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Abstract
Diffusion models have been leveraged to perform adversarial

purification and thus provide both empirical and certified ro-

bustness for a standard model. On the other hand, different ro-

bustly trained smoothed models have been studied to improve

the certified robustness. Thus, it raises a natural question: Can
diffusion model be used to achieve improved certified robust-
ness on those robustly trained smoothed models? In this work,

we first theoretically show that recovered instances by diffu-

sion models are in the bounded neighborhood of the original

instance with high probability; and the “one-shot” denois-

ing diffusion probabilistic models (DDPM) can approximate

the mean of the generated distribution of a continuous-time

diffusion model, which approximates the original instance

under mild conditions. Inspired by our analysis, we propose a

certifiably robust pipeline DiffSmooth, which first performs

adversarial purification via diffusion models and then maps

the purified instances to a common region via a simple yet ef-

fective local smoothing strategy. We conduct extensive experi-

ments on different datasets and show that DiffSmooth achieves

SOTA-certified robustness compared with eight baselines. For

instance, DiffSmooth improves the SOTA-certified accuracy

from 36.0% to 53.0% under �2 radius 1.5 on ImageNet.

1 Introduction

Despite the fact that the deep neural networks (DNNs) have

achieved unprecedented success in different applications, they

are still vulnerable to imperceptible adversarial noise, which

will mislead the model to predict the perturbed input as an arbi-

trary adversarial target [5, 53]. Such adversarial perturbations

have posed a threat to the real-world application of DNNs on

safety-critical scenarios such as fraud detection [19, 37] and

automatic driving [9, 18].

Different empirical defense approaches have been pro-

posed to prevent such adversarial attacks. For instance, adver-

sarial training [33, 40, 56, 60], which incorporates adversarial

instance into the training process, has become the de facto

standard method for training robust models. However, em-

pirical defenses may become broken under strong adaptive

attacks [2, 11, 14].

Later, certified defenses are proposed to provide a lower

bound of accuracy for DNNs under constrained perturbations.

For instance, the technique of bound propagation [20, 55, 62],

which computes the upper and lower bounds of the features

layer by layer, is commonly used to provide deterministic

certification for small models and low-resolution instances.

In addition, randomized smoothing [13, 26, 28, 43, 59] has

been proposed as a more scalable technique for providing

probabilistic certification on large-scale datasets, such as Im-

ageNet [15], by taking a majority vote over the predictions of

Gaussian-smoothed inputs. Such technique typically requires

to train a standard model with Gaussian augmentation as a

robustly trained smoothed model.

At the same time, diffusion models [23, 48] recently

have demonstrated powerful abilities of generative model-

ing in different tasks and applications, such as image gener-

ation [23, 50, 51], shape generation [8], and image inpaint-

ing [52]. In general, the diffusion model contains two pro-

cesses: (1) the forward diffusion process, which perturbs the

input data point with Gaussian noise gradually to populate

low data density regions, and (2) the reverse diffusion pro-

cess, which starts with random Gaussian noise and generates

a high-quality instance through a Markov Chain iteratively.

The denoising nature of the diffusion models has enabled a

line of interesting works to purify adversarial perturbations

and therefore improve the robustness of DNNs. For instance,

Nie et al. [35] proposed to purify adversarial perturbations

with diffusion models.

Given the promising diffusion-based adversarial purifica-

tion, Lee [29] and Carlini et al. [10] propose a method Dif-

fusion Denoised Smoothing (DDS), to leverage the denois-

ing mechanism of diffusion models to remove the Gaussian

noise added during the randomized smoothing process via

a one-shot reverse diffusion step. Thus, DDS is able to pro-

vide certified robustness for any off-the-shelf standard model.

Nevertheless, this approach can only provide state-of-the-art



certified accuracy under small perturbation radii, and the ro-

bustness will decrease quickly for large perturbation radii

(e.g., r ≥ 1.0 in CIFAR-10 and r ≥ 2.0 in ImageNet). Xiao et

al. [57] later attempt to use the multi-shot reverse process and

propose DensePure to repeat this process several times with

different random seeds and take the majority vote over these

purified images as the final prediction to further boost the

certified robustness. However, as shown in Section 5.3, even

with a simple one-shot reverse diffusion step, the certification

time for one image in ImageNet with sample size N = 10,000

requires 553s for purifying the Gaussian augmented images

and only 11s for prediction with a DNN model (i.e., ResNet-

50 [22]). Therefore, although DensePure performs much bet-

ter than DDS, its actual computation cost is much higher than

DDS owing to the repetitive multi-shot diffusion step.

Based on existing observations, we aim to answer: (1) Can
we improve the certified robustness of models under large per-
turbation radii leveraging the diffusion-based purification?
(2) Unlike DensePure, can we further boost the certified ro-
bustness by executing more prediction steps instead of the
reverse diffusion step, which is far more expensive?

In this paper, we show that it is possible to achieve higher

certified robustness with higher benign accuracy leveraging

the robustly trained smoothed model based on our proposed

local smoothing technique (formally introduced in Section 4).

In particular, we first provide theoretical analysis to show

that the recovered instances from (adversarial) inputs will be

in the bounded neighborhood of the corresponding original

instance with high probability. We also prove that the “one-

shot" denoising of Denoising Diffusion Probabilistic Models

(DDPM) [23] can approximate the mean of the generated

posterior distribution by continuous-time diffusion models,

which is, in turn, an approximation of the original instance

under mild conditions.

Inspired by our theoretical analysis of the properties of

reversed instances and the relationship between the smoothed

models and the robust regions of reversed instances, we

propose a general certifiably robust adversarial purification

pipeline DiffSmooth. In particular, as shown in Figure 1, DiffS-
mooth contains three steps: (1) add a set of random Gaussian

noise to the input x for certification purposes; (2) denoise

each Gaussian perturbed input with the reverse process of

a pre-trained diffusion model to generate a purified sample

x̂; (3) for each x̂, add another set of noise to generate locally

smoothed instances and make predictions based on their mean

confidence; (4) repeat step (2)-(3) for all Gaussian perturbed

inputs and take majority vote as the final smoothed prediction.

An adversarial instance can be recovered to the neighbor-

hood of the original one with high probability under mild

conditions based on our analysis. Thus, adding a set of local

smoothing noises to the recovered instance will help map it

to a smoothed and robust region.

Finally, we conducted comprehensive evaluations to com-

pare the certified robustness of DiffSmooth and seven SOTA

baselines. We specifically evaluate and control the computa-

tion cost to compare with baselines in Section 5.3. We make

the following technical contributions:

• We theoretically analyze the properties of purified adver-

sarial instances of diffusion models. We prove that they

are within the bounded neighborhood of the original clean

instance with high probability, and their distances to the

original instance depend on the adversarial perturbation

magnitude and data density. We also prove that the “one-

shot” denoising of DDPM can approximate the mean of

the generated posterior distribution by continuous-time dif-

fusion models, which is an approximation of the original

instance under mild conditions.

• We show that naively combining diffusion models with

smoothed models cannot effectively improve their certifi-

able robustness. Inspired by our theoretical analysis, we

propose an effective and certifiably robust pipeline for

smoothed classifiers, DiffSmooth, via local smoothing.

• We conduct extensive experimental evaluations on different

datasets and show that DiffSmooth achieves significantly

higher certified robustness compared with SOTA baselines.

For instance, with more inference steps, the certified accu-

racy is improved from 36.0% to 53.0% under �2 radius 1.5
and 42.2% to 48.2 under �2 radius 1.0 on ImageNet; For

CIFAR-10, the certified accuracy is improved from 42.8%

to 59.2% under �2 radius 0.50, and from 39.4% to 43.6%

under �2 radius 1.00.

• We also perform a set of ablation studies to show that local

smoothing is unique to the diffusion purification process

and evaluate the impacts of different parameters, such as the

variance of local smoothing noise. We show that DiffSmooth
outperforms DDS with the same computation cost.

2 Related work
Certified robustness. Deep neural networks (DNNs) are

found vulnerable to adversarial examples [5,53]. To overcome

such vulnerabilities, multiple empirical defenses have been

proposed [33, 36, 46, 60], most of which have been attacked

again by strong adaptive attackers [2, 11, 14]. Thus, certified

robustness for DNNs is studied to provide a lower bound of

model accuracy under constrained perturbations. While at the

same time, the complete certification [38,39,45,55,63], which

guarantees to find the adversarial perturbation if it exists is

constrained on a small dataset and extremely; and some in-

complete certification [20, 38, 39, 45, 62, 63] which may miss

some certifiable instances are only applicable for specific

model architectures and still can not scale to large datasets

like ImageNet [15]. Later, Lecuyer et al. [28] prove robustness

guarantee for smoothing with Gaussian and Laplace noise

from a differential privacy perspective and first provide non-

trivial certification result on ImageNet. The guarantee is later

tightened by [13] as the robustness guarantee for randomized



N (0, σ′)N (0, σ)

Figure 1: Overview of our pipeline DiffSmooth. The second row shows the decision regions of the base classifier for different

smoothing processes at an input x. (a) follows the standard randomized smoothing [13]; (b) represents the denoised smoothing [10,

44], which first attempts to purify the noisy images with a denoiser, and then sends the purified image x̂, which is inside the

purple recovered region, to a standard classifier for prediction. DiffSmooth instead first performs local smoothing on the purified

image x̂ with a smaller noise level as shown by the green dash line in (c), and then takes a majority vote over the local smoothed

predictions as shown in (d).

smoothing, which is probabilistic. Based on this, the certifica-

tion performance is further enhanced with the incorporation

of adversarial training [43], consistency regularization [26],

or ensemble model [24, 32, 58].

