Measuring Up to (Reasonable) Consumer Expectations: Providing an Empirical Basis for Holding IoT Manufacturers Legally Responsible

Lorenz Kustosch
TU Delft

Carlos Gañán
TU Delft

Mattis van ’t Schip
Radboud University

Michel van Eeten
TU Delft

Simon Parkin
TU Delft

Abstract
With continued cases of security and privacy incidents with consumer Internet-of-Things (IoT) devices comes the need to identify which actors are in the best place to respond. Previous literature studied expectations of consumers regarding how security and privacy should be implemented and who should take on preventive efforts. But how do such normative consumer expectations differ from what is actually realistic, or reasonable to expect how security and privacy-related events will be handled? Using a vignette survey with 862 participants, we studied consumer expectations on how IoT manufacturers and users would and should respond when confronted with a potentially infected or privacy-invading IoT device. We find that expectations differ considerably between what is realistic and what is appropriate. Furthermore, security and privacy lead to different expectations around users’ and manufacturers’ actions, with a general diffusion of expectations on how to handle privacy-related events. We offer recommendations to IoT manufacturers and regulators on how to support users in addressing security and privacy issues.

1 Introduction
There are a growing number of consumer Internet-of-Things (IoT) devices in daily use in homes, such as smart speakers, smart lighting, and other home appliances now being offered with network connectivity. Flaws have been exposed in consumer IoT devices after release and purchase, such as security vulnerabilities and misconfigurations [75] and undisclosed data collection flows [27, 78]. How published flaws are addressed by their manufacturers is inconsistent – ranging from no response to security updates to, in rare cases, product recalls (as for smart cars [39]).

Home users have varying ideas on who they want to take responsibility for securing the devices before they enter the consumer market [40]. In parallel, government-level policymakers in various countries have set standards for consumer IoT security and privacy [29, 34], in an effort to reduce the problems that devices come with ‘out of the box’.

Existing efforts in academia and policy focus on boosting the baseline of security and privacy for consumer IoT devices. Still, problems do arise, and home users attempt to mitigate them in their own way when this happens [15, 59, 74]. It is uncertain whether entities in the consumer ecosystem other than users are providing adequate paths toward resolving these problems, where this includes the responsibility of the IoT manufacturer to fix issues or even refund a purchase. What is also not well understood is what support home users have come to expect of others when they learn that something has gone wrong with the security or privacy of their device. This raises questions around whether they have the same expectations for IoT devices as for the more familiar categories of smartphones or personal computers.

It is critical to understand the presumptions users make as to who they can turn to, as it should be that they can go to the right person for the right help, and do so easily and with some confidence that it is a predictable process. Would they assume first to have to go to the point of purchase [67], ask a (supposedly) ‘tech-savvy’ friend [68], or stop using the device altogether [15]? At present, issuing a software update is the easiest path for manufacturers, but even this patching is patchy, and does not always remediate inherent defects [75].

We conducted an online survey with 862 participants to study their expectations about the handling of IoT security and privacy events for products that they might own. We did so by presenting systematically varied vignettes. We answer a series of research questions: (RQ1) What do consumers expect how manufacturers will respond to emerging privacy and security risks with IoT devices?; (RQ2) What do consumers expect how manufacturers should respond to emerging privacy and security risks with IoT devices?; (RQ3) Do expectations differ across product types and threat events?; and (RQ4) How do participants evaluate the user’s responsibility to handle emerging privacy and security risks with IoT devices?

In the legal domain, reasonable expectations are critical to determining when a product or service can be considered defective [92] and thus trigger liability and product conformity regulation. While there is prior research into consumer
expectations around Internet of Things (IoT) and smart devices [55, 81, 84], it is centred around normative expectations — that is, the preferences of consumers for how things should ideally be and which actors should ideally be responsible [40]. This does not capture what can reasonably be expected once something goes wrong with devices already in the market [40, 41, 45]. We examine reasonable expectations by what is reasonable to expect (likelihood expectations), relative to what is hoped for (normative expectations), where the latter have been explored regularly in existing literature. Our main contributions are:

- We provide empirical insights on an important but under-studied topic: What are consumers’ expectations when something ‘goes wrong’ with the security and privacy of IoT devices?
- We extend ongoing user research on IoT security and privacy by framing users’ needs in terms of what they realistically expect from device manufacturers relative to what they hope for. We find consumer expectations diverge between these two types of expectations, between privacy and security risks, and across device types.
- Our results provide a new angle for consumer protection policymakers and IoT device manufacturers when considering users’ expectations, and we frame recommendations for addressing user needs to meet their expectations.

2 Background and Related Work

Here we frame existing research on home users’ experiences with IoT security and privacy against legal processes involving reasonable expectations. These are then considered alongside the expectations then placed upon other actors in the market, such as manufacturers and retailers.

2.1 Expectations of IoT security and privacy

There has been considerable research on consumer expectations for IoT security and privacy. This can include the features users expect for security [84, 95] and privacy [10, 49], but also the security concerns they would want a solution for [21, 41, 94]. Existing work conceptualizes expectations as normative expectations [35, 43] — that is, what users’ preferences are for how things should be to minimise the potential for security and privacy problems to reach those users.

Normative user expectations have been captured as indicators of many preferences relating to consumer IoT devices: purchasing decisions relative to data access preferences [31], intentions to use devices relative to utility and data sensitivity [84], and approachability of security and privacy protection solutions [45]. Normative preferences are embodied most clearly in research on the contextual integrity [11] of data, regarding individuals’ privacy preferences around the appropriateness of data flows involving IoT devices [1, 3, 6, 55, 81].

Alongside normative expectations, realistic expectations have been examined, albeit in limited scope. Zhang et al. [96] studied users’ likelihood expectations of internet-connected security cameras with facial recognition capabilities and found that scenarios involving facial recognition prompted higher discomfort and more surprise. Furthermore, Gabriele et al. [38] prompted fitness tracker users about how feasible and likely a range of different threat scenarios were, finding that participants indicated a general optimism bias by under-estimating likelihood of negative outcomes.

Here we move beyond risk perceptions and focus on what users regard as being reasonable to expect from different actors to resolve security and privacy issues with IoT devices. To the best of our knowledge, Haney et al. [40] provide the only account so far that relates to expectations about responsibilities for ensuring the highest security and privacy of IoT devices. Participants framed ‘ideal’ situations wherein IoT manufacturers would be duty-bound to uphold the security and privacy of their smart home devices; at the same time, participants were unsure if manufacturers were in reality willing or able to do so. It is this distance between what should be done as a preferred ideal, and what can be expected as reasonable, that we study here.

