
Watch your Watch: Inferring Personality Traits from Wearable Activity Trackers

Noé Zufferey1, Mathias Humbert1, Romain Tavenard2, Kévin Huguenin1

1University of Lausanne, Switzerland
2University of Rennes, CNRS, LETG, France

Abstract
Wearable devices, such as wearable activity trackers (WATs),
are increasing in popularity. Although they can help to im-
prove one’s quality of life, they also raise serious privacy
issues. One particularly sensitive type of information has re-
cently attracted substantial attention, namely personality, as
it provides a means to influence individuals (e.g., voters in
the Cambridge Analytica scandal). This paper presents the
first empirical study to show a significant correlation between
WAT data and personality traits (Big Five). We conduct an
experiment with 200+ participants. The ground truth was
established by using the NEO-PI-3 questionnaire. The par-
ticipants’ step count, heart rate, battery level, activities, sleep
time, etc. were collected for four months. By following a
principled machine-learning approach, the participants’ per-
sonality privacy was quantified. Our results demonstrate that
WATs data brings valuable information to infer the openness,
extraversion, and neuroticism personality traits. We further
study the importance of the different features (i.e., data types)
and found that step counts play a key role in the inference of
extraversion and neuroticism, while openness is more related
to heart rate.

1 Introduction

The number of wearable device1 owners is increasing every
day. The International Data Corporation states that global
shipments of wearable devices reached 138.4 million units
during the third quarter of 2021 [6], which means that there
are more than one billion wearable devices worldwide [5].
These devices collect large amounts of physiological and
contextual data, such as step counts and continuous heart
rate (for those equipped with the appropriate sensors). Such
data can help wearable device users to better monitor their
physical activities and health, following a quantified-self [25]
approach. However, wearable devices raise new privacy and

1In particular, wrist-worn devices such as wearable activity track-
ers (WATs).

security issues. For instance, Eberz et al. [40] showed that
data collected from wearable devices can be used to bypass
biometric authentication systems by using accelerometer data
to impersonate users. Furthermore, accelerometer data can
be used to infer keystrokes (e.g., on pin-pads) [72, 73, 74].
Moreover, WAT data can be used to infer daily activities
and habits [7, 43, 64, 85] (e.g., eating) and drug usage [86]
(e.g., cocaine), and even to identify SARS-CoV-2 infec-
tions [56]; such inferences are highly sensitive from a privacy
perspective. Finally, WAT data, such as running routes, can
be used to infer sensitive locations (e.g., user’s home), even
when using protection mechanisms [51, 81], and aggregated
location data have been used to locate military bases and in-
fer their internal structures [54], specifically in remote areas
where unusual activity patterns were observed.

In the context of the quantified-self, questioning the ef-
fect of such data collection (and sharing) on people’s privacy
is becoming increasingly relevant, especially as many users
express concerns about the misuse of their data [11, 45]. Per-
sonal information, such as personality, socioeconomic status,
sexual orientation, and religion can probably be inferred from
data collected by wearable devices, similarly to what was
shown to be possible for location and social network data
(e.g., [18, 82, 119]). Moreover, third-party entities like adver-
tisers, marketers, health insurers, employers, and governments
might have an interest in learning sensitive information de-
rived from the data collected by wearables [2]. Some organi-
zations, encouraged in particular by Fitbit (one of the market
leaders for WATs [53, 70]), are now offering their employees
tracking devices through health programs [97]. More recently,
the former US President Trump suggested using data from
wearable devices for national security purposes, essentially
to preemptively detect mass shooters [41].

One particularly valuable type of personal information, as
illustrated by the Cambridge Analytica scandal [21], is per-
sonality. Personality is often characterized by the Big Five
OCEAN traits (openness, conscientiousness, extraversion,
agreeableness, neuroticism) [96], and it is known to influ-
ence behavior. Information about an individual’s personality



enables others to manipulate this individual more efficiently
by sending them appropriate signals (e.g., targeted advertise-
ments), thus raising serious ethical concerns. For instance,
Cambridge Analytica used data from social networks to infer
the personality traits of US voters and to influence them dur-
ing the 2016 Presidential Election [46, 95]. Similarly, credit
card companies have exploited clients’ purchase history to
profile debtors and craft the appropriate strategies to recover
their debts [38] (e.g., by determining whether a specific client
would respond better to a comforting or threatening message).
As a result, individuals are increasingly worried about the
potential misuses of automatic personality assessment [60].
Besides social networks, prior work has demonstrated that
personality could be inferred from the data collected by indi-
viduals’ (smart)phones [24, 34, 35, 83, 104].

In this work, we focus on the problem of personality in-
ference in the context of WATs. As such devices collect a
large amount of behavioral and physiological data, they bring
valuable information to infer personality. Indeed, behavioral
indicators are one of the three types of indicators that are used
to assess an individual’s personality [120]. Furthermore, pre-
vious research extensively studied the relationship between
personality and physical activity [94] and identified multiple
correlations between the two. Moreover, recent works show
that WAT data can be used to infer characteristics related to
personality, such as stress resilience [8] and mood [67]. It has
also been shown that some personality traits are correlated
to sleep [55]. Finally, WAT data can also be combined with
other types of data that are already known to be helpful for
personality inference (e.g., social network behavior, smart-
phone usage). Data brokers can indeed easily link different
types of users’ data from different databases [9] and build ac-
curate inference models using such a larger and more diverse
data set. To the best of our knowledge, this is the first work to
address the concrete (privacy) risks of personality inference
from data collected by WATs.

Contributions and Results

We present the first study on the inference of personality
traits from data collected by WATs. We equipped 200+ vol-
unteers with Fitbit wearable devices (namely, Fitbit’s Inspire
HR WAT) and captured their step counts, heart rate, battery
level, activity, and sleep time over the course of a four-month
period, as well as data available on their user profile, such
as gender. To determine the personality profile of our par-
ticipants, we used the Big Five personality scores captured
through the standardized NEO-PI-3 questionnaire [77]. Our
longitudinal data collection enabled us to precisely evaluate to
what extent data collected by wearable devices are correlated
to personality traits, and thus may be used together with other
types of data, to conduct personality inference attacks.

In particular, we rely on a machine learning model trained
on the data collected by the wearable devices to predict the

given personality trait tercile. Although our model does not
reach high levels of accuracy for any Big Five personality
trait, it is evaluated using a rigorous leave-one-out (LOO)
cross-validation, and we show that it can classify WAT users
according to openness, extraversion, and neuroticism with sta-
tistical significance compared to the random-guess baseline.
We also report on the most relevant features by analyzing
those that are the most used by the inference model.

Furthermore, we collected our participants’ concerns and
perceptions regarding personality inference from their WAT
data in an exit questionnaire. Nearly half of our participants
thought that such inference would not be possible at all, while
nearly two-third of them reported that they would be worried
if it was. This is in line with a recent qualitative study, using
interviews, that shows that a substantial fraction of users are
worried about personality assessment and about its potential
misuse [60]. Finally, we analyzed related prior work based
on phone and smartphone data, discuss their methodologies,
and compare our results and methodology to theirs. We show
that the accuracy level achieved by our model outperforms
that of the current state-of-the-art found in literature about
(smart)phone-based inference using similar methodologies
(ternary classification) [83] for all five personality traits. Fur-
thermore, we are the first to show, with a rigorous evaluation
process, correlations between wearable data and neuroticism
and openness. Based on our analysis, we also discuss the
design of potential privacy-preserving solutions.

2 Background

We provide the necessary background regarding two key as-
pects of our work: personality assessment and WATs.