Diffusion models for adversarial purification. Diffusion

models [23,34,48,49] have shown impressive performance on

generative modeling tasks and have been applied to various

tasks such as image inpainting, super-resolution, and even

text-to-image synthesis [3, 16, 41, 42]. The connection be-

tween the diffusion model and adversarial purification is first

explored by [35] to remove adversarial perturbation, and [54]

further boosts the adversarial robustness with a guided re-

verse process. Besides, Carlini et al. [10] leveraged diffusion

models to remove added smoothing Gaussian noise during

randomized smoothing to provide certified robustness for a

standard model, and Xiao et al. [57] propose to repeat the

reverse diffusion steps multiple times and take the majority

vote of the predictions on these reversed instances as the final

prediction. One main limitation of existing work is that the

certified robustness under large radii is low, given that the

certification is calculated on standard models, which are less

robust. In this work, we propose a novel local smoothing strat-

egy to balance the tradeoff between low certified robustness

on standard models and high computation cost on perform-

ing multi-reverse diffusion processes for a smoothed model.

Our local smoothing strategy only requires multiple predic-

tion steps, which are much cheaper than the reverse diffusion

steps, while it helps to “smooth” the final predictions to im-

prove robustness. In addition, we theoretically demonstrate

that the reversed instances will lie in the vicinity of the origi-

nal clean instance with a high probability. Finally, we show

that our approach achieves state-of-the-art certified robustness

compared with different baselines.

3 Background
Notations. We mainly consider the classification problem

in this paper. Let Δk be a k-dimensional probability simplex,

we define the soft classifier F : Rd → Δ|Y | as the function

which maps the input to a confidence vector. The associated

hard classifier f is defined as f (x) := argmaxc∈Y F(x), which

maps Rd to classes Y .

Robustness Certification. Given a radius r ∈ R+, the ro-
bustness certificate provides a lower bound of the classifica-

tion accuracy given perturbations within r, regardless of the

concrete attack algorithms [30,31]. Formally, a certification al-

gorithm takes a clean instance x and the base classifier f as in-

puts and outputs a robust radius r, such that f (x)= f (x′) when

the distance between x and x′ satisfies d(x,x′) < r, where

d(·, ·) denotes a distance metric, e.g., the metric induced by

�p norm. Generally, the implication of certified robustness is

that it provides a lower bound of model robustness, given any

perturbation whose magnitude is bounded by a �p norm. In

other words, the empirical robustness under the same pertur-

bation radius is always higher than the certified robustness,

which is empirically tested in [21].

Randomized Smoothing. In this paper, we mainly adopt

randomized smoothing [13] for achieving the certification of

robustness. Specifically, randomized smoothing leverages the



Algorithm 1 COMPUTETIMESTEP(σ) [10].

Input: Magnitude of the smoothing noise σ.

Output: Start time step for the reverse process and the cor-

responding ᾱt .

1: t ← 0

2: while 1−ᾱt
ᾱt

< σ2 do
3: t ← t +1

4: end while
5: return t, ᾱt

Algorithm 2 DENOISE(xt , t) [10]. # One-shot denoising

Input: Intermediate sample xt and its associated timestep t.
Output: Predicted original clean image x̂0.

1: ε ← εθ(xt , t)
2: x̂0 ← 1√

ᾱt
(xt −

√
1− ᾱtε)

3: return x̂0

smoothed base classifier f for prediction, which is defined

by g(x) := argmaxc∈Y P( f (x+δ) = c) with δ ∼ N
(
0,σ2I

)
.

Assume pA is the lower bound of prediction probability of the

top class cA, and pB is the upper bound of prediction proba-

bility for the “runner-up” class, then the smoothed classifier g
is robust around x within the radius:

R =
σ
2

(
Φ−1

(
pA

)−Φ−1 (pB)
)
, (1)

where Φ−1 is the inverse of the standard Gaussian CDF. Such

certification requires the classifier to be robust under Gaussian

noise, so usually, the base classifier will be trained with Gaus-

sian augmentation [13], and such robustly trained models are

referred as smoothed models. Other robust training algorithms

proposed later to further provide robustly trained smoothed

models such as SmoothAdv [43] and Consistency [26].

Denoised Smoothing. To apply the off-the-shelf standard

model with randomized smoothing, Salman et al. [44] pro-

pose to prepend a custom-trained denoiser Dθ : Rd → R
d ,

which is trained to remove the Gaussian noise appeared in the

instances, to the standard classifier fclf, and treat fclf ◦Dθ as

the new base classifier f . In this way, the noisy input x+ δ
will first be purified by Dθ, and then the purified sample will

be directly predicted with the pretrained standard classifier.

As a result, it is expected that the prediction accuracy of

f := fclf ◦Dθ on the noisy instances with Gaussian perturba-

tion is close to the accuracy of fclf given a clean instances

when the denoiser Dθ performs well.

Continuous-time Diffusion Models. A continuous-time

diffusion model contains two components: (i) a diffusion pro-

cess that adds random noises to the data gradually and finally

researches a noise distribution, e.g., Gaussian distribution, and

(2) a reverse process that removes the added noise to recover

the original data distribution. The diffusion process can be

defined by the stochastic differential equation:

dx = h(x, t)dt +g(t)dw (SDE)

where x(0) ∼ p (the original data distribution), t ∈ [0,T ],
h(x, t) is the drift coefficient and g(t) is the diffusion coef-

ficient, and w(t) is the standard Wiener process [1]. Here

we took the convention used by VP-SDE in [52] where

h(x; t) := − 1
2 γ(t)x and g(t) :=

√
γ(t) where γ(t) is positive

and continuous over [0,T ] such that

x(t) =
√

αtx(0)+
√

1−αtεεε
where αt = e−

∫ t
0 γ(s)ds and εεε ∼ N (000, III). The reverse process

can be defined by the stochastic differential equation:

dx̂ = [h(x̂, t)−g(t)2∇x̂ log pt(x̂)]dt +g(t)dw
(reverse-SDE)

where dt denotes the infinitesimal reverse time step, and

w(t) is the reverse-time standard Wiener process. We use

{x(t)}t∈[0,T ] and {x̂(t)}t∈[0,T ] to denote the diffusion process

and reverse process respectively. [1] shows that if p ∈ C 2

and Ex∼p[||x||22]< ∞, {x(t)}t∈[0,T ] and {x̂(t)}t∈[0,T ] have the

same distribution.

Denoising Diffusion Probabilistic Models (DDPM) [23,34]
which construct the discrete forward diffusion process, has

been shown effective to generate high-quality data through

learning the reverse of the forward diffusion process. In par-

ticular, given the number of the forward steps T and image

x0 sampled from the original data distribution, the forward

diffusion acts to gradually adds a small amount of Gaus-

sian noise following a variance schedule {βt}T
t=1, such that

q(xt |xt−1) = N
(

xt ;
√

1−βtxt−1,βtI
)

. Generally, βt is de-

signed to increase with the time step t and takes a value

between 0 and 1; thus, the forward process will finally trans-

form x0 into an isotropic Gaussian noise. By leveraging the

reparameterization trick, a property of this forward process is

that

xt =
√

ᾱt · x0 +
√

1− ᾱt · εεε, (2)

where αt := 1− βt , ᾱt := ∏s
i=1 αs and ε ∼ N (0,I), which

indicates that we can sample the intermediate noisy xt
at any timestep t. Then, the diffusion model is trained

to reverse the diffusion process and learn the poste-

riors with the Markov chain pθ (xt−1|xt), which is de-

fined as N (xt−1;μθ (xt , t) ,Σθ (xt , t)). Here, μθ (xt , t) :=
1√
αt

(
xt − βt√

1−ᾱt
εθ (xt , t)

)
in which εθ is trained to predict

the random noise ε for xt , and Σθ (xt , t) is defined as σ2
t I as

in [23] while it can also be learned following [34]. As a result,

starting from xT ∼ N (0,I), DDPM will generate an instance

through the reverse sampling.

An interesting observation from [10, 29] is that this re-

verse process can be perfectly used to denoise Gaussian-

corrupted images; hence it can be applied to the denoised

smoothing [44] and acted as Dθ. Formally, given the cor-

rupted instance xrs = x+δ where x is the clean instance and

δ ∼ N (0,σ2I), we want to relate it to the noisy image xt
sampled from the forward diffusion process with a specific

timestep t, then we can hopefully remove the Gaussian noise

δ to get the original instance x with the reverse process which



starts at xt . To achieve this, notice that the intermediate sample

from DDPM is shown in the form of xt =
√

ᾱt ·x+
√

1− ᾱt ·ε
where ε ∼ N (0,I); thus, if we scale xrs with

√
ᾱt and equate

the variance between the scaled xrs and xt , we will obtain

σ2 = 1−ᾱt
ᾱt

. The solution of the timestep t∗ for this equation

is straightforward: notice that the α̂t decreases monotonically

with t and α̂0 = 1, and thus the value of 1−ᾱt
ᾱt

will increase

monotonically with t. Finally, the equation can be simply

solved via 1D root-finding as shown in Algorithm 1. As a re-

sult, we can simply start at xt∗ =
√

ᾱt∗xrs and perform the left

reverse diffusion steps to recover the original x. In other words,

we will recursively sample the previous intermediate image

x̂t−1 based on the pre-defined Markov chain pθ (xt−1|xt) un-

til we get x̂0, which is exactly the purified image we want.

