
CAPSTONE: A Capability-based Foundation for Trustless Secure Memory Access

Jason Zhijingcheng Yu
National University of Singapore

Conrad Watt
University of Cambridge

Aditya Badole
National University of Singapore

Trevor E. Carlson
National University of Singapore

Prateek Saxena
National University of Singapore

Abstract
Capability-based memory isolation is a promising new ar-

chitectural primitive. Software can access low-level memory
only via capability handles rather than raw pointers, which
provides a natural interface to enforce security restrictions.
Existing architectural capability designs such as CHERI pro-
vide spatial safety, but fail to extend to other memory models
that security-sensitive software designs may desire. In this
paper, we propose CAPSTONE, a more expressive architec-
tural capability design that supports multiple existing memory
isolation models in a trustless setup, i.e., without relying on
trusted software components. We show how CAPSTONE is
well-suited for environments where privilege boundaries are
fluid (dynamically extensible), memory sharing/delegation
are desired both temporally and spatially, and where such
needs are to be balanced with availability concerns. CAP-
STONE can also be implemented efficiently. We present an
implementation sketch and through evaluation show that its
overhead is below 50% in common use cases. We also pro-
totype a functional emulator for CAPSTONE and use it to
demonstrate the runnable implementations of six real-world
memory models without trusted software components: three
types of enclave-based TEEs, a thread scheduler, a memory
allocator, and Rust-style memory safety—all within the inter-
face of CAPSTONE.

1 Introduction

Hardware isolation primitives for privilege separation play a
fundamental role in security designs. Several security exten-
sions to the memory access interfaces provided by commodity
processors have been proposed and deployed. For example,
trusted execution environments (TEEs) support “enclaves”
which are isolated memory regions accessible only to certain
user applications, but not to privileged software [11, 27, 34].
TrustZone [1] partitions all software, including privileged soft-
ware, into separate secure and normal worlds. Similarly, ex-
tensions that improve spatial memory safety, e.g., via pointer

integrity (e.g., ARM PAC [29, 42]), bounds checks (e.g., Intel
MPX [37, 39]), and so on, have emerged.

While each of those extensions is individually promising,
ultimately they are each designed for achieving rather spe-
cialized and rigid forms of memory access restrictions. They
cannot be easily configured for achieving memory protections
substantially different from their original intent efficiently.
This makes it difficult for hardware architecture designers to
pick between security extensions to support natively, which in
turn leads to splintering: Different architectures support dif-
ferent security extensions, so software protections cannot rely
on the availability of most of them ubiquitously. We therefore
ask: Can a hardware-based memory access model enable
several existing memory isolation and protection models si-
multaneously? Such “one for many” memory access models
would be a natural solution to splintering.

Two common paradigms for enforcing isolation of memory
accesses exist: access control [4, 5] and capabilities [8, 14,
53, 56]. Hardware-based memory protections based on the
classical access control paradigm, where a security monitor
enforces the access policy (read, write, execute) on every ac-
cess, are ubiquitous. For example, privilege rings, enclaves,
segmentation, virtualization extensions are all based on access
checks during address translation via memory management
units (MMUs) or memory protection units (MPUs). However,
the access control paradigm requires tracking a currently exe-
cuting authority (e.g., current privilege ring) and an explicit
access policy for that authority. In contrast, capability-based
designs allow any software to access memory if and only if
it presents a capability, an unforgeable token which grants
its holder rights to access a specific memory region. A mem-
ory region cannot be accessed without a capability, which
reinforces the principle of least privilege and reduces ambi-
ent authorities [21, 36]. Capabilities do not require explicit
per-context access control policies—they are implicit in how
accessors transfer capabilities between each other.

CHERI is an example of a capability-based architec-
ture [53]. In CHERI, each capability encodes both the bounds
of the memory region to access and the types of permitted

operations on it (e.g., read, write, execute). Software can only
create new capabilities from existing ones in a monotonic way.
This means newly created capabilities cannot grant access
rights beyond those of the currently held ones. CHERI capa-
bilities already provide fine-grained spatial memory safety:
All memory accesses are bounded by the capabilities a piece
of software holds. This feature is readily useful in software
fault isolation or memory bounds-checking [14, 33, 46, 57].

However, CHERI-style capabilities are limited in their
power to enforce memory safety in different scenarios. Firstly,
software can use such capabilities in the same way as normal
pointers, creating aliases in different locations. This can lead
to temporal safety violations, wherein code forgets to clean
up some capabilities pointing to sensitive data, increasing
the chance of a capability leak [2]. Second, delegating ca-
pabilities across trust boundaries temporarily is inherently
unsafe in CHERI-style capabilities. After delegating a ca-
pability temporarily to a component, software has no way
to ensure that it no more has access to the memory region,
since it can make copies of the received capability. In general,
CHERI-style capabilities only allow for irrevocable delega-
tion. Third, CHERI-style capabilities do not directly provide
exclusivity, i.e., the holder of a capability is not guaranteed
exclusive access to the memory region. However, exclusivity
is often needed, for example, in TEEs [1, 11, 27, 34] and for
executing critical sections in shared memory systems [54].

Our approach. We present CAPSTONE, a new capability-
based low-level memory access interface intended as an in-
struction set architecture (ISA) extension. CAPSTONE shares
the basic notion of capabilities with CHERI, but adds a novel
combination of improvements which enable it to support many
more memory isolation models at the architectural level—a
step towards the goal of avoiding splintering in systems with
finer-grained privilege separation.

Consider an abstract model of a capability machine which
runs N security domains. Each security domain has a register
file that holds data and capabilities, and can choose to pass
them to others through shared memory regions. A security
domain can also create a new domain by specifying its ini-
tial state and supplying the necessary data and capabilities.
CAPSTONE provides the following security properties. Firstly,
capabilities can be linear1 [19, 46, 49, 53]. Beyond granting
memory access permissions like ordinary capabilities, linear
capabilities are guaranteed to be alias-free, meaning that no
other capability grants a set of memory accesses that overlaps
with that of a linear capability. Therefore, a domain that holds
a linear capability in a register can be sure that it has exclusive
access to the associated memory region. Linear capabilities
can be derived from one another through spatial split and
merge. Secondly, CAPSTONE enables revocable delegation
of capabilities across trust boundaries. If D holds a linear
capability and passes it to E, D can also choose to revoke this

1Linear as in “linear type systems” and “linear logic”.

capability at any time. D can be assured that E has no access
to the memory associated with the capability immediately
after revocation. This prevents E from keeping its access per-
missions to memory indefinitely, or leaking capabilities by
keeping extra copies of them. Thirdly, CAPSTONE supports
an extensible hierarchy of privileges. Linear capabilities to
regions containing other such capabilities and the above prop-
erties hold transitively. Let us say D holds a capability c1 in a
register and the memory region corresponding to c1 contains
a capability c2, which in turn contains capabilities c3, and so
on. D can ensure that it has exclusive access to all memory
regions corresponding to c1,c2, ...,cn, can delegate access to
any suffix of the chain of such capabilities and/or immedi-
ately revoke access to all delegated capabilities at once if it
so desires. This considerably simplifies the management of
sharing and delegation of memory, and minimizes the risk of
temporal safety bugs or capability leaks.

Applications. We present a proof-of-concept prototype of
CAPSTONE consisting of an ISA emulator and a compiler for a
language with a C-like syntax. We demonstrate with runnable
implementations how CAPSTONE can express multiple mem-
ory isolation or protection models without relying on trusted
software components. We implemented three different TEE
models: spatially-isolated enclaves [11, 27, 34], temporally-
isolated enclaves [59], and nested enclaves [43]. A spatially-
isolated enclave resembles an Intel SGX enclave [11, 34]: It
has a private memory region accessible only to itself, and a
public memory region also accessible to the operating sys-
tem (OS). The boundaries of those regions are fixed upon
enclave creation. Temporally-isolated TEEs allow dynamic
adjustment of access permissions of memory regions to differ-
ent enclaves. This provides a means for secure and efficient
memory sharing across enclaves [17, 45, 59]. Nested enclaves
follow a hierarchical structure, wherein an enclave can cre-
ate enclaves inside itself and exchange data with its parent
enclave through a shared memory region [43]. CAPSTONE
supports all those demonstrated TEE models trustlessly, i.e.,
without involving any trusted software component. Most no-
tably, enclaves do not need to trust the memory allocator or
thread scheduler incorporated in our implementations.

CAPSTONE is also useful in non-enclave applications. Re-
call that CHERI capabilities provide spatial safety directly,
but not temporal safety. On CAPSTONE, we show that one
can mimic a Rust-style ownership and delegation model to
achieve both forms of memory safety. Our implementation
enforces such restrictions through the correct use of capabili-
ties during runtime, rather than through static type checking,
offering a dynamic alternative for achieving memory safety.

We formally define the operational semantics of CAP-
STONE. To analyse its security, we define an abstract model
that trivially provides the desired properties (see “Our ap-
proach” above), and prove that CAPSTONE refines it and also
provides the properties therein. Our main focus is on the supe-
rior expressiveness of CAPSTONE to support several desirable

memory isolation models at once as compared to CHERI.

Implementation and evaluation. In order to show that CAP-
STONE can be implemented with acceptable performance
impact, we describe a sketch of a potential implementation,
model its performance with gem5 [6], and evaluate it on the
SPEC CPU 2017 intspeed benchmarks [7]. The results sug-
gest that overall performance overhead of CAPSTONE over
a traditional system is within 50%. A full hardware imple-
mentation requires additional design decisions and remains
promising future work beyond the scope of this paper.

Contributions. We present CAPSTONE, the first architec-
tural capability design that provides exclusivity, delegation,
and revocation simultaneously for hardware-isolated memory.
CAPSTONE enables richer memory models demanded by se-
curity applications with a single set of interfaces than prior
capability-based systems.

2 Overview

Existing memory isolation models require specialized archi-
tectural support. While this enables efficient implementations
ultimately, the plurality of such models has led to splintering.
CAPSTONE is an effort towards finding abstractions expres-
sive enough to be configured to support multiple useful exist-
ing isolation models without increasing the software trusted
computing base (TCB).