2.1 Personality
The assessment of an individual’s personality is generally
based on the Big Five personality traits, also known as the
five-factor model. The Big Five personality traits constitute
a psychological model that defines an individual’s personal-
ity through five main traits (specifically openness, conscien-
tiousness, extraversion, agreeableness, and neuroticism; con-
veniently abbreviated OCEAN) that are subdivided into six
sub-traits each [77]. This model, which has been proven to be
robust and stable over time [28], is structured as follows [96]:
• Openness to experience — Individuals who score high on

this dimension tend to be intellectual, imaginative, sensitive,
and open-minded. Those who score low tend to be down-
to-earth, insensitive, and conventional.

• Conscientiousness — Individuals who are high in con-
scientiousness tend to be careful, thorough, responsible,
organized, and scrupulous. Those low on this dimension
tend to be irresponsible, disorganized, and unscrupulous.

• Extraversion — Individuals who score high on extraver-
sion tend to be sociable, talkative, assertive, and active.



Whereas, those who score low tend to be retiring, reserved,
and cautious.

• Agreeableness — Individuals who score high on agreeable-
ness tend to be good-natured, compliant, modest, gentle,
and cooperative. Individuals who score low on this dimen-
sion tend to be irritable, ruthless, suspicious, and inflexible.

• Neuroticism — Individuals high on neuroticism tend to
be anxious, depressed, angry, and insecure. Those low on
neuroticism tend to be calm, poised, and emotionally stable.

The NEO-PI-3 (third version of the NEO-PI) is a standard-
ized questionnaire for assessing an individual’s personality,
along the five aforementioned traits. It is considered to be a
reference in the personality assessment research field [77].
The NEO-PI-3 is a 240-item questionnaire describing and an-
alyzing the five main aforementioned personality traits.This
questionnaire delivers, for each of the five personality traits,
a score between 0 and 192. The Big Five personality traits
and the NEO-PI questionnaires are deeply related and have
been developed mainly by Costa and McCrae [29]. Official
translations of this questionnaire exist in many languages. In
this work, we used the official translation of the full NEO-
PI-3 questionnaire, in [redacted for blind review], the local
language at our institution.

2.2 Wearable Activity Trackers
Wearable Activity Trackers (WATs) are wearable devices de-
signed to collect diverse physiological and contextual data
about their users and are generally acknowledged to be de-
cently accurate [10]. People usually wear such devices either
to increase their physical performance, to improve their qual-
ity of life and lifestyle, or simply because they like collecting
data about their life and habits. This type of device collects
a large amount of diverse data such as step count, heart rate,
activities, and sleep time (we expand more on this in Sec-
tion 6.2).

Fitness-tracking devices generally collect an individual’s
data by using multiple embedded sensors such as accelerom-
eters, gyroscopes, ambient light, and temperature sensors.
These data are then sent via Bluetooth to a synchronized
smartphone or tablet where the data are processed and stored
by the corresponding application. Generally, this application
also transfers the user’s data to a server either to facilitate data
sharing, prevent possible data loss, or for further processing
and analytics in order to provide additional services/insights
to the user.

With its 29.6 millions of users in 2019 [32], Fitbit is con-
sidered one of the leaders of the WAT market. In the case of
Fitbit’s services, in addition to the standard functionalities
that they provide, the possibility to grant read/write access
authorization to third parties is given to users so that third
parties can access the user’s data through the dedicated Fitbit
API [4] to provide supplementary services or data analysis.
To this end, Fitbit relies on the OAuth 2.0 protocol. During

the authorization process, a user can choose which type of
data they agree to share with a third party.

3 Adversarial Model

We focus on an adversary that can access some or all of a
users’ data processed by Fitbit. There exist multiple adver-
saries who correspond to this description. One such adversary
is typically the service provider itself, like Fitbit or other com-
panies that base their business on WAT data collection such
as WeWard, that offers their users to be paid according to
the number of steps they take [1]. In this case, the risks we
can measure represent a lower bound of the actual risks as
the service provider has access to the raw WAT data and the
smartphone data collected by the companion mobile app. It
could also be any of its business partners, or any third party
to whom many users have granted, knowingly or not, access
to their data (e.g., have given a token pair through OAuth 2.0).
Such an adversary can potentially obtain years of data col-
lected from millions of users (there were 29.6 million Fitbit
users in 2019 [32] and, 4 millions for WeWard in 2021 [1]).
A recent study shows that 70% of WAT users share their data
with at least one third-party app [123], and that users who
share their data with third-party apps tend to forget that they
do. Furthermore, it also shows the users’ lack of knowledge
about the data sharing process and demonstrates that they are
not aware of the actual amount of data they share. Moreover,
9% of the participants in this study claimed to grant Fitbit
access to at least one of their social media accounts, so that
Fitbit can automatically make posts on their social media pro-
files related to their activity (e.g., step counts). An adversary
could use such information, alone or combined with other
information available on the social profiles [61, 62, 69], to
infer users’ personality. Also, an employer could offer free
WATs to their employees if they accept to share the collected
data with their employer. Over the past few years US compa-
nies have engaged in such corporate-wellness programs using
Fitbit devices [97]. A government could gain access to a WAT
service provider’s data, for national security reasons, as re-
cently suggested by a former US president [41]. An insurance
company (e.g., health) could provide tracking devices to their
policyholders to better analyze risks. For instance, Google
acquired Fitbit [91] and Alphabet, Google’s parent company,
is growing rapidly in the health insurance market [20], further-
more, they plan to force Fitbit users to migrate to their Google
accounts [111]. Finally, other adversaries could obtain such
information by accessing tracking-device companies’ leaked
databases or by using eavesdropping techniques, as WATs
and their related mobile applications are known to use poorly
protected wireless communication protocols and data stor-
age [15, 27, 33, 47, 71, 118].

In this article, we consider one such adversary who sub-
sequently uses the collected data to infer the psychological
profiles of the associated users. Such personal information



is highly sensitive, from a security and privacy point of view
as explained in the introduction. This information is highly
valuable for adversaries, thus pushing them to conduct such
attacks. In particular, psychological profiling enables discrim-
ination and manipulation. Indeed, assessing an individual’s
personality can help influence their behavior. For instance, it
can be used to influence consumers’ choices through targeted
advertisements [37, 38] and even voters’ choices [116] as
in the Cambridge Analytica scandal related to the 2016 US
presidential election [21], and thus have an impact beyond
manipulating individuals, by influencing global politics.

4 Related Work

Prior research shows that data collected by wearable devices
such as WATs can be used to infer information which, al-
though sometimes useful and desired by the user, can be
considered as sensitive or can cause security breaches. For
example, data from altimeters can be used to reveal the user’s
location [78] and data from sensors such as accelerometers
and gyroscopes can be used to monitor individuals’ activ-
ities [63, 102]. Such data can also be used to infer more
precise information, such as which keys a user pressed on a
keyboard (e.g., computer keyboard, smartphone keypad, ATM
pin pad) [68, 73, 74, 75, 98], handwritten text [12], food con-
sumption [113], alcohol consumption [48], or smoking [103].
Sensor data can be used to impersonate an individual by al-
lowing an attacker to imitate the user’s biometrics in order to
bypass identification systems [39, 40] or to study individuals’
behavior at work [84]. It can also help to monitor individu-
als’ sleep quality [101], health (by inferring the presence of
diseases [63, 88, 115]), mental state (such as their levels of
stress [115]), and to identify SARS-CoV-2 infections [56].