However, the information of the x contained in xrs will be

destroyed in each iterative reverse diffusion process owing

to the addition of the Gaussian noise. In addition, Carlini

et al. [10] propose to adopt one-shot denoising instead of

running the full reverse diffusion process, where they first

predict the likely ε in xt∗ with εθ, and then directly plug it

into Equation (2) to obtain x̂0, for which the corresponding

pseudo-code is shown in Algorithm 2.

4 DiffSmooth: Diffusion Based Adversarial Pu-
rification with Local Smoothing

In this section, we will first provide the motivation of our

method, and then we analyze the diffusion-based adversarial

purification in Section 4.2, which leverages reverse-SDE to

generate reversed instances, and we prove that such reversed

instances will stay in the bounded neighborhood of the orig-

inal clean instance with high probability. In addition to the

reversed instance, to further understand the reversed poste-

rior distribution, we will show that the “one-shot” denoising

of DDPM (Algorithm 2) will output the mean (approxima-

tion) of the conditional distribution generated by reverse-SDE,

based on the adversarial sample input and a given time step.

We show that such a mean instance will have the ground-

truth label of the corresponding original instance if the points

with the ground-truth label have a high enough density in the

original distribution.

Inspired by our theoretical analysis, we propose DiffSmooth
in Section 4, consisting of diffusion-based adversarial purifi-

cation and a simple yet effective local smoothing strategy.

4.1 Motivation
As shown in Equation (1), the certified robustness largely de-

pends on the consistency of predictions of N sampled points

(larger pA will result in larger certified radius R). Intuitively,

the “one-shot” reverse diffusion step in prior work DDS [10]

helps to increase the prediction consistency by generating

denoised samples near the original sample, for which we will

provide the first formal theoretical analysis in Section 4.2.

On the other hand, Xiao et al. [57] propose to repeat the re-

verse diffusion step multiple times and then take the majority

vote of the predictions over these purified images as the fi-

nal prediction. This leads to an approximation of consistent

predictions for samples in the high-density region, thereby

improving certified robustness.

Nevertheless, as demonstrated in Section 5.3, the reverse

diffusion step is actually the primary bottleneck for computa-

tion cost during certification. Thus, repeating the multi-shot

reverse diffusion steps, as in [57], will significantly increase

the computation cost and render it impractical. Thus, we aim

to propose a simple yet effective local smoothing strategy by

taking the majority vote of predictions on Gaussian smoothed

samples given a smoothed model. This way, the computa-

tion cost for the reverse diffusion step is the same as DDS,

while only extra computation cost for predictions is required,

which is much lower. In the meantime, the consistency among

the predictions will be improved since the distributions from

which the Gaussian smoothed samples are drawn are sampled

close. In addition, given that a smoothed model is more stable

and therefore more robust than a standard model at the cost

of sacrificing benign accuracy, the local smoothing also helps

to improve the benign accuracy of smoothed models.

Overall, DiffSmooth first performs the one-shot diffusion-

based adversarial purification, and then multiple Gaussian

noises are sampled to locally smooth the prediction for each

purified sample. Such local smoothing will improve certi-

fied robustness for smoothed models and help to maintain or

even improve benign accuracy since the smoothing Gaussian

noises of the model and the locally smoothed samples are

from similar distributions.

4.2 Properties of Diffusion-Based Adversarial
Purification

There are several works applying diffusion models to (adver-

sarial) inputs by performing the diffusion and reverse pro-

cesses on them, aiming to remove potential adversarial per-

turbations [11, 35]. On the other hand, it is also possible to

directly perform the reverse process to given inputs, and here

we will analyze the properties and advantages of such reversed

samples. In particular, we theoretically prove that the reverse

process of the diffusion model generates reversed samples

in the bounded neighborhood of the original clean samples

with high probability. We will analyze directly based on the

stochastic equations SDE and reverse-SDE, as other diffu-

sion models such as DDPM [23] and score-based diffusion

models [52] are approximations of the stochastic differen-

tial equations, and our results can also be extended to other

models. Our main theorems are as follows.

Theorem 1. Given a data distribution p ∈ C 2 and
Ex∼p[||x||22]< ∞. Let pt be the distribution of x(t) generated
by SDE and suppose ∇x log pt(x)≤ 1

2C for some constant C
and ∀t ∈ [0,T ]. Let γ(t) be the coefficient defined in SDE and
αt = e−

∫ t
0 γ(s)ds. Then given an adversarial sample xrs = x0+δ

with original instance x0 and perturbation δ, solving reverse-



SDE starting at time t∗ and point xt∗ =
√

ᾱt∗xrs until time 0

will generate a reversed random variable x̂0 such that with a
probability of at least 1−η, we have

||x̂0 − x0|| ≤ ||xrs − x0||+
√

e2τ(t∗)−1Cη + τ(t∗)C (3)

where τ(t) :=
∫ t

0
1
2 γ(s)ds, Cη :=

√
d +2

√
d log 1

η +2log 1
η ,

and d is the dimension of x0.

Proof. (sketch) Based on [35, Theorem 3.2], we can obtain

that

||x̂0 − x0|| ≤ ||
√(

eτ(t∗)−1
)
εεε+ xrs − x0||+ τ(t∗)C

where εεε ∼ N (000, III). Since ||εεε2|| ∼ χ2(n), by the concentration

inequality [6], we have

Pr

⎛
⎜⎝||εεε|| ≥

√√√√d +2

√
d log

1

η
+2log

1

η

⎞
⎟⎠≤ η.

Thus, with probability at least 1−η, we have

||x̂0 − x0|| ≤ ||xrs − x0||+
√

e2τ(t∗)−1Cη + τ(t∗)C.

For Theorem 1 and 2, please check Appendix A for com-

plete proofs.

Remark. Theorem 1 implies that as long as xrs is not far

away from the corresponding original instance x0, αt∗ is not

very close to zero, and ∇x log pt(x) is upper bounded by a

reasonable value, the right-hand side of (3) will be small. This

means that the reverse process of the diffusion model will

generate a reversed sample in a small neighborhood of x0

with high probability based on the scaled adversarial sample.

Such examples are highly likely to have the same labels as x0.

One should note that since the diffusion model is a generative

model with mode coverage on the whole dataset, it could be

possible that x̂0 lies far away from x0. Theorem 1, developed

based on a deep analysis of the stochastic differential equation

reverse-SDE, ensures that this unwanted case rarely happens.

Further, Theorem 1 provides a tighter upper bound than [35,

Theorem 3.2] in that Cη is only half of the corresponding

constant, which is due to the removal of the diffusion process

(the reverse process is directly applied to a given input).

In practice, we cannot implement the continuous-time dif-

fusion model directly, and DDPM [23] was proposed as one

efficient approximation to the reverse process reverse-SDE. In

particular, DDPM learns a neural network εθ(xt , t) to predict

the likely noise added to x0 with the loss function:

Et,x0,εεε

[
β2

t

2σ2
t αt (1− ᾱt)

∥∥∥εεε− εθ

(√
ᾱtx0 +

√
1− ᾱtεεε, t

)∥∥∥2
]
.

where t ∈ [0,T ], x0 ∼ p, and εεε∼N (000, III). For fast sampling in

DDPM, the “one-shot” denoising (algorithm 2) was frequently

used [10, 23] where we have

x̂0 =
(

xt −
√

1− ᾱtεθ (xt , t)
)
/
√

ᾱt . (4)

In the following theorem, we will show that given t and xt , the

distance of x̂0 in (4) to the mean of a conditional distribution

generated by the reverse process reverse-SDE starting at time

t and point xt will be bounded by the loss at time t:

�t(xt) := Ex0,εεε

[
β2

t

2σ2
t αt (1− ᾱt)

‖εεε− εθ (xt , t)‖2

∣∣∣∣√ᾱtx0 +
√

1− ᾱtεεε = xt

]
where x0 ∼ p and εεε ∼ N (000, III).
Theorem 2. Given a data distribution p ∈ C 2 and
Ex∼p[||x||22] < ∞, given a time t∗ and point xt∗ =

√
ᾱt∗xrs,

the one-shot denoising for DDPM (algorithm 2) will output
an x̂0 such that

‖x̂0 −E [x̂0 | x̂t∗ = xt∗ ]‖ ≤ 2σ2
t∗αt∗ (1− ᾱt∗)

3/2

β2
t∗
√

ᾱt∗
· �t∗(xt∗)

(5)
where x̂0, x̂t are random variables generated by reverse-

SDE, P(x̂0 = x|x̂t = xt∗) ∝ p(x) · 1√
(2πσ2

t )
n exp

(−||x−xt∗ ||22
2σ2

t

)
and σ2

t = 1−αt
αt

is the variance of Gaussian noise added at
time t in the diffusion process.

Proof. (sketch) Under the assumptions that p ∈ C 2 and

Ex∼p[||x||22]<∞, the diffusion process by SDE and the reverse

process by reverse-SDE follow the same distribution ideally.

