
Sherlock on Specs: Building LTE Conformance Tests through Automated Reasoning

Yi Chen1, Di Tang1, Yepeng Yao2,4∗, Mingming Zha1, XiaoFeng Wang1∗

Xiaozhong Liu3, Haixu Tang1, Baoxu Liu2,4

1Indiana University Bloomington
2{CAS-KLONAT†, BKLONSPT‡}, Institute of Information Engineering, CAS

3Worcester Polytechnic Institute, 4School of Cyber Security, University of Chinese Academy of Sciences
{chen481, tangd, mzha, xw7, hatang}@iu.edu, {yaoyepeng, liubaoxu}@iie.ac.cn, xliu14@wpi.edu

Abstract

Conformance tests are critical for finding security weak-
nesses in carrier network systems. However, building a con-
formance test procedure from specifications is challenging,
as indicated by the slow progress made by the 3GPP, partic-
ularly in developing security-related tests, even with a large
amount of resources already committed. A unique challenge
in building the procedure is that a testing system often cannot
directly invoke the condition event in a security requirement
or directly observe the occurrence of the operation expected
to be triggered by the event. Addressing this issue requires an
event chain to be found, which once initiated leads to a chain
reaction so the testing system can either indirectly triggers
the target event or indirectly observe the occurrence of the
expected event. To find a solution to this problem and make
progress towards a fully automated conformance test genera-
tion, we developed a new approach called Contester, which
utilizes natural language processing and machine learning
to build an event dependency graph from a 3GPP specifica-
tion, and further perform automated reasoning on the graph
to discover the event chains for a given security requirement.
Such event chains are further converted by Contester into
a conformance test procedure, which is then executed by a
testing system to evaluate the compliance of user equipment
(UE) with the security requirement. Our evaluation shows
that given 22 security requirements from the LTE NAS speci-
fication, Contester successfully generated over a hundred test
procedures in just 25 minutes. After running these procedures
on 22 popular UEs including iPhone 13, Pixel 5a and IoT
devices, our approach uncovered 197 security requirement
violations, with 190 never reported before, rendering these
devices to serious security risks such as MITM, fake base
station and reply attacks.

∗Corresponding Authors
†Key Laboratory of Network Assessment Technology, CAS.
‡Beijing Key Laboratory of Network Security and Protection Technology

1 Introduction

With the rapid expansion of cellular network systems, their
security weaknesses become an increasingly serious concern
to the public. Among these weaknesses are the security vul-
nerabilities exposed by the user equipment (UE), such as
mobile phones, which could be exploited to disclose a user’s
locations [22], deny her service [12, 14, 27], etc. It has been
reported that many of these vulnerabilities have actually been
caused by failure to follow the 3GPP specifications: for ex-
ample, prior research shows that many UEs do not verify the
presence of correct integrity protection on the DETACH RE-
QUEST message, as required by the specifications, which
could result in a disconnection of the UE from the service
until it is rebooted [12]. These problems should have been
captured by conformance testing meant to determine whether
an implementation of a particular standard conforms to the re-
quirements of the standard [38]. Although 3GPP does provide
such conformance testing for UEs, the coverage of existing
test cases is far from adequate [8, 9]. Particularly, only a very
small portion of them are security-related (e.g., just 9 security-
related conformance test cases out of 665 for LTE NAS proto-
cols [7]), leaving most security requirements uncovered. The
problem comes from the complexity of developing such test
cases, which entails a significant amount of effort and time.
Therefore, an efficient way to build conformance tests be-
comes imperative for elevating the security protection cellular
network systems can offer.

Challenges in building test cases. Building a conformance
test case starts with a given test purpose, for which one needs
to design a test procedure and then develop test suites accord-
ing to the procedure. This has been done completely manually
until now, a process that turns out to be time-consuming. Par-
ticularly, it has been reported that the 3GPP community has
devoted a large amount of resources to developing confor-
mance test procedures, to meet the “strong demands” for the
tests as claimed every year by 3GPP working group’s annual
reports recently [8, 9]: in Year 2020, 37 technical staff coordi-
nated nearly 39 companies to build 326 procedures, and the

manpower has grown to 53 while the number of companies
has increased to 52 a year later, with 815 procedures produced
(less than 16 per company per year) [10]. Yet still only 37%
of the development goals set in 2020 have been reached by
the end of 2021 [3], not to mention new requirements being
added to the wish list on a yearly basis.

A close look at the test-case development process reveals
the unique challenge in building the conformance test proce-
dures: although the test purpose serving as the input to the
case development already includes a condition event1 and a
follow-up operation (the event is expected to trigger on a UE),
the testing system running the test cases may not be able to
directly issue the event and/or observe the occurrence of the
target operation, since it only connects to the UE through the
air interface for simulating the carrier network’s communica-
tion with the UE. To address this problem, a chain of events
first needs to be identified, through which one or more events
the testing system can initiate will lead to the target event,
and the sequence of the actions triggered by the expected
operation will ultimately induce the effect observable to the
system, so as to confirm that the operation indeed takes place.