In parallel, another line of research shows that an indi-
vidual’s personality can be inferred from various types of
data [57, 108]. It can be inferred from location-based so-
cial media or location logs (e.g., Foursquare logs) [26, 110],
from online social-network profiles, networks, and behav-
ior (e.g., number of “friends”, likes, sharing) [61, 62, 69],
from pictures (e.g., social-media profile picture) [22, 49],
from nonverbal-speech feature analysis (everything except
the speech content), from speech features (such as prosody
and intonation), body features (such as head or hand move-
ments) [16, 58, 117], from written texts (e.g., Facebook status
and posts, Tweets) [52, 79, 80]. Dietary habits were shown to
be correlated with personality [114]; therefore, this correlation
could be exploited to predict personality from dietary habits
reported in the WAT app or detected from the tracker data.
Finally, personality can be predicted from call-detail records
(CDR) and smartphone data [23, 34, 35, 83, 105]. Below, we
review the articles related to data collected by (smart)phones
in more detail, as these data are the most similar to WAT data
(yet much richer).

Prior studies about mobile-phone-related data highlighted

the link between collected personal data and personality traits.
Table 1 compares all the related-work experimental layout
and results that we discuss in detail next.

de Oliveira et al. studied to which extent it is possible to
infer personality traits from call-detail records using regres-
sion. Their model obtained mean square errors (MSE) signifi-
cantly (p < 0.05) lower than the baseline (MSE of 1.184) for
openness (MSE of 0.670), extraversion (MSE of 0.650), and
agreeableness (MSE of 0.615) [35].

Chittaranjan et al. evaluated the accuracy of personality-
trait inference from smartphone data by using binary classifi-
cation methods [23, 24]. They obtained an average accuracy
of 72% (+25% of accuracy compared to the baseline on aver-
age) for all traits.

de Montjoye et al. evaluated the accuracy of personality-
trait inference from phone-based metrics by using ternary
classification methods [34]. They obtained an average accu-
racy of 53% (+42% of accuracy compared to the baseline on
average) for all traits.

However, Mønsted et al. show that the inference results
were overestimated in the aforementioned articles [23, 34, 35].
More specifically, the authors of these works optimized some
parameters (e.g., feature, model, and hyperparameter selec-
tion) based on the entire dataset instead of doing so based
on only the training set considered in each iteration of the
cross-validation loop; this corresponds to the common pit-
falls P3 and P5 listed in Arp et al.’s recent work on the dos
and don’ts of machine learning in computer security [13].
Mønsted et al. further proceed to a ternary classification of
the five traits by using the same models, features, and ap-
proach as de Montjoye et al.’s article [34]. They show that,
based on their correlation with the trait to infer without using
cross-validation (i.e., on the entire dataset), previous research
about inferring personality from phone data overestimated
model performance by selecting certain features. After fol-
lowing the same approach and obtaining similar results to de
Montjoye et al., Mønsted et al. show that by using a more
rigorous methodology with the same data, only extraversion
can be inferred (with an accuracy significantly better than the
baseline) from (smart)phone data. They obtained an accuracy
improvement of +36% (wrt the baseline) for that specific
trait. Therefore, we cannot compare our work with their re-
sults, except for those of Mønsted et al. who used a (rigorous)
methodology similar to ours. Hence, we can assert that per-
sonality inference models using WAT data outperform those
using CDR as they achieve a higher accuracy for extraversion
as well as accuracies significantly higher than the baseline for
neuroticism and openness.

More recently, Stachl et al. inferred personality traits from
richer smartphone data [104] using smartphone data of 624
participants collected over 30 days. Their features were more
diverse and richer than those used in the other studies. The
features were derived from call detail records, music consump-
tion, application usage, mobility, overall phone activities, and



Table 1: Comparative table of the most relevant publications. The ‘year’ is the year of publication, the ‘source’ represents the
data source used to build the features for the inference process, ‘N’ is the number of participants, ‘var.’ means that the data
collection duration is not fixed among the different participants, ‘CDR’ stands for Call Detail Records, the inference type is either
regression or classification, k is the number of classes in case of classification, ‘SVR’ stands for Support Vector Regression,
‘SVC’ for Support Vector Classification, ‘RF’ for Random Forest, and ‘LOO’ stands for Leave-One-Out evaluation. Finally, the
‘Results’ column shows, in bold, which traits were inferred statistically significantly better than their respective baseline.

Article Year Source N Dur. Inference Model Eval. Results
de Oliveira et al. [35] 2011 CDR 39 var. Regression SVR 10-fold OCEAN*
Chittaranjan et al. [23] 2011 Smartphone 83 8 m Class. (k = 2) SVC LOO OCEAN*
de Montjoye et al. [34] 2013 CDR 69 16 m Class. (k = 3) SVC 10-fold OCEAN*
Mønsted et al. [83] 2018 CDR 636 24 m Class. (k = 3) SVC 10-fold OCEAN
Stachl et al. [104] 2020 Smartphone 624 30 d Regression RF 10-fold OCEAN
→ This article 2022 Fitness Tracker 204 4 m Class. (k = 3) SVC LOO OCEAN

* Mønsted et al. [83] showed that these articles suffer from test-data leakage (i.e., when data from the test data is used for training,
for instance, in the feature selection step), which leads to overfitting. Therefore, the performance reported in those articles is largely
overestimated. For example, according to Mønsted et al. [83], if de Montjoye et al. had used a rigorous experimental setup, they would
have only obtained statistically significant results for extraversion (leading to OCEAN instead of OCEAN in the table).

daily activities. They show that it is possible to infer openness,
extraversion, and conscientiousness from these data.

In summary, we are the first to demonstrate that WAT data
brings valuable information to classify users according to their
personality traits. Moreover, regarding related work that used
similar methodological approaches (ternary classification), we
show WAT data is more helpful for such classification than
phone data. Also, by using a rigorous evaluation methodol-
ogy, and thus, in comparison with most of the previous works,
fairly evaluating the inference performance, we are the first
to show how users can be classified according to their neu-
roticism level with an accuracy significantly higher than the
baseline. Finally, we show that WAT data are correlated to
openness, which was not the case with the data considered in
prior work (e.g., CDR).

5 Data Collection and Statistics

We describe our data collection campaign and we report on
the general statistics regarding our participant pool.

5.1 Data-Collection Campaign

Evaluating the privacy of WAT users, with respect to their
personality, requires having access to both WAT and person-
ality data for a number of individuals. In order to collect such
data, we organized a large-scale experiment. We recruited
the participants through LABEX, a dedicated structure of the
University of Lausanne (UNIL); it manages a pool of around
8’000 students from two universities (a technical one, i.e.,
EPFL, and a general one, i.e., UNIL itself, that covers a broad
range of disciplines). Those who were interested in our ex-
periment responded to a screener questionnaire that we used
to verify their eligibility for participating. 981 individuals an-

swered the screener questionnaire and 429 were compatible
with the experiment criteria: to own a smartphone compati-
ble with the Fitbit application, to speak French(i.e., the local
language at the universities; the questionnaires were in the
local language), and to not already own a WAT. We finally
recruited 230 individuals.2

In order to ensure a better diversity of personality profiles,
we selected the participants from different academic institu-
tions and various study disciplines. Every selected participant
received a Fitbit Inspire HR bracelet. We chose to use a Fit-
bit device because Fitbit is one of the leaders in the WAT
market [70] and because it provides a well-documented and
effective API [4] to collect users’ data. Moreover, the Fitbit In-
spire HR is a high-end general-purpose WAT; as such, it gave
us access to a wide range of data types (including step count,
activities, sleep time, and heart rate) while still being used
by a large user base. Using Fitbit trackers introduced some
minor limitations such as the limited accuracy of some of
their sensors (compared to higher-end devices) [106] as well
as limited access to the data that they collect (only processed
data, unlike specialized devices).

We only recruited new users because we wanted to provide
them all the same WAT model, for data homogeneity and data
collection infrastructure (Fitbit API). Furthermore, recruiting
individuals who already owned a WAT could have increased
the dropout rate as they would have been tempted to switch
back to their own devices during the data collection.