Therefore, P(x̂0 = x|x̂t = xt∗) = P(x0 = x|xt = xt∗) ∝ p(x) ·
1√

(2πσ2
t )

n exp
(−||x−xt∗ ||22

2σ2
t

)
. Since

√
ᾱt∗x0 +

√
1− ᾱt∗εεε = xt∗

implies
√

ᾱt∗ x̂0 +
√

1− ᾱt∗εεε = xt∗ where εεε ∼ N (000, III), we

have

�t∗(xt∗) = Ex0,εεε

[
β2

t∗
√

ᾱt∗

2σ2
t∗αt∗ (1− ᾱt∗)

3/2
‖x̂0 − x̂0‖

∣∣∣∣∣ xt∗ = xt∗

]

≥ β2
t∗
√

ᾱt∗

2σ2
t∗αt∗ (1− ᾱt∗)

3/2
· ‖x̂0 −E [x̂0 | x̂t∗ = xt∗ ]‖ ,

where the last inequality is by Jensen’s inequality [7].

Remark. The right-hand side of (5) is the multiplication of a

constant depending on t∗ and the loss �t∗(xt∗) at time t∗. This

implies that if we have smaller (zero) loss �t∗(xt∗) at time t∗,

x̂0 will approximate the mean of the conditional distribution

P(x̂0 = x|x̂t = xt∗). In addition, this conditional distribution

has a high density on points with high data density in the

original distribution p and close to xrs. Such points tend to

have the same ground-truth label as the original instance and

can be recognized well by the classifiers trained on the data

manifold. That means, as long as the original clean instance

lies in a high enough data density region in the original dis-

tribution, the mean of the generated conditional distribution

will have a similar property (i.e., prediction label) as such a

clean instance.

4.3 Certifying Smoothed Models with DiffS-
mooth

Based on our theoretical analysis above, it is clear that the

reversed samples are in the bounded neighborhood of the

corresponding clean instance. Thus, given a robustly trained



Algorithm 3 PURIFYCLASSIFIER(xrs;σ′,m).

Input: The input noisy sample xrs, the magnitude of the local

smoothing noise σ′, the number of sampled local smooth-

ing noise m.

Output: The prediction for xrs.

1: t∗, ᾱt∗ ← COMPUTETIMESTEP(2σ)
2: x̂ ← (

DENOISE(
√

ᾱt∗(2xrs −1), t∗)+1
)
/2

3: ŷ ← 0

4: for i = 1 to m do
5: δ′i ∼ N

(
0,σ′2I

)
6: ŷ ← ŷ+ 1

m F(x̂+δ′i)
7: end for
8: return argmaxc∈Y ŷ

Algorithm 4 SAMPLEUNDERNOISE( f ,x,n,σ) [13].

Input: Base classifier f , clean input image x, the number of

smoothing noise n, smoothing noise magnitude σ.

Output: A vector of class counts.

1: counts← [0,0, ...,0]
2: for i = 1 to n do
3: xrs ← x+N

(
0,σ2I

)
4: y ← f (xrs)
5: counts[y]+ = 1

6: end for
7: return counts

smoothed model, in order to further improve its certified ro-

bustness by improving its clean accuracy, we propose a sim-

ple yet effective local smoothing technique for the reversed

samples based on diffusion models. In this section, we will

describe in detail how DiffSmooth works.

First, for each given (adversarial) input x, we will add stan-

dard Gaussian smoothing noise to get a set of xrs for certifi-

cation purposes following [10]. We then denoise each noisy

input xrs with a diffusion model to get a purified sample x̂.

We only run the reverse diffusion step once with the diffu-

sion model and directly output the optimal estimate x̂ for

prediction accuracy and efficiency purposes. In specific, this

one-shot reverse diffusion process is implemented to out-

put x0 = 1√
ᾱt
(xt −

√
1− ᾱtεθ(xt , t)) given the input xt and

timestep t as shown in Algorithm 2. Usually, the clean in-

stance x is assumed to be in [0,1]d following prior certification

literature; however, the diffusion model expects the input in

[−1,1]d , and outputs denoised instance in [−1,1]d . Thus, we

start at xt∗ =
√

ᾱt∗(2xrs −1) to perform the one-shot reverse

step where t∗ is the solution to equation (2σ)2 = 1−ᾱt
ᾱt

.

Second, we perform the local smoothing for each pu-

rified instance x̂; in other words, the local smoothed pre-

diction is provided as argmaxc∈Y ∑m
i=1 F(DENOISE(xt∗) +

δ′i)/m where δ′i ∼ N
(
x,σ′2I

)
with σ′ ≤ σ and m is the num-

ber of sampled local smoothing noise. As shown in Figure 1,

the local smoothing noise magnitude σ′ should be smaller

than the smoothing noise level σ; in the meantime, it is also

Algorithm 5 Certification Process for DiffSmooth.

Input: The magnitude of the smoothing noise σ, the magni-

tude of the local smoothing noise σ′, the number of sam-

pled local smoothing noise m, the number of the smooth-

ing noise for selection n0, the number of the smooth-

ing noise for estimation n, the certification confidence

(1−α).
Output: Certified prediction and its robust radius.

1: f ← PURIFYCLASSIFIER( · ;σ′,m).
2: counts0← SAMPLEUNDERNOISE( f ,x,n0,σ)
3: ĉA ← top index in counts0
4: counts← SAMPLEUNDERNOISE( f ,x,n,σ)
5: pA ← LOWERCONFBOUND(counts[ĉA], n, 1−α)

6: if pA > 1
2 then

7: return ĉA and radius σΦ−1(pA)
8: else
9: return ABSTAIN

10: end if
related to the robustness of smoothed models to different

random noises. For instance, we find that to certify the sim-

ple Gaussian augmented model [13], we need to set σ′ to be

close to the model smoothing level σ. Nevertheless, to certify

the advance smoothed model trained with SmoothAdv [43],

setting σ′ to be around 1/2 of the σ achieves the best certifi-

cation. Thus, the local smoothing noise level will also reflect

the inherent robustness/stability of the smoothed models.

Finally, we will take the majority vote based on these lo-

cally smoothed predictions and provide robustness certifica-

tion for given smoothed models following standard random-

ized smoothing [13].

During the experiment, the first two steps can be wrapped as

a single base classifier f (·) = PURIFYCLASSIFIER(·;σ′,m)
which is shown in Algorithm 3. The whole certification pro-

cess for DiffSmooth is provided in Algorithm 5, where the

function SAMPLEUNDERNOISE is shown in Algorithm 4 and

the LOWERCONFBOUND(k,n,1−α) is a function which re-

turns a one-sided (1−α) lower confidence bound p for the

Binomial parameter p given k ∼ Binomial(n, p).

5 Experiments
In this section, we present the evaluation results for our

method DiffSmooth. We first show the effectiveness of DiffS-
mooth compared with the existing baselines. Then we conduct

a set of ablation studies to evaluate the influence of differ-

ent factors, including (1) the importance of local smoothing

and diffusion model purification process, (2) the influence

of the magnitude of local smoothing noise, and (3) the influ-

ence of the number of noise sampled during local smoothing.

Concretely, we show that: (i) DiffSmooth consistently outper-

forms all the other baselines under any �2 radius in terms of

the certified robustness, and the performance can be further

improved with a better model (e.g., ViT models); (ii) the sig-

nificant performance improvement of our method DiffSmooth



Table 1: Certified accuracy of ResNet-110 on CIFAR-10 under different �2 radii. The smoothed model used for our method DiffSmooth is

indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with Gaussian.

Method1 Extra data
Certified Accuracy (%) under �2 Radius r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Gaussian [13] � 75.0 60.0 42.8 32.0 23.0 17.4 14.0 11.8 9.8 7.6

SmoothAdv [43] � 73.6 66.8 57.2 47.2 37.6 32.8 28.8 23.6 19.4 16.8

SmoothAdv [43] � 80.8 71.4 63.2 52.6 39.4 32.2 26.2 22.2 20.2 18.4

MACER [59] � 81.0 71.0 59.0 47.0 38.8 33.0 29.0 23.0 19.0 17.0

Consistency [26] � 77.8 68.8 58.1 48.5 37.8 33.9 29.9 25.2 19.5 17.3

SmoothMix [25] � 77.1 67.9 57.9 47.7 37.2 31.7 25.7 20.2 17.2 14.7

Boosting [24] � 83.4 70.6 60.4 52.4 38.8 34.4 30.4 25.0 19.8 16.6

DDS(Standard) [10]2
� 79.0 62.0 45.8 32.6 25.0 17.6 11.0 6.2 4.2 2.2

DDS(Smoothed) [10]3 � 79.8 69.9 55.0 47.6 37.4 32.4 28.6 24.8 15.4 13.6

DiffSmooth(Gaussian) � 78.2 67.2 59.2 47.0 37.4 31.0 25.0 19.0 16.4 14.2

DiffSmooth(SmoothAdv) � 82.8 72.0 62.8 51.2 41.2 36.2 32.0 27.0 22.0 19.0

DiffSmooth(SmoothAdv) � 85.4 76.2 65.6 57.0 43.6 37.2 31.4 25.2 21.6 20.0
1 We report the performance for Gaussian and SmoothAdv based on pretrained models.
2 We reimplement and report the results of DDS [17] on ResNet-110.
3 We use the same smoothed models as tested on DiffSmooth (i.e., Gaussian and SmoothAdv) for DDS and report the best results.

is attributed to the combination of the diffusion model based

purification and local smoothing, which verifies the rationale

of our method design. We show that without local smoothing

or diffusion-based purification, the certified robustness will

drop significantly; iii) using a small magnitude of the local

smoothing noise will benefit the certification under small �2

radii, while noises with large magnitude provide higher cer-

tified accuracy under large radii; iv) the certified accuracy

will also be consistently improved with the increase of the

number of sampled local smoothing noise; v) even with a

similar computation cost required by DDS, our method still

outperforms DDS. The detailed experimental settings and

results are shown below.