2.2 Reasonable expectations in law

Expectations of consumers of a given product play a role in the domain of product liability and conformity laws. A concept originating in the United States, consumer expectations can be taken into account in product liability cases, when a ‘consumer expectations test’ is an option for the plaintiff to prove that the design of a product is defective [28]. This is the case if the product “failed to perform as safely as an ordinary consumer would expect when used in an intended or reasonably foreseeable manner.”. In product liability cases, the plaintiff must thus prove that the expectations of a reasonable consumer were breached by the manufacturer.

The ‘reasonable expectations’ of consumers are relevant in other legal frameworks. For instance, the European Product Liability Directive [88] requires manufacturers of products – including IoT devices – to ensure that products conform to specific requirements. A product is defective, or regarded as not conforming to requirements, “when it does not provide the safety which a person is entitled to expect, taking all circumstances into account.”, as is also applied in EU courts (e.g., [8]).

Regardless of jurisdiction, the decision-making of courts is complex and context-dependent. Different factors can be taken into account to determine if a product conforms with requirements, such as product marketing and presentation, the baseline of comparable products on the market, or pertinent regulations and standards (e.g., [34, 88, 89]). Among these con-
To address our research questions defined in section 1, we include smartwatch encryption for younger users [60], vice Providers (ISP) also well-positioned to detect, inform, or quarantine infected users [15, 20]. Otherwise, if a user has problems with a device, they may reach out to someone they regard as ‘informal’ technical support [68], or seek information on news or specialist websites [42]. A security event is given as follows, involving a protagonist (Alex); numbers in brackets are inserted here (and do not appear in the survey itself), representing (1) Device, (2) Event, response to the event. Each of these four phases constituted a factor in the vignette that could take on several varying levels, which are summarized in Table 1. An example vignette about a security event is given as follows, involving a protagonist (Alex); numbers in brackets are inserted here (and do not appear in the survey itself), representing (1) Device, (2) Event, (3) Manufacturer response, and (4) User response:

Alex has several [1] internet connected security cameras at home, which are kept switched on continuously. The cameras continually collect video recordings of Alex’s home and its surroundings to act as a deterrent against break-ins and allow Alex to check the video feeds remotely from a mobile app via an internet connection. Alex reads in a news post that a software vulnerability has been found in this device model and that similar vulnerabilities have been attacked. The [2] vulnerability could allow other people to remotely install software on the device without Alex noticing. The device could then be used to remotely attack other websites or devices connected to the internet, but Alex would still be able to use the device without noticing a problem. In response to this, the [3] device manufacturer releases a statement on their website and social media channels, which informs users about the vulnerability and the risks. Alex decides to try to [4] return the devices to the store where they were bought, hoping to receive a full refund or a replacement.
Levels security vignettes

<table>
<thead>
<tr>
<th>Device</th>
<th>Levels security vignettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Smart speaker</td>
<td></td>
</tr>
<tr>
<td>2. Smart watch</td>
<td></td>
</tr>
<tr>
<td>3. Smart washing machine</td>
<td></td>
</tr>
<tr>
<td>4. Smart security camera</td>
<td></td>
</tr>
<tr>
<td>5. Smartphone</td>
<td></td>
</tr>
<tr>
<td>6. Connected car</td>
<td></td>
</tr>
</tbody>
</table>

Levels privacy vignettes

<table>
<thead>
<tr>
<th>Event</th>
<th>Levels privacy vignettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Data collection without consent</td>
<td></td>
</tr>
<tr>
<td>2. Third party data sharing</td>
<td></td>
</tr>
<tr>
<td>3. Forced data collection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer response</th>
<th>Levels privacy vignettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Announce patch</td>
<td></td>
</tr>
<tr>
<td>2. Inform users via website and social media</td>
<td></td>
</tr>
<tr>
<td>3. No response</td>
<td></td>
</tr>
<tr>
<td>4. Recall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User response</th>
<th>Levels privacy vignettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Attempt to return device</td>
<td></td>
</tr>
<tr>
<td>2. Attempt technical mitigation</td>
<td></td>
</tr>
<tr>
<td>3. Seek advice online</td>
<td></td>
</tr>
<tr>
<td>4. Turn device off</td>
<td></td>
</tr>
<tr>
<td>5. Keep using as before</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Overview of vignette factors and levels.

3.1 Measuring consumer expectations: the ideal and the learned

To measure participants’ expectations about manufacturers’ responsibilities and users’ roles, we asked several 7-point Likert scale questions after each vignette, as follows:

1) **Likelihood expectation.** How likely a real manufacturer would respond this way;

2) **Normative expectation.** How appropriate the manufacturer response was. This relates to prior examination of what consumers expect of other ecosystem actors [40];

3) **Appropriateness of user action.** How suitable the user’s action was in light of the scenario and manufacturer response;

4) **Vignette realism.** How realistic participants deemed the vignette to be.

This approach allowed us to simultaneously measure the impact of the vignette factors on these response scales. We designed two separate sets of vignettes, one for security events and one for privacy events, allowing us to contrast the arguably more state-driven nature of security dilemmas (whether a device is secure or not) with the context-driven nature of privacy dilemmas (whether personal privacy preferences have been respected).

3.2 Survey procedure

Participants on the Prolific platform were directed to a Qualtrics [71] survey, hosted at our research institution. After reading and agreeing to the informed consent, participants were presented with a short summary of consumer IoT devices to ensure all participants had a working understanding of what was and was not regarded as an IoT device (which is important for the purpose of shared understanding between researcher and participant [46]). To capture prior experience with internet-connected devices, participants were then asked to select from a multiple choice list of devices they have used at least once during the last four weeks.

Participants were each assigned a set of vignettes generated from source factors as in Table 1, constructed to resemble a scenario as in the example vignette (subsection 3.1). Participants then answered questions about a differing set of these kinds of vignettes. Participants either received a full set of security vignettes, or of privacy vignettes. Vignette construction is detailed in subsection 3.3.

After reading and answering questions about all assigned vignettes, participants were asked how confident they felt about their answers. Participants were then asked if the vignettes reminded them of any personal experiences with electronic devices, allowing them to provide personal stories [73] of security and privacy in an open text field. Participants then answered closing demographic questions, were debriefed and thanked for participation. It took 17.69 minutes on average to complete the survey (SD = 9.47 min), which also includes two attention checks; each vignette set included one Likert-scale question, which asked participants to answer with ‘agree’. After finishing all vignettes, participants were also asked to select a specific device from a short list of devices. The full survey instrument can be found online as accompanying material.

3.3 Vignette design

Participants were randomly assigned to either see security or privacy vignettes and were presented with seven vignettes in a random order to avoid sequencing effects [7, 77]. We opted to present seven vignettes to strike a balance between more repeated measures per participant (increasing statistical power) [7] while not mentally overloading them with too many vignettes [48]. After each vignette the four Likert scale questions described in subsection 3.1 were asked.