2.1 Architectural Capabilities
A capability is a token that grants its holder memory access
permissions. It typically contains the bounds of the accessible
memory locations as well as the allowed access types (i.e.,
read, write, execute). Software presents a capability every
time it needs to make a memory access. The hardware then
performs checks on the memory access to make sure that it
falls in the allowed bounds and is of an allowed type of the
capability. Whenever the memory access is found to violate
the restrictions, the hardware refuses to fulfil the memory ac-
cess. Capabilities are unforgeable—software can only derive
new capabilities from existing ones through a well-defined
set of operations. For example, software cannot directly cast
an integer into a capability. Implementations of capability-
based architectures like CHERI enforce this through memory
tagging [8, 14, 53] by marking memory locations and regis-
ters containing capabilities with tags that are hidden from
software. The operations that create capabilities out of exist-
ing ones are monotonic, i.e., new capabilities cannot allow
accesses disallowed by the original ones. This prevents privi-
lege escalation through direct operations on a capability.

Compared to identity-based access control mechanisms, ca-
pabilities have the advantage of not relying on complex central
policies, and can yield greater expressiveness. As an exam-
ple, CHERI [13, 53] has been shown to enable fine-grained

software compartmentalization and spatial memory safety in
C/C++. However, it does not provide architectural support for
temporal memory safety. To enable temporal memory safety
for C/C++, for example, traditional software-based techniques
such as reference counting and garbage collection must be
used in conjunction [9]. For several other application scenar-
ios, extensions to CHERI that require specialized hardware
changes exist. Such examples include StkTokens [46], which
enables a calling convention that guarantees well-bracketed
control flow in software fault isolation, and CHERIvoke [58]
and Cornucopia [55], which mitigate use-after-reallocation of
heap memory for C code.

2.2 Motivating Examples
Many memory isolation models are useful in the real world
but are not supportable with CHERI, motivating our work.
Trustless memory allocation. One important task of the OS
and the VMM is the allocation of physical memory. Tradition-
ally, an application has to trust privileged code when using
the allocated memory. Achieving trustless memory allocation
requires considering two aspects. Firstly, the application that
receives an allocated memory region from the memory alloca-
tor should not trust that it will not access the memory region
or delegate it to another application in the future. Secondly,
the memory allocator should not overly trust applications,
which may refuse to relinquish access to memory regions.

CHERI is unable to achieve trustless memory allocation.
When the application receives a capability from the memory
allocator, it cannot ensure that no other software component,
including the memory allocator, also has access to the allo-
cated memory region. Likewise, the memory allocator cannot
be sure that the application has relinquished the capability
when it wishes to reclaim it. The memory allocator needs to
trust that the application has not kept or leaked copies of the
reclaimed capability. As a result, both the allocator and the
application would need to trust each other.
Trustless preemptive scheduling. Modern systems widely
rely on preemptive scheduling to multiplex multiple do-
mains (e.g., processes) on limited CPU resources. Preemptive
scheduling relies on preempting (i.e., interrupting) the execu-
tion of a domain through timer interrupts. A scheduler then
handles each interrupt and decides which domain to execute
next. The scheduler is normally part of an OS and has the
privilege to arbitrarily access domain execution states. On the
contrary, trustless preemptive scheduling enforces the prin-
ciple of least privilege and provides applications with the
assurance that the scheduler is not capable of doing anything
more than deciding when to execute each domain. This effec-
tively removes the scheduler from the TCB of an application.

On CHERI, an exception or interrupt on a thread diverts the
control flow to an exception handler, which can then perform
scheduling. However, the execution context of the interrupted
thread, including all the capabilities stored in registers, is

directly accessible to the exception handler. This gives the
scheduler the ability to modify the content of the execution
context of a domain (e.g., register values), for example, to hi-
jack the domain control flow. The scheduler can also duplicate
the execution context and force application code that is not
designed to be thread-safe to interleave on multiple threads
on shared memory regions through capabilities duplicated as
part of the execution context. Therefore, CHERI requires the
application to fully trust the scheduler.
Trusted execution environments. Traditionally, software
such as OS kernels is assumed to be trustworthy and runs
with high privileges. However, the growing complexity of
privileged software and the increasing demand for secure re-
mote execution have rendered this assumption increasingly
unjustifiable. Trusted execution environments (TEEs) provide
a promising solution: They support running security-sensitive
software without requiring it to trust any other software on the
system, including privileged software such as the OS. Most
TEEs follow a spatial isolation model, where each secure ap-
plication receives a private memory region called an enclave
at its launch time. An enclave stores both the code and the
private data of the application, and is accessible only to it. The
remaining part of the memory, called the public memory and
accessible to both the application and the OS, enables data
exchange between them (e.g., to support system calls). Varia-
tions of the enclaved TEE model exist. In the nested enclave
model [43], for example, an application in a nested enclave
has access to its parent enclave in the same way as how an
application in a top-level enclave has access to a public mem-
ory shared with the OS. Another variant, Elasticlave [59],
supports temporal isolation, where each application can set
time-varying access policies for its memory regions for shar-
ing them in a controlled way. Both the nested enclave and
the Elasticlave models enable greater flexibility and a wider
range of application scenarios than spatial isolation.

CHERI does not support any of the above-mentioned TEE
models, as it does not guarantee exclusive access for applica-
tions. Any memory region an application can access through
a capability, even one intended as an enclave private memory
region, can potentially be accessible to other software compo-
nents as well, by passing them copies of the same capability.
Rust-like memory restrictions. Many applications involve
sharing memory across software components. An example is
a Linux process sharing a buffer with the kernel in order to
read data from a file. In such cases, it is important to maintain
spatial and temporal safety of memory access across domains,
and violations can lead to serious consequences. Memory-
safe abstractions are one answer to this problem. Rust [32], a
programming language that provides a memory model with
spatial and temporal safety is an example of such models.
However, abstractions which rely on static enforcement by
compilers require that software components be written in
specific languages and require additional trust assumptions,
i.e., that components trust each other to have used a correct

compiler implementation without taking unsafe shortcuts.
Rust enforces memory safety with the notions of owner-

ship and lifetime. Rust programs access data objects through
their references. Though an object can have more than one
reference, exactly one of them is its owner, while the others
are all borrowed references. Hence, the owner reference of
an object can only be moved, but not duplicated. The owner’s
lifetime is tied to that of the object, and a borrowed reference
cannot outlive the owner. This makes sure that no reference
to an object can exist after the object is destroyed (i.e., when
the owner’s lifetime ends). It also implicitly guarantees that
access to an object will be exclusive to the owner again after
the borrowed references are destroyed.

The CHERI capability interface, however, is not expressive
enough to directly enable Rust-style memory restrictions at
the architectural level. Rust involves different types of ref-
erences and imposes different restrictions on them. CHERI,
on the other hand, provides only one type of capabilities. It
also does not provide revocable delegation, as exemplified by
borrowed references in Rust. Once a domain delegates certain
memory access to another domain, there is no guarantee that
it can get back exclusive memory access at a future point.

2.3 CAPSTONE in a Nutshell
We design a new memory access interface called CAPSTONE
that can express the memory restrictions needed by the mem-
ory models discussed in Section 2.2. CAPSTONE uses capa-
bilities for memory access control in the physical address
space. As an architecture-level interface, it is intended to be
implemented in the processor, with capabilities replacing raw
memory addresses. The processor enforces memory protec-
tion guarantees at runtime without assuming trusted software
components. CAPSTONE does not rely on assumptions regard-
ing the MMU on a system by directly working with physical
addresses instead of virtual ones. In the future, this could
eventually enable greater flexibility and compatibility with
isolation models not built on MMUs or MPUs (e.g., ARM
MPU [38], RISC-V PMP [51]).

On top of the original capabilities from CHERI, CAPSTONE
adds new capability types with the following properties:

(P1) Linearity. Domains can have exclusive access to mem-
ory regions. When a domain D holds a linear capability to a
memory region, no other domain can access the region.

(P2) Delegation and revocation. When a domain D holds
a linear capability L, D may choose to transfer L to another
domain E. Moreover, D may later choose to reclaim exclusive
ownership of L, even if E has in turn transferred the capability
to another domain. To protect the potentially secret data that
E may have placed in locations accessed through L, when D
regains ownership of L,

the memory region corresponding to L will become unread-
able to D until D overwrites it.

(P3) Dynamically extensible hierarchy. A domain D can

Table 1: Properties required or present in each model.

Model P1 P2 P3 P4
Rust-like abstraction [32] • • ◦ ◦
Spatially-isolated enclaves [11, 34] • • ◦ •
Temporally-isolated enclaves [59] • • ◦ •
Nested enclaves [43] • • • •
Trustless memory allocation • • ◦ ◦
Trustless thread scheduling • ◦ ◦ •
CHERI [53] ◦ ◦ ◦ ◦
CAPSTONE (this work) • • • •

create another domain E that is subordinate to it, in the sense
that D can choose to revoke any capability that E holds at any
time, and once this is done, E cannot get back the revoked
capability without D’s cooperation. Such a hierarchy is dy-
namically defined by the runtime behaviour of each security
domain and can be indefinitely extended on demand.

(P4) Safe domain switching. If at a certain moment the
physical thread executing a domain D switches to a different
domain (e.g., due to an exception/interrupt, or when calling
into another domain), and D’s context (register file content)
is C , then the next time D is executed, its context is still C .

Table 1 lists the properties the example models require.

CAPSTONE abstract model & security. To capture our se-
curity properties more precisely, we define an abstract model
called CAPSTONEabs. Its state is defined in terms of an ab-
stract memory store, where memory cells may be marked
uninit to capture that reading them would be a security viola-
tion, together with a user domain executing in a two-part envi-
ronment composed of the superordinate and the subordinate
environment domains (tstatesup and tstatesub). The superordi-
nate environment represents other domains which may revoke
the user domain’s capabilities arbitrarily. The subordinate en-
vironment represents domains which are guaranteed to never
revoke the user domain’s linear capabilities. The user domain
and the two environments each track the memory accessible
to them through the capabilities they currently own, and can
perform actions (actabs) to manipulate these capabilities or
update the memory. CAPSTONEabs directly enforces desirable
properties of CAPSTONE, and we characterize CAPSTONE’s
security as a standard refinement theorem:

Main theorem. CAPSTONE refines CAPSTONEabs.

We discuss CAPSTONEabs and the proof of the main theo-
rem in Section 5.

2.4 Threat Model and Scope
We assume that the security domains do not trust one another.
We focus on the security of one of the security domains, and
assume that the attacker can control any other domain on

Physical memory

Legend

Capstone CPU

a

Register files

Saved context
(domain E)

Thread 0
(domain A)

Thread 3
(domain D)

b c

Trusted

Untrusted

Linear cap
Non-linear cap

Sealed cap
Revocation cap

Thread 2
(domain C)

Thread 1
(domain B)

Figure 1: Overview of CAPSTONE. An arrow from X to Y
represents a capability located inside X that grants access to
Y . Crossed-out arrows are capabilities not allowed to exist.

the system, including those in charge of managing system
resources (e.g., thread scheduler, heap memory allocator, and
so on). The domain of interest, on the other hand, is assumed
to be benign and bug-free. We are also interested in denial-of-
service (DoS) attacks from an application which attempts to
hold memory resources indefinitely and thereby reject them
to OS components in charge of memory management. DoS
attacks from the OS against applications are out of scope.