5.1 Experimental Setup.
Dataset and Base Classifiers. We conduct the experimen-

tal evaluation of our method on datasets CIFAR-10 [27]

and ImageNet [15]. Following the common setting [13], we

use ResNet-110 as the base classifier on CIFAR-10 and use

ResNet-50 [22] on ImageNet. To further demonstrate the ef-

fectiveness of our method, we also conduct the experiments

with a BEiT large model [4] on ImageNet following [10].

Specifically, we only finetune the BEiT large model under

Gaussian augmentation with σ ∈ {0.25,0.50,1.00} using

ImageNet-1K based on the self-supervised pretrained model

(with intermediate finetuned on ImageNet-22K). For other

smoothed models, including ResNet-110 and ResNet-50, we

directly use the pretrained ones from [13,43]. The BEiT large

model is fine-tuned with 30 epochs, and the resolution for both

the training and prediction is 224×224 instead of 512×512

which is used in [10]; other training hyperparameters of the

BEiT are set the same as the finetuning on standard classi-

fier1 and the detailed settings are shown in Appendix B.3.

Diffusion Models. We use the unconditional improved dif-

fusion model2 from [34], which is trained under Lhybrid ob-

jective, to denoise images from CIFAR-10; and use the un-

conditional 256×256 guided diffusion model3 from [16] to

denoise images from ImageNet.

Baselines. We consider eight state-of-the-art �2 certifiably

robust models as baselines: (1) Gaussian smoothing [13],

which trains a standard model with Gaussian augmentation

for training data; (2) SmoothAdv [43], which introduces ad-

versarial training into the Gaussian augmented training, and

it also provides the semi-supervised trained model with extra

unlabelled data used in [12]; (3) MACER [59], which tries

to maximize the certified radius directly instead of applying

an attack-free algorithm: (4) Consistency [26], which adds

a consistency regularization term into the training loss; (5)

SmoothMix [25], which combines mixup [61] with adversarial

training to boost the certified robustness; (6) Boosting [24],

which adopts variance-reduced ensemble model to generate

more consistent prediction; (7) Diffusion Denoised Smoothing
(DDS(Standard)) [10], which leverages diffusion models to

remove the added Gaussian smoothing noise and then applies

off-the-shelf standard classifiers to predict the purified in-

stances; and (8) DDS(Smoothed), which replaces the standard

classifier in DDS(standard) with smoothed classifiers includ-

ing Gaussian augmented classifier [13] and SmoothAdv [43]

respectively, and then selects the maximal certified accuracy

among these two.

1https://github.com/microsoft/unilm/tree/master/beit
2https://github.com/openai/improved-diffusion
3https://github.com/openai/guided-diffusion



Table 2: Certified accuracy on ImageNet under different �2 radii. The smoothed model used for our method DiffSmooth is indicated inside the

brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with Gaussian.

Architecture Method1 Certified Accuracy (%) under �2 Radius r
0.00 0.50 1.00 1.50 2.00 2.50 3.00

ResNet-50

Gaussian [13] 66.4 48.6 37.0 25.4 18.4 13.8 10.4

SmoothAdv [43] 66.6 52.6 42.2 34.6 25.2 21.4 18.8

MACER [59] 68.0 57.0 43.0 37.0 27.0 25.0 20.0

Consistency [26] 57.0 50.0 44.0 34.0 24.0 21.0 17.0

SmoothMix [25] 55.0 50.0 43.0 38.0 26.0 24.0 20.0

Boosting [24]2 68.0 57.0 44.6 38.4 28.6 24.6 21.2

DDS(Standard) [10]3 67.4 49.0 33.0 22.2 17.4 12.8 8.0

DDS(Smoothed) [10]4 48.0 40.6 29.6 23.8 18.6 16.0 13.4

DiffSmooth(Gaussian) 66.2 57.8 44.2 36.8 28.6 25.0 19.8

DiffSmooth(SmoothAdv) 66.2 59.2 48.2 39.6 31.0 25.4 22.4

BEiT6

Gaussian [13] 82.0 70.2 51.8 38.4 32.0 23.0 17.0

DDS(Standard) [10] 82.8 71.1 54.3 38.1 29.5 - 13.1

DDS(Smoothed) [10] 76.2 60.2 43.8 31.8 22.0 17.8 12.2

DiffSmooth(Gaussian) 83.8 77.2 63.2 53.0 37.6 31.4 24.8
1 We report the results for Gaussian and SmoothAdv based on pretrained models with the same number of smoothing noise for evaluating DiffSmooth

(N = 10,000) for a fair comparison.
2 Boosting is an ensemble method with the base models trained under Gaussian, SmoothAdv, Consistency and MACER.
3 The authors use a pretrained BEiT large model [4] in the original paper, and we reimplement DDS on ResNet-50 here and report the results.
4 We use the same smoothed models (i.e., Gaussian and SmoothAdv) used in DiffSmooth for DDS and report the best results.

Table 3: Certified accuracy of Gaussian with σ = 0.50 under different magnitudes of local smoothing noise without the diffusion-based

purification process. The base classifier is trained under noise level 0.50, and the number of local smoothing noise m is 21. When σ′ is set to

“−”, it represents the standard randomized smoothing setting, indicating that local smoothing is required only when diffusion-based purification

is performed.

Dataset σ′ ACR
Certified Accuracy under �2 Radius r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

CIFAR-10

- 0.534 65.0 54.4 41.4 32.0 23.0 15.2 9.4 5.4

0.12 0.538 65.0 54.2 42.8 33.0 23.4 15.6 10.0 5.0

0.25 0.537 64.2 54.2 41.0 33.2 24.2 16.8 10.4 6.2
0.50 0.433 44.8 39.0 33.8 26.0 20.4 15.0 11.6 6.0

ImageNet

- 0.640 56.8 51.2 45.2 41.8 37.0 31.4 24.6 0.0

0.25 0.333 32.0 27.4 23.8 21.6 18.6 15.0 11.8 0.0

0.50 0.021 2.2 1.8 1.6 1.4 1.2 0.8 0.8 0.0

Certification Details. For both CIFAR-10 and ImageNet,

we certify a subset of 500 samples from their test set with

confidence 99.9%. Besides, each data point is certified with

N = 100,000 samples of smoothing noise on CIFAR-10 fol-

lowing prior work [13], and we use N = 10,000 on ImageNet

following [10], the σ is selected in {0.25,0.50,1.00} for all

models. For each σ, we try different σ′ ≤ σ to explore the

influence of the magnitude of local smoothing noise. The

details are in the Appendix B.2.

We evaluate our method on the smoothed model trained

with two different methods, Gaussian and SmoothAdv, de-

noted DiffSmooth(Gaussian) and DiffSmooth(SmoothAdv),

respectively. In specific, for the experiments on CIFAR-10

with ResNet-110 and the experiments on ImageNet with

ResNet-50, we directly use the pretrained smoothed models

from Gaussian [13] 4 and SmoothAdv [43] 5, and the detailed

information of the selected pretrained models are deferred

to Appendix B.1. For the experiments on ImageNet with

BEiT large model, we finetuned the BEiT large model that is

pretrained on ImageNet-22K with the method Gaussian.

Note that our method does not need to be further finetuned

on these purified images. All the smoothed models are trained

with the clean images x, while the prediction during the certi-

fication is conducted on the purified images x̂. Nevertheless,

4https://github.com/locuslab/smoothing
5https://github.com/Hadisalman/smoothing-adversarial



Table 4: Certified accuracy of DiffSmooth on CIFAR-10 under different �2 radii for smoothed models with noise level σ and local smoothing

with noise level σ′. We defer the full certification results w/o diffusion-based purification or local smoothing for smoothed models to ?? for

comparison. The number of used local smoothing noise m is 21, and ACR denotes the average certified radius.

