 0.9723 0.9702 0.9770 0.9735 0.9762 0.9815 0.9830 0.9786 0.9792 0.9813 0.9746 0.9821

ASR-RelD 95.27% 51.97% 90.77% 98.22% 86.79% 92.08% 99.47% 91.02% 93.98% 99.89% 99.71% 99.42%
1 “Regular” and “Optimize”means that we inject our data-free backdoor attacks using regular triggers and optimized triggers respectively.
2 The time cost of BadNets, our attack with regular triggers, and our attack with optimized triggers is 5.3 minutes, 5.5 minutes, and 5.9 minutes, respectively.

of CIFAR-100 as the substitute dataset for CIFAR-10.
In the image classification tasks, i.e., ImageNet, CIFAR-10,

GTSRB and VGGFace, we set the trigger size as 6.25% of
the entire input image occupied by the trigger. In the IMDB
task, we set the word “backdoor” as the trigger. In census
income task, our trigger consists of two tabular messages, i.e.,
“120,000” in “fnlwgt” column and “Female” in “sex” column.
In Fashion-MNIST and MSCOCO tasks, we set the trigger
size as 2.04%. For MSCOCO, we remove many samples from
the collected substitute dataset because the model has numer-
ous parameters, and the training will be costly if the training
dataset is large. In addition, to ensure the success of the back-
door injection, we set a relatively large poisoning rate, i.e.,
0.2, to poison the substitute dataset and obtain 100 poisoned
samples. We still succeed in embedding our backdoor into it.

D Comparison with BadNets
We compare our backdoor attack with BadNets on

Resnet18 trained using CIFAR-10. As shown in Table 9, when
the trigger is large, the performance of our attack is close to
that of BadNets. For instance, when the trigger is 8∗8, our
attack achieves 99.71% and 99.42% ASR using the regular
trigger and the optimized trigger respectively, and BadNets
achieves 99.89% ASR. When the trigger is small however,
e.g., 4×4, we cannot use a regular trigger to inject backdoors
with high ASR. Instead, the optimized trigger, at the size of
4×4, indeed achieves 90.77% ASR and 2.22% performance
degradation, on a par with 95.27% ASR and 1.94% perfor-
mance degradation of BadNets. Note that BadNets requires
access to the original training data to inject backdoors, thus
not a data-free backdoor injection approach as ours.

E Stealthiness against other Defences
ABS [63] examines whether a given DNN model is back-
doored or not by analyzing inner neuron behaviors. In par-
ticular, after altering the stimulation level to a neuron, ABS
monitors the output given various inputs. A neuron that sig-
nificantly contributes to a particular output label regardless
of inputs is considered as a compromised neuron. Finally,
ABS generates a trigger for the compromised neuron using
the stimulation analysis and utilizes the performance of the
trigger to confirm that the neuron is truly backdoored.

We use ABS to detect our backdoored Resnet18 with the tar-
get label “ship” (randomly selected) for the poisoned samples.

Table 10: Detection Results of ABS
Labels Compromised Neurons and Layers ASR

automobile the 155th neuron of the layer4.1 93.10%
cat the 27th neuron of the layer2.1 99.88%

ship the 36th neuron of the layer3.0 94.82%

Table 11: Identification Results of SentiNet
θ 0.3 0.4 0.5 0.6

Identification 44.0% 39.0% 37.0% 36.5%

Figure 5: Critical Regions Identified by SentiNet and Februus

We utilize the test dataset of CIFAR-10 as the background for
ABS to generate triggers in our evaluation. Table 10 shows
the evaluation results of ABS, where ASR represents the at-
tack success rate of the triggers generated by ABS. We find
that ABS not only detects the backdoored label, i.e., the label
“ship”, but also mis-detects the clean labels, i.e., the label “au-
tomobile” and “cat” as the backdoored labels, thus producing
false positives 66.7%. Furthermore, the reconstructed triggers
for the label “automobile” and the label “cat” can also cause
very high ASR, i.e., 93.10% and 99.88%, when attached to
inputs. Such a false positive may be due to the reason that
ABS occasionally reverse engineers (strong) benign features
and considers them as a trigger, as discussed in [63].

To evade ABS detection, we can also use the same eva-
sion loss proposed to evade Neural Cleanse, since ABS also
generates a trigger for the compromised neurons to detect
the backdoor. During training, we can also execute the ABS
algorithm to generate the mask m and the trigger t, and evade
the detection of ABS in the same way as evading Neural
Cleanse’s detection.
SentiNet [16]. We apply SentiNet to backdoored Resnet18
to examine if the triggers attached on benign samples can be

Pr
ob

ab
ili

ty
 (

%
)