For example, to evaluate a UE’s conformance with the re-
quirement (“The UE shall initiate tracking area updating on
the expiry of timer T3411”) as documented in the LTE NAS
specification, we need to induce expiration of the timer T3411.
This timer however cannot be directly operated by the test-
ing system through the air interface. To get to the timer, the
current 3GPP test procedure [7] requires the testing system
to reboot the UE, causing an ATTACH REQUEST message
to be issued, which further triggers a sequence of events (see
Figure 1) leading to the expiration of the target timer. When
developing such a procedure, a human analyst has to iden-
tify and weed through a large number of conditions and their
combinations from the convoluted descriptions of 3GPP spec-
ifications so as to find a path through which the testing system
can fire a right event chain. This can be highly complicated:
for example, there are at least 25 different conditions for start-
ing T3411, and 13 for its preceding event (start timer T3410),
and most of their combinations are not on the event chain
that can be initiated by the testing system. Actually, we found
that at least 88% of the existing conformance test procedures
require either a backward (for finding the event chain leading
to the condition event) or a forward (for observing the event
indicative of the occurrence of the target operation) inference.
Some may also involve logic relations among the events (e.g.,
the target event can only happen when two preceding events
occur together), making any manual attempt to develop the
conformance test procedure even more complicated.
Test building through auto-reasoning. To address this
unique challenge and facilitate generation of test cases, partic-
ularly those related to cellular network security, we designed

1Throughout the paper, we consider the terms “event”, “action” and “op-
eration” interchangeable since an event essentially describes the occurrence
of its corresponding action/operation.

UE sends
ATTACH REQUEST

message

start
timer

T3410

timer
T3410
expires

start
timer
T3411

timer
T3411
expires

… …

… …

… …

UE sends
ATTACH REQUEST

message

start
timer

T3410

timer
T3410
expires

start
timer
T3411

timer
T3411
expires

… …

… …

… …
Figure 1: Example of the event dependency graph for the
expiration of timer T3411 event.

and implemented an innovative analysis pipeline that automat-
ically infers such chains of events from the LTE NAS specifi-
cation. These event chains are further utilized to build security
conformance test procedures, which are automatically exe-
cuted in our test environment to evaluate UEs. The pipeline,
named Contester (CONformance TEST genERator), first per-
forms a semantic analysis on the LTE NAS specification [4]
to construct an event dependency graph (EDG) using natural
language processing (NLP) and machine learning (ML). For
this purpose, we customized semantic role labeling (SRL) to
identify the causal relations from the sentences in the specifi-
cations, and further train a new model on the specifications
to connect different relation pairs together. Particularly, we
addressed the challenge in determining semantically related
technical concepts in the absence of adequate instances for
training the model.

Given a security requirement whose condition event cannot
be directly triggered or expected operation cannot be directly
observed by the testing system, Contester conducts automatic
backward reasoning on the EDG to find an event chain (or
a network in the presence of logical relations among events)
that can be set off by the system to trigger the target event,
and/or forward reasoning to find the chain (or the network)
activated by the target operation that will lead to the events
observable to the system. The event chains discovered in
this way are then converted into a security conformance test
procedure. Our testing system, built on top of a hooked LTE
simulator (simulating the cellular network), then executes the
procedure on a UE to evaluate its conformance to the 3GPP
security requirements.

Evaluation and findings. To understand the efficacy of Con-
tester, we first evaluated its capability to generate confor-
mance test procedures from 3GPP specifications on ground-
truth data (20 requirements from the 3GPP conformance test-
ing [7]), which achieved a precision of 80%. We further ran
Constester on 22 cellular devices, including 20 mobile phones
(e.g. iPhone 13, Pixel 5a, Honor Play20 and others) and 2 IoT
devices (both USE Dongles) from 10 device vendors that
use baseband processors covering the top 6 major baseband
manufacturers, to test their conformance to 22 security re-
quirements in the LTE NAS specification. Contester gener-
ated 143 test procedures (136 correct ones) for these security
requirements in 25 minutes and spent 34 days to test them
in our testing system, and further reported 287 conformance
reports and 227 failure reports. Furthermore, from the failure
reports, we discovered 197 security requirement violations,
with 190 never reported before. More specifically, 19 security
requirements in the 22 have been violated by at least 1 UE,
and every UE being tested fails to meet at least 3 security

requirements and 8.95 on average. Particularly, even the most
recently released mobile phone, iPhone 13, violates 7 security
requirements. These violated security requirements are de-
signed to protect the UE against the man-in-the-middle attack,
the fake base station attack and the replay attack. Failures
to properly implement them can lead to serious security con-
sequences, such as the denial of service, eavesdropping, and
location leakage. We reported all violations to the relevant
vendors and have received confirmation and rewards from
some of them, such as Samsung, Xiaomi and Google. We
are continuing to assist vendors in confirming and fixing the
problems discovered. The information about the vulnerability
disclosure will be updated to our website [1].
Contributions. Following are the contributions of the paper:
• New technique. We developed Contester, a novel analysis
pipeline that makes a step toward fully automated confor-
mance test generation. Our pipeline includes an automated
reasoning mechanism that applies existing and new NLP/ML
techniques to semantic analysis on the LTE NAS specification,
facilitating effective and efficient discovery of event chains
critical for building conformance test procedures for security
requirements.
• New findings. Running Contester on 22 real-world UEs, we
discovered 197 violations of 22 LTE NAS security require-
ments, among which 190 have never been reported before.
These violations are shown to have serious security conse-
quences, demonstrating that their discovery can indeed help
elevate protection of today’s cellular network systems.