If participants rated the manufacturer response as inappropriate, the user response as not suitable, or the vignette as unrealistic (selecting a value below the mid-value ‘neither agree nor disagree’), a free-text entry box was presented prompting to explain what motivated their answer. This encouraged participants to suggest other user or manufacturer responses that were not covered by the vignettes. These were typically seen to involve suggesting one of the response types presented in the survey, so for brevity these are not discussed further here.

Combining all possible combinations of the vignette levels depicted in Table 1 led to a total vignette population of

https://doi.org/10.4121/c.6440264.v1
whether different security- and privacy-related risks would in-
\[66\] occur more often than a recall of a smartphone.
This kept the required number of participants manageable and
limited the number of vignettes presented to participants to
avoid mental fatigue [48].

We removed illogical combinations between factor levels to retain vignette credibility, e.g., the recursive example of a manufacturer updating the privacy policy to inform users about an updated privacy policy explaining additional data collection. We furthermore ensured that every participant would see each factor level at least once when reading the seven vignettes (e.g., not be predominantly presented with vignettes about smart cars, but see each device at least once) and that combinations of factor levels would occur equally often over the entire sample, e.g., to avoid that a recall of a smart speaker would occur more often than a recall of a smartphone.

We took great care in generating empirically grounded and realistic vignettes by deriving them from news reports, prior empirical literature, consultations with security and privacy as well as legal scholars, and a focus group. In the following paragraphs we explain our procedure and motivation for selecting the vignette factors and levels.

3.4 Choice of vignette factors

Choice of IoT devices. As factor levels, devices were selected which ranged from common ‘smart home’ devices such as smart speakers or IP cameras, to connected cars and smart washing machines. We also added smartphones as a prevalent and familiar device for comparison. The goal was to compare a diverse variety of IoT devices with varying usage contexts, data collection capabilities, and risks, to determine their influence over security and privacy expectations.

Choice of security and privacy events. We examined whether different security- and privacy-related risks would influence expectations on how manufacturers and users should handle them. We primarily based event types on prior user studies, and news reports. For instance, we identified reports of DDoS malware [52], unauthorized access to IoT sensor data [23, 76], and ransomware attacks targeting IoT devices [66]. Privacy-related events included reports of staff listening to device recordings for training of algorithms [27, 57], or device data being shared without the user’s consent [26, 78].

Events followed one of three different outcomes: that continued use of a device is impaired or ‘forces’ consent to be given; personal data from the device could be accessed by unknown parties (attackers or secondary data recipients), or; the device or its functional data is leveraged without the user’s knowledge or consent.

Choice of manufacturer responses. There is a focus in the literature on provision of software updates as a core response to security issues such as vulnerabilities [4, 64] and privacy issues such as providing more privacy controls [17]. We included these as possible manufacturer responses, but examination of news reports indicated a range of different responses beyond this. For instance, we noted product recalls in case of risks posed to children by smartwatches [60], smart security cameras being vulnerable to DDoS malware [44], or smart vehicle vulnerabilities [39]. There were also accounts of manufacturers not visibly responding directly to an event [22, 61, 65], reflecting that there is – as yet – little in the way of direct and consistent legal obligation for manufacturers to respond in a specific, predictable way.

Based on these reports and related research we conceptualized companies’ responses to disruptive events along a continuum, of enacting no responsibility to considerable responsibility [18, 19, 69], specifically: No reaction, informing users, releasing a software update, and recalling a device.

Choice of user responses. We grounded user responses in privacy and security user studies. However, empirical research on how IoT owners respond to security and privacy events is scarce [15, 74], as existing work mostly focuses on preventative mitigation by users [2, 37, 40, 41, 83]. We included five different user responses: 1) Keep using the device, due to e.g., discounting of risks to data [45, 47, 83, 94] or security [40, 83], or resignation [40, 47, 79]; 2) Unplug the device, ceasing or pausing use [15, 76, 86]; 3) Opportunistically seek help from others [24, 68] or online [5, 42, 76, 80]; 4) Attempt technical remediation oneself through device configuration or isolation from the network [37, 41]; 5) Request a refund or a replacement device from the seller. Such a response is commonplace when users perceive a defect in purchased goods and is protected by legal frameworks. However, with suspected security and privacy flaws this may be subject to the seller’s judgement and hence unpredictable.

3.4.1 Uncertainty and consumer expectations

We phrased the vignettes so that the protagonist, and in turn the survey participant, would have incomplete information about the situation involving a security or privacy risk. For instance, all software vulnerabilities were phrased in a way that the vulnerability could allow for an undesirable outcome, or that data collected and shared with third parties could be linked to other information about the user. This level of ambiguity was chosen since users of consumer IoT devices usually face such uncertainty [15, 76, 86].
3.4.2 Pilot study

Prototype vignettes were tested ‘offline’ in an iterative manner with volunteers without a technical background to check comprehensibility. This resulted in removal of illogical vignette combinations, language improvements, and efforts to give the protagonist a gender-neutral name (Alex).

A pilot study was conducted online with 32 participants from Prolific [70] to assess survey functioning, completion time, and vignette comprehension. It took participants 19.2 minutes on average to complete the survey, vignettes were rated as easy to understand, and open text responses did not indicate any major comprehension or technical issues. This resulted in slight adjustments to phrasing of some factor-level combinations within vignettes.

3.5 Ethics

The study was approved by the host institution’s human research ethics committee prior to survey deployment. To participate in the survey, individuals were informed that participation was voluntary, could be stopped at any time, and that no personally identifiable data would be collected. Participants had to agree to these points to be able to take the survey. We paid participants £3.00 for 20 minutes of their time, matching the minimum wage in the host institution’s country.

3.6 Participants

Participants were recruited via the crowdsourcing platform Prolific [70] during August 2022. We screened for fluency in English, prior participation in at least five other studies on the platform, and a minimal approval rating of 95%. We did not screen for IoT device ownership or usage, but we did assess their experience, as we were interested if people with less or no IoT experience had differing expectations. In an effort to sample participants from different countries, we opened the survey several times, at different times and for different regions.

Demographics are summarised in Table 2. 862 participants took part in the survey: 443 female (51%), 399 male (46%), and 20 non-binary or no answer (3%). Age was skewed towards a younger population, which is a typical characteristic of Prolific samples [85]. Participants indicated to be from 30 different countries, which we mapped to regions for further analysis. The majority of participants lived in western countries (Europe and North America), while a smaller number lived in other regions such as Africa and Central and South America. Participants used on average 5.65 (SD = 2.30) internet-connected devices during the previous four weeks, indicating considerable experience with IT devices.