The participants were instructed to wear the bracelet daily
and all day long (they were free to remove it for comfort rea-
sons, for example, at night) and to regularly synchronize with
the Fitbit app running on their smartphones. They also had to
answer a questionnaire that consisted of demographic ques-

2Part of the participants agreed to share their WAT data. The dataset is
available at https://dx.doi.org/10.5281/zenodo.7621224

https://dx.doi.org/10.5281/zenodo.7621224


tions and the NEO-PI-3 standardized personality assessment
items [77] (see Section 2.1), which were used to compute
their Big Five scores.3 We chose that specific questionnaire
because it is a reference questionnaire and because it provides
results with high confidence and fine granularity. The purpose
of this questionnaire was to collect the necessary ground truth.

The WAT data were collected for four months (between
May and September 2020)4 using the Fitbit API (the partic-
ipants had to grant us an access authorization by using the
OAuth2 protocol).5 We collected the step count for every one-
minute interval; the average heart rate for every one-minute
interval; the sleep related data such as the bedtime, wake-up
time, sleep quality or the number of times that a user was
restless during their sleep (for those who wore the device at
night); as well as the sports activities (e.g., running, biking)
that were automatically detected by Fitbit. Finally, in order
to ensure high data-utility of our dataset, we decided to only
keep the 204 individuals who wore their devices at least 50%
of the time.

Ethical Considerations

During the distribution of the devices, the participants had
to sign a consent form that described the conditions of par-
ticipation, the data being collected (and the associated data
management plan), the procedure to withdraw from the study,
and information about the financial incentive. The institu-
tional review board at our university validated the consent
form and approved the entire experiment. As a reward, partic-
ipants were paid 60 CHF (∼ 60 USD) at the end of the data
collection campaign, and they were allowed keep their device
for personal use, which they all did.

5.2 Descriptive Statistics
Among the 204 selected participants, 64.7% were women,
34.8% were men, and 0.5% (1 participant) preferred not to
indicate their gender. The women/men ratio is representative
of the Fitbit user base. Indeed, we can observe that, in the
general population, two thirds of Fitbit users are women [3].
72% of our participants are students from the general univer-
sity (where a majority of students are women), and 28% are
from the technical university. They are on average 22.6 years
old with a standard deviation of 2.7 years. The youngest is
18 years old and the oldest is 33 years old. Note that even if
the age range is not representative of the general population,
as the Big Five model is known to be stable over time [28],
this should not substancially influence our results. Regarding

3The questionnaire is available on https://www.parinc.com/
Products/Pkey/275, unfortunately, we cannot directly share it due to copy-
right issues.

4The data collection campaign was conducted during the COVID-19
pandemic. However, there was no lockdown or restriction from May to
September in Switzerland; only large events were canceled.

5Our access was revoked shortly after the end of the experiment.

the national statistics in our country, the age distribution cor-
responds to the student population. However, the proportion
of women is slightly higher in our dataset than in the global
student population. The scores for all personality traits corre-
spond to a normal distribution. The medians of the scores for
the five different personality traits have values between 96.5
and 125 points, depending on the trait. With terciles of 84
and 109 points, neuroticism has the highest score variability,
which helps us to better infer that personality trait (this is
confirmed by our results; see Section 7), as the difference
between individuals appears to be substantial. Table 2 shows
the distribution of participants across each tercile of each per-
sonality trait. We can observe that the distribution is globally
well balanced with no majority class containing more than
35% of the samples. Because participants can have the exact
same scores, the terciles are not always of size exactly 33%.
The participants wore their devices during 88% of the data
collection period on average. They have an average heart rate
of 75 bpm (beats per minutes) with a standard deviation of
7 bpm. During the data collection period, the participants
took 8,669 steps per day on average with a standard deviation
of 2,740.They slept for 8 hours and 17 minutes per day on
average with a standard deviation of 2 hours and 4 minutes.
Physical activities are automatically detected and recorded
by the device, however, it only takes into account activities
lasting 15 minutes or more. Walking was, by far, the most prac-
ticed activity (63% of the activities). As the participants were
free to sometimes remove their bracelets, they probably took
steps, slept, or did activities that were not taken into account
by the device, therefore, the previously discussed statistics
about Fitbit collected data could be slightly underestimated.

5.3 Participants’ Privacy Concerns

In the exit questionnaire, we asked the participants to evaluate
on a 5-point Likert scale: (1) To what extent (that is, with
what precision) can personality be inferred based on the
data collected from your Fitbit tracker? (from “Not at all
precise” to “Extremely precise”) and (2) To what extent would
you be worried if the user’s personality could be inferred
accurately based on the data collected by your Fitbit tracker?
(from “Not at all worried” to “Extremely worried”). For the
first question, 47% of the participants answered “Not at all
precise” or “Slightly precise”, 34% answered “Moderately
precise” and 19% answered “Very precise” or “extremely
precise”. For the second question, 38% of the participants
answered “Not at all worried” or “Slightly worried”, 26%
answered “Moderately worried” and 36% answered “Very
worried” or “extremely worried”. Our participants also ranked
personality as one of the most concerning types of information
in a proposed list (age, alcohol, and tobacco consumption,
illegal drugs consumption, menstrual cycles, political views,
religion, sexual activity, sexual orientation, socio-economic
status), and they were far more concerned with personality
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Table 2: Distribution of the number of samples for each tercile and each personality trait.

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Low 71 (35%) 68 (33%) 72 (35%) 69 (34%) 69 (34%)
Medium 70 (34%) 71 (35%) 64 (31.5%) 69 (34%) 67 (33%)
High 63 (31%) 65 (32%) 68 (33.5%) 66 (32%) 68 (33%)

being inferred than religion or sexual orientation.

6 Inference

Privacy is commonly characterized as the (in)accuracy of
an inference process [109], conducted by an adversary, that
takes user data as input (data collected from WATs in our
case) and outputs (a probability distribution across possible)
values for some private attributes of the users (scores for
the OCEAN personality traits in our case). In order for the
privacy quantification to be fair and unbiased, it is paramount
to properly design the inference framework and methodology,
as shown by Mønsted et al. [83].

In this section, we describe the machine-learning-based
inference methodology, the data extracted from the WATs
for the inference (i.e., the features), and we report on our
empirical results regarding the quantification of the privacy
of WAT users, with respect to their personality.

6.1 Methodology
We define an inference framework which consists in training
and testing a machine-learning (ML) model for predicting the
scores for each of the OCEAN personality traits, for a given
user and the WAT data associated to them. Based on the par-
ticipants’ “actual” scores, computed from their responses to
the NEO-PI-3 questionnaire [77] by following a standardized
methodology, we establish the ground truth for the personality
traits. We use this ground truth to train the ML model, in a
supervised manner, and to evaluate its performance in terms
of accuracy.

Inference Method

We chose to rely on classification methods because (1) the
category within a general population to which an individual
belongs to is the most important aspect from a psychological
point of view [77] (as explained in Section 2.1) and (2) it is the
most common method used in prior work [23, 34, 83]. Classes
can be defined based on quantiles in order to get evenly sized
groups (in terms of their number of individuals). For example,
in the case of two classes (i.e., binary classification), the first
class is defined as the individuals whose score is lower than
the median and the second class as those whose score is higher
than the median. In the case of three classes (i.e., ternary
classification), the class boundaries correspond to terciles. A

common problem of using the aforementioned technique with
an even number of classes is that, for bell-shaped distributions
of scores, it splits participants in classes in the middle of the
bell, where most of the participants lie. To minimize this issue,
we defined the inference attack as a ternary classification
process, similarly to previous works [34, 83]. Therefore, the
classification problem consists in inferring, for each individual
and each personality trait, if they belong to the bottom, middle
or top personality score class (regarding the score terciles),
with respect to the whole dataset.