2 Background

2.1 3GPP Conformance Testing
Conformance test case. The conformance test case executed
by the testing system evaluates whether a SUT (System Under
Test) conforms to a set of system requirements, as specified
by a given test purpose (an informal description of what is
to be tested and what actions the SUT must complete if an
event occurs in a certain state). Such a test purpose serves as
an input to conformance test generation and is used to design
a test procedure (also an informal description about actual
test steps) and further develop a test suite (also known as a
test script, which is typically written in a test specification
language like TTCN-3 [16] in 3GPP, and can be implemented
by TTCN compilers and executed on a test platform). So far,
test generation has been done manually by 3GPP experts,
entailing a significant amount of effort and time. Our research
aims to automate the test procedure generation.
Generic procedures of LTE. Each 3GPP conformance test
purpose describes states of UE at the time of testing. Such
states can be reached following one of the generic procedures
specified by 3GPP in its technical specification TS 36.508 [6].
For example, UE registration procedure illustrated in Table
4.5.2.3-1 of TS 36.508 describes a general procedure for a
UE to connect to the network from power on, which can bring

ARG1V ARGM-MODARG0 ARGM-TMP

If you liked the music we were playing last night
 ARGM-ADV

will
 ARGM-MOD

love
V

you
ARG0

what we’re playing tomorrow
ARG1

,

!

When I feel tired
 ARGM-TMP

will
 ARGM-MOD

drink
V

I
ARG0

a cup of coffee
ARG1

, .

Upon expiry of timer T3247 , the UE shall initiate an EPS attach procedure .

ARG1V ARGM-MODARG0 ARGM-TMP
Upon expiry of timer T3247 , the UE shall initiate an EPS attach procedure .

Figure 2: Example of the semantic role labeling.

ROOT

S

NP VP

MD VPDT NNP

VB NP

NP CC NP

DT NN NN NN NN NN NN NN

The UE shall

initiate

an EPS attach procedure

or

tracking area procedureupdating

.

.

ROOT
S

NP VP
MD VPDT NNP

VB NP
NP CC NP

DT NN NN NN NN NN NN NN

The UE shall

initiate

an EPS attach procedure

or

tracking area procedureupdating

.

.

Figure 3: Example of the constituency parsing tree.

the UE to different states, including EMM-REGISTERED-
INITIATED state, EMM-REGISTERED state, state of suc-
cessful completion of EPS authentication and etc. In existing
3GPP test cases for NAS protocol, 44% start from the states
led by the above UE registration procedure [7]. This generic
procedure is also utilized in our work to generate a confor-
mance test procedure for NAS security-related requirements.

2.2 Natural Language Processing
Semantic role labeling. Semantic role labeling (SRL) is an
NLP task to automatically find the semantic roles played
by each predicate’s argument within a sentence, determining
“who did what to whom”, “when”, “where”, and etc [15]. Fig-
ure 2 shows a simple example. For the verb “initiate”, SRL
labels the words “the UE” as ARG0, indicating “who initi-
ate”, “an EPS attach procedure” as ARG1, implying “initiate
what” and the statement “Upon expiry of timer T3247” as
ARGM-TMP, representing the temporal modifier to the verb
and describing when the action “initiate” takes place. SRL is
useful for several downstream tasks such as question answer-
ing [34] and open information extraction [18]. In our research,
we utilized SRL to extract the causal relation in a sentence,
using the Allennlp SRL model (version 2.1.0), one of the
state-of-the-art SRL tools, which achieved 86.49% F1-score
on the Ontonotes 5.0 dataset [35] (see Section 3.2).
Constituency parsing. Constituency parsing is an NLP task
that aims to generate a structured syntactic parse tree for a
sentence by breaking it down into constituents in given gram-
mar categories, such as noun phrase (NP) and verb phrase
(VP) [37]. Figure 3 presents a simple example. Not only can
we see in the figure that the phrase “The UE” is labeled as NP
and the phrase “shall initiate ... procedure” is labeled as VP,
but we can also see that the phrase “EPS attach procedure”
(which is labeled as NP as a whole) and “tracking area updat-
ing procedure” (which is labeled as NP as a whole as well)
are in coordinating conjunction (or) to the verb “initiate”. In
our work, we used the constituency parsing to identify the
coordinating conjunction among phrases in a sentence with
the Stanza model (version 1.3.0), one of the state-of-the-art
constituency parsing models that achieves a test score of 91.5
on the PTB dataset. [30] (see Section 3.2).

causal relation extractor

dot connector

EVENT DEPENDENCY
BUILDER

dependency
inferrer

test case
constructor

TEST CASE GENERATOR

3GPP
specification

security
requirement

test
controller

result
analyzer

logging
recorder

system simulator

TESTING SYTEM

UE

test
result

causal relation extractor

node connector

EVENT DEPENDENCY
BUILDER

dependency
deducer

test procedure
constructor

TEST PROCEDURE GENERATOR

3GPP
specification

security
requirement

test
controller

system simulator

TESTING SYSTEM

UE

test
result

result
analyzer

causal relation extractor

node connector

EVENT DEPENDENCY
BUILDER

dependency
deducer

test procedure
constructor

TEST PROCEDURE GENERATOR

3GPP
specification

security
requirement

test
controller

system simulator

TESTING SYSTEM

UE

test
result

result
analyzer

Figure 4: Architecture of our approach.