Due to random allocation to either the security or privacy vignette condition, participant characteristics (age, gender, region of residence, and device usage) were similarly distributed in both conditions. 23 participants got one of the two attention-check questions wrong; no participant failed both. We found no indication of suspicious response patterns from these 23 participants, and thus treated their responses as genuine and included them in analysis.

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>Region of residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>312</td>
</tr>
<tr>
<td>25-34</td>
<td>303</td>
</tr>
<tr>
<td>35-44</td>
<td>142</td>
</tr>
<tr>
<td>45-54</td>
<td>55</td>
</tr>
<tr>
<td>55-64</td>
<td>42</td>
</tr>
<tr>
<td>65</td>
<td>6</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Distribution of age and region in the sample. The three most prevalent countries were USA (N = 179), Canada (N = 125), and Portugal (N = 86).

3.7 Vignette and response quality

Prior security-related studies have indicated the usefulness of realism checks for scenarios, for moderating the quality of response data [13]. We checked the responses to the prompt ‘The situation described in the story is realistic.’ on a 7-point Likert scale, where a 1 would indicate ‘Strongly disagree’ and 7 ‘Strongly agree’. On average, vignettes were rated to be realistic, not warranting concerns about implausible vignettes: for security vignettes, mean realism rating = 5.48, SD = 1.16; for privacy vignettes, mean realism rating = 5.67, SD = 1.09.

Participants’ confidence in their responses was checked with ‘How confident do you feel about your answers to the previous stories?’, on a 4-point Likert scale from 1 = Very unconfident to 4 = Very confident. Participants were highly confident about their responses (Mean = 3.51, SD = 0.54).

3.8 Data analysis

To answer our research questions, we first assessed average response patterns across vignette levels to identify general trends in the data. To quantify vignette factors’ effect on expectation ratings, we ran multilevel regression models with maximum-likelihood estimation. Vignette factors were used as explanatory categorical variables predicting the response variables Appropriateness of manufacturer response, likelihood of manufacturer response, and suitableness of user response. Thus, six regression models were run, one for privacy and one for security for each response variable. In each model, we tested if demographic background (age, gender, region) and recent device usage had an effect.

Multilevel regression analysis allowed us to conduct tests of significance of factor levels, assess model fit, and control for any effects of participant characteristics such as recent device usage or region of residence. As suggested by methodological
literature [7], random intercepts were included to account for individual differences between participants. As the response variables were on seven-point Likert scales, we treated them as continuous [58].

All regression models were built up with the following sequence: 1) A baseline with vignette levels as fixed explanatory variables and a random intercept term. For all tested regression models, likelihood ratio tests of the random intercept term were statistically significant, indicating that accounting for differences between participants explained significant variance in the data; 2) After the baseline model was defined, participant-level variables (age, gender, region, recent devices usage) and possible interaction terms were added in a stepwise fashion to assess whether they significantly improved model fit. In Table 3 in the Appendix we include the final models, reporting participant-level or interaction effects in the next sections only if they were found to be present.

Open-text responses were reviewed for any additional insight into participants’ motivations behind their survey answers. We include representative quotes alongside results in the next section. To study participants’ personal experiences with security and privacy incidents, two researchers independently reviewed the text responses to the survey question (“Did the previous stories remind you of any personal experiences you have had with electronic devices?”). During this thematic analysis [16], initial codes of reoccurring themes in the data were generated, which were then regularly discussed between the researchers in an iterative coding process.

4 Results

4.1 Expectations of manufacturers

We first present how participants judged the manufacturer responses described in the vignettes, as an expression of expectations about how IoT manufacturers would and should respond to security and privacy events.

4.1.1 Likelihood judgements of manufacturer responses

Our first research question (RQ1) examines what consumers expect of how device manufacturers actually will respond to emerging privacy and security risks with IoT devices, as a construct closely relating to reasonable expectations. The left-hand side of Figure 1 shows how likely the manufacturer responses to a security event were rated on average across device types; Figure 2 does the same for privacy events.

For security vignettes, patching was seen as the most likely response overall (mean of block ‘Announce patch’ = 5.70), followed by informing users about the risks (mean of block ‘Inform users’ = 4.87), recalling devices (mean of block ‘Announce recall’ = 4.84), and lastly, not visibly/publicly responding at all (mean of block ‘No response’ = 4.05). Figure 1 illustrates this, as average ratings were generally higher for patching across security events and IoT devices. The unexpected nature of manufacturers not responding was reflected by participants’ comments, e.g., “I believe most manufactures would speak about the matter and possibly would recall the devices or issue an update for the devices.” (PID293). The regression analyses (Table 3, Model 3) supported this trend: for security, all manufacturer responses were judged as significantly more likely than no response.

Figure 2 shows that for privacy vignettes, participants rated it most likely that a manufacturer would update the privacy policy and inform users (mean of block ‘Inform users via privacy policy’ = 5.28), while no response was seen as least likely (mean of block ‘No response’ = 4.74). In contrast to security vignettes however, this response omission was seen as relatively more likely. The regression analysis (Table 3, Model 4) shows that the likelihoods of the two explicit manufacturer responses were comparable, indicated by similar coefficient estimates.

4.1.2 Normative judgments of manufacturer responses

Our second research question (RQ2) examines what consumers expect of how IoT manufacturers should respond to emerging privacy and security risks with IoT devices to contrast such normative preferences with perceptions of the status quo. This is then closer to the aims of prior research [40]. The right-hand side of both Figure 1 and Figure 2 present how appropriate the manufacturer responses were, rated on average across both device types and security or privacy events respectively; Model 1 and 2 in Table 3 in the Appendix show the regression models predicting appropriateness ratings of manufacturer responses.

For security vignettes, participants rated a product recall as the most appropriate manufacturer response across IoT devices and security events (mean of block ‘Announce recall’ = 5.76), followed by a patch (mean of block ‘Announce patch’ = 5.34). The manufacturer omitting a response to a security risk was rated as highly inappropriate on average (mean of block ‘No response’ = 2.05) across devices and security events, which was significantly lower than all other responses, as indicated by the regression coefficients in Table 3 (Model 1). Among those participants who provided low ratings, indicative reasoning included, “They are completely ignoring an issue that could put people in danger, if malicious people were to find out their location, for example.” (PID283).

Both recall and patching received comparable ratings across device classes and security threats, demonstrating that participants valued both responses regardless of context. Several participants also stressed the importance of the timing of patches, e.g., “An expected date of update would be appropriate, as well as some sense of urgency” (PID169).