3 Design Overview

A CAPSTONE machine runs multiple security domains mul-
tiplexed on a set of physical threads which have separate
register files but share the physical memory (and the physi-
cal address space), as shown in Figure 1. At any given point
in time, each thread is running exactly one security domain,
and each security domain is running on at most one physical
thread. Certain events (e.g., exceptions) can trigger a thread to
switch between security domains. When a security domain is
running on a physical thread, we refer to the register file con-
tent of the thread as the context of the security domain. For a
security domain that is not currently running on any physical
thread, we define its context as the context it will have when it
next starts running. Such a context is physically stored inside
a memory region, from which the content is loaded into the
register file of a thread when it loads the security domain.

Similar to CHERI, CAPSTONE is an instruction set architec-
ture (ISA) based on capabilities. For any memory access by
any security domain, CAPSTONE mandates that a capability
granting this memory access must be provided. Each domain
context can hold capabilities that grant the domain access to
memory regions, which can in turn hold more capabilities and
hence grant access to yet more memory regions. To overcome
the limitations of existing capability-based architectures (Sec-
tion 2.2), CAPSTONE incorporates extra capability types and
capabilities-related operations beyond those already present
in CHERI. Some capability-related operations involve chang-
ing capability types. Figure 2 overviews the capability types
and the operations. We describe them in more details below.

Linear capabilities. Central to CAPSTONE is the additional

Linear Non-linear

RevocationSealed-return Uninitialized

Sealed
delinearize

m
intrev re

vo
ke

revoke

seal

initialize

call

re
ts

ea
l

Figure 2: Overview of different types of capabilities in CAP-
STONE and the operations that change the type of a capability.
Capability types with black backgorunds are alias-free, non-
linear capabilities can overlap among themselves, whereas
revocation capabilities can overlap with any other capabilities.

Physical memoryRegisters

...

...

Legend

Linear cap

Non-linear cap

Exclusive

Non-exclusive

(a)

(b)

(c)

Figure 3: Exclusive access guarantees in different scenarios:
(a) Through a linear capability; (b) Through a chain of linear
capabilities; (c) No exclusive access guarantee through a
chain with non-linear capabilities.

capability type called linear capabilities [19, 46, 49, 53]. A
linear capability grants access to memory locations in the
same way as an ordinary capability, but instead of only guar-
anteeing that certain memory accesses are allowed, linear
capabilities also assure that certain accesses are disallowed.
This is because linear capabilities are alias-free. Holding
a linear capability not only gives a domain certain access
permissions to the memory region, but is also sufficient to
guarantee that access to the region is exclusive to the domain
alone. This does not assume any trust in software.

To maintain the alias-free property of linear capabilities,
any operation in CAPSTONE that would otherwise lead to
overlap between input and output capabilities will consume
(i.e., invalidate) the input capabilities. For example, software
can only move, but not copy linear capabilities.2

A linear capability does not need to be in a domain context
to guarantee exclusive access. For example, when a domain
holds in its context a linear capability cu for the memory
region Ru, and inside Ru resides another linear capability cv
for another memory region Rv, then besides Ru, the domain
also has exclusive access to Rv. In general, exclusive access
through linear capabilities can be chained indefinitely. As
shown in Figure 3, when a domain can reach a memory region
through a linear capability kept directly in its context (register
file) (Figure 3(a)), or through a chain of linear capabilities
(Figure 3(b)), its access to the memory region is guaranteed
to be exclusive. On the other hand, exclusive access is not
guaranteed if the domain has to involve a non-linear capability

2Moving a linear capability from location A to B destroys the copy in A.

Scenario A
t0 t1

rc

clin
mint rev

rc

t2

cn...

t3

c'lin
revoke

Scenario B

rc

c0 ci cn...

cuninit
revoke

...

Legend

uninitialized cap

linear cap

non-linear cap

revocation cap

clin

c2c1 cn...c2c1

...c0 ci ... cn

Figure 4: Overview of the operations on revocation capabil-
ities. Strikethrough capabilities are invalid. When clin has
derived non-linear capabilities only at t3, revocation converts
rc into a linear capability c′lin (scenario A). Otherwise, rc is
converted into an uninitialized capability cuninit (scenario B).

to reach the memory region (Figure 3(c)).

Revocation. CAPSTONE includes the notion of revocation
capabilities. A revocation capability does not grant memory
access permissions, but serves as a token for revoking all ca-
pabilities that overlap with it. As demonstrated in Figure 4,
a domain can create a revocation capability only for a linear
capability it currently holds (t0 to t1 in Figure 4, and “mint
rev” in Figure 2). Creating a revocation capability does not
consume the given linear capability. This does not violate
its alias-free property, as the revocation capability conveys
no memory access permissions. As such, the revocation ca-
pability serves as a basis for revocable delegation. Before a
domain D passes a linear capability to another domain E, it
creates a revocation capability for the linear capability, which
it later uses to revoke the delegated capability, regardless of
what E has done. In order for D to reclaim exclusive access
to the memory region, CAPSTONE converts the revocation
capability into a corresponding capability that grants access
permissions in the revocation operation (t2 and t3 in scenario
A in Figure 4, and “revoke” in Figure 2). Since linear or non-
linear capabilities that overlap with the memory region are
all revoked, the new capability does not violate the alias-free
property. On some occasions, CAPSTONE converts the revo-
cation capability into an uninitialized capability instead of a
linear capability to prevent secret leakage. For example, when
D reclaims exclusive access, the memory region possibly
holds E’s secret data. CAPSTONE identifies such situations
by checking whether a linear capability has been revoked
during the revocation process, which indicates a domain is
still interested in maintaining its exclusive access (t2 and t3 in
scenario B in Figure 4). An uninitialized capability represents
a memory region whose content should be unavailable until
written (hence effectively uninitialized). Correspondingly, an
uninitialized capability only grants write access, but can be
converted to a linear capability when all locations inside the
region have been written at least once with it (“initialize” in
Figure 2). CAPSTONE thus prevents the domain that reclaims
access to the memory region from reading its original content.

Physical address

c1 c2t0

t1
c11

rc1

c12 c2

t2
c12c11 c2

c'1

revoke

split mint rev

Legend
linear cap

revocation cap

Figure 5: Split/merge. Strikethrough capabilities are invalid.

Domain D

Domain E

Domain F

t0

c
Domain D

Domain E

Domain F

t1

c

rc1

rc2

mint
rev

mint
rev

move

Domain D

Domain E

Domain F

t2

c

rc1

c'revoke

Domain D

Domain E

Domain F

t3

c

c''

c'

revoke

Legend
linear cap

revocation cap

Figure 6: Extensible capability delegation hierarchy through
revocation capabilities. Strikethrough capabilities are invalid.

Splitting and merging. CAPSTONE allows spatially splitting
a linear capability into two non-overlapping linear capabil-
ities. Since this operation is entirely monotonic, a reverse
process is needed to merge linear capabilities and stop linear
capabilities from becoming increasingly fragmented. How-
ever, it is infeasible to simply allow any two linear capabilities
for adjacent regions and identical permissions to be merged.
Consider the scenario where a linear capability c1 has a cor-
responding revocation capability rc1 , and is later split into
two linear capabilities c11 and c12. Another linear capability
c2 neighbours c12 in terms of their memory regions, and has
identical permissions as c12. If under this condition we merge
c2 and c12 into a new linear capability c3, problems will arise
when rc1 is used to perform revocation: On the one hand, c3
overlaps with rc1 , so it should be revoked; on the other, c3 is
not entirely covered by the memory region associated with
rc1 , and if it is revoked, the c2 part of c3 will be lost. This in-
troduces significant complexity in capability management and
poses challenges to both implementations and applications.
As a result, CAPSTONE avoids such arbitrary merging, and
instead relies on the semantics of revocation for the reverse
operation of splitting. Before splitting a linear capability, a
domain creates a revocation capability, and later uses it to
revoke the capabilities that result from this split as well as
reclaim the original linear capability (Figure 5). In the exam-
ple, c12 can only be merged with c11 to reverse the split of
c1, by performing revocation using rc1 . This enables a limited
form of merging that reverses past splits, which we consider
as a reasonable compromise between complexity and utility.
Revocation capabilities are used to reverse other types of oper-
ations as well: for example, tightening capability permissions
and delinearizing linear capabilities (i.e., converting them into
non-linear capabilities, shown as “delinearize” in Figure 2).

Implicit extensible hierarchy. CAPSTONE provides an im-
plicit and extensible hierarchy through revocation capabilities.
Revocation capabilities can overlap with one another. For ex-
ample, after a domain D creates a revocation capability rc1
for the linear capability c, it passes c to another domain E,
which in turn creates another revocation capability rc2 for
c. E may pass c further to a third domain F while retaining
rc2 so it can later revoke F’s access permissions (t0 to t1 in
Figure 6). In such a case, rc1 and rc2 should not be considered
as identical. If rc1 is used to perform revocation, rc2 should be
revoked, or E will be able to regain c through rc2 afterwards,
whereas if rc2 is used for revocation first (t2 in Figure 6), rc1
should remain valid, so that D can still revoke E’s access re-
gardless of this event (t3 in Figure 6). CAPSTONE deals with
such situations by assigning each revocation capability with
a different strength based on seniority: The earlier a revoca-
tion capability was created, the stronger it is. A revocation
operation with a revocation capability r invalidates all other
weaker and overlapping revocation capabilities. Note that
such other revocation capabilities can only point to spatial
sub-regions (including the identical region) of the memory
region that r points to, because creating a revocation capa-
bility requires a valid linear capability. Such a hierarchy of
revocation strengths is implicit in how security domains dele-
gate linear capabilities and is indefinitely extensible. A linear
capability can be passed indefinitely many times across a
sequence of domains. Each domain can always “roll back”
passing a linear capability to the next domain, regardless of
the behaviours of the domains further down the sequence.