Methods σ σ′ ACR
Certified Accuracy (%) under �2 Radius r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

DiffSmooth
(Gaussian)

0.25
0.12 0.543 78.2 67.0 58.0 44.8 0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.556 76.4 67.2 59.2 47.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

0.12 0.703 70.4 61.2 52.4 41.6 33.0 25.4 19.4 12.2 0.0 0.0

0.25 0.745 69.6 62.8 55.6 45.2 36.4 28.2 21.6 14.6 0.0 0.0

0.50 0.760 67.4 61.6 53.4 43.6 37.4 31.0 25.0 18.2 0.0 0.0

1.00

0.12 0.581 51.0 43.4 36.2 31.8 25.4 19.6 14.6 11.4 7.6 6.0

0.25 0.638 54.0 46.2 39.6 33.2 26.6 21.8 17.4 12.6 9.6 7.6

0.50 0.699 53.0 46.0 40.2 34.8 29.8 23.8 20.2 15.6 12.4 10.2

1.00 0.784 47.8 44.6 39.6 35.8 31.4 27.0 23.4 19.0 16.4 14.2

DiffSmooth
(SmoothAdv)

0.25
0.12 0.593 82.8 72.0 62.8 49.4 0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.572 73.4 66.2 59.6 51.2 0.0 0.0 0.0 0.0 0.0 0.0

0.50

0.12 0.733 74.2 64.4 54.0 45.0 33.8 28.0 18.4 13.4 0.0 0.0

0.25 0.799 68.6 61.0 55.4 48.2 41.2 34.8 26.8 18.6 0.0 0.0

0.50 0.726 49.8 47.2 43.4 40.4 38.2 36.2 32.0 27.0 0.0 0.0

1.00

0.12 0.584 52.0 45.6 37.6 30.4 25.2 18.8 13.6 10.2 7.6 6.0

0.25 0.724 52.6 47.2 40.6 36.6 31.4 26.4 21.4 15.8 12.2 10.4

0.50 0.880 45.0 42.4 39.6 37.4 34.4 30.2 26.8 23.2 19.6 17.8

1.00 0.910 44.4 41.8 39.0 36.0 33.8 31.0 28.0 25.6 22.0 19.0

DiffSmooth
(SmoothAdv w/

extra data)

0.25
0.12 0.624 85.4 76.2 65.6 52.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.622 79.2 72.8 65.4 57.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

0.12 0.771 74.8 64.8 57.0 47.8 36.4 29.6 21.8 14.2 0.0 0.0

0.25 0.830 72.2 65.0 58.8 50.4 43.6 33.6 26.2 18.2 0.0 0.0

0.50 0.794 60.8 56.0 49.6 45.6 41.4 37.2 31.4 25.2 0.0 0.0

1.00

0.12 0.623 53.8 46.6 39.0 33.0 26.2 21.4 16.4 10.8 8.2 6.4

0.25 0.709 54.0 48.2 43.6 37.0 30.0 24.6 20.4 15.0 11.4 8.2

0.50 0.827 49.6 46.0 42.6 39.2 33.8 30.0 25.6 20.6 16.8 14.2

1.00 0.914 43.0 41.2 38.6 35.2 32.0 30.6 27.2 24.0 21.6 20.0

as shown in Figure 2, the purified images are usually blur-

rier and less fine-grained than the clean images, and thus the

classification accuracy on the purified images will drop a bit

when compared to the clean accuracy. So [10] propose to

further finetune the pretrained smoothed models with the pu-

rified images. However, such finetuning is quite expensive for

ImageNet due to the high cost of the purification. As a com-

promise, we find that using the local smoothing noise with

a magnitude slightly larger than the nominal magnitude can

effectively offset the influence of such a distribution shift. Em-

pirically, on CIFAR-10, we in fact, add the local smoothing

noise with the magnitude of (σ′+0.03) under all smoothing

level σ; and we add the local smoothing noise with magni-

tude (σ′+0.01) when σ= 0.25 while adding local smoothing

noise with magnitude (σ′+ 0.02) for other σ on ImageNet.

For reference, we also provide the experiment results without

this strategy in Appendix C.

Evaluation Metrics. We report the certified accuracy under

different �2 radius r following the standard certification set-

ting [13]. In addition, we report the average certified radius

(ACR) of 500 certified images following [59].

5.2 Main Results
We compare DiffSmooth with existing baselines on different

model architectures and σ. The results on CIFAR-10 and

ImageNet are shown in Table 1 and Table 2, respectively.

As we can see, our method DiffSmooth on smoothed mod-

els (i.e., DiffSmooth(Gaussian) and DiffSmooth(SmoothAdv))

consistently outperforms all other baselines on both CIFAR-

10 and ImageNet. In specific, on pretrained Gaussian model

(DiffSmooth(Gaussian)) with CIFAR-10 data, DiffSmooth im-

proves the certified accuracy largely from 42.8% to 59.2%

under �2 radius 0.50, and from 23.0% to 37.4% under

larger �2 radius 1.00. On the pretrained SmoothAdv model

(DiffSmooth(SmoothAdv)), DiffSmooth improves the certified

accuracy compared to DiffSmooth(Gaussian), achieving state-

of-the-art certified robustness. On ImageNet with ResNet-50,

under �2 radius 1.5, the certified accuracy of DiffSmooth can

be improved from 25.4% to 36.8% on the pretrained Gaussian
model (i.e., DiffSmooth(Gaussian)), and from 34.6% to 39.6%



Table 5: Certified accuracy of DiffSmooth on ImageNet under different �2 radii for smoothed models with noise level σ and local smoothing

with noise level σ′. We defer the full certification results w/o diffusion-based purification or local smoothing for smoothed models to ?? for

comparison. The number of used local smoothing noise m is 21, and ACR denotes the average certified radius.

Architecture Methods σ σ′ ACR
Certified Accuracy (%) under �2 Radius r

0.00 0.50 1.00 1.50 2.00 2.50 3.00

ResNet-50

DiffSmooth
(Gaussian)

0.25 0.25 0.467 66.2 57.8 0.0 0.0 0.0 0.0 0.0

0.50
0.25 0.710 57.2 50.4 41.4 31.4 0.0 0.0 0.0

0.50 0.741 55.8 50.8 44.2 36.8 0.0 0.0 0.0

1.00

0.25 0.809 43.4 38.4 31.8 24.6 19.8 16.6 12.4

0.50 1.008 48.4 42.4 36.2 31.6 27.2 24.0 18.4

1.00 1.013 43.6 40.4 37.0 32.8 28.6 25.0 19.8

DiffSmooth
(SmoothAdv)

0.25 0.25 0.478 66.2 59.2 0.0 0.0 0.0 0.0 0.0

0.50
0.25 0.792 59.0 53.4 48.2 39.6 0.0 0.0 0.0

0.50 0.741 54.0 49.6 44.2 38.2 0.0 0.0 0.0

1.00

0.25 1.000 48.4 43.0 36.0 31.8 27.6 23.2 16.0

0.50 1.087 47.6 43.8 39.8 35.0 31.0 25.4 22.4
1.00 0.937 37.8 34.8 32.8 30.4 27.0 23.8 21.0

BEiT
DiffSmooth
(Gaussian)

0.25
0.12 0.623 83.8 77.2 0.0 0.0 0.0 0.0 0.0

0.25 0.618 82.0 76.6 0.0 0.0 0.0 0.0 0.0

0.50

0.12 1.044 79.2 72.6 61.8 50.2 0.0 0.0 0.0

0.25 1.061 79.2 71.8 63.2 52.8 0.0 0.0 0.0

0.50 1.023 73.4 67.6 62.0 53.0 0.0 0.0 0.0

1.00

0.12 1.216 62.2 55.0 47.8 38.2 32.4 24.2 18.6

0.25 1.282 62.0 57.4 49.0 40.6 34.0 27.6 20.0

0.50 1.333 61.4 55.8 49.2 43.0 37.6 31.4 22.6

1.00 1.214 50.8 47.4 43.2 38.8 35.4 31.0 24.8

on the SmoothAdv model (i.e., DiffSmooth(SmoothAdv)). The

performance is further improved on the Gaussian smoothed

BEiT large model, and the certified accuracy is improved

from 70.2% to 77.2% under �2 radius 0.50 and from 36.0%

to 53.0% under radius 1.5.

Note that the only difference between DiffS-
mooth(SmoothAdv) and DDS(Smoothed) is the local

smoothing design (DDS(Smoothed) reports the best results

of DDS on smoothed models Gaussian and SmoothAdv).

When we compare the results of DiffSmooth(SmoothAdv)

with DDS(Smooth), we find that the certified accuracy

drops from 65.6% (DiffSmooth(SmoothAdv)) to 55.0%

(DDS(Smoothed))) on CIFAR-10, and drop from 48.2%

(DiffSmooth(SmoothAdv)) to 29.6% (DDS(Smoothed)) on

ImageNet under �2 radius 1.0. Thus, it verifies the importance

of local smoothing design in DiffSmooth.

5.3 Ablation studies

Local smoothing w/o diffusion models. To verify the im-

portance of our methodology design (i.e., diffusion model +

local smoothing + smoothed classifier), we remove the diffu-

sion model from our system design by directly applying local

smoothing noise δ′ on Gaussian [13] (i.e., local smoothing

+ smoothed classifier). The results are shown in Table 3. We

find that local smoothing can not help to improve the cer-

tified accuracy of [13], and the performance even degrades

with large σ′. The reason is that ‖(x+ δ)− x‖ � ‖x̂− x‖,

then with further local smoothing, the image will only be

corrupted more, and thus the classification performance will

drop naturally. This result further verifies the rationale of our

methodology design.

Magnitude of the local smoothing noise. To study the in-

fluence of the magnitude of local smoothing noise, we conduct

experiments among different σ′ ∈ {0.12,0.25,0.50}. The full

results of our method on CIFAR-10 and ImageNet are shown

in Table 4 and Table 5, respectively. We can observe that

by carefully selecting the σ′, the performance will be further

improved. In addition, we find that to certify a small radius,

smaller σ′ is preferred; however, for certifying a large radius,

the choice of σ′ depends on the model resilience to random

noise, i.e., for Gaussian smoothed models, σ′ needs to be close

to σ while for SmoothAdv σ′ can be chosen to be around σ/2.