Evaluation

We evaluated privacy for each of the five main personality
traits (OCEAN) independently. For each trait, we defined
three classes from the whole dataset as explained above,
and we conducted the inference and the evaluation. In or-
der to train and evaluate the model, we proceeded to a nested
Leave-One-Out (LOO) cross-validation. More specifically,
for a dataset S = {xi | i ∈ [1..N]}, where xi denotes the data
of participant i, the model was trained and evaluated N times
using S\{xi} as training set and {xi} as testing set for each
i ∈ [1..N]. Moreover, for each of the N iterations, the feature
selection strategy and its hyper-parameters (i.e., number of se-
lected features) as well as the hyper-parameters of the model
were chosen using a grid search with LOO cross-validation
on the N −1 elements of the training set.

By proceeding this way, we make sure that the results pre-
sented are fair in the sense that information leakage (e.g.,
when the feature selection is done on the entire dataset) is
prevented. As pointed out by Mønsted et al. [83], sharing
data between model selection and model evaluation steps
leads to overestimating performance of the models at stake.
In particular, they show that some of the works related to
ours [23, 34] are subject to such methodological biases. We
use the accuracy (i.e., the proportion of correctly classified
instances) as our evaluation metric. This metric is the most
suitable for comparing different models, and it provides a
clear understanding of their performance. Moreover, it is the
only metric that is used in all prior work performing classi-
fication [23, 34, 83]. However, we are aware that accuracy
is limited since, as it aggregates the confusion matrix into a
single value, it does not distinguish between different types
of errors and their associated magnitudes (e.g., misclassify-
ing a participant as “bottom” instead of “top” is worse than
misclassifying them as “middle”). Finally, we compare our
results to the baseline defined by a uniformly-random naive



classifier (the probability of inferring the correct class for
each trait and each test individual is therefore 33%). Due to
slight differences between the class sizes, we decided not
to use majority baseline. When the difference between two
class sizes is zero or one, holding-out a single sample from
the training set would result in the corresponding class being
under-represented in the training set and the majority-class
classifier would then underperform the random baseline.

The inner loop of this nested cross-validation performs both
feature and model selection. The feature selection strategy is
cross-validated among (i) univariate feature selection, (ii) a
greedy feature elimination strategy, and (iii) a model-based
feature importance approach. The models at stake in this inner
cross-validation loop are Support Vector Machines (SVM)
and Random Forests (RF). Cross-validated hyper-parameters
for SVMs are the kernel (Gaussian and linear kernels are
considered), C and γ (for Gaussian kernels), while for RFs, we
have cross-validated the number of trees in the forest and the
split criterion. For all traits, in all iterations of the inner loop,
the selected model is an SVM. Note that, as it can be observed
in Table 1, SVM is the most common ML method used in prior
work for solving similar problems. For the implementation,
we have relied on the scikit-learn [100] machine learning
library for Python.

6.2 Feature Extraction

We collected different types of data through the Fitbit API:
time series (steps, heart rate, battery level), events (sleep, ac-
tivities) and standalone features (gender, resting heart rate).
The extraction of most of our features consisted of aggregat-
ing time-series data over time intervals, with some periodicity
using the following method: for each day of the week, we
aggregated data according to predefined periods of the day.
To this end, we partitioned the day into six periods of four
hours with boundaries at: 2AM, 6AM, 10AM, 2PM, 6PM
and 10PM. Previous studies highlighted that personality is
correlated with individuals’ circadian rhythm (natural process
that regulates a 24-hour biological cycle) [36, 65]. We thus
defined 6×7 = 42 different periods (e.g., “Monday between
10AM and 2 PM”) for aggregating the data into features. We
then computed features corresponding to their two first statis-
tical moments (i.e., the mean and the variance for the heart
rate and step count taken across each of these periods).

Note that, although the extracted features refer to physi-
ological and behavioral information, they are not as rich as
those that can be collected from a (smart)phone [24, 34, 35,
83, 105]. They could also contain errors as, for example, the
sensor signal analysis might sometimes not detect the right
activity or confuse a step with certain arm gestures.

Furthermore, they are particularly centered on the user’s
activities and, unlike phone data, contain no direct social
information, even though multiple personality traits have a
strong social component.

Steps and Heart Rate

Steps and heart rate have the same data structure: they are
sequences of pairs (t,x), where t a timestamp, and x a scalar
value. The sampling period is of one minute. We extracted
features from the data of both types by using the periodic
aggregation method explained above. As Fitbit “rewards”, on
a daily basis, its users whose step counts exceed a certain so-
called “daily step goal” (set to 10,000 by default), we added
the following three related features: the number of times this
goal is achieved, the number of times it is just achieved (up to
5% more than the step goal), and the number of times it is al-
most achieved (up to 5% less than the step goal). Furthermore,
the Fitbit API directly provides the resting heart rate for each
user, which we used as such as a feature. As mentioned in Sec-
tion 2.1, a relatively high score in extraversion is, for example,
linked to sociable and active individuals whose traits could
influence the step count. One of the extraversion sub-traits
is excitement seeking, which can lead to an augmentation of
an individual’s heart rate. Neuroticism is linked to impulsiv-
ity and stress, which can also cause variations in heart-rate.
Moreover, it has been shown that heart-rate variability and an
individual’s personality are correlated [122].

Sleep and Activities

Sleep data are composed of a start time, a duration, and other
information such as the sleep quality, the number of times
the user wakes up during their sleep, and the number of times
they are agitated. We built features of the same structure as
steps and heart rate. We generated, the mean and standard de-
viation of sleep time, for each four-hour and day-of-the-week
periods. We also computed the mean and standard deviation
of the awake duration during sleep, the awaking count, the
sleep duration, the time (in minutes) it takes to fall asleep,
the restless-moment count and duration, and the sleep effi-
ciency (all these details are directly provided by Fitbit). The
data structure of the activities is similar to that of sleep data.
We therefore built similar features. We computed the number
and proportion of each practiced activity, as well as the en-
tropy of the distribution of practiced activities. As mentioned
previously, active individuals tend to obtain higher scores in
extraversion. As for sleep, previous studies established that
an individual’s sleep quality and habits are correlated with
their personality [55, 93, 99].

Battery

The “current” battery level of the device is available at any
point in time through the profile endpoint of the Fitbit API.
To eventually obtain a battery data time series for each partic-
ipant, we collected this twice a day, at a fixed time. Note that
the API returns the battery level at the time of the last synchro-
nization (together with the time of the last synchronization).
Then, we extracted the average battery level right before and



Table 3: List of all features used in the evaluation. “Std.” stands for standard deviation. The “+” operation for data aggregation
means that both aggregating methods were used to obtain the given feature. The dots in the last 5 columns indicate that the
corresponding features of this data type were selected by the model for inferring the corresponding trait in our evaluation.

Data Type Statistics Aggregation Method O C E A N
Step count Mean, Std. Days of the week + 4-hour period • • • • •
Step goals Nb. of occurrences The whole data collection period • •
Heart rate Mean, Std. Days of the week + 4-hour period • • • • •
Sleep time Mean, Std. Days of the week + 4-hour period • • • •
Other sleep details Mean, Std. No aggregation • •
Activity time Mean, Std. Days of the week + 4-hour period • • •
Activity types Entropy, Nb., Proportion Activity type • • • • •
Battery charging Entropy, Nb. of occurrences Days of the week, 4-hour period •
Gender Category N/A • • •

after a charge, as well as its standard deviation. We also com-
puted how many times each participant charged their device
and the entropy of the time elapsed between these events, for
each day of the week. We also created similar features by us-
ing only the six previously defined periods of the day (without
again aggregating with the days of the week). However, the
Fitbit API provides only the battery level at the time of the
last synchronization between the bracelet and the smartphone.
Therefore, we might have lost information if users had not
synchronized their data regularly (e.g., if Bluetooth was not
continuously activated on their phone).