Capability-based designs have the advantage that they can
work without access control policies written to be enforced
by security monitors. It frees us from defining access control
policies upfront. In contrast, when capabilities are passed
from program context to context, say from one process to
another, they implicitly carry with it the semantics that the
sender context wishes to allow the recipient access to the
object. This implicit capability-passing is a form of delegation
without explicit intervention or access control decisions being
made. This also means that if we design capability-based
models, we do not need to define privilege levels explicitly.

Safe domain switching. CAPSTONE supports safe domain
switching with the help of sealed capabilities, which are
present also in CHERI [53]. Similar to revocation capabilities,
sealed capabilities do not grant direct memory access. Instead,
a sealed capability represents the context of a security domain
that is not currently running. The memory region associated
with a sealed capability stores the content of a domain context.
A linear capability can be converted into a sealed capability
(“seal” in Figure 2), which in effect creates a security domain
with a specified context. A domain can use the “call” oper-
ation on a sealed capability to switch the current physical
thread to the corresponding domain. A similar operation is
“return”, which also switches to a specified domain context
stored inside a memory region, but is intended as the reverse

of “call”. CAPSTONE accounts for the semantic difference
between “call” and “return” with a separate sealed-return
capability type, which is generated in the “call” operation
as shown in Figure 2. Unlike CHERI, CAPSTONE extends
sealed capabilities to exception handling as well, guarantee-
ing that the exception handler cannot arbitrarily access the
execution context of an interrupted domain. Furthermore, in
CAPSTONE, sealed capabilities are linear (i.e., guaranteedly
alias-free), which ties access to the stored resources behind
a sealed capability to the domain. This also guarantees that
only one instance of a domain exists at any time, effectively
preventing potentially unsafe re-entries into the same domain.

Alias-free capability types. Linear capabilities are not the
only capabilities with alias-free guarantees. As Figure 2
shows, sealed, sealed-return, and uninitialized capabilities are
also alias-free, allowed to overlap only with revocation capa-
bilities, whereas revocation capabilities can overlap with any
capability of any type, and non-linear capabilities can overlap
with other non-linear capabilities and revocation capabilities.

Software stack. Upon a system reset, the register file is ini-
tialized to contain capabilities that cover the full physical
memory. The first piece of code to execute can then boot-
strap other domains and delegate to them parts of the physical
memory as linear capabilities. Multiple paths henceforth are
worth exploring, from adapting a monolithic kernel such as
Linux to creating a new microkernel-based software stack.
Detailed software stack design is future work.

Supporting memory protection models. The design delin-
eated above enables CAPSTONE to provide the desired proper-
ties discussed in Section 2.3, which as summarized in Table 1,
are required to support the example memory protection mod-
els but are missing in CHERI. We describe more details on
how to implement those models on CAPSTONE in Section 8.

4 CAPSTONE Formal Model

4.1 Overview
Figure 7 defines the entities CAPSTONE involves.

CAPSTONE machine. The execution of a CAPSTONE ma-
chine consists of a sequence of steps. At each step, the CAP-
STONE machine is in a state Ψ consisting of the states of
physical threads Θ, physical memory state mem, and addi-
tional capability-related data structures. Each physical thread
has a distinct register file which includes the program counter
pc, special registers ret and epc, and M general-purpose reg-
isters r1,r2, · · · ,rM . By indexing Θ, we can obtain the state
θ of a specific physical thread, including its register file con-
tents. Each register or memory location contains either a raw
scalar value or a capability, referred to as a word collectively.

At each step, the machine picks any one of the threads and
executes an instruction on it. The instruction can be either
the one stored in the physical memory under the cursor of

n,N,d,b,e,a ∈ N
Reg ∋ r := pc | ret | epc | r1 | r2 | · · · | rM

CapType ∋ t := Lin | Non | Rev | Sealed(d) |
SealedRet(d,r) | Uninit

Perms ∋ p := NA | R | RW | RX | RWX
RNodeType ∋ nt := RLin | RNon

RevParent ∋ pr := n | root | null
RevTree ∋ rt := N 7→ RevParent×RNodeType

Cap ∋ c := (t,b,e,a, p,n)
Word ∋ w := c | n | i

RegFile ∋ regs := Reg 7→ Word
Memory ∋ mem := N 7→ Word
ThreadState ∋ θ := regs | error

Threads ∋ Θ := N 7→ ThreadState×N
State ∋ Ψ := (Θ,mem,rt,N)

Insn ∋ i := mov r r | ld r r | sd r r | tighten r r | shrink r r r |
split r r | delin r | scc r r | lcc r r | mrev r r | drop r | seal r |
call r r | return r r | retseal r r | revoke r | init r | except n | jmp r |
jnz r r | li r n | add r r | lt r r r | invalid

Figure 7: Syntax of the CAPSTONE model.

the capability held by pc, or except, a special instruction that
helps model an exception or interrupt. Executing an instruc-
tion changes the machine state. We represent the machine
state immediately after executing instruction i on thread k at
the machine state Ψ as Execute(Ψ,k, i).

Capabilities. Each capability is a tuple c = (t,b,e,a, p,n),
where b and e are the base and end addresses of the memory
region respectively, p is the access permissions granted by
the capability, and t identifies the capability type. CAPSTONE
includes new capability types in addition to the normal non-
linear capability (denoted as Non). We follow CHERI [53] to
include in each capability the address for the next memory
access, called its cursor and denoted as a. Information useful
for capability revocation is recorded in n.

Operational semantics. We discuss the semantics of each
instruction in turn below. The instructions jmp, jnz, li,add,
and lt are omitted, as they are almost identical to their coun-
terparts in common existing architectures. Due to the limited
space, we refer interested readers to the extended version of
this paper [60] for the full definition of the state transitions.

4.2 Moving Capabilities

As in traditional architectures (e.g., RISC-V [51]), ld and sd
perform memory load and store operations, but require a ca-
pability rather than a raw address. If the provided capability
is valid, ld and sd perform the operations on its cursor. Fur-
thermore, if the data word transferred is a capability that is
linear, the original copy, be it in a register (as in sd and mov)
or memory (as in ld), will be cleared to zero. Formally, let w
be the data word, mov, ld and sd set the content of the source

location (a register or a memory location) to Moved(w):

Moved(w) =

{
0 w = (t,b,e,a, p,n)∧ t ∈ LinearTypes
w otherwise,

where (parameters are omitted here for brevity)

LinearTypes = {Lin,Rev,Uninit,Sealed,SealedRet}.

4.3 Capability Revocation

Revocation. We model the revoke instruction using the revo-
cation tree. The root of the revocation tree is a special node
root. Each valid capability c, regardless of its type, maps to
a node with the index c.n (we will use an index to refer to
a node for simplicity) in the revocation tree, whereas each
revoked capability maps to one outside the revocation tree
(i.e., disconnected from root). Using revoke on a revocation
capability r reparents all the children of r.n to null, cutting
the subtree off the revocation tree and thus invalidating the
nodes inside. Meanwhile, the type of r is changed to Lin (lin-
ear) if the only capabilities that map to nodes in the subtree
are non-linear, or Uninit (uninitialized) otherwise.
Creation of revocation capabilities. The mrev (“mint re-
vocation”) instruction creates a revocation capability from
a linear capability c. The resulting revocation capability r
receives the same region bound and access permission set in
c. Meanwhile, a new node is created in the revocation tree for
r between c.n and its parent. Since c.n is in the subtree of r.n,
c is revoked in the process of revoke r. This process naturally
captures the hierarchical strengths of revocation capabilities.
Consider the example where r1 and r2 are both created using
mrev on the same linear capability c, and r2 is created after
r1. In this case, r1.n will be the parent of r2.n, which is in turn
the parent of c.n. Using revoke on r1 will therefore revoke
both r2 and c, whereas using it on r2 will only revoke c.
Uninitialized capabilities. Uninitialized capabilities always
grant only write memory access regardless of the permissions
recorded in them. An uninitialized capability newly gener-
ated by revoke always has its cursor set to its base address.
Every subsequent write made with the uninitialized capabil-
ity increments its cursor by one word position. The cursor
effectively marks the boundary of the already initialized part
of the memory region. CAPSTONE provides init to convert
an uninitialized capability whose cursor has reached its end
address (and thus fully initialized) to a linear capability which
inherits both its memory region and access permissions.
Capability dropping. The drop instruction directly invali-
dates a given capability. By invoking drop on a linear capabil-
ity, a domain effectively informs the CAPSTONE implementa-
tion that it is not interested in the memory region any more.
This can prevent revoke from producing an unintended unini-
tialized capability. Invoking drop on a capability c (which is
not non-linear) removes the node c.n from the revocation tree.
The children of c.n, if any, will be adopted by its parent.

4.4 Capability Modification

Instructions tighten,shrink and split modify a given capabil-
ity without changing its type. The tighten instruction changes
the memory access permissions to a more restrictive subset.
The shrink instruction sets the region bound to a specified
bound fully covered by the original one.

The split instruction splits a capability c into two at the
specified address s. Let b and e be the base and end ad-
dresses of the given capability with b < s < e, then the two
resulting capabilities c1,c2 will have base and end addresses
b1 = b,e1 = s and b2 = s,e2 = e respectively. The original
capability becomes unavailable. Meanwhile, the node c.n is
also split in two, both inheriting the original parent.

The delin instruction converts a linear capability into a non-
linear capability by simply changing its type to Non. For all
but sealed (including sealed-return) and uninitialized capabili-
ties, scc sets the cursor to a give address. Another instruction,
lcc, returns the cursor of a given capability.

4.5 Domain Switching

Sealing. The seal instruction converts a given linear capability
to a sealed capability. The memory region associated with a
sealed capability contains the context of a security domain that
is not currently running. An application can prepare desired
contents using a linear capability, and then seal it into a sealed
capability. In this way, the application has effectively created
a new domain with a specific initial context.

A sealed capability does not grant direct memory access.
Rather, it needs to be unsealed into the register file of a physi-
cal thread either through the call instruction or as the result
of an exception or interrupt, which effectively switches the
physical thread to the sealed domain.

Synchronous domain calls. When a security domain D holds
a sealed capability cE for another security domain E, D can
use call on cE to switch the current physical thread to E.
This unseals E’s context from cE into the register file of the
current physical thread, while sealing D’s context (i.e., the
current content of the register file) to cE ’s associated region.
The call instruction writes a sealed-return capability cr for
the same region as cE to E’s ret register, so E is able to
return to D later. To facilitate communication between D and
E, the register r1 is reserved for argument passing. In other
words, a second operand to call is directly loaded into E’s r1
register. To return to D, E invokes return on cr. The return
instruction is similar to call, except that it does not save the
current context on the physical thread. Note that cE has been
destroyed in D’s context during call. E can specify a value
to return to replace cE with when returning to D. A variant
to return, retseal, replaces cE with E’s current context with
the pc cursor switched to a specified value. This is useful
for allowing D to invoke E multiple times, each time with a
controlled and potentially different initial context.

dom := user | sup | sub
memabs := Addr 7→ (Word | uninit)

range := {n | x ≤ n < x+ y}
capabs := range
tstate := capabs set
pstate := (memabs, tstateuser, tstatesup, tstatesub)

Figure 8: CAPSTONEabs state.