Number of noise samples for local smoothing. To evaluate

the influence of the number of noise samples m for local

smoothing, we evaluate the certified robustness with m ∈
1,3,5,11,21. The certified accuracy under different numbers

of smoothing noise samples is shown in Figure 3. We observe

that the certified accuracy will increase monotonically with



Label: Ship

Label: Panda

Figure 2: Purified images under different magnitudes of Gaussian smoothing noises. Original clean images are shown in the first column. It

shows that with higher smoothing noise, the purified image is more blurred.

Figure 3: The certified accuracy of DiffSmooth(Gaussian) with different numbers of local smoothing noise on CIFAR-10 and ImageNet. We

show the results on CIFAR-10 in the first row, while the results on ImageNet with ResNet-50 and BEiT are shown in the second and third rows,

respectively.

the number of smoothing noise samples. In practice, only

using five samples (m = 5) is enough to achieve non-trivial

robustness certification.

Computation cost. Additionally, we calculate the time ef-

ficiency for certifying one image with different m on one

NVIDIA RTX A6000. Specifically, on CIFAR-10, our certifi-

cation takes 97s, 111s, 125s, 169s, 240s for m = 1,3,5,11,21,

respectively; while on ImageNet with ResNet-50, it takes

564s, 586s, 608s, 672s, 776s for m = 1,3,5,11,21, respec-

tively. The corresponding computation cost of the one-shot re-

verse diffusion step on certifying one image is 90s on CIFAR-

10 and 553s on ImageNet, respectively. Based on the similar



Table 6: Certified accuracy of ResNet-110 on CIFAR-10 under different �2 radii with the number of predictions as 100,000.

Method Setting
Certified Accuracy (%) under �2 Radius r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

DDS(Standard) N = 100,000 79.0 62.0 45.8 32.6 25.0 17.6 11.0 6.2 4.2

DDS(Smoothed) N = 100,000 79.8 69.9 55.0 47.6 37.4 32.4 28.6 24.8 15.4

DiffSmooth(Gaussian)

N = 20,000,m = 5 77.2 67.4 55.6 44.4 35.0 29.4 21.8 18.4 15.0

N = 10,000,m = 10 76.8 66.0 56.6 42.8 36.0 29.0 23.6 18.2 16.6

N = 5,000,m = 20 77.2 66.8 58.2 43.8 36.6 29.4 22.0 18.0 15.0

DiffSmooth(SmoothAdv)

N = 20,000,m = 5 82.2 71.6 62.8 49.2 39.8 35.2 29.8 24.0 22.4

N = 10,000,m = 10 82.8 71.0 62.4 48.4 40.0 35.4 29.6 24.6 21.0

N = 5,000,m = 20 82.6 71.8 61.8 47.4 40.4 34.4 27.2 24.2 20.6

DiffSmooth(SmoothAdv)

with extra data

N = 20,000,m = 5 86.0 75.8 65.6 54.0 41.8 35.6 30.2 23.8 22.2
N = 10,000,m = 10 85.2 76.0 64.2 53.8 41.8 36.0 28.8 24.4 21.4

N = 5,000,m = 20 85.2 76.0 64.8 49.2 41.4 34.4 26.6 23.0 20.6

Table 7: Certified accuracy on ImageNet under different �2 radii with the number of predictions as 10,000.

Architecture Method Setting
Certified Accuracy (%) under �2 Radius r
0.00 0.50 1.00 1.50 2.00 2.50

ResNet-50

DDS(Standard) N = 10,000 67.4 49.0 33.0 22.2 17.4 12.8

DDS(Smoothed) N = 10,000 48.0 40.6 29.6 23.8 18.6 16.0

DiffSmooth(Gaussian)

N = 2,000,m = 5 65.4 54.8 42.4 30.2 26.8 21.0

N = 1,000,m = 10 65.8 55.2 42.4 30.6 27.6 -

N = 500,m = 20 65.4 53.8 41.8 30.6 25.4 -

DiffSmooth(SmoothAdv)

N = 20,000,m = 5 64.0 57.6 46.4 33.8 28.6 23.4
N = 1,000,m = 10 64.6 57.2 46.0 32.8 27.8 -

N = 500,m = 20 65.0 56.4 45.2 32.4 26.6 -

BEiT

DDS(Standard) N = 10,000 82.8 71.1 54.3 38.1 29.5 -

DDS(Smoothed) N = 10,000 76.2 60.2 43.8 31.8 22.0 17.8

DiffSmooth(Gaussian)

N = 2,000,m = 5 83.0 75.6 60.0 40.1 34.9 25.7
N = 1,000,m = 10 83.2 76.2 60.6 40.3 34.3 -

N = 500,m = 20 83.4 75.0 59.6 40.3 31.9 -

computation costs of the two methods, we can see that the

main bottleneck of the computation cost is the reverse diffu-

sion step instead of the local smoothing.

Number of local smoothing predictions. For a fair compar-

ison, we constrain the number of local smoothing predictions

to be the same as the number of predictions in DDS. In other

words, we will maintain 100,000 prediction queries on CI-

FAR10 and 10,000 prediction queries on ImageNet, and the

corresponding results are shown in Table 6 and Table 7 re-

spectively. As we can see, DiffSmooth performs significantly

better than DDS even with the same computation cost, and

setting m = 5 is already good enough in practice.

6 Conclusion
In this work, we aim to leverage diffusion-based purification

to provide improved certified robustness for smoothed models.

We first provide theoretical analysis to show that the recovered

instances from (adversarial) inputs will be in the bounded

neighborhood of the corresponding original instance with

high probability, and the “one-shot” DDPM can approximate

the original instance under mild conditions.

Based on our analysis, we propose a certifiably robust

pipeline, DiffSmooth, for smoothed models. In particular, Diff-
Smooth performs diffusion-based adversarial purification, fol-

lowed by a local smoothing step to provide certified robust-

ness for smoothed models. We conduct extensive experiments

on different datasets and show that DiffSmooth can achieve

state-of-the-art certified robustness.

One limitation of our method is that it will take more time

for certification; however, the main computation cost during

certification actually comes from the diffusion step instead

of the local smoothing part. We show that under the same

computation cost with DDS, our method still achieves higher

certified robustness and benign accuracy, which provides in-

teresting and promising directions. Overall, we hope our study

sheds light on developing certifiably robust ML models based

on diffusion models and smoothed classifiers.
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A Theorems And Proofs
Theorem 1. Given a data distribution p ∈ C 2 and
Ex∼p[||x||22]< ∞. Let pt be the distribution of x(t) generated
by SDE and suppose ∇x log pt(x) ≤ 1

2C,∀t ∈ [0,T ]. Let γ(t)
be the coefficient defined in SDE and αt = e−

∫ t
0 γ(s)ds. Then

given an adversarial sample xrs = x0 + δ, solving reverse-
SDE starting at time t∗ and point xt∗ =

√
ᾱt∗xrs until time 0

will generate a reversed random variable x̂0 such that with a
probability of at least 1−η, we have

||x̂0 − x0|| ≤ ||xrs − x0||+
√

e2τ(t∗)−1Cη + τ(t∗)C

where τ(t) :=
∫ t

0
1
2 γ(s)ds, Cη :=

√
d +2

√
d log 1

η +2log 1
η ,

and d is the dimension of x0.

Proof. We leverage the proof of [35, Theorem 3.2]. By

reverse-SDE, we can bound

‖x̂(0)− x0‖= ‖x(t∗)+ x̂(0)− x(t∗)− x0‖

=

∥∥∥∥x(t∗)+
∫ 0

t∗
−1

2
γ(t)

[
x(t)+2∇x(t) log pt(x(t))

]
dt +

∫ 0

t∗

√
γ(t)dwww− x0

∥∥∥∥
≤

∥∥∥∥x(t∗)+
∫ 0

t∗
−1

2
γ(t)x(t)dt +

∫ 0

t∗

√
γ(t)dwww

− x0

∥∥∥∥+
∥∥∥∥
∫ 0

t∗
−γ(t)∇x(t) log pt(x(t))dt

∥∥∥∥
where the second equation follows from the integration of

reverse-SDE, and in the last line we have separated the in-

tegration of the linear SDE from non-linear SDE involving

∇x(t) log pt(x(t)) by using the triangle inequality.

The above linear SDE is a time-varying Orn-

stein–Uhlenbeck process with a negative time increment

that starts from t = t∗ to t = 0 with the initial value set to

x(t∗). Denote by x′(0) its solution, from [47] we know x′(0)
follows a Gaussian distribution, where its mean μμμ(0) and

covariance matrix ΣΣΣ(0) are the solutions of the following two

differential equations, respectively:
dμμμ
dt

=−1

2
γ(t)μμμ

dΣΣΣ
dt

=−γ(t)ΣΣΣ+ γ(t)IIId

with the initial conditions μμμ(t∗) = x(t∗) and ΣΣΣ(t∗) = 000. By

solving these two differential equations, we have that con-

ditioned on x(t∗) ,x′(0) ∼ N
(

eτ(t∗)x(t∗) ,
(

e2τ(t∗)−1
)

IIId

)
,

where τ(t∗) :=
∫ t∗

0
1
2 γ(s)ds.