Data augmentation. Data augmentation is a strategy to gen-
erate additional synthetic data from existing data, in order
to increase the diversity of training examples and hence
reduce overfitting while training ML models [19]. Promi-
nent examples of data augmentation include EDA [40] and
BACKTRANSLATION [32], which are often employed to
improve the performance of text classification tasks. EDA per-
forms token-level random perturbation on a sentence, such as
synonym replacement, random insertion, deletion and swap.
BACKTRANSLATION translates a sequence into another
language (e.g., from English to French) and then translates it
back into the original language, which helps in the generation
of textual data with different words but the same semantic
meaning. In our study, we utilized both strategies while gen-
erating the training set for our ML model (see Section 3.2).

3 Contester: Design and Implementation
3.1 Overview
As aforementioned, to build conformance test procedures, the
Contester pipeline we developed leverages a suite of NLP
and ML techniques to extract all related event dependency
relations from the 3GPP documents to construct an event de-
pendency graph (EDG). Given a security requirement whose
condition event cannot be directly triggered or expected op-
eration cannot be directly observed by the testing system,
Contester performs automatic reasoning backward or forward
on the EDG to identify the target event chains. These chains
are further used to generate the test procedure, which is fi-
nally executed in our testing system to verify whether a UE
conforms to the security requirement.
Architecture. Figure 4 illustrates the architecture of Con-
tester, including a Test Procedure Generator (TPG) and a
Testing System (TS). The TPG runs an Event Dependency
Builder (EDB) to recover event dependency relations from
3GPP specifications and build an EDG. For a given security
requirement with specified condition events and expected op-
erations, the module infers the target chains through reasoning
on the graph to construct the test procedure for the require-
ment. The procedure is then used by the TS to guide a test
controller to interact with a UE under testing. The traffic pro-
duced by the communication is inspected by a result analyzer
to determine whether the UE has passed the test.
Example. Here we use an example to demonstrate how our
approach works. Figure 5 presents a security requirement,
with its condition event and expected operation being high-
lighted. For the condition event, the TPG determines that it
can be triggered directly by the testing system since the net-

Upon receipt of an AUTHENTICATION REJECT message,
if the message is received without integrity protection, the
UE shall start timer T3247 with a random value uniformly
drawn from the range between 30 minutes and 60 minutes.

conditional event consequential event

3GPP TS 24.301

Upon receipt of an AUTHENTICATION REJECT message,
if the message is received without integrity protection, the
UE shall start timer T3247 with a random value uniformly
drawn from the range between 30 minutes and 60 minutes.

conditional event

consequential event

Upon receipt of an AUTHENTICATION REJECT message,
if the message is received without integrity protection, the
UE shall start timer T3247 with a random value uniformly
drawn from the range between 30 minutes and 60 minutes.

condition event

expected operation

Upon receipt of an AUTHENTICATION REJECT message,
if the message is received without integrity protection, the
UE shall start timer T3247 with a random value uniformly
drawn from the range between 30 minutes and 60 minutes.

condition event

expected operation

Figure 5: Example of a security requirement from TS 24.301.

UE receives an
AUTHENTICATION REJECT message

without integrity protection

UE starts timer T3247 with a random
value between 30 to 60 minutes

UE starts timer T3247

the timer T3247 will expire

expiry of timer T3247

the UE initiates
the attach procedure

…
Upon expiry of timer
T3247, the UE shall
initiate an EPS attach
procedure or …

TS 24.301 (v16.8.0)

…

sending an
 ATTACH REQUEST
message to the MME

…

the UE shall initiate
an EPS attach procedure

common knowledge
If UE starts timer T3247,
after the period of time as
specified by T3247, the
timer T3247 will expire.

condition event

expected operation…

…

…

…

…

…

the UE initiates the attach
procedure by sending an
ATTACH REQUEST
message to the MME, …

TS 24.301 (v16.8.0)

Figure 6: Example of the event chain identified from the
dependency graph and related 3GPP documents.

work under the control of the testing system can send the
AUTHENTICATION REJECT message to the UE. However,
the expected action (“start timer T3247”) is an internal opera-
tion in the UE and cannot be observed directly by the testing
system. So the EDB builds an event dependency graph (EDG)
related to the timer based on 3GPP specifications. For this pur-
pose, Contester runs semantic-role labeling on the LTE NAS
specification [4] to find all sentences with causal relations,
such as “Upon expiry of timer T3247, the UE shall initiate an
EPS attach procedure or ...” and identify individual semantic
roles in the relations, such as “expiry of timer T3427” and “the
UE shall initiate an EPS attach procedure”. Then it utilizes
a new model we designed to connect semantic roles across
different sentences together, which addresses the challenge
in determining semantically related technical concepts in the
absence of adequate instances for training the model: for ex-
ample, “the UE shall initiate an EPS attach procedure” is
found to be related to “the UE initiates the attach procedure”.
The EDG Contester generates is illustrated in Figure 6. On
the graph, the TPG infers an event chain (Figure 6), which
reveals that once the UE starts T3247, the UE will send an
ATTACH REQUEST message to initiate an attach procedure
after the timer expires. This indicates that the testing system
can determine whether the expected operation happens by
examining whether the UE has issued ATTACH REQUEST
after the period of time as specified by the value of T3247.