Figure 6: Normalized Entropy of STRIP

Table 12: Poison Rate
Poison Rate 0.5% 1% 5% 10%

CDP 88.31% 89.37% 88.7% 88.72%
ASR-RelD 90.91% 99.71% 91.95% 91.74%
ASR-SubD 94.47% 99.34% 95.59% 95.39%

identified accurately. Particularly, we first identify the overlap
between the region identified by Grad-CAM and the region
of the trigger, and then calculate the proportion p of this
overlapped area to that of the entire trigger. If p is greater than
a threshold θ, we consider the trigger is identified by SentiNet.
We apply SentiNet on 200 randomly chosen poisoned samples
and show the percentage of the identified samples varying θ

as 0.3, 0.4, 0.5, 0.6 respectively in Table 11. We can see that
SentiNet cannot identify the trigger regions for most samples.
STRIP [60] aims to detect the backdoored inputs by perturb-
ing the incoming inputs and then observing the randomness
of predicted classes for perturbed inputs (i.e., entropy distri-
bution) to determine if these inputs are malicious. We apply
STRIP using its default experimental settings to detect our
backdoored CIFAR-10 model and utilize FAR used in STRIP
to calculate the probability that a backdoored input is recog-
nized as a benign input. The FAR is significantly high, i.e.,
96.05%, and the entropy distribution of the benign inputs and
our backdoored inputs are similar as shown in Figure 6, so
STRIP cannot effectively detect our backdoored inputs.

F Impacts of Other Techniques
Poison Rate. The performance of the backdoor is closely
related to the poisoning rate, i.e., the proportion of poisoned
samples stamped with triggers affixed to the whole substitute
dataset. An inappropriate poisoning rate is difficult to guar-
antee excellent performance of the DNN on both the main
and backdoor task, so it is essential to measure the impact of
different poisoning rates on backdoor injection. We evaluate
the effect of backdoor injection with poison rates of 0.5%,
1%, 5%, 10% on Resnet18 for the CIFAR-10 tasks using the
substitute dataset of CIFAR-100, while guaranteeing the per-
formance of the model on the main task (degradation within
2.5%). The results in Table 12 show that the ASR of back-
doors is much lower when the poisoning rate is small or large
(i.e., 0.5%, 5%, 10%) than the ASR of backdoors with mod-
erate poisoning rate (i.e., 1%). The reason is that a smaller

Table 13: Layer Selection
Target Layer1 Layer1 Layer2 Layer3 Layer4

CDP 88.49% 88.46% 88.58% 89.37%
ASR-RelD 94.29% 95.61% 94.96% 99.71%
ASR-SubD 97.37% 98.72% 98.78% 99.34%

1 Target layer indicates that we fine-tune all layers after it to inject backdoor.

Table 14: Multiple Backdoors
Number of Backdoors 1 2 3

CDP 89.37% 87.00% 86.88%
Average ASR-RelD 99.34% 90.44% 56.40%
Average ASR-SubD 99.87% 99.33% 68.22%

poison rate makes backdoor injection difficult, while more
significant poison rates lead to more performance degradation
in the main task. To maintain the main task performance, dy-
namic optimization could decrease λ1, which further results
in the decrease of the effectiveness of backdoor attacks. Thus,
a moderate poisoning rate can better ensure the main task
performance and backdoor effectiveness.
Layer Selection. During the backdoor injection, the attack-
ers need to fine-tune the parameters of DNNs to inject the
backdoor. Fine-tuning all parameters in the DNNs will result
in a substantial computational cost, contrary to our assump-
tion that the attackers do not have significant computational
resources, so fine-tuning some layers with the other layers
frozen to inject backdoors is acceptable to attackers. Below,
we evaluate whether we can efficiently inject backdoors into
Resnet18 for the CIFAR-10 tasks by fine-tuning the layers
after the target layer with 900 epochs. The substitute dataset
used to fine-tune is the training dataset of CIFAR-100, and
the learning rate is 0.0001. Table 13 shows the experimen-
tal results of these backdoored Resnet18 DNNs, where the
first column indicates the starting point of the fine-tuned pa-
rameters (i.e., “Layer1” means the condition we fine-tune all
layers after Layer1). Based on the results, we find that only
fine-tuning some layers (i.e., layers after Layer2, or Layer3)
achieves almost the same performance of backdoor attack
and main task as fine-tuning all parameters. Even fine-tuning
layers after Layer4, the ASR of the backdoor is 99.71% and
the performance degradation of the main task is only 1.01%,
which is much better than fine-tuning all layers (i.e., 94.29%
for the ASR of backdoor and 1.89% for the main task perfor-
mance degradation).
Multiple Backdoors. We consider injecting multiple back-
doors into the target model, i.e., each trigger corresponding
to a unique target label, and evaluate it on Resnet18 trained
using CIFAR-10. The results of injecting one, two and three
backdoors are shown in Table 14, where CDP and ASR are
the average over those of all the backdoors. The results show
that our approach can successfully inject up to two backdoors
into the target model, with 87.00% CDP and 90.44% ASR-
RelD. When injecting more backdoors, i.e., three and more,
our approach cannot balance well between the ASR and CDP,
either injecting backdoors with low ASR or ruining the CDP.

	Introduction
	Background
	Deep Neural Networks
	Backdoor Attacks in DNNs

	Overview
	Threat Model
	Attack Overview

	Design
	Substitute Dataset Generation
	Loss Function
	Optimizing Backdoor Injection

	Evaluation
	Experimental Setup
	Effectiveness
	Comparison with Other Backdoor Attacks
	Impacts of Techniques and Parameters

	Discussion on Stealthiness
	Related Works
	Backdoor Attacks in DNNs
	Backdoor Defenses in DNNs

	Conclusion
	Datasets and Models
	Baseline Performance
	Attack Setting
	Comparison with BadNets
	Stealthiness against other Defences
	Impacts of Other Techniques