Gender

As gender is known to be correlated with the score of some
personality traits [112], and as such information is often avail-
able through the profile endpoint of the Fitbit API, we in-
cluded gender data as a feature. All the participants specified
a gender in their profiles. We observed a mismatch between
the gender they specified in their Fitbit profiles and that spec-
ified in their responses to our questionnaire for only 0.98%
(n= 2) of the participants. Self-reported gender data can there-
fore be considered as a readily-available (to an adversary) and
trustworthy data in the inference process.

7 Results

Inference Accuracy

As shown in Figure 1, we obtained results that are statistically
significantly better than the baseline6 for openness (p < 0.01),
extraversion, and neuroticism (p < 0.001). The trained model
correctly classified 45% of the participants’ scores in open-
ness (+36% with respect to the baseline), 52% of the par-
ticipants’ scores in extraversion (+58% with respect to the
baseline), and 50% of the participants’ scores in neuroticism

6All statistical tests for model comparison were conducted using McNe-
mar’s test, with Bonferroni correction.

(+52% with respect to the baseline). We further observe that
Fitbit data brings some valuable information for the inference
of other traits, such as agreeableness and conscientiousness,
but these results are not statistically significant. Regarding the
definition of each personality trait, it is relatively intuitive that
WAT data are less informative for a trait such as agreeableness
than for neuroticism or extraversion. Table 5 in the appendix
provides more performance metrics, namely precision, recall
and f1-scores for each tercile. For openness, extraversion, and
neuroticism, the weighted mean of the f1-score (respectively
0.45, 0.51, and 0.50) is clearly higher than the baseline (0.33),
which confirms the results presented above.

Influential Features

In Table 3, we can see which general-data types were used
to extract the relevant features for inferring each personality
trait. For each inference, we looked at the three most informa-
tive features. We considered the features selected more times
during the inner loop of our cross validation as more infor-
mative. For features used to infer openness, extraversion, and
neuroticism, we conducted statistical tests (Kruskal-Wallis
with Bonferroni correction) to reject the natural null hypothe-
sis that the differences between terciles are incidental to the
collected data. We show that we can reject the null hypothesis
for all of these features with p < 0.05(∗), p < 0.01(∗∗), p <
0.001(∗∗∗) or p < 0.0001(∗∗∗∗). More details and figures
are available in Appendix A. The three most informative fea-
tures for each inference process are (when there are more
than three features, all the presented features are considered
as equally important by the model):

• Openness**
– Step-goals (≥ 10k steps) just achieved.**
– Number yoga activities.*
– HR std from 2AM to 6AM on Thu.**
– HR std from 10AM to 2PM on Fri.**
– HR std from 2PM to 6PM on Thu.*

• Conscientiousness
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*p < 0.05, **p < 0.01, ***p < 0.001

Figure 1: Accuracy of the ternary classification with respect to the baselines for each of the five main traits. For each trait, we
display the increase of accuracy (in percentage) compared to the random baseline, the accuracy of the baselines and the accuracy
of the prediction. Percentages are rounded to the unit. The accuracy of the prediction outperforms both baselines with statistical
significance with Bonferroni correction (i.e., using an α value of 0.05/m with m the number of inferences, 5 in our case) for
openness (p < 0.01), extraversion, and neuroticism (p < 0.001).

– Std of HR btw Wed. and Thu. (10PM-2AM)
– Sleep-time mean from 10AM to 2PM on Sun.
– Sleep-time mean from 2AM to 6AM on Sat.

• Extraversion***
– Step mean btw Fri. and Sat. (10PM-2AM).****
– Step mean on Mon. btw 6PM and 10PM.****
– Step mean btw Thu. and Fri. (10PM-2AM).****
– Number of distinct activities.***
– HR mean btw Sun. and Mon. (10PM-2AM).****

• Agreeableness
– Steps std on Sun. btw 6PM and 10PM.
– Sleep-time mean (global).
– Std of HR on Thu. btw 10AM and 2PM.

• Neuroticism***
– Gender.****
– Steps mean on Mon. btw 6PM and 10PM.**
– Sleep-time mean from 10AM to 2PM on Sun.*

Interestingly, we can see that the practice of yoga is highly
informative for the inference of openness. This is coherent as
users with high openness tend to seek new experiences and to
engage in self-examination and individuals who practice yoga
are known to obtain higher score in openness [19]. However,
we cannot make a general conclusion here with that informa-
tion as only eight participants recorded yoga activities during
the data collection. Among those participants, only one was
not classified in the high openness tercile. HR-related fea-
tures are important for the inference of openness. Psychology
studies have shown that features related to cardiac activity (in-
cluding heart rate), are correlated with openness [30, 90]. This
is confirmed by Table 4 which shows that without HR-related
features, our model is not able to correctly classify individuals
according to their openness level significantly higher than the
baseline. Note that most of these HR-related features are rela-
tive to Thursday and Friday afternoons. One possible reason
is that openness is related to art sensitivity and creativity and
that these time slots are the most favorable for such activities

(museums or art galleries, for example, are often closed at the
beginning of the week). Thursday and Friday evenings/nights
or Saturday, however, are time periods related to extravert-
oriented activities (e.g, clubbing). We can also observe that
steps goals are used to infer the score of openness, however,
there is no previous research that can help us understand the
reason of this correlation.

Looking at Table 3, we can first observe that, information
related to steps, heart rate, and activities are used to infer ex-
traversion. This can be explained by the fact that people with
higher scores in extraversion tend to be more active, assertive,
and sociable (see Section 2.1). The three most informative
features relate to the average step count at night, thus show-
ing that the level of (social) activity plays a key role in the
inference of extraversion. Indeed, the more extraverted a par-
ticipant is, the more steps they take at night (especially at night
between Thursday and Friday, on Monday evenings, and at
night between Friday and Saturday). This could be explained
by the fact that the more extraverted the individual, the more
they go out at night (e.g., to meet friends, to go clubbing, etc.).
That may also be supported by the mean heart-rate on Sunday
night being higher for the most extraverted individuals. Fur-
thermore, we observe that the most extraverted individuals
tend to do more distinct activities, which corresponds to the
activity and excitement seeking component of extraversion
as described in Section 2.1. Moreover, to assess personality
traits, standard tests combine behavioral, cognitive, and affec-
tive indicators [120], and behavioral indicators are the most
informative to assess extraversion [59]. This explains why
WAT data, which are almost exclusively related to behavior,
are the most informative for this trait.

Steps, heart rate, and activities are also used to infer neu-
roticism. However, we observe that HR-related features do
not appear to be the most informative features for neuroticism.
Instead, these features relate to gender, sleep, and steps. Pre-
vious works show that information such as step count, heart



rate, or duration of sleep are indicators of stress resilience,
which by definition is highly correlated with neuroticism [8].
We also observe that sleep and gender are used to infer neu-
roticism. Both are indeed known to be correlated with this
personality trait [55, 112]. More specifically, there is a signif-
icant difference among the terciles regarding the sleep time
(here on Sunday between 10am and 2pm). It also shows that
there is a significant difference between genders regarding
their neuroticism score. Figures showing how the most in-
formative features are distributed over the different terciles
are available in Appendix A. As gender is correlated with
neuroticism, we trained and evaluated a simple decision tree
to infer the neuroticism class from gender only with the same
methodology as described before. Such a model reaches an
accuracy score of 48%. Additionally, we also evaluated our
model without using gender and showed that it reaches 47%
of accuracy. Therefore, a model using WAT data is similar, in
terms of accuracy, to a model based on gender for inferring
neuroticism. However, considering that WAT users can easily
lie about their gender without decreasing their utility, which
is not the case with step count or sleep data, a model based
on WAT data (possibly helped by gender), is therefore more
reliable than a model based on gender only.