Based on the above reasoning, the TPG then constructs
the test procedure, using a generic procedure to initialize the
UE state (see Section 2). Table 1 presents the test procedure
generated by the TPG for the security requirement: Steps 1

Table 1: Example of the test procedure.
Initial test state: before the NAS security activation; Condition event: UE receives an AUTHENTICATION REJECT message without integrity protection;

Expected operation: the UE shall start timer T3247 with a random value between 30 to 60 minutes (and
then try to connect to the network again, instead of stopping making any attempt until reboot).

Step Procedure Event Sequence VerdictU-M Message Parameter Sleep
1 The UE is switched on. - - - - -
2 The UE initiates the attach procedure. → ATTACH REQUEST - - -

3
The MME transmits an AUTHENTICATION REQUEST message
to initiate the authentication and AKA procedure. ← AUTHENTICATION REQUEST - - -

4
The UE transmits an AUTHENTICATION RESPONSE message
and established mutual authentication. → AUTHENTICATION RESPONSE - - -

5
The MME transmits an AUTHENTICATION REJECT message
without integrity protection. ← AUTHENTICATION REJECT security header type = 0 - -

6 The MME waits for 30-60 minutes. - - - 30-60 min -
7 The UE transmits an ATTACH REQUEST message → ATTACH REQUEST - - Fail

to 4 come from the generic procedure and are used to move
the UE into the initial test state; Step 5 triggers the condition
event and Steps 6 and 7 check whether the expected opera-
tion has occurred. This test procedure is then handed over
to our testing system, which runs the test controller and a
hooked simulator to issue messages to the UE according to
the procedure. After the communication of the first 5 steps,
if the TS finds from its traffic log that the UE has sent an
ATTACH REQUEST message within 30 to 60 minutes after
Step 5, it reports that the UE has passed the conformance
testing. Otherwise, the TS reports a failure result, which will
be analyzed later to determine whether the UE violates the
security requirement. Following we elaborate on the design
and implementation of individual components.

3.2 Test Procedure Generation
A conformance test procedure involves three steps: initializ-
ing the UE to the test state, triggering the condition events,
and confirming the occurrence of the expected operations.
However, the types of the events that can be directly triggered
or observed by the testing system are limited. Our observa-
tion is that all such events fall into two categories: 1) network
environment change, which is directly set by the testing sys-
tem to simulate the complicated testing scenarios for the UE
in mobile communication, such as downgrading from 4G to
3G and switching between different core networks or service
providers; 2) message transmission, through which the testing
system can command the simulator (simulating the network)
to affect the UE’s state if the message is from the MME to
the UE, and monitor the full interactions between the network
and the UE through the air interface. So, when a condition
event or the expected operation cannot be directly triggered
or observed, we need to find an event chain starting with an
actionable event and ending with an observable event. Due to
the limitation of today’s simulator, which does not fully sup-
port network environment changes, we only consider message
transmission events in our research.

EDG modeling. An event chain (or a subgraph) is discovered
from an event dependency graph (EDG), which is formally
defined as follows: EDG := {V,E,CV ,WE}, where V is the
set of nodes, E is the set of directed edges, CV is the set of

weights on nodes and WE is the set of weights on edges. For
an edge e =< u,v >, it connects the node u to v with a weight
W (e), which is either 1, indicating that the message issued
by the event u once it happens will be passed to node v, or
0.5, denoting that the message may or may not be delivered
to v (e.g., Figure 8(d)). For a node v, its event will only be
triggered if it has received sufficient number message from its
preceding events (nodes), no less than its weight C(v), which
essentially models an AND relation among these preceding
nodes. For instance, the “AND” node in Figure 8(a) has weight
2, indicating that this “AND” event will only be triggered if
all of the two preceding events happened.

To construct the EDG, the TPG runs the EDB to first iden-
tify the causal relations from the sentences in 3GPP specifica-
tions, and then infer the connections between different rela-
tions to link them together, so as to build up the whole graph.
On the graph, the deducer performs automatic reasoning to
find event chains (or subgraph) for a given security require-
ment, which are later converted to the security conformance
test procedures by the procedure constructor (Figure 4).