For privacy events (Figure 2), releasing a software update with more privacy controls was most preferred across devices and privacy events (mean of block ‘Announce update with
4.1.3 Dependency on device type and risk event

In RQ3, we asked if participant expectations would vary across different device types and security and privacy risks. Looking at Figure 1 and Figure 2, this involved distinguishing between cells across rows and columns. For expectations of how manufacturers would actually respond, we did not find substantial effects of the type of security event on participants' estimations. For privacy events however, we observed that it was rated least likely that a manufacturer would not respond after it became public that data was shared without consent (no consent), while it was seen as comparably more likely that a manufacturer would show no response after it became public that data is shared with third parties (see Figure 2).

For device types, recalls were judged most likely as a response for vulnerable connected cars, presumably since recalls of cars occur more often than for the other devices. It was rated least likely that a manufacturer would not respond after it became public that data was shared without consent (no consent), while it was seen as comparably more likely that a manufacturer would show no response after it became public that data is shared with third parties (see Figure 2).

For device types, recalls were judged most likely as a response for vulnerable connected cars, presumably since recalls of cars occur more often than for the other devices. It was rated least likely that a manufacturer would not respond after it became public that data was shared without consent (no consent), while it was seen as comparably more likely that a manufacturer would show no response after it became public that data is shared with third parties (see Figure 2).

Privacy risks also influenced the judgement of manufacturer responses. Scenarios where the user finds out that data has been collected from the device without consent ('No consent', Figure 2) negatively impacted how appropriate manufacturer responses were rated, especially for 'No response', as also shown in the regression model (Table 3, Model 2, sign. diff. between no consent and third-party sharing).
4.2 The user’s role

In this section we answer RQ4 and report on how participants evaluated the behaviors exhibited by the user in the vignettes. These results do not only inform how participants judged the user’s responses specifically, but also how these judgements translate to their expectations about the suitability of the user’s options in reaching a satisfactory response to particular events. Figure 2 depicts how user behaviors presented in the vignettes were rated across previous manufacturer responses and security and privacy events and Table 3 present the results of the regression models predicting the suitableness of the user responses with vignette factors.

4.2.1 Handling security risks

On average, participants in the security vignette condition rated returning the product for a replacement or refund as the most suitable user action (mean of block ‘Demand refund’ = 5.79), and continued usage as the least suitable (mean of block ‘Keep using device’ = 3.46). When asked for alternatives for the user after giving a low response, explanations included, e.g., “Simply turning off the device and ceasing to use it is a waste of money. Instead, Alex should return the smart speaker.” (PID655). All user responses were rated significantly higher than Keep using, as indicated by the regression coefficients in Table 3 (Model 5). Attempts by the protagonist to find a technical solution themselves were rated as less suitable (mean of block ‘Attempt technical mitigation’ = 5.01) than simply turning the device off (mean of block ‘Turn device off’ = 5.18). This apparent scepticism towards the user attempting a technical strategy was also reflected in text responses, e.g., “Doing the configuration on his own requires specific knowledge and from this story I get the feeling that he doesn’t have it himself. He should contact specialists and take time to decide what’s best.” (PID655).

Returning the device for a refund was seen as especially suitable in case of DDoS vulnerabilities (Figure 3), while keeping a device in this case was rated very low. This effect was also reflected in a significant regression coefficient of IoT ransomware in comparison to the reference DDoS (Table 3, Model 5). It was rated highly suitable for the user to return the device when the manufacturer announced a recall. However, all other user responses, especially attempt technical mitigation and keep using, were rated lower if the manufacturer previously announced a recall. If a vulnerability allowed unauthorized access to sensor data and the manufacturer informed users about this, participants deemed it especially appropriate for the user to stop using the device (mean = 6.18).

4.2.2 Handling privacy risks

User responses to privacy events were rated similarly on average, with a user attempting a technical solution as the most suitable (mean of block ‘Attempt technical mitigation’ = 5.53), and the user continuing to use the device as the least suitable (mean of block ‘Keep using device’ = 4.74). In comparison to security risks, continued use was rated much higher (mean of ‘Keep using device’ for security = 3.46), indicating that keeping the device on after a suspected privacy-violating event was seen as a comparably more acceptable option than after an emerging security risk.
There were lower regression coefficient estimates for the user responses to privacy events (Model 6) than for security events (Model 5) (see Table 3): in the case of privacy issues with IoT devices, participants were much less decided on a proper user response, to the extent that turning the device off was rated as the second most suitable response. This lack of a clear preference was also illustrated by a comparably low model fit (Model 6: R²privacy = 0.172 vs. Model 5: R²security = 0.306). Participants’ comments hinted here at privacy resignation and feelings of helplessness, e.g., “[The] decision isn’t ideal but what alternatives are there? Alex could use an older-model “dumb” phone or look into a more security conscious manufacturer for a new device.” (PID511).

The nature of the privacy event only slightly influenced responses: the user keeping the device was rated especially low if data had already been harvested without consent and the manufacturer did not respond (mean = 3.67). However, if the manufacturer informed users about the same privacy violation via an updated privacy policy, continued use was seen as much more suitable (mean = 5.17). This finding corresponds with the low appropriateness ratings participants gave all manufacturer responses to this privacy event (No consent). In fact, participants viewed it as the best option for the user to demand a refund or turn the device off in this case.

4.3 Personal experiences

To relate participants’ expectations elicited by the vignettes with their personal experiences, we analyzed the text responses to the optional question ‘Did the previous stories remind you of any personal experiences you have had with electronic devices?’. In total, 310 participants provided answers with a wide range of topics.

Of 310 participants, 58 provided accounts of how they experienced privacy or security incidents with their devices and how they or the manufacturer responded. The most commonly mentioned response was to stop using the device in some way (n = 17), like PID540, who noted: “I stopped using a certain smart watch after it was unclear what data was collected from the manufacturer and third parties.”. Other variations of this included interrupting usage until the situation was perceived to improve: “I stopped using my [smart speaker] after [news about data collection] came out about it, until [the manufacturer] gave me better control over my data.” (PID382). This illustrates how users relied on manufacturers to respond and their willingness to pause device use until they received explicit reassurance. However, replacing devices in case of no manufacturer response was also seen as an option, e.g., “[When there were issues with cameras], I simply shut mine down and removed them for a time then switched over to something else that was more secure.” (PID673).
Other participants (n = 14) described changing device or privacy settings, for example: “[I] have had manufacturers of devices I’ve used update their privacy policy, also their data collection practices. I’ve modified my privacy settings according to the updated policies.” (PID64). A few participants (n = 6) mentioned technical approaches such as limiting network capabilities, home network separation, or factory resetting. There were also rare stories of successfully having a device refunded or a device recalled: “I had bought a [...] phone which had a security vulnerability [...] I had to return the phone [...] at the request of the manufacturer” (PID70). There was also mention of directly contacting the manufacturer for support: “[..] I saw many reviews stating that the speaker sells data collected from the speaker [...] I contacted the manufacturer who assisted [...] with instructions on how to turn on privacy settings” (PID362). Generally, these reactions to security or privacy threats validated the chosen user responses in our vignette design and correspond to previous findings [15,47,74].