Note that the list of informative features for the conscien-
tiousness and agreeableness traits should be considered with
caution, because it corresponds to prediction tasks for which
our models do not significantly outperform the baseline.

Sensitivity Analysis

We evaluated the inference performance by using a subset of
data sources. Indeed, when giving access to the API, WAT
users can choose to restrict access to some information by
selecting only some types of data or, simply, by choosing to
not report personal information (i.e., gender). Some devices
can simply not collect certain data due to the lack of sensors
(e.g., unlike the Fitbit Inspire HR, the Fitbit Inspire does not
collect heart-rate data). Table 4 summarizes the results ob-
tained by evaluating the inference model which uses different
data source combinations. The accuracies of the extraversion
and neuroticism inferences are still significantly higher than
the baseline when using only step-count related features. This
demonstrates that even devices that do not collect the heart
rate, such as the Fitbit Inspire bracelet, can be used to accu-
rately infer the personality of their users. However, the results
from Table 4 suggest that heart rate data is essential to in-
fer openness as the inference accuracy significantly declines
when we remove this data source from the features set.

Performance Evolution over Time and Training Set Size

Additionally, we analyzed how the inference performance
evolves with training data collected over an increasing period
of time. As it does not evolve over time, we did not use gender
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Figure 2: Evolution of the performance of the inference with
training data collected for the first 8, 12, and 16 weeks. As it
does not evolve over time, gender is not used as a feature.

as a feature. Figure 2 shows, for each trait, how the inference
accuracy evolves using training data collected for 8, 12, and
16 weeks.

We can observe that only 8 weeks are necessary to obtain
an accuracy significantly better than random for neuroticism
while 16 weeks are required to significantly outperform the
baseline for openness and extraversion. We can also postulate
that the inference performance would be better with a few
more months of data (which would capture additional sea-
sonal phenomena), especially for extraversion, that shows the
highest growth with time. We observe that the inference of ex-
traversion is highly dependent on the data collection duration.
This is probably due to seasonal behavior change (e.g., people
tend to go out more often during the summer), and due to
the fact that the most important features are probably related
to social events, and thus that more time is necessary to col-
lect enough data related to these specific, and possibly short,
events. However, the results tend to show that an augmenta-
tion of data collection duration would not highly impact the
inference of conscientiousness and agreeableness. Note that
we use the same set of participants for all inferences, which
may introduce a bias due to the fact that we selected the ones
who wore their devices at least 50% of the time during the
whole four-month period. Results with fewer months could
so be slightly underestimated considering that some partici-
pants may have been selected while they were not wearing
the device much during that specific period.

Finally, we also evaluated our model using k-fold cross
validation with k ∈ {2,3,4,5,10} (details are available in Fig-
ure 6 in the appendix) and show that, especially for openness,
neuroticism, and extraversion, the inference accuracy tends
to increase with the size of the training set. For all traits, the
accuracy does not plateau for larger training sets, which indi-
cates that the accuracy would increase if the sample included



Table 4: The obtained inference accuracy using different combinations of data sources. The increase in accuracy is computed
using the random baseline. The last line corresponds to aggregations by day (i.e., not 4-hours time slots) for heart rate and steps.

Data source O C E A N
All data sources 45% (+36%)** 39% (+18%) 52% (+58%)*** 35% (+6%) 50% (+52%)***
All data but gender 44% (+33%)* 39% (+18%) 52% (+58%)*** 35% (+6%) 47% (+42%)**
All data but heart rate 35% (+6%) 32% (-3%) 50% (+52%)*** 34% (+3%) 50% (+52%)***
All data but heart rate and sleep 34% (+3%) 33% (+0%) 50% (+52%)*** 33% (+0%) 48% (+45%)**
Only step count 34% (+3%) 32% (-3%) 47% (+42%)** 34% (+3%) 44% (+33%)*
All data (aggregated) but gender 38% (+15%) 35% (+6%) 33% (+0%) 34% (+3%) 34% (+3%)

*p < 0.05, **p < 0.01, ***p < 0.001

data of more individuals.

Obfuscation

Finally, we evaluated the inference performance using heart
rate and step count data aggregated by day (instead of 4-hour
intervals), mimicking the case where the adversary would
only have access to the average daily heart rates and total
daily step counts (other features such as sleep and activities
are used in the same way as described previously). Indeed,
previous research suggests that such aggregation may be used
as an obfuscation technique to reduce privacy risks and shows
high acceptance among WAT users [107]. Table 4 shows that
aggregating heart rate and step count results in an important
drop in accuracy and that none of the inferences are signifi-
cantly better than the baseline in this case. Note that we also
removed gender from the features to properly evaluate the
impact of such an obfuscation technique on neuroticism.

8 Discussion

Our experimental results demonstrate that processed data
from WATs bring valuable information about at least three
of the Big Five personality traits. Indeed, WAT data corre-
lates with at least three of the five personality traits, which is
consistent with multiple previous findings showing that be-
havior indicators are particularly informative for some traits
(especially for extraversion) [59, 120], that WAT data can
help assess stress resilience [8], or that it can be used to infer
someone’s mood [67]. As the results of this work are based
on a limited period of time and on processed data, they consti-
tute a lower bound of what an adversary, such as the service
provider, could achieve in terms of inference. As we used only
WAT data collected from a limited number of individuals dur-
ing a limited amount of time, our results constitute a lower
bound of what data brokers can do. On the one hand, they can
access training data from many more individuals, and thus can
build stronger models. On the other hand, they can easily link
WAT data with other types of data to improve the inference
models. In their research, Aimeur et al. [9] showed how easy
it is to link data of the same individual through different data

broker databases. They voiced concerns about how easy it
is to collect personal data about given individuals in general.
Furthermore, it is known that few individuals read privacy
policies, and that among those who do, one-third claim to have
no (or very little) understanding of what they read [14]. Con-
sidering this, and that most WAT users tend to forget about the
(not always honest [42, 76, 89]) third-party apps they share
their data with and highly underestimate their number [123],
it is likely that many data brokers have access to individuals’
WAT data along with other types of personal data that can be
used together to accurately infer personality profiles. More-
over, as Google recently acquired Fitbit [91] and plans to force
Fitbit users to migrate their Fitbit account into their Google
accounts [111], they will be in position to build the strongest
possible inference models. Furthermore, the magnitude of this
threat can only increase as the technology improves with the
addition of new sensors (e.g., ECG), better sensor accuracy,
and more efficient machine-learning algorithms. This raises
obvious privacy and societal issues, especially in the light
of the recent scandals related to personality-based influence
campaigns.

To address this threat, a first step is to raise awareness of it.
This article makes a contribution by providing concrete evi-
dence of this threat based on a rigorous risk assessment. Based
on this assessment, privacy protection techniques should be
designed. A first protection technique would be to limit the
amount of data shared with the service provider, keeping as
much data as possible on the users’ devices. As all Fitbit
users collected data are stored on Fitbit’s servers, a simple
solution would be to let the user choose whether to store each
type of data on Fitbit’s servers or to only store them on a
personal synchronized smartphone/tablet. Except for some
specific data, the raw sensor signal-processing is directly com-
puted either on the WAT or on the smartphone. This means
that as long as the user does not need to share personal data
and the smartphone’s storage capacity is sufficient, they could
increase their privacy while keeping the same level of util-
ity. Furthermore, if a given piece of information needs more
computing power than provided by the user’s smartphone,
so it has to be processed on Fitbit’s servers, it can simply be
deleted from the servers once transferred back to the user.