Causal relation extraction. 3GPP specifications contain de-
tailed textual descriptions of the UE’s working procedures,
including all the information about how a specific operation
will trigger another operation. Such causal relations, in the
LTE specifications, are usually encapsulated in a single sen-
tence like "If the SECURITY MODE COMMAND message
can be accepted, the UE shall send a SECURITY MODE
COMPLETE message ...", indicating a causal relation between
the condition event “acceptance of the SECURITY MODE
COMMAND message” and the consequent event “send a
SECURITY MODE COMPLETE message”. So, our EDB
inspects every single sentence of the LTE NAS specification
to extract all the causal relations. Note that there is actually
a unique presentation structure extensively used by 3GPP
specifications, which involves multiple sentences but can be
converted into a single sentence for causal relation discov-
ery. Such a structure tends to describe a set of actions taken
by a subject or triggered by an event, or a set of conditions
for a given event, as illustrated in Figure 7. The description
involving the structure can be easily identified from its for-
mat and these related sentences can be directly combined

Upon expiry of timer T3247, the UE shall
- remove all tracking areas …

- initiate an EPS attach procedure or tracking area updating procedure …

…

Figure 7: Example of statements across sentences.

into a single sentence by concatenating the verb phrases or
conditional clauses together. We found that in the LTE specifi-
cations many causal relations are described in such a structure.
Hence, the EDB pre-processes these statements, converting
them into single sentences before extracting causal relations
from the sentences.

The causal relation discovery is performed by the EDB us-
ing an NLP technique, called Semantic Role Labeling (SRL),
which can extract sentence semantics by labeling its key ele-
ments, e.g., words and phrases, with their syntactic roles as-
sociated with predicates (see the example in Figure 2). Lever-
aging such semantic role labels and the leading word of each
labeled semantic element, we use a set of rules to identify the
causal relation in a sentence. Take the sentence in Figure 2
as an example. Here the rule applied is as follows: ARGM-
TMP together with a set of leading words describing actions
such as “upon” indicates the presence of a causal relation, in
which the ARGM-TMP element will trigger the action labeled
by V and other labels. So, for the sentence in Figure 2, the
EDB determines the presence of the causal relation between
“Upon expiry of timer T3247” and “the UE shall initiate an
EPS attach procedure”. Then, the EDB creates a node on the
EDG for each element and connects them using a directed
edge with a weight 1 to indicate that the occurrence of one
event causes the other to take place. These rules were cre-
ated manually in our research, based upon our summary of
typical causal relations as discovered from the sample sen-
tences drawn from 3GPP conformance requirements [7]. The
complete set of rules is presented in Table 2 in Appendix.

More complicated are the presence of logic relations (AND
and OR) in an element, indicating that the element actually
describes multiple related events. Consider the example in
Figure 7: the element “initiate an EPS attach procedure or
tracking area updating procedure ...” contains two events,
which are lumped together by SRL but can be separated by
another NLP technique called constituency parsing (see Sec-
tion 2). So, after a causal relation has been identified, the EDB
further runs a constituency parsing model (Stanza [30], ver-
sion 1.3.0) on every semantic element involved in the relation,
in an attempt to refine the element by detecting the presence of
the logic relation in the element. Once detected, the element
is broken into two or more elements, each assigned to a node
created by the EDB. If these nodes describe the operations to
be triggered, they are connected to their preceding node (the
condition event) in a way illustrated in Figure 8 (c) and (d),
which also describe the assignments of both edge and node
weights. Otherwise, these newly created nodes are connected
to their succeeding nodes as specified in Figure 8 (a) and (b).
Note that for the AND relation, a new node is created for an

A and B

A or B

A and B

A or B

andA
B
A
B

A
B
A
B

or
or

(a)

(b)

(c)

(d)

convert

convert

convert

convert

A and B AND
A

B

(a)

convert

1

0 1

0

0

1

1

2

1

1

A or B
A

B

(b)
1

0 1

0

0

1

1
1

A and B

(c)

1

0 1

A

B0
1

1
11

A or B

(d)
1

0 1

A

B0

0.5
10.5

1

Figure 8: Node breakdown and graph transformation for de-
scribing logic relations. (a) and (b) describe the graph trans-
formation for the condition event involving logic relations
(AND and OR); (c) and (d) are for converting the consequent
operation with logic relations.

AND event. For example, for the highlighted element in Fig-
ure 7, the EDB creates two nodes with node weight 1, one for
“the UE shall initiate an EPS attach procedure” and the other
for “the UE shall initial tracking area updating procedure”,
which are connected to the preceding node (condition event)
with a weight 0.5 (Figure 8 (d)).

Moreover, in our research, we found that some causal re-
lations can be identified using common knowledge though
3GPP specifications do not document them (e.g., after the time
as specified by a timer’s value has passed, the timer becomes
expired). To address this problem, we added these causal rela-
tions by automatically generating artificial sentences as the
EDB’s inputs to put back the links missed by the 3GPP speci-
fications. The sentences used in our research are all related to
timers. Specifically, for each timer, our approach generates a
sentence that describes a causal relation between two events
(“start a timer” and “expiry of a timer”): e.g., “If UE starts
timer T3247, after the period of time as specified by T3247,
the timer T3247 will expire”, as shown in Figure 6. In total,
we generated 50 artificial sentences for timers.