Refines(d,Dsub)(Ψ,(memabs, tstateuser, tstatesup, tstatesub))
where: induninit =

⋃
d∈N woranges(Rw(Ψ,d))

memabs = Ψ.mem[induninit := uninit]
tstateuser = ranges(X (Ψ,d))
tstatesub =

⋃
d′∈Dsub

ranges(X (Ψ,d′))
tstatesup =

⋃
d′∈(N−Dsub−d) ranges(X (Ψ,d′))

Figure 9: CAPSTONEabs refinement mapping.

Interrupt and exception handling. CAPSTONE uses the
same mechanism for except as for call. When an interrupt
or exception occurs, the current physical thread switches to a
handler domain defined in the epc register of the current secu-
rity domain. An interrupt or exception is hence essentially an
asynchronous call on epc. The register receives the following
special treatments for its role in system management:

Pinned per-thread. Except for interrupt or exception han-
dling, epc is excluded in the part of the execution state re-
placed during domain switching. The end result is that the
epc value is per-thread instead of per-domain;

Immutable. Unless the current value is unset, epc is im-
mutable. In other words, epc is fixed upon first write.

5 Security Analysis

Due to the space limit, we only briefly overview the security
proof. Full details are available in the extended version [60].

We define an abstract model, CAPSTONEabs, and prove
that CAPSTONE refines it (main theorem). The state of CAP-
STONEabs is defined in Figure 8. Figure 9 defines a refinement
mapping between a concrete state of CAPSTONE and an ab-
stract state of CAPSTONEabs with respect to a distinct domain
d which serves as the user domain, and a set of domains Dsub

which serves as the subordinate environment.
We show that CAPSTONE’s use of uninitialized capa-

bilities refines CAPSTONEabs’s use of uninit memory val-
ues to denote memory which cannot be accessed. To this
end, the line induninit =

⋃
d∈N woranges(Rw(Ψ,d)) collects

the ranges of all write-only (uninitialized) capabilities. The
line memabs = Ψ.mem[induninit := uninit] indicates that the ab-
stract memory is the same as the concrete memory, except
that indices for uninitialized capabilities are set to uninit.

In the abstract model, domains are represented as sets of
abstract capabilities, each being a simple range of accessible
addresses. The definition X (Ψ,d) is the exclusive realm of d,

that is, the set of all concrete linear capabilities exclusively
accessible (transitively) in the domain d. The abstract state
of the user domain (tstateuser) is defined as the set of ranges
corresponding to the capabilities in the exclusive realm of
d. The abstract states of the subordinate and superordinate
domains are similarly defined.

We complete the proof by showing that the refinement
mapping is preserved by execution of the concrete model, and
that steps in the concrete model can be mapped to zero or
more abstract actions in the abstract model.

6 Implementation

We show that CAPSTONE can be implemented with acceptable
overhead. Since a complete RTL implementation requires
significant engineering effort, we consider it as future work
beyond the scope of this paper. Instead, we present a sketch of
a potential implementation below, and evaluate it in Section 7.
Capabilities. We represent each capability as 128 bits in
registers and memory as follows:

6427331

0649194128
cursornode-id boundspermtype

3

97

The bounds field encodes the capability address range follow-
ing the CHERI Concentrated scheme [53] which compresses
such information into 27 bits. The type and perm fields indi-
cate the type and associated permissions of each capability,
and the identifier of the associated revocation node of a capa-
bility is recorded in node-id. Each general-purpose register
is extended to 16 bytes to allow it to hold a capability. To
distinguish normal data from capabilities, we follow the im-
plementation of CHERI [53] to store a separate tag bit for
each register as well as every 16 bytes-aligned location in
DRAM. Existing work on implementing CHERI has shown
that tag bits can be maintained and queried efficiently [25].
Revocation tree. On top of this, a CAPSTONE implementa-
tion also needs to record the validity of each capability which
might change due to revocations. This concerns the mainte-
nance of the revocation tree (Section 4.3). Similarly to the tag
bits, the nodes of the revocation tree are stored in a DRAM
region inaccessible to software. Each revocation tree node is
represented using the format below:

1133313131

012356697128
freed validcounterprevnextdepth

Whenever a capability is used in a memory access, the node as-
sociated with it (node-id) needs to be retrieved from DRAM
to query its validity. To hide the latency of this query, we
perform it in parallel to the actual memory access.
Revocation. A revocation operation involves traversing a sub-
tree of a given node (the one associated with the revocation
capability) and invalidates each node within the subtree. In-
validated nodes are removed from the revocation tree so each
node can be visited and invalidated at most once. This entails

a constant amortized overhead of the revocation operation. To
facilitate subtree traversals, we maintain the revocation tree
as a doubly-linked list of nodes in the depth-first order, with
the depth recorded in each node. Each subtree corresponds
to a contiguous range within the linked list. We unlink nodes
from the linked list to remove them from the revocation tree.

Deallocation of revocation nodes. We cannot make a revo-
cation node available for allocation again immediately after
invalidating it, as capabilities that reference it may still exist.
However, we do need to free it at some point because the
DRAM region for storing revocation nodes is limited in size.
We have two potential solutions to this issue. One is a garbage
collection mechanism based on memory sweeping: Whenever
free nodes run out, we scan the whole memory to discover and
free such nodes that are not referenced by any capability. The
other option is to include a reference count in each node and
free a node when its reference count is zero. We adopt the lat-
ter option, as we expect the former to introduce large latencies
in unpredictable locations. This can be avoided with memory
sweeps in parallel to the pipeline execution, which, however,
can be tricky to implement. In comparison, reference count-
ing would require updating the counter when a capability is
created or overwritten but we expect the implementation to
be straightforward and the overhead acceptable. We free a
revocation node by adding it to a free-nodes linked list.

7 Evaluation

We aim to answer the following question: How does the per-
formance of a CAPSTONE implementation compare with that
of a traditional platform? We use the gem5 simulator [6] to
model the most performance-relevant aspects of the imple-
mentation described in Section 6, namely the operations on
the revocation tree, including allocations, revocations, queries,
and reference count updates. Other parts such as bound and
permission checking and tagged memory are either trivial or
already examined in previous work in terms of implementa-
tion and performance impact [15, 16, 24, 25].

Setup. In the absence of applications written for CAPSTONE,
we map runtime behaviours of existing RISC-V applications
to the expected corresponding events in their CAPSTONE
ports. The details of this mapping are shown in Table 2. As
shown in Figure 10, compared to a traditional system, our
gem5-based CAPSTONE model has no MMU but incorporates
a node controller and a node cache for revocation node storage.
While out-of-order CPU models are more accurate for modern
mainstream high-performance systems, we choose an in-order
core for its lower complexity which is conducive to a first-step
evaluation. Evaluating on out-of-order models is future work.
We use a clock frequency of 1 GHz, a 2-way set associative
L1 instruction (16 kB) and data cache (64 kB), and an 8-way
set associative last level cache of 256 kB. The node cache
(N$) is an 8 kB 2-way set associative cache with a 32 GB

Table 2: Mappings from existing RISC-V application be-
haviours to events in CAPSTONE used in our evaluation.

Behaviour in applications Event in CAPSTONE
malloc a new linear capability
free revoking on a revocation capability
overwriting an address destroying a nonlinear capability
producing an address creating a nonlinear capability

CPU

I$ D$ node controller

N$LLC

memory bus

memory modules

Figure 10: Overview of the CAPSTONE model implemented
in gem5. The shaded components are added by us.

1600 MHz DDR3 DRAM.

Benchmarks. We use the SPEC CPU 2017 intspeed bench-
mark suite [7], ref inputs. Instead of a full detailed simulation,
which would take months to years to complete, The MMU is
removed from both simulations.

Results. As shown in Table 3, the workloads vary widely
in their use of revocation tree operations, ranging from no
use (605.mcf_s) to few to no allocations after initial setup
(625.x264_s, 631.deepsjeng_s, and 657.xz_s), to significant
use of all operations. Correspondingly, the overhead varies
from 0 to 50%. As expected, the overhead roughly correlates
with the number of misses in the node cache, as each of them
involves accessing the DRAM. The results also show that ref-
erence count updates are often the dominating revocation tree
operations in terms of frequency, and their frequency strongly
correlates with the displayed overhead. We believe that this is
partly caused by the inability to hide the latency when a refer-
ence count update results from a non-load/store instruction
(e.g., move or pointer arithmetic). In an actual CAPSTONE pro-
gram, we expect such cases to be considerably less frequent
because of the ubiquity of linear capabilities (for example,
moving a linear capability between registers does not change
the reference count). This also points to potential future work
of exploring such optimizations as delayed updates to better
hide the latency and improve the performance.

8 Case Studies

The expressiveness of CAPSTONE enables the memory iso-
lation models discussed in Section 2.2. To demonstrate this,
we have implemented a functional prototype of CAPSTONE in
the form of an ISA emulator (CAPSTONEEmu) and a simple
compiler (CAPSTONECC), and, on top of them, a runtime
library (CAPSTONELib) that encapsulates runnable imple-

Table 3: Evaluation results on SPEC CPU 2017 intspeed, collected after 10 billion instructions of fast-forwarding.