Apart from responses to problems with a device, several other themes emerged; (1) Device linkage; 24 respondents wrote about their concerns about apparent connections between information provided during device use and seemingly unrelated online activities. For example: “Just seeing targeted ads that are clearly from one devices usage communicated to a different device in the household.” (PID419). (2) Data uncertainty; 22 respondents described a general uncertainty about privacy policies and data flows (e.g., “I have several smart devices [...]. There are times I don’t believe there is enough transparency about how this data is used, stored, or sold. I have felt companies are dishonest about these issues before which makes me hesitant to continue to use smart products sometimes.” PID366). (3) Dilemmas; 20 respondents felt concerned and experienced dilemmas about whether security and privacy risks should be accepted, either in the form of resignation (e.g., “[..] I am feeling helpless [about data collection], as there is nothing I can do about it, so I can either stop using the devices or use it and be ‘tracked’ down.” PID137) or as a convenience trade-off; “[..] companies sharing the information has crossed my mind. But at the end of the day, there’s not many ways around it, using the device is still more convenient than not using it.” (PID220). These themes reinforce the findings in Section 4.2.2, as they demonstrate a general uncertainty about data flows and how IoT users should manage privacy.

5 Discussion

Here we revisit our research questions and situate our findings within prior literature and ongoing discussions.

What manufacturers are likely to do. In RQ1 we asked what consumers expect how manufacturers would actually respond to emerging IoT risks. As indicated by Figure 1, we found that participants in our study expected manufacturers to patch security vulnerabilities in IoT devices. This resonates with the current focus in policy circles. In contrast, no response at all was seen as unlikely, indicating that manufacturers are expected to visibly respond to a security event occurs. This supports recent standardization efforts recommending that IoT manufacturers notify and communicate with users in case of security incidents [34], and highlights the position of ISPs as being able to triangulate security problems to specific users (e.g., [15]).

The picture was less clear for emerging privacy issues with IoT devices (Figure 2), as different manufacturer responses were rated as comparably likely and no response was seen as somewhat less expected. A manufacturer not acting on problematic data flows was seen as highly inappropriate yet very conceivable. This hints at a lack of consumer trust despite GDPR regulations [63,90] and a learned helplessness and resignation regarding control over the occurrence of privacy violations, and is in accordance with prior work [40,47,79].

These findings provide legal scholars and policymakers with novel empirical perspectives on the notion of consumer expectations in case of IoT security and privacy events. By using a shared language (‘reasonable expectations’), we show how it was expected by participants that manufacturers would patch security vulnerabilities or at least respond in some visible way. As discussed in subsection 2.2, liability case law is based on a case-by-case assessment, yet our findings can serve as a reference for the design of IoT security and privacy regulations (which do play a role in courts, see e.g., [92]) and provide new insights for legal scholars and practitioners on how the abstract notion of consumer expectations can be understood empirically.

What manufacturers should ideally do. Turning to RQ2, and how consumers prefer manufacturers should respond to emerging IoT events, we found that participants generally considered recalls and patching to be appropriate responses to security threats (Figure 1). Interestingly, patching was the only manufacturer response that was considered both appropriate and likely. Seeing patches as reasonable does rest on all manufacturer response that was considered both appropriate and likely. Seeing patches as reasonable does rest on all security issues being resolvable by patches, without further manual fixes by the user, which in practice is often not the case [15,74]. In contrast to patching, recalling was seen as the more appropriate response, yet also considered relatively unlikely, even less likely than simply notifying users. This suggests a gap between consumer preferences and expectations.

As patching is much more prevalent than product recalls, consumer expectations appear aligned with, and perhaps habituated to, observed market behavior. This also fits with seeing a car recall as more likely than for other consumer IoT devices. Thus, expectations might change in the next few years, where stricter regulations could trigger more frequent recalls (e.g., not complying with minimum security requirements as in the upcoming delegated EU Radio-Equipment Directive will lead
to the IoT device’s removal from the market [91]).

For privacy, participants favoured it when a manufacturer announced the release of a software update with more privacy controls while also judging a lack of response as least desirable (Figure 2) (reinforcing prior findings elsewhere [93]). Notably, announcing a privacy software update and updating the privacy policy were rated as similarly appropriate. As with security events, this requires notification to be visible – in this case, within the device and/or companion app itself. Prior work has indicated that more control does not necessarily lead to higher trust in privacy [93], with a view to governments needing to enforce what manufacturers can and cannot do. This could also hint at a general loss of trust towards manufacturers to handle personal data appropriately, where more privacy controls would not help to restore the trust.

Our results build on previous work on IoT consumers’ expectations of the responsibility of manufacturers and users, in which users expressed uncertainty if manufacturers would realistically meet their preferences [40]. Our results indicate that there are indeed discrepancies between consumers’ preferences and predictions, as well as more clearly expressed expectations about security (manufacturers will likely patch and are unlikely to do nothing) than for privacy (with less clarity as to how manufacturers will likely respond). We furthermore broaden prior research on users’ preferences on IoT security and privacy (e.g., [40, 41, 55, 84]) by contrasting normative preferences with a ‘reality check’ of expectations of actual likelihood.

Managing different security and privacy circumstances. Regarding RQ3, we found that different IoT device classes had an effect on what responsibilities participants expected from manufacturers. For instance, expectations around smart washing machines were less strict than for security cameras or smart speakers, which could be due to the device’s less sensitive data. This matches prior work on privacy perceptions of IoT devices [32, 84]. For devices important for daily use (e.g., smartphones and connected cars), participants preferred a proactive response by the manufacturer beyond only informing them. Remarkably, connected cars did not cause a different effect. Compared to other device types, participants didn’t see it as substantially less likely or less appropriate for a car manufacturer to not respond to security vulnerabilities, even though these can conceivably lead to safety hazards. For privacy events, manufacturer responses were rated as less appropriate for vignettes describing that data was harvested from the device without consent, which implies that this privacy violation reduced appraisals of manufacturer responses regardless of the actual response. Previous work has established the importance of user consent [3, 6, 21, 55, 80], and our results extend this notion by demonstrating how the breach of this fundamental privacy principle also negatively affects subsequent efforts of the manufacturer to remediate.

How best to involve users. For RQ4, the user’s involvement in addressing security and privacy risks was assessed (Figure 3). For emerging security risks with IoT devices, participants deemed it most preferable for the user to return the device for a refund or replacement. Depending on local legislation, the warranty period, and the seller’s leniency, this might constitute a feasible path. However, as paralleled by several participants’ comments, this route is arguably rarely observed in real life, and the chances of a successful return depend on many factors outside of the user’s control. A recall notice would signal the feasibility of the response, but manufacturers might not have a reliable way of getting the notice to users.