In our research, we used the EDB to analyze the 3GPP
LTE NAS specification [4], which has 575 pages with 8,522
sentences and 284,047 words, together with the 50 generated
artificial sentences. The EDB extracted 4,721 causal relations
with 7,450 nodes including 251 AND-logic nodes.
Node connection. From the extracted causal relations, the
EDB connects two nodes from different sentences if they are
semantically related. For example, Figure 6 shows that two
nodes (“the UE shall initiate an EPS attach procedure” and
“the UE initiate the attach procedure”) are linked because they
share the same semantics. Furthermore, the EDB connects
two nodes if one of them is an instance of another. For exam-
ple, the nodes “UE takes a partial native EPS security context
into use” and “UE takes an EPS security context into use” are
related because they refer to the same action (taking some-
thing into use), and the latter’s object of the action “partial
native EPS security context” is an instance of the former’s
object “EPS security context”, so the invocation of the second
event will cause the invocation of the first event, and the nodes
should be linked together.

Connecting these dots (nodes) turns out to be complicated.
Specifically, traditional NLP techniques for determining the
semantic similarity between two sets of textual data, Sen-

tence Similarity in particular, cannot help here. For example,
“the UE sends an ATTACH REQUEST message” and “the
UE sends a SERVICE REQUEST message” describe com-
pletely different events while the current sentence similar-
ity model [39] considers them to be similar with high con-
fidence (86.4%), due to its focus on the message-sending
action, which is less important here. Also, when it comes to
establishing the relationship between a more generic concept
(“EPS security context”) and its more specific instance (“par-
tial native EPS security context”), no existing NLP technique
can provide such support, up to our knowledge. To address
these challenges, we built a new classification model designed
specifically to identify such relations from 3GPP specifica-
tions. Our model is based upon an existing fine-tuning BERT
for 3GPP [12], which has learned the 3GPP language model
and produces high-quality embeddings, followed by a fully
connected neural network as the classifier. The model’s input
is two sentences, and its output is a label for relation between
the two sentences, i.e., 0: the inputs have no relation, 1: they
have the same semantic meaning; 2: the first is an instance of
the second; 3: the second is an instance of the first.

Most important for building the model is the collection of
training data, which is nontrivial. Specifically, we cannot ran-
domly collect sentences from the 3GPP specifications, since
these receiving the class label 1, 2 and 3 are very rare. Our
solution is an automatic generation of the training instances
together with data augmentation [32, 40]. Specifically, for the
class 1, we utilize BACKTRANSLATION [32], translating a
candidate sentence into another language using the Google
translate API [21] and then translate it back into the original
language to generate textual data with different wording but
the same semantic meaning. In our research, for each sentence
in the LTE NAS specification, we generated a new sentence
and took the pair of the original sentence and the new one
as a training instance for the label 1. To generate training
instances for label 2 and 3, we need to produce sentence pairs
with one being an instance of the other: that is, both sentences
describe the same action (e.g., “take ... into use”), while the
object of the action in one sentence (“partial native EPS secu-
rity context”) is an instance of the object in another sentence
(“EPS security context”). The objects we care about are those
defined as proper nouns by 3GPP at the beginning of every
specifications. From the definitions of these terms, we can
determine that one such noun describes the instance of an-
other (e.g., “An EPS security context has type "mapped", "full
native" or "partial native".”) to establish such relations across
proper nouns. Leveraging such relations, we automatize the
generation of the training pairs for the label 2 and 3 by sim-
ply identifying from the LTE NAS specification all sentences
carrying these “instance proper nouns” as the objects of their
action terms, and replace these nouns with the proper nouns
for their general concepts, to form pairs for training.

Finally to produce the training set for the class 0, we run
a sentence similarity model [39], on randomly selected sen-

tence pairs from 3GPP specifications. The pairs predicted to
be “not similar” with high confidence (90%) by the model
are then used as training data for the label 0. Also to help
our model differentiate between two sentences describing dif-
ferent events but including the same action term (“the UE
sends an ATTACH REQUEST message” vs. “the UE sends a
SERVICE REQUEST message”), we transform every sentence
in the LTE NAS specification by replacing its object with a
randomly-selected different proper noun to form a training
pair. In this way, we generated 90,959 distinct inputs (pairs)
for the class 1, 40,609 for the class 2, 40,609 inputs for the
class 3, and 175,441 inputs for the class 0. To balance the
training dataset, we further applied data augmentation algo-
rithms [32,40] (see Section 2) to increase the number of inputs
in each class to 200,000.
Graph building. On the generated data, we trained the model
and used it to construct the EDG on LTE NAS specification.
Specifically, Contester runs the model to analyze each pair
of all causal relations discovered, in an attempt to determine
whether any relation (1: same semantics, 2 and 3: instance
and concept) exists between any node (condition event or
expected action) of one causal relation and a node of the other
relation. Once any one of the 3 relations is found, the EDB
connects them. Specifically, for class 1 relation, a directed
edge connects one node to the other and another edge connects
the latter back to the former. The weights of both edges are set
to 1, indicating that the occurrence of one event is equivalent
to the occurrence of the other. For the relation in the class 2 or
3, we use an example in Figure 9 (Nins: “take a partial native
EPS security context into use”, Ncpt : “take an EPS security
context into use”) to show how the EDB connects related
nodes. First, the EDB builds a direct edge from the Nins to
Ncpt and assigns it a weight of 1, because a concept event
always happens once its instance occurs. On the other hand,
when both the concept event and an event related to creating
an instance for the object of the operation described by the
concept event happen together, the instance event should also
be triggered. In the example, the EDB creates a node Np for
the event “create a new partial native EPS security context”,
which together with the concept event “take an EPS security
context into use”, causes the instance event “take a partial
native EPS security context” to take place; so these two nodes
Np and Ncpt are all connected to an AND node NAND before
linked to Nins. The weights for these nodes and edges are set
as described in Figure 9. The events such as the one described
by Np can be generated automatically but need to be reviewed
by the expert to remove those inconsistent with the description
of specifications. In this way, we built up the whole EDG for
the LTE NAS specification, including 7,450 nodes and 22,110
directed edges that represent 1,884 sentences.
Inference on the graph. As mentioned earlier, in our re-
search, we only consider the events that transmit messages
through the air interface to be directly invocable by and ob-
servable to our testing system (TS). The former includes the