Workload Runtime (seconds) Overhead (%) CAPSTONE node cache CAPSTONE revocation tree operations
CAPSTONE Baseline Misses Hits Miss rate (%) #Allocation #Query #RC-update #Revocation

600.perlbench_s/0 4.893 3.632 34.710 555427 615721998 0.090 22402 96213853 259932183 18754
600.perlbench_s/1 4.960 3.882 27.781 415766 529275069 0.078 59565 106558849 211290520 58279
600.perlbench_s/2 5.157 3.841 34.262 997293 625836524 0.159 1293 95528533 265646893 1161
602.gcc_s/0 5.256 4.005 31.219 295175 616668184 0.048 139829 98004533 258869083 139020
602.gcc_s/1 5.259 4.007 31.263 305182 617601867 0.049 139870 98162127 259262035 139032
602.gcc_s/2 5.260 4.007 31.257 325157 617383805 0.053 139814 98120826 259183800 139011
605.mcf_s/0 5.467 5.467 0.000 0 0 0.000 0 0 0 0
620.omnetpp_s/0 7.947 5.267 50.870 12058732 902225434 1.319 430165 172949008 368670213 379251
623.xalancbmk_s/0 9.017 6.202 45.387 16891678 851610538 1.945 112500 273464398 297073283 80999
625.x264_s/0 4.434 3.679 20.516 95 377394651 0.000 38 175363916 101015339 0
625.x264_s/1 4.511 3.765 19.819 0 373093048 0.000 0 183377516 94857766 0
625.x264_s/2 4.078 3.459 17.902 33 309551709 0.000 116 146974430 81288420 2
631.deepsjeng_s/0 3.363 3.344 0.565 0 9452119 0.000 0 4280475 2585822 0
641.leela_s/0 3.386 3.105 9.072 1764704 87073176 1.986 23432 33280704 27675933 19844
648.exchange2_s/0 3.646 3.638 0.222 0 4029952 0.000 22078 1909208 972060 22078
657.xz_s/0 3.011 2.899 3.846 0 33256028 0.000 0 24748672 4253678 0
657.xz_s/1 3.522 3.078 14.414 0 221848643 0.000 0 73389965 74229339 0

struct capstone_runtime {
void* malloc;
void* free;
void* thread_start;
void* thread_create;
void* join_all;
void* enclave_create;
void* enclave_enter;
void* enclave_destroy;

};

struct mem_region {
struct mem_region *left,
*right;

int size, leaf, free;
void* mem;

};
struct malloc_state {
struct mem_region* heap;
int alloc_n;

};

Listing 1: Left: Data structure that exposes runtime interfaces.
Right: Data structures in the memory allocator.

Table 4: LoC of each component of the prototype implemen-
tation: CAPSTONEEmu, CAPSTONECC, and CAPSTONELib.

CAPSTONE- Emu CC Lib
LoC 1081 2319 529

mentations of different memory isolation models. Table 4
summarizes the lines of code in each component.

Unlike our gem5 model (see Sections 6 and 7), CAP-
STONEEmu is intended purely for exploring the expressive-
ness of the CAPSTONE interface. Therefore, we keep its im-
plementation high-level and straightforward. CAPSTONECC
compiles a C-like language into CAPSTONE. CAPSTONELib
exposes interfaces to memory isolation models through sealed
capabilities inside a capstone_runtime object (Listing 1,
left). We have open-sourced those tools and our case study
implementations (see Availability). We summarize the lines
of code (LoC) of each case study in Table 5.

Trustless memory allocation. Our heap memory allocator
exposes two interfaces to applications: malloc and free. The
malloc interface receives the size of the memory region to be
allocated, and returns a valid linear capability if the allocation
succeeds. The free interface receives a linear capability for
a previously allocated memory region, and makes it available

Table 5: LoC (input to CAPSTONECC) of our case study im-
plementations in CAPSTONELib. Abbreviations: MA (mem-
ory allocator), TS (thread scheduler), Enc (enclaves).

Case study MA TS Encl Rust
LoC 128 242 75 5

for future allocations. An application does not need to trust
the memory allocator. After obtaining a linear capability from
malloc, the application is guaranteed exclusive access to
the memory region. The allocator may revoke the capability,
but cannot read the original memory content as long as the
application holds its linear or revocation capability.

The malloc_state object maintains the state of a memory
allocator (Listing 1, right). It contains a heap capability that
covers all memory available for allocation. Since the capa-
bility to malloc_state is sealed inside malloc and free in
capstone_runtime, an application can only access the allo-
cator state indirectly through those well-defined interfaces.

In summary, our implementation guarantees that the mem-
ory allocator can reclaim memory whenever it wants, but
cannot access any allocated region, or read private data in
a region after reclaiming it. Trust between applications and
the memory allocator is thus unnecessary. Since CAPSTONE
does not include a centrally-managed MMU, mechanisms
commonly relying on it (e.g., swapping, copy-on-write) be-
come non-trivial. Enabling them with capabilities is future
work.

Trustless thread scheduling. We implemented a thread
scheduler that requires no trust from applications. The sched-
uler belongs to a different domain and has no access to the
linear capabilities held by the application domain (and, in
turn, the data they point to). CAPSTONE ensures that the ap-
plication domain context is safely saved and restored when
an exception occurs and when the domain resumes execution.

Part of the data involved is critical in the sense that at most
one thread can safely manipulate it at any time. To protect
such data, we encapsulate them in a sched_critical_state
object, and include a linear capability to it inside the scheduler
state sched_state. Before a thread accesses such data, it
needs to load the linear capability into a register. The linearity
of the capability subsequently guarantees that no other thread
can access the data structure.

Besides preventing the thread scheduler from accessing
application data during context switches, our implementa-
tion has several more security benefits. Since the exception
handler is defined by a normal sealed capability, an appli-
cation can attest to the identity of the exception handler or
thread scheduler (when sealed capabilities are extended with
cryptographic checksums). This mitigates attacks that involve
attacker-controlled exception handlers or thread schedulers,
such as Game of Threads [44] and SmashEx [12]. By safely
storing the domain context upon a context switch, CAPSTONE
also allows better control of domain re-entries, as re-entries
that accesses overlapping resources are impossible, which
improves the security of custom exception handling (e.g.,
in-enclave exception handling in Intel SGX [11, 34]).
Spatially-isolated enclaves. We implemented a basic set of
interfaces for a TEE with spatially-isolated enclaves similar
to Intel SGX [11, 34] and Keystone [27]: enclave_create,
enclave_enter, and enclave_destroy. The central data
structures include enclave, which is available to the software
creating and using an enclave, and enclave_runtime, which
is available to the enclave itself.

The enclave_create interface creates a new enclave
from two input linear capabilities for its code and data re-
spectively. Both capabilities are then sealed together in a
sealed capability, alongside an enclave private stack and an
enclave_runtime object. Sealing protects the corresponding
memory regions from direct access outside the enclave itself,
similar to the enclave setup in Intel SGX [11,34]. To facilitate
data exchange between the host application and the enclave,
enclave_create creates a shared memory region between
them, and its capability is placed in both enclave_runtime
and enclave. The enclave_enter interface calls into the
sealed capability contained in a given enclave structure, ef-
fectively executing the enclave. The enclave_destroy inter-
face reclaims and frees the memory resources of an enclave
with the revocation capabilities inside enclave.

This case study focuses on memory isolation. A complete
TEE platform usually also includes a hardware root of trust,
memory encryption, and local and remote attestation [1, 11,
27, 34]. We consider the hardware root of trust and memory
encryption as orthogonal to CAPSTONE. For attestation, future
work may explore attaching measurements to uninitialized
capabilities and extending them upon each memory store. The
measurement is frozen when the uninitialized capability is
initialized, and henceforth invalidated upon further stores.
Nested enclaves. In our spatially-isolated enclave implemen-

void* shared_mem = capstone_runtime->malloc(128);
shared_mem[0] = 42; // just some dummy data
void* shared_rev = mrev(shared_mem);
void* shared_rev_shared = mrev(shared_mem);
drop(shared_mem); // drop to share
runtime->heap[1] = shared_rev;
void* emissary =

capstone_runtime->malloc(CAPSTONE_SEALED_SIZE);
scco(emissary_code, 0);
emissary[CAPSTONE_OFFSET_PC] = emissary_code;
emissary[CAPSTONE_OFFSET_EPC] = 0;
emissary[CAPSTONE_OFFSET_DEDICATED_STACK] = 0;
emissary[CAPSTONE_OFFSET_METAPARAM] = shared_rev_shared;
seal(emissary); runtime->shared[0] = emissary;

Listing 2: Preparing a shared memory region.

void* d =
runtime->shared[0];

void* shared_mem = d();
revoke(shared_mem);

CAPSTONE_ATTR_HAS_METAPARAM
void* setup_shared() {
void* d = CAPSTONE_METAPARAM;
// check measurement of ret
return d;

}

Listing 3: Left: accessing a shared memory region. Right:
domain that performs authentication and returns revocation
capabilities for shared memory regions.

tation, the domain creating an enclave can also be an enclave
itself. To enable nested enclaves, we only need to expose the
enclave creation interfaces to enclaves. This is easily achieved
by passing the capstone_runtime structure to each enclave
inside the enclave_runtime structure. The nesting structure
can be extended indefinitely during runtime on demand. Each
enclave can be sure that a memory region shared with a child
enclave is only accessible to this same child enclave or those
nested inside it and can be reclaimed at any time.
Temporally-isolated enclaves. Since CAPSTONE does not
rely on identity-based access control, an enclave D cannot
directly share a memory region exclusively with another en-
clave E, unless E is created by D or D can access the sealed
capability of E through other means. In general, D needs to
pass a capability to E and E alone. To achieve this on CAP-
STONE, D can create a domain C specially for communicating
with E and then pass C’s sealed capability to E (Listing 2).
The host then marshalls C’s sealed capability to E, which
obtains access to the shared memory region by invoking C
and then performing revocation with the returned revocation
capability (Listing 3, left). C can then perform authentication,
e.g., by examining the measurement of the sealed-return ca-
pability in ret, to make sure that it is invoked by E before
provisioning a revocation capability for the shared memory
region (Listing 3, right). Hardware-generated cryptographic
checksums are beyond the scope of this paper.

Note that D can limit E’s access permissions to the memory
region through the permissions in the revocation capability
passed to E. In addition, since D holds another revocation
capability created before the one passed to E, it can revoke

Table 6: Rust-like abstraction on CAPSTONE.

Op. Rust CAPSTONE
Move let a = b; mov ra rb
Immutable borrow let a = &b; mrev rr rb; delin

rb; li r0 0; tighten
rb r0; mov ra rb;
(use ra) revoke rr;
mov rb rr

Mutable borrow let a = &mut b; mrev rr rb; mov ra
rb; (use ra) revoke
rr; mov rb rr

the delegated access at any time. To establish a non-exclusive
shared memory region with E, D may have C pass to E a non-
linear capability instead of a revocation capability. By passing
linear capabilities back and forth through the non-exclusive
shared memory between the two enclaves, they can take turns
to have exclusive access to other memory regions in multiple
rounds with the non-exclusive region as a trampoline.

Our implementation prevents unintended enclaves from ac-
cessing a temporarily shared memory region. Through revoca-
tion capabilities, it also allows an accessor to obtain exclusive
access. Moreover, the owner enclave of a memory region can
limit what each accessor can do to it.