Simply keeping a device in use after learning about a security problem was generally judged as highly ill-advised for the user. This perception was different for privacy, where it was seen as much more acceptable to keep the device on, especially if the manufacturer updated the privacy policy or announced an update with more privacy controls, despite the same prior privacy violation. This contrasts with prior research implying that users would turn off a device as if ‘stopping a leak’ [93] and illustrates how perceptions of privacy change with manufacturer signaling, but also as how limited the user’s options were perceived.

It may be that IoT users are simply lacking options for action and control (as has been seen for both security [15] and privacy [41, 45]), making it a conceivable response for users to continue using the device, as unplugging could be undesirable due to discontinued operation, demanding a refund is seen as futile, and personal technical mitigation as unpredictable. That said, users’ technical attempts to mitigate privacy risks were seen as more suitable than for security vulnerabilities.

These results also broaden prior findings of instances of users stopping use of their devices after (suspected) security risks [15, 76, 86], as we observed that turning IoT devices off was seen as a generally suitable response for both privacy and security risks, and was most frequently mentioned by participants as a previously applied response. That such a drastic step was seen as a suitable response illustrates how limited users’ options appeared to be for a clear path to resolution, which highlights the necessity of actors better positioned to handle these risks to be involved.

If users were to stop using a device, this is difficult for those with expertise to detect, even if it at least stems some threats. This may also encourage a somewhat ‘silent’ departure from the smart device market (hinted at in subsubsection 4.2.2), where one ‘bad actor’ then tarnishes all reputations. This is arguably why consumer IoT devices are generally seen as lacking appropriate security (and requiring standards) although many devices exist which are already secure. Participants appeared just as amenable to stopping device use after a privacy issue as they were to demand a refund – this is then in the interests of manufacturers if they want to retain customers.

Prior work has also suggested that responsibility for protect-
ing privacy of IoT devices was seen more with the manufacturer than with the user, while for security, the responsibility of the individual user was also central [40]. This could further explain why in our study, participants seemed to have clearer expectations of appropriate ways for the user to handle security risks (try to get a refund, and avoid continue using a device) than for privacy, as the manufacturer is seen as responsible for remedying technical problems.

5.1 Recommendations

Here we list future directions and recommendations for ecosystem stakeholders.

Establish post-purchase maintenance and support. IoT users generally expect and appreciate explicit responses from manufacturers, preferably more than just a warning, which might remain unseen and be perceived as insufficient. Participants also voiced how they would switch brands or return devices in case manufacturer handling of security and privacy would lag behind their expectations. To establish user support and trust for the post-market phase, manufacturers should follow standards such as from NIST [34] and keep an active communication channel with their customers. While effective communication is not trivial to achieve, a collaboration with ISPs to reach identifiable customers could also be a fruitful direction.

Smooth the path for predictable outcomes. As governments are also seen to hold responsibility for IoT security and privacy [40], our findings furthermore provide regulators with insights into consumers’ expectations. We recommend that regulators support users with routes for resolution that are coherent and predictable, such as specific and easily accessible advice. Furthermore, it is paramount to provide robust consumer protection laws to reduce incidents in the first place, but also to have regulatory or economic processes in place to incentivize appropriate and effective responses by device manufacturers, including smoothing the path for potential product returns.

Gather evidence with a view to its wider uses in law. In law, reasonable expectations are a fluid concept. There are no objective thresholds; the EU and US jurisdiction rely on the judge to interpret consumer expectations in each case. Our study offers concrete measurements of this construct to both legal practitioners and legal scholars in the product liability field, who might face questions surrounding consumer expectations of IoT devices in their work. A multi-disciplinary approach, in which empirical computer and social sciences support legal scholars with insights around assumptions about technology and its users, could constitute a promising future direction of academic work.

5.2 Limitations

While this study’s sample is considerable in size, it is not representative of any specific national or global population. Due to Prolific’s participant base, participants were mostly from western countries. Furthermore, the sample was skewed towards younger cohorts, which is also typical of Prolific samples [85]. During sampling, we were interested in gathering a breadth of different regions and legislations and not in modeling any specific population. This limits the generalizability of the results yet nonetheless provides novel insights into consumer expectations across different regions.

The vignettes were bound to a limited number of factors, yet other aspects could also influence expectations. In all vignette permutations the user learns about security or privacy risks from a news post, while there are several other sources for users to learn about possible security and privacy issues [32, 72], such as word-of-mouth, unusual device behaviour, or direct notifications (e.g., by ISPs [20]). We opted for the news post as this is a common channel for home users [25, 72] and may be communicated itself by word-of-mouth or analogy [73]. Furthermore, including the price of the IoT device could have influenced expectations, with cheaper devices perhaps being seen as more vulnerable and premium products leading to higher expectations. However, adding more contextual factors to the vignettes’ factorial design would have led to an explosion of factor level combinations. Thus, we encourage future work to explore such directions.

Finally, participants had to judge a fictional user’s actions, such that it needs to be determined if this judgement would translate into actual behaviour on their side, though text answers imply that participants had similar experiences to those captured in our vignettes, as presented in subsection 4.3.

6 Conclusion

Using a vignette survey with 862 participants, we found differing expectations around the responsibilities of users and manufacturers how arising security and privacy events would and should be handled. Future work should look at other factors related to product liability law however, such as the state of the market and behavior of competitors. Future work should also go beyond the vignette factors considered here, to explore the impact of other factors on expectations, e.g., duration of device ownership and price, warranty conditions, and timeliness of manufacturer response.