Using the reparameterization trick, let εεε ∼ N (000, IIId), we

have:

x′(0)− x0 = eτ(t∗)x(t∗)+
√

e2τ(t∗)−1εεε− x0

= xrs +
√

e2τ(t∗)−1εεε− x0

together with ∇x log pt(x)≤ 1
2C,∀t ∈ [0,T ], results in that

||x̂0 − x0|| ≤ ||
√(

eτ(t∗)−1
)
εεε+ xrs − x0||+ τ(t∗)C

where εεε ∼ N (000, III). Since ||εεε2|| ∼ χ2(n), by the concentration

inequality [6], we have

Pr

⎛
⎜⎝||εεε|| ≥

√√√√d +2

√
d log

1

η
+2log

1

η

⎞
⎟⎠≤ η.

Thus, with probability at least 1−η, we have

||x̂0 − x0|| ≤ ||xt∗ − x0||+
√

e2τ(t∗)−1Cη + τ(t∗)C.

Theorem 2. Given a data distribution p ∈ C 2 and
Ex∼p[||x||22] < ∞, given a time t∗ and point xt∗ =

√
ᾱt∗xrs,

the one-shot reverse diffusion for DDPM algorithm 2 will
output an x̂0 such that

‖x̂0 −E [x̂0 | x̂t∗ = xt∗ ]‖ ≤ 2σ2
t∗αt∗ (1− ᾱt∗)

3/2

β2
t∗
√

ᾱt∗
· �t∗(xt∗)

where x̂0, x̂t are random variables generated by reverse-

SDE, P(x̂0 = x|x̂t = xt∗) ∝ p(x) · 1√
(2πσ2

t )
n exp

(−||x−xt∗ ||22
2σ2

t

)
and σ2

t = 1−αt
αt

is the variance of Gaussian noise added at
time t in the diffusion process.

Proof. Given time t∗ and point xt∗ =
√

ᾱt∗xrs is equiv-

alent to that in the formula of �t∗(xt∗), given
√

ᾱt∗x0 +√
1− ᾱt∗εεε = xt∗ . Then the conditional distribution of x0 will

be P(x0 = x|xt = xt∗) ∝ p(x) · 1√
(2πσ2

t )
n exp

(−||x−xt∗ ||22
2σ2

t

)
. By

the assumptions that p ∈ C 2 and Ex∼p[||x||22]< ∞, we know

the diffusion process by SDE and the reverse process by

reverse-SDE follows the same distribution, thus we also

have P(x̂0 = x|x̂t = xt∗) ∝ p(x) · 1√
(2πσ2

t )
n exp

(−||x−xt∗ ||22
2σ2

t

)
.

Further note that

�t∗(xt∗) = Ex0,εεε

[
β2

t∗

2σ2
t∗αt∗ (1− ᾱt∗)

‖εεε− εθ (xt∗ , t∗)‖2

∣∣∣∣√ᾱt∗x0 +
√

1− ᾱt∗ε = xt∗

]

= Ex0,εεε

[
β2

t∗

2σ2
t∗αt∗ (1− ᾱt∗)

‖εεε− εθ (xt∗ , t∗)‖2

∣∣∣∣xt∗ = xt∗

]

= Ex̂0,εεε

[
β2

t∗

2σ2
t∗αt∗ (1− ᾱt∗)

‖εεε− εθ (xt∗ , t∗)‖2

∣∣∣∣x̂t∗ = xt∗

]
.

Under the condition
√

ᾱt∗x0 +
√

1− ᾱt∗εεε = xt∗ , which is

equivalent to that
√

ᾱt∗ x̂0 +
√

1− ᾱt∗εεε = xt∗ where εεε ∼
N (000, III), there is a one-to-one corresponding between x̂0 and

εεε, and

‖εεε− εθ (xt∗ , t∗)‖2 =

∥∥∥∥xt∗ −
√

ᾱt∗ x̂0√
1− ᾱt∗

− xt∗ −
√

ᾱt∗εθ (xt∗ , t∗)√
1− ᾱt∗

∥∥∥∥ ·
= ‖x̂0 − x̂0‖ · ᾱt∗√

1− ᾱt∗
.



Table 8: Certified accuracy of DiffSmooth on ImageNet under different smoothing levels with different magnitudes of the local smoothing

noise σ′ at various �2 radius. σ is the smoothing noise magnitude on input. The pretrained base classifier was originally trained under σ′. ACR

is the average certified radius. The number of used local smoothing noise m is 21 here, and the magnitude of the local smoothing is not shifted

during the experiment.

Architecture Methods σ σ′ ACR
Certified Accuracy (%) under �2 Radius r

0.00 0.50 1.00 1.50 2.00 2.50 3.00

ResNet-50

DiffSmooth
(Gaussian)

0.25 0.25 0.467 66.0 57.2 0.0 0.0 0.0 0.0 0.0

0.50
0.25 0.723 61.4 51.8 40.0 30.8 0.0 0.0 0.0

0.50 0.730 56.8 49.8 42.6 36.2 0.0 0.0 0.0

1.00

0.25 0.827 44.0 36.8 32.0 26.0 21.6 15.8 11.6

0.50 0.969 44.6 41.8 36.2 30.0 25.2 22.8 18.4

1.00 0.989 42.4 38.4 35.6 32.2 29.6 24.4 18.8

DiffSmooth
(SmoothAdv)

0.25 0.25 0.475 66.8 58.2 0.0 0.0 0.0 0.0 0.0

0.50
0.25 0.765 58.2 52.0 46.0 36.6 0.0 0.0 0.0

0.50 0.723 53.4 48.8 43.4 37.4 0.0 0.0 0.0

1.00

0.25 0.938 46.4 41.4 34.8 29.8 25.6 21.2 15.4

0.50 1.053 46.4 42.6 38.8 33.6 28.8 25.4 22.4
1.00 0.931 37.0 34.8 33.2 29.8 26.8 24.6 21.0

Therefore,

�t∗(xt∗) = Ex0,εεε

[
β2

t∗s
√

ᾱt∗

2σ2
t∗αt∗ (1− ᾱt∗)

3/2
‖x̂0 − x̂0‖

∣∣∣∣∣ xt∗ = xt∗

]

≥ β2
t∗
√

ᾱt∗

2σ2
t∗αt∗ (1− ᾱt∗)

3/2
· ‖x̂0 −E [x̂0 | x̂t∗ = xt∗ ]‖ ,

where the last inequality is by Jensen’s inequality [7].

B Experiment detail
B.1 Pretrained smoothed models
We directly use the smoothed models trained under Gaussian
from [13]; while for the models trained under SmoothAdv,

we select the best-performing models from [43], and the de-

tailed specification of the hyperparameters for each picked

model is shown in Table 9 and Table 10. Notice, when the

smoothing level is with σ = 0.25, the empirical best magni-

tude of the local smoothing noise for the SmoothAdv model

is σ′ = σ/2 ≈ 0.12. However, there is no pretrained model

provided on ImageNet for SmoothAdv under noise level 0.12;

then, as an alternative, we in fact, use the SmoothAdv model

trained with smaller ε which is 64 instead of 512 when certi-

fying on the smoothing level σ = 0.25 for ImageNet.

B.2 The setting of the magnitude of the local
smoothing noise

On CIFAR10, we test the σ′ ∈ {0.12,0.25} for the smoothing

level σ = 0.25, the σ′ ∈ {0.12,0.25,0.50} for the smoothing

level σ = 0.50, and the σ′ ∈ {0.12,0.25,0.50,1.00} for the

smoothing level σ = 1.00.

On ImageNet, for ResNet-50, we test the σ′ ∈ {0.25} for

the smoothing level σ = 0.25, the σ′ ∈ {0.25,0.50} for the

smoothing level σ = 0.50, and the σ′ ∈ {0.25,0.50,1.00} for

the smoothing level σ = 1.00. And for BEiT large model, we

test the σ′ ∈ {0.12,0.25} for the smoothing level σ = 0.25,

the σ′ ∈ {0.12,0.25,0.50} for the smoothing level σ = 0.50.

B.3 Finetuning details of BEiT model
We finetune the BEiT with the checkpoints that are self-

supervised pretrained and then intermediate fine-tuned on

ImageNet-22k and train it with Gaussian augmentation with

σ ∈ {0.25,0.50,1.00} in 30 epochs. The batch size is 32, the

learning rate is 2e−5, the update frequency is 2, the number

of warmup epochs is 5, the layerwise learning rate decay is

0.9, the drop path is set to 0.4, and the weight decay is set to

1e−8.

Table 9: Detailed specification of the hyperparameters for the se-

lected SmoothAdv models on CIFAR-10 and ImageNet.

Dataset σ Method # steps ε m

CIFAR-10

0.12 PGD 10 64 4

0.25 PGD 10 255 8

0.50 PGD 10 512 2

1.00 PGD 10 512 2

ImageNet

0.25 DNN 2 512 1

0.50 PGD 1 255 1

1.00 PGD 1 512 1

Table 10: Detailed specification of the hyperparameters for the

selected SmoothAdv models with self-training on CIFAR-10.

Dataset σ Method # steps ε weight

CIFAR-10

(Self-training)

0.12 PGD 8 64 1.0

0.25 PGD 4 127 1.0

0.50 PGD 2 255 0.5

1.00 PGD 8 512 0.5

C Influence of the shifting on the magnitude
of local smoothing noise

We provide the experiment results without magnitude shifting

for ResNet-50 on ImageNet in Table 8 for comparison.