Rust-like memory restrictions. CAPSTONE can enforce
Rust-like memory restrictions across security domains at run-
time without assuming trusted software components.

Table 6 summarizes the mapping from Rust operations to
the corresponding CAPSTONE primitives. Owner references
in Rust are directly mapped to linear capabilities, as they are
similarly alias-free and non-duplicable. However, CAPSTONE
has no direct equivalent to the mutable borrowed reference.
Instead, we pass the linear capability itself for mutable bor-
rowing, and utilize the revocation capability to ensure its
return (in Rust, the owner reference becomes usable again
after the lifetime of the borrowed references ends). Immutable
borrowing is supported through read-only non-linear capabil-
ities created by delinearizing the linear capability and then
tightening the permissions to read-only, which can then be
shared in arbitrarily many copies, matching the behaviours of
immutable borrowed references in Rust. Again, the domain
uses revocation capabilities to ensure that its exclusive access
(owner reference) can be reclaimed.

9 Related Work

Architectural capabilities. Early computer architectures with
capability-based memory addressing can be traced back to
the early 1980s, but failed to see widespread adoption due
to significant performance overhead [23]. M-machine [8] im-
proved the performance through tagged memory words and
a shared address space across all protection domains. Hard-
Bound [14] proposed a limited form of architectural capabil-
ities without unforgeability to improve the performance of

bounds-checking in C programs. More recently, CHERI [53]
follows the tagged memory design of M-machine with im-
proved memory region granularity and compatibility with tra-
ditional page-based memory protections. Unlike CAPSTONE,
all those designs assume a trusted OS kernel, and are unable to
express exclusive access guarantees or hierarchical capability
revocation. Instead of relying on capability metadata, C3 uses
pointer encryption and memory encryption to prevent secret
leakage and predictable memory tampering [28], which helps
reduce its performance overhead. However, this trades off its
flexibility in expressing more sophisticated rules such as those
associated with different capability types. Capability-based
security has also seen adoption in software designs, including
OS kernels [3, 22, 26, 52], programming languages [10, 35],
and web services [20]. Such designs deal with higher-level
notions of resources rather than memory.

Linear capabilities. Naden et al. proposed a type system
with “unique permissions”, a concept similar to linear capa-
bilities, to achieve efficient flexible borrowing [41]. This is
different from CAPSTONE which provides linear capabili-
ties at the lower architectural level, and enforces restrictions
during runtime. StkTokens [46] is a calling convention that
utilizes architectural linear capabilities to provide control flow
integrity in the context of software fault isolation. StkTokens
is focused on a specific memory model, whereas CAPSTONE
intends to support multiple models at the same time. More-
over, StkTokens does not discuss scenarios with asynchronous
exceptions or when untrusted software refuses to relinquish a
linear capability. It is also unclear how linear and non-linear
capabilities interact. Van Strydonck et al. proposed capturing
spatial separation logic predicates during runtime through
compiling verified C code into a low-level language with lin-
ear capabilities [48]. We consider their work as orthogonal
to ours, as CAPSTONE is focused exclusively on low-level
interfaces. The CHERI ISA document [53] briefly discusses
an incomplete linear capability design as an experimental
feature to replace garbage collection. It is unclear from the
document what interfaces related to linear capabilities are
available. Moreover, CHERI relies on a trusted OS kernel to
manage linear capabilities. They propose that the OS kernel
be allowed to violate linearity to this purpose. This fundamen-
tally contrasts the goal of CAPSTONE.

Uninitialized capabilities. Georges et al. introduced the no-
tion of uninitialized capability as a mechanism to improve
the performance of capability revocation [18]. Converting a
normal capability into an uninitialized capability allows inval-
idating the capabilities that reside in a large memory region
without requiring a scan through it. The application can hence
gain the guarantee that a memory region does not contain
any capability with a small constant overhead. Unlike their
work, CAPSTONE generalizes uninitialized capabilities to the
generic role of preventing secret leakage, where the secrets
include, but are no more limited to, capabilities.

Linear and uniqueness type systems. Some high-level pro-
gramming languages have adopted linear type systems [10,
30–32, 50] or uniqueness type systems [31, 47]. Linear types
require that values be used exactly once in the future, whereas
uniqueness types require that the values have never been du-
plicated in the past. They both allow conversions in single
directions: from an unrestricted (i.e., non-linear) type into a
linear type, or from a uniqueness type into an unrestricted
type [31,47,50]. In contrast, by providing a mechanism for re-
vocation, CAPSTONE enables conversions (i.e., linearization
and delinearization) in both directions. Unlike high-level pro-
gramming languages, CAPSTONE is intended as a low-level
interface that enforces similar restrictions during runtime.

Capability revocation. Prior work on CHERI capability revo-
cation adopts different semantics to the term “revocation” than
CAPSTONE does. Whereas revocation in CAPSTONE immedi-
ately invalidates a set of capabilities defined by the revocation
hierarchy to reclaim a linear capability, CHERIvoke [58] and
Cornucopia [55] lazily invalidate capabilities through memory
sweeping to ensure that objects do not have stale capabilities
associated with them when they are reallocated (i.e., no use-
after-reallocation). While CAPSTONE is stricter in requiring
invalidations to immediately take effect, its more constrained
capability provisioning operations help simplify tracking of
capability derivations and facilitate capability revocation.

Tagged architectures. Similar to CHERI [25,57], CAPSTONE
is a tagged architecture [24] as it uses hardware-maintained
word-granular metadata to distinguish capabilities and enforce
corresponding memory access isolation policies. Other prior
tagged architectures mostly focus on accelerating specific se-
curity policies such as control flow integrity (CFI) and spatial
memory safety [40], whereas CAPSTONE aims at providing
a novel capability-based memory access model. Designs for
general-purpose software-defined tag computations have been
proposed [15, 16], but as the tag computations in CAPSTONE
are concrete and sufficiently simple to implement in hardware,
have a huge input space (e.g., address ranges), and are some-
times not purely functional (e.g., revocation nodes), those
designs are ill-suited for supporting CAPSTONE.

10 Conclusions

We have proposed CAPSTONE, a new capability-based archi-
tectural design that provides the flexibility to support multiple
memory isolation models without assuming trusted software
components. We pointed out that existing designs are insuf-
ficient to achieve such a goal and described the additions
needed to overcome those limitations, specifically through a
careful design with linear and revocation capabilities. Our
evaluation results suggest that CAPSTONE can be imple-
mented with acceptable overhead. As future work, we plan
to explore hardware implementations of CAPSTONE and to
experiment with a wider range of use cases.

Acknowledgments

We thank the anonymous reviewers, Shweta Shinde, and Bo
Wang for their suggestions on earlier drafts of this paper. This
research is supported by the Ministry of Education, Singapore,
under its Academic Research Fund Tier 1, T1 251RES2023
(A-0008125-00-00). Trevor E. Carlson is supported by a re-
search grant from Huawei. Conrad Watt is supported by a Re-
search Fellowship from Peterhouse, University of Cambridge.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors only.

Availability

The code produced in this work is publicly available at https:
//github.com/jasonyu1996/capstone.

References

[1] Arm trustzone technology. https://
developer.arm.com/ip-products/security-
ip/trustzone.

[2] Adam Barth, Joel Weinberger, and Dawn Song. Cross-
origin javascript capability leaks: Detection, exploita-
tion, and defense. In Proceedings of the 18th Confer-
ence on USENIX Security Symposium, SSYM’09, page
187–198, USA, 2009. USENIX Association.

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: A new os architecture for scal-
able multicore systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09, page 29–44, New York, NY, USA, 2009.
Association for Computing Machinery.

[4] A. Bensoussan, C. T. Clingen, and R. C. Daley. The
multics virtual memory: Concepts and design. Commun.
ACM, 15(5):308–318, may 1972.

[5] H Bingham. Access controls in burroughs large systems.
Privacy and Security in Computer Systems, pages 42–45,
1974.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, aug 2011.

[7] James Bucek, Klaus-Dieter Lange, and Jóakim
v. Kistowski. Spec cpu2017: Next-generation compute

https://github.com/jasonyu1996/capstone
https://github.com/jasonyu1996/capstone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering,
ICPE ’18, page 41–42, New York, NY, USA, 2018.
Association for Computing Machinery.

[8] Nicholas P. Carter, Stephen W. Keckler, and William J.
Dally. Hardware support for fast capability-based ad-
dressing. In Forest Baskett and Douglas W. Clark, edi-
tors, ASPLOS-VI Proceedings - Sixth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, San Jose, California,
USA, October 4-7, 1994, pages 319–327. ACM Press,
1994.

[9] David Chisnall, Colin Rothwell, Robert N. M. Watson,
Jonathan Woodruff, Munraj Vadera, Simon W. Moore,
Michael Roe, Brooks Davis, and Peter G. Neumann. Be-
yond the PDP-11: architectural support for a memory-
safe C abstract machine. In Özcan Özturk, Kemal
Ebcioglu, and Sandhya Dwarkadas, editors, Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS 2015, Istanbul, Turkey, March
14-18, 2015, pages 117–130. ACM, 2015.

[10] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Bless-
ing, and Andy McNeil. Deny capabilities for safe, fast
actors. In Proceedings of the 5th International Workshop
on Programming Based on Actors, Agents, and Decen-
tralized Control, AGERE! 2015, page 1–12, New York,
NY, USA, 2015. Association for Computing Machinery.

[11] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptol. ePrint Arch., 2016:86, 2016.

[12] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Pra-
teek Saxena, and Zhiping Cai. Smashex: Smashing
SGX enclaves using exceptions. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
2021 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pages 779–793. ACM, 2021.

[13] Brooks Davis, Robert N. M. Watson, Alexander Richard-
son, Peter G. Neumann, Simon W. Moore, John Bald-
win, David Chisnall, Jessica Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie,
A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-
inghi, Edward Tomasz Napierala, Robert M. Norton,
Michael Roe, Peter Sewell, Stacey Son, and Jonathan
Woodruff. Cheriabi: Enforcing valid pointer provenance
and minimizing pointer privilege in the posix c run-
time environment. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’19, page 379–393, New York, NY, USA, 2019.
Association for Computing Machinery.

[14] Joseph Devietti, Colin Blundell, Milo M. K. Martin,
and Steve Zdancewic. Hardbound: architectural support
for spatial safety of the c programming language. In
ASPLOS 2008, 2008.