This will leave the data inaccessible to most of the potential
adversaries and reduce the data-leakage risks. Additionally,
the data shared could be obfuscated to further enhance users’
privacy. A commonly used solution is to add noise to the data,
which should be done in a controlled way in order to provide
formal guarantees, such as differential privacy. However, we
decided to evaluate a different, simpler (and so more under-
standable by users), technique which consists in aggregating
data over some period of time. For instance, only the daily
step count or the daily average heart rate could be shared
with the service provider. We showed the efficacy of such an
obfuscation technique in Section 7. By doing so, an adver-
sary loses substantial information about when the data has
been collected, which is particularly useful as seen in Sec-
tion 7 (e.g., steps at night). Indeed, our results suggest that
only intra-day data brings information about personality traits.
Therefore, an adversary whose goal is to infer individuals’
personality would probably not obtain significant results us-
ing aggregated WAT data. Furthermore, in the case of the
adversary being the service provider, it would still be able
to store their users’ (aggregated) data, and to provide them
with attractive services. Indeed, recent works show that most
users view this obfuscation technique as having little impact
on their utility [107], and are inclined to use it when sharing
their data [123]. Another possible solution would be to em-
power users by letting them choose which sensors to enable
or disable and which data to keep on the device or share with
the servers of the service provider.7

An important lead for future work is to evaluate the ac-
ceptability of such protection techniques by end users. Would
users be interested in disabling some of their WAT sensors
(and which ones)? Do users need to synchronize their data
with the service provider (which data)? Do users need to
synchronize their step counts for every minute and with a one-
step precision? Indeed, research has shown that users usually
do risk-benefit analysis or so-called privacy calculus when
using wearable devices [50]. For example, when purchasing
healthcare wearable devices, users trade off receiving relevant
and personalized health information, the sensitivity of this
information, and the existence of legislative data-protection
mechanisms [66]. Some individuals are willing to decrease
their privacy for an increase in utility, especially when they
consider that the device provides them considerable bene-
fits [121], whereas other individuals are willing to accept
lower benefits to gain more privacy [17]. The latter users
probably prefer to use WATs that implement protection mech-
anisms, even if the activation of such mechanism decreases
their utility. They could then trade off utility and privacy di-
rectly when using the device and fine-tune the parameters
with respect to their concerns. This could be studied through
the lens of privacy calculus [31, 50, 66].

7Note that Fitbit already enables their users to deactivate some sensors
directly on some of its devices [44]. However, this option is not particularly
highlighted on the user interface and is limited to a binary choice.

Our work has some limitations, beyond those related to the
use of Fitbit, as mentioned above. In particular, we only show
that, for three of the five traits, WAT data can be used to reach
significant higher inference accuracies compared to the ran-
dom baseline. Thus, future studies are needed to optimize the
model and show that WAT data can be used to develop highly
effective models for personality inference. Also, while we can
assume that our ground truth is particularly accurate given the
detailed questionnaire we relied upon, we want to highlight
that the participants’ answer quality could be degraded due
to the well-documented respondent fatigue [92], as well as
the social desirability bias [87]. There is clearly a trade-off
between the details of the psychological profiles and the qual-
ity of the collected survey data. Furthermore, the participants’
responses about their privacy concerns may have been biased
as they were aware of the study’s purpose. Additionally, while
the study participants are somewhat representative of the local
student population, they are not representative of the general
adult population. Finally, a larger duration and a larger num-
ber of participants would have increased the significance of
our results.

9 Conclusion and Future Work

In this article, we showed that WAT data can help classify
users according to their personality traits, especially for open-
ness, extraversion, and neuroticism. We demonstrated that
the use of WATs can create privacy risks that an adversary
can potentially exploit. Our study is based on the WAT data
of 204 individuals collected over a period of four months.
We conducted ternary classification and used accuracy as the
evaluation metric and obtained results significantly higher
than the baseline for openness, extraversion, and neuroticism.
Also, we showed that, regarding prior work, using WAT data
outperforms the use of call detail records (CDR) for inferring
individuals regarding their personality traits. Moreover, we
analyzed the selected features and highlighted the most infor-
mative ones for each personality trait. We also showed that
aggregating step count and heart rate by day is an effective
obfuscation technique. Finally, we drew links with related
studies and compared our results with theirs.

For future work, as noted in Section 7, we consider that it
would be interesting to optimize inference models by explor-
ing more feature combinations and by training and evaluating
such models on larger datasets. To this end, additional data
collection may be useful. For example, knowing that some
WATs provide logging functionalities (e.g., meals and food
intake), those data may be used to build features to improve
the inference model (prior studies state that personality and
dietary habits are correlated [114]). Also, profile information
or device-usage data, as the number of “Fitbit friends” or the
number of times where a user taps on the device’s screen,
could be helpful to increase the inference accuracy. It would
also be interesting to design and evaluate other obfuscation



techniques. Indeed, it might be relevant to develop obfuscation
techniques that result in less data loss, and thus, would have
an even better acceptability than the one that we evaluated.

In this study, we focus on a particular adversary who has
full access to user data. However, it could be interesting to
consider adversaries who would have only partial access to the
data and study what methods they might use to obtain these
data. Furthermore, we focus on only one given type of device.
It would be interesting to extend our study to multiple kinds of
devices and evaluate, for instance, how the quality/quantity of
sensors affects the inference accuracy. Finally, in our study, we
used data collected on a very specific population. Conducting
a similar experiment on a more diverse population would be
useful for studying whether our results can be extended to all
categories of the population.
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Figure 3: Distribution of the five main features used for ex-
traversion inference for each tercile. Step count means are
weighted regarding the bracelet wearing time, HR mean is
weighted regarding the individual’s resting HR.
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Figure 4: Distribution of four of the main features used for
openness inference for each tercile. HR mean is weighted
regarding the individual’s resting HR.
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Figure 5: Distribution of the three main features used for
neuroticism inference for each tercile. Step count means are
weighted regarding the bracelet wearing time. The sleep time
is in hours. The area of each circle in the gender plot is pro-
portional to the number of participants who corresponds to
the given gender.

Table 5: Precision, recall and f1-score for each class.

B Results Details

Openness Prec. Rec. f1-score B. f1-score
Low 0.47 0.39 0.43 0.34
Medium 0.48 0.60 0.53 0.34
High 0.39 0.35 0.37 0.32
Weighted Mean 0.45 0.45 0.45 0.33
Conscien. Prec. Rec. f1-score B. f1-score
Low 0.39 0.43 0.41 0.33
Medium 0.33 0.31 0.32 0.34
High 0.44 0.26 0.43 0.33
Weighted Mean 0.39 0.39 0.39 0.33
Extraversion Prec. Rec. f1-score B. f1-score
Low 0.54 0.61 0.57 0.34
Medium 0.44 0.31 0.37 0.32
High 0.56 0.63 0.59 0.33
Weighted Mean 0.51 0.52 0.51 0.33
Agreeab. Prec. Rec. f1-score B. f1-score
Low 0.35 0.36 0.36 0.34
Medium 0.39 0.41 0.40 0.34
High 0.31 0.29 0.30 0.33
Weighted Mean 0.35 0.35 0.35 0.33
Neuroticism Prec. Rec. f1-score B. f1-score
Low 0.55 0.59 0.57 0.34
Medium 0.41 0.42 0.41 0.33
High 0.53 0.49 0.51 0.33
Weighted Mean 0.50 0.50 0.50 0.33
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Figure 6: Evolution of the performance of the inference with
training dataset size by evaluating the model with k-fold cross
validation with k ∈ {2,3,4,5,10}.
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