Acknowledgments

This work has been partially supported by the INTERSCT project, Grant No. NWA.1160.18.301, funded by Netherlands Organisation for Scientific Research (NWO). The findings reported herein are solely responsibility of the authors.
References

[71] Prolific. URL: https://www.prolific.co/.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.65 *** 0.14</td>
<td>2.61 *** 0.12</td>
<td>3.80 *** 0.14</td>
<td>4.52 *** 0.08</td>
<td>3.15 *** 0.15</td>
<td>4.63 *** 0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device:</td>
<td></td>
</tr>
<tr>
<td>Connected car</td>
<td>0.30 0.17</td>
<td>-0.03 0.14</td>
<td>0.27 0.19</td>
<td>0.05 0.08</td>
<td>-0.35 0.18</td>
<td>-0.34 *** 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart speaker</td>
<td>0.05 0.16</td>
<td>-0.07 0.15</td>
<td>0.19 0.18</td>
<td>0.20* 0.08</td>
<td>0.06 0.17</td>
<td>-0.12 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart washing machine</td>
<td>0.64 *** 0.17</td>
<td>-0.08 0.14</td>
<td>0.54 *** 0.19</td>
<td>0.12 0.08</td>
<td>-0.26 0.18</td>
<td>-0.03 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartphone</td>
<td>0.39 * 0.17</td>
<td>-0.07 0.15</td>
<td>0.15 * 0.19</td>
<td>0.21* 0.08</td>
<td>0.07 0.18</td>
<td>-0.22* 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartwatch</td>
<td>0.32 0.16</td>
<td>-0.04 0.15</td>
<td>0.28 0.18</td>
<td>0.13 0.08</td>
<td>0.36* 0.18</td>
<td>-0.06 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security camera (reference)</td>
<td></td>
</tr>
<tr>
<td>Security/Privacy Event:</td>
<td></td>
</tr>
<tr>
<td>IoT ransomware</td>
<td>-0.10 0.06</td>
<td>-0.02 0.07</td>
<td>0.16 ** 0.06</td>
<td>0.05 0.06</td>
<td>0.16 ** 0.06</td>
<td>0.47 *** 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unauthorized data access</td>
<td>-0.01 0.06</td>
<td>0.05 0.07</td>
<td>0.08 0.06</td>
<td>0.08 0.06</td>
<td>0.08 0.06</td>
<td>-0.04 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDos (reference)</td>
<td></td>
</tr>
<tr>
<td>Forced data collection</td>
<td>0.19 0.15</td>
<td>0.16 ** 0.15</td>
<td>0.15** 0.06</td>
<td>0.08 0.06</td>
<td>0.15** 0.06</td>
<td>-0.11 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No consent (reference)</td>
<td></td>
</tr>
<tr>
<td>Manufacturer response:</td>
<td></td>
</tr>
<tr>
<td>(Sec) Inform users</td>
<td>2.37 *** 0.19</td>
<td>0.01 0.06</td>
<td>1.02 *** 0.19</td>
<td>0.30 0.18</td>
<td>0.30 0.18</td>
<td>0.47 *** 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sec) Recall</td>
<td>4.21 *** 0.19</td>
<td>1.14 *** 0.19</td>
<td>1.14 *** 0.19</td>
<td>0.30 0.18</td>
<td>0.30 0.18</td>
<td>0.47 *** 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sec) Patch</td>
<td>3.54 *** 0.19</td>
<td>1.89 *** 0.19</td>
<td>1.89 *** 0.19</td>
<td>0.30 0.18</td>
<td>0.30 0.18</td>
<td>0.47 *** 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Priv) Inform via privacy policy</td>
<td>2.14 *** 0.06</td>
<td>0.56 *** 0.06</td>
<td>0.56 *** 0.06</td>
<td>0.34 *** 0.07</td>
<td>0.34 *** 0.07</td>
<td>0.58 *** 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Priv) Privacy S-W update</td>
<td>2.12 *** 0.06</td>
<td>0.47 *** 0.05</td>
<td>0.47 *** 0.05</td>
<td>0.34 *** 0.07</td>
<td>0.34 *** 0.07</td>
<td>0.58 *** 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Priv) No response (reference)</td>
<td></td>
</tr>
<tr>
<td>User response:</td>
<td></td>
</tr>
<tr>
<td>Advice online forums</td>
<td></td>
</tr>
<tr>
<td>Return device</td>
<td></td>
</tr>
<tr>
<td>Tech. mitigation</td>
<td></td>
</tr>
<tr>
<td>Turn off</td>
<td></td>
</tr>
<tr>
<td>Keep using (reference)</td>
<td></td>
</tr>
<tr>
<td>Interaction Effects:</td>
<td></td>
</tr>
<tr>
<td>ManualResp*Device:</td>
<td></td>
</tr>
<tr>
<td>Inform*Car (-0.75 **)</td>
<td></td>
</tr>
<tr>
<td>WashMach (-0.51)</td>
<td></td>
</tr>
<tr>
<td>Smartphone (-0.65)</td>
<td></td>
</tr>
<tr>
<td>Recall*WashMach (-0.69 *)</td>
<td></td>
</tr>
<tr>
<td>Smartphone (-0.87)</td>
<td></td>
</tr>
<tr>
<td>ManualResp*PrivEvent:</td>
<td></td>
</tr>
<tr>
<td>Car*Forced (0.43 **)</td>
<td></td>
</tr>
<tr>
<td>WashMach*Forced (0.78 ***)</td>
<td></td>
</tr>
<tr>
<td>Smartphone*Forced (0.57 **)</td>
<td></td>
</tr>
<tr>
<td>Patch*WashMach (-0.39 ***)</td>
<td></td>
</tr>
<tr>
<td>**Smartphone (-0.48 **)</td>
<td></td>
</tr>
<tr>
<td>ManualResp*Device:</td>
<td></td>
</tr>
<tr>
<td>None found</td>
<td></td>
</tr>
<tr>
<td>Event*UserResp:</td>
<td></td>
</tr>
<tr>
<td>Inform*Smartwatch (-0.81 ***)</td>
<td></td>
</tr>
<tr>
<td>Recall*Car (0.54 *)</td>
<td></td>
</tr>
<tr>
<td>Patch* Smartphone (-0.98 ***)</td>
<td></td>
</tr>
<tr>
<td>Keep using (reference)</td>
<td></td>
</tr>
<tr>
<td>Conditional R²:</td>
<td></td>
</tr>
<tr>
<td>ICC:</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05 ** p < 0.01 *** p < 0.001

Table 3: Regression models predicting 1) Appropriateness of manufacturer response, 2) Likelihood of manufacturer response, and 3) Suitableness of user response with the vignette factors; Device, Security/Privacy Event, Manufacturer response, and User response. Each model was run separately for security and for privacy. Scale of measurement: For Model 1, 2, 5, and 6: 7-point Likert scale with 1 = ‘Strongly disagree’ and 7 = ‘Strongly agree’ to the statement ‘The manufacturer’s response to the situation is appropriate considering the circumstances.’ or ‘Alex’s response is a suitable way to move forward from this situation.’ For Model 3 and 4: 7-point Likert scale with 1 = ‘Extremely unlikely’ and 7 = ‘Extremely likely’ to the statement ‘If you had to predict, how likely do you think a real manufacturer would respond this way considering the circumstances?’ For Model 1, there were slight regional differences, where participants from Central and South America rated manufacturer responses significantly more appropriate on average than participants from North America (Coefficient = 0.45, SE = 0.20, p < 0.05). Other participant characteristics (Age, Gender, Count of used IT device) did not show an effect. We only present statistically significant interaction terms here for space considerations.