[15] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos
Vasilakis, Silviu Chiricescu, Jonathan M. Smith,
Thomas F. Knight, Benjamin C. Pierce, and Andre De-
Hon. Architectural support for software-defined meta-
data processing. SIGARCH Comput. Archit. News,
43(1):487–502, mar 2015.

[16] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu
Chiricescu, Jonathan M. Smith, Thomas F. Knight, Ben-
jamin C. Pierce, and André DeHon. Pump: A pro-
grammable unit for metadata processing. In Proceedings
of the Third Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[17] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scal-
able memory protection in the PENGLAI enclave. In
Angela Demke Brown and Jay R. Lorch, editors, 15th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021, pages
275–294. USENIX Association, 2021.

[18] Aïna Linn Georges, Armaël Guéneau, Thomas Van Stry-
donck, Amin Timany, Alix Trieu, Sander Huyghebaert,
Dominique Devriese, and Lars Birkedal. Efficient and
provable local capability revocation using uninitialized
capabilities. Proc. ACM Program. Lang., 5(POPL), jan
2021.

[19] Jean-Yves Girard. Linear logic. Theoretical Computer
Science, 50(1):1–101, 1987.

[20] Dick Hardt. The OAuth 2.0 Authorization Framework.
RFC 6749, October 2012.

[21] Norm Hardy. The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev.,
22(4):36–38, October 1988.

[22] Norman Hardy. Keykos architecture. SIGOPS Oper.
Syst. Rev., 19(4):8–25, oct 1985.

[23] Merle E. Houdek, Frank G. Soltis, and Roy L. Hoff-
man. Ibm system/38 support for capability-based ad-
dressing. In Proceedings of the 8th Annual Symposium
on Computer Architecture, ISCA ’81, page 341–348,
Washington, DC, USA, 1981. IEEE Computer Society
Press.

[24] Samuel Jero, Nathan Burow, Bryan Ward, Richard
Skowyra, Roger Khazan, Howard Shrobe, and Hamed
Okhravi. Tag: Tagged architecture guide. ACM Comput.
Surv., 55(6), dec 2022.

[25] Alexandre Joannou, Jonathan Woodruff, Robert Kovac-
sics, Simon W. Moore, Alex Bradbury, Hongyan Xia,
Robert N.M. Watson, David Chisnall, Michael Roe,
Brooks Davis, Edward Napierala, John Baldwin, Khilan
Gudka, Peter G. Neumann, Alfredo Mazzinghi, Alex
Richardson, Stacey Son, and A. Theodore Markettos.
Efficient tagged memory. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 641–
648, 2017.

[26] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby
Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, February 2014.

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanovic, and Dawn Song. Keystone: an open frame-
work for architecting trusted execution environments. In
EuroSys. ACM, 2020.

[28] Michael LeMay, Joydeep Rakshit, Sergej Deutsch,
David M. Durham, Santosh Ghosh, Anant Nori, Jayesh
Gaur, Andrew Weiler, Salmin Sultana, Karanvir Grewal,
and Sreenivas Subramoney. Cryptographic capability
computing. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
’21, page 253–267, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[29] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan. PAC
it up: Towards pointer integrity using ARM pointer
authentication. In 28th USENIX Security Symposium
(USENIX Security 19), pages 177–194, Santa Clara, CA,
August 2019. USENIX Association.

[30] Simon Marlow. Haskell 2010 language re-
port. https://www.haskell.org/onlinereport/
haskell2010/, 2010.

[31] Daniel Marshall, Michael Vollmer, and Dominic Or-
chard. Linearity and uniqueness: An entente cordiale. In
Programming Languages and Systems: 31st European
Symposium on Programming, ESOP 2022, Held as Part
of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2022, Munich, Germany, April
2–7, 2022, Proceedings, page 346–375, Berlin, Heidel-
berg, 2022. Springer-Verlag.

[32] Nicholas D. Matsakis and Felix S. Klock II. The rust lan-
guage. In Michael Feldman and S. Tucker Taft, editors,
Proceedings of the 2014 ACM SIGAda annual confer-
ence on High integrity language technology, HILT 2014,
Portland, Oregon, USA, October 18-21, 2014, pages 103–
104. ACM, 2014.

[33] Alfredo Mazzinghi, Ripduman Sohan, and Robert N. M.
Watson. Pointer provenance in a capability architecture.
In Proceedings of the 10th USENIX Conference on The-
ory and Practice of Provenance, TaPP’18, page 2, USA,
2018. USENIX Association.

[34] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In HASP@ISCA,
page 10. ACM, 2013.

[35] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro.
Concurrency among strangers. In Rocco De Nicola and
Davide Sangiorgi, editors, Trustworthy Global Comput-
ing, pages 195–229, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[36] Mark S Miller, Ka-Ping Yee, Jonathan Shapiro, et al. Ca-
pability myths demolished. Technical report, Technical
Report SRL2003-02, Johns Hopkins University Systems
Research . . . , 2003.

[37] Intel® 64 and ia-32 architectures software developer
manual, 2018.

[38] Armv8-m memory model and memory protec-
tion user guide. https://developer.arm.com/
documentation/107565/latest, 2022. Accessed on
27 Feb 2023.

[39] Intel® memory protection extensions enabling
guide. https://www.intel.com/content/www/us/
en/developer/articles/guide/intel-memory-
protection-extensions-enabling-guide.html,
2016.

[40] Armv8.5-a memory tagging extension white pa-
per. https://developer.arm.com/documentation/
102925/0100, 2022. Accessed on 30 January, 2023.

[41] Karl Naden, Robert Bocchino, Jonathan Aldrich, and
Kevin Bierhoff. A type system for borrowing per-
missions. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’12, page 557–570, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[42] Learn the architecture: Providing protection for
complex software. https://developer.arm.com/
documentation/102433/latest/, 2022.

[43] Joongun Park, Naegyeong Kang, Taehoon Kim,
Youngjin Kwon, and Jaehyuk Huh. Nested enclave:
Supporting fine-grained hierarchical isolation with sgx.
In 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 776–789,
2020.

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://developer.arm.com/documentation/107565/latest
https://developer.arm.com/documentation/107565/latest
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html
https://developer.arm.com/documentation/102925/0100
https://developer.arm.com/documentation/102925/0100
https://developer.arm.com/documentation/102433/latest/
https://developer.arm.com/documentation/102433/latest/

[44] Jose Rodrigo Sanchez Vicarte, Benjamin Schreiber, Ric-
cardo Paccagnella, and Christopher W. Fletcher. Game
of Threads: Enabling Asynchronous Poisoning Attacks,
page 35–52. Association for Computing Machinery,
New York, NY, USA, 2020.

[45] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kos-
tiainen, and Srdjan Čapkun. Composite enclaves: To-
wards disaggregated trusted execution. IACR Transac-
tions on Cryptographic Hardware and Embedded Sys-
tems, 2022(1):630–656, Nov. 2021.

[46] Lau Skorstengaard, Dominique Devriese, and Lars
Birkedal. Stktokens: Enforcing well-bracketed control
flow and stack encapsulation using linear capabilities.
Proc. ACM Program. Lang., 3(POPL), jan 2019.

[47] Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van
Eekelen, and Marinus J. Plasmeijer. Guaranteeing safe
destructive updates through a type system with unique-
ness information for graphs. In Proceedings of the Inter-
national Workshop on Graph Transformations in Com-
puter Science, page 358–379, Berlin, Heidelberg, 1993.
Springer-Verlag.

[48] Thomas Van Strydonck, Frank Piessens, and Dominique
Devriese. Linear capabilities for fully abstract compi-
lation of separation-logic-verified code. Proc. ACM
Program. Lang., 3(ICFP), jul 2019.

[49] Philip Wadler. Linear types can change the world! In
PROGRAMMING CONCEPTS AND METHODS. North,
1990.

[50] Philip Wadler. Is there a use for linear logic? In Pro-
ceedings of the 1991 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Ma-
nipulation, PEPM ’91, page 255–273, New York, NY,
USA, 1991. Association for Computing Machinery.

[51] Andrew Waterman, Krste Asanović, and John Hauser.
The RISC-V Instruction Set Manual: Volume II: Privi-
leged Architecture, 2021.

[52] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway. Capsicum: Practical capabilities for
UNIX. In 19th USENIX Security Symposium, Washing-
ton, DC, USA, August 11-13, 2010, Proceedings, pages
29–46. USENIX Association, 2010.

[53] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neu-
mann, Simon W. Moore, Jonathan Anderson, David
Chisnall, Nirav H. Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert M. Norton,
Michael Roe, Stacey D. Son, and Munraj Vadera.
CHERI: A hybrid capability-system architecture for
scalable software compartmentalization. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 20–37. IEEE Com-
puter Society, 2015.

[54] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and
Rüdiger Kapitza. Asyncshock: Exploiting synchroni-
sation bugs in intel sgx enclaves. In Ioannis Askoxy-
lakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine
Meadows, editors, Computer Security – ESORICS 2016,
2016.

[55] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan
Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks
Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, David Chisnall,
Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M.
Norton, Michael Roe, Peter Sewell, Stacey Son, Timo-
thy M. Jones, Simon W. Moore, Peter G. Neumann, and
Robert N. M. Watson. Cornucopia: Temporal safety for
cheri heaps. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 608–625, 2020.

[56] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems, pages
304–316, 2002.

[57] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert M. Nor-
ton, and Michael Roe. The CHERI capability model:
Revisiting RISC in an age of risk. In ISCA, pages 457–
468. IEEE Computer Society, 2014.

[58] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth,
Nathaniel Wesley Filardo, Michael Roe, Alexander
Richardson, Peter Rugg, Peter G. Neumann, Simon W.
Moore, Robert N. M. Watson, and Timothy M. Jones.
Cherivoke: Characterising pointer revocation using
CHERI capabilities for temporal memory safety. In
Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019, pages 545–
557. ACM, 2019.

[59] Jason Zhijingcheng Yu, Shweta Shinde, Trevor Carlson,
and Prateek Saxena. Elasticlave: An efficient memory
model for enclaves. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association.

[60] Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole,
Trevor E. Carlson, and Prateek Saxena. Capstone: A
capability-based foundation for trustless secure memory
access (extended version), 2023.

	Introduction
	Overview
	Architectural Capabilities
	Motivating Examples
	Capstone in a Nutshell
	Threat Model and Scope

	Design Overview
	Capstone Formal Model
	Overview
	Moving Capabilities
	Capability Revocation
	Capability Modification
	Domain Switching

	Security Analysis
	Implementation
	Evaluation
	Case Studies
	Related Work
	Conclusions