A or B1

0 1

A

B0

0.5
0.50.5

0.5

Np

NinsNcpt
AND1 1

0

2

1

1
1

1

Np

NinsNcpt
NAND1 1

0

2

1

1
1

1

x

yu
1

2

0.5

0.5
1

1
v

Figure 9: The node connec-
tion between an instance and
its concept.

A or B1

0 1

A

B0

0.5
0.50.5

0.5

Np

NinsNcpt
AND1 1

0

2

1

1
1

1

Np

NinsNcpt
NAND1 1

0

2

1

1
1

1

x

yu
1

2

0.5

0.5
1

1
v

Figure 10: Toy example of
EDG to demonstrate reason-
ing algorithm.

MME events that sent messages to the UE and the latter are
the UE events that transmit messages to the MME. These
“directly invocable” and “directly observable” nodes are auto-
matically discovered from the EDG using the ML classifier
we trained, which compares the event described by each node
with automatically generated sentences such as “the UE sends
an ATTACH REQUEST message” to find the node with the
same meaning (in the class 1). For this purpose, we con-
structed two templates for the sentences, one for UE to MME
and the other for MME to UE. Then from the section named
“message functional definitions and contents” provided by the
NAS specification, our approach automatically discovers the
related messages and their directions to fill up the templates.

The nodes identified by our ML model form the set T of
“directly invocable” nodes, which should be the start point of a
conformance test procedure, and the set O of “directly observ-
able” nodes, which should be the end point of the procedure.
However, the condition event or the expected operation of a
security requirement may not be in these sets. So Contester
performs automatic reasoning to find event chains (or sub-
graphs) to link these requirement events to those in T and O.
Formally, for an edge e =< u,v >, we use in(e) and out(e)
to represent its start node u and end node v respectively. For a
node v, we use In(v) to denote the set of its inbound edges,
i.e., In(v) = {e : out(e) = v}, and Out(v) the set of its out-
bound edges, i.e., Out(v) = {e : in(e) = v}. The number of
messages the node v accepts, m(v,δ), is calculated as follows:

m(v,δ) = ∑
e∈In(v)

1[f (e)≥ δ], (1)

where f (e) = f (u)×W (e) and f (v) = 1[m(v,δ) ≥ C(v)].
Here δ = 1 indicates that the node v refuses to accept the
messages delivered through the edges with the weight of 0.5,
and δ = 0.5 indicates that v accepts message from all edges.
f (v) describes how many messages from v are accepted by
their recipients and f (e) denotes the number of accepted mes-
sages delivered through e. Following we describe the rea-
soning process using a simple Dynamic Programming (DP)
algorithm:
• For an expected operation node x ̸∈O, we first set the f value
of the node x and those in T to 1: i.e., f (u) = 1,∀u ∈ T ∪{x},
then propagate messages from these nodes using Eq. 1 with
δ = 0.5, until a valid directed path is found from x to a node
y ∈ O and f (y) = 1, or none of the f values (for edges or
nodes) can be further updated.
• For a condition event node y ̸∈ T , we first set the f value of
those nodes in T to 1: f (u) = 1,∀u ∈ T , and then propagate
messages from these nodes using Eq. 1 with δ = 1, until

f (y) = 1 or none of the f values (for edges or nodes) can be
further updated.
• To find a event chain (or a subgraph) that connects x to
“directly observable” nodes or connects “directly invocable”
nodes to y, our approach records R(v) ⊆ In(v), a set of in-
bound edges of v that makes ∑

e∈R(v)
f (e) = C(v), for those

nodes v satisfying f (v) = 1, when running the DP algorithm.
After an observable end point or an invocable start point has
been found, our approach derive the desired event chain (or
subgraph) through a backward induction using these records.

Here, we use a toy example of EDG (Figure 10) to demon-
strate how our reasoning algorithm works. To infer the
event chain that makes x observable, we first set T = {u}
and O = {y}. Using our reasoning algorithm, we initialize
f (x) = 1 and f (u) = 1. Then by iteratively applying Eq. 1
with δ = 0.5 to the nodes receiving messages and the edges
delivering messages, we derive that f (v) = 1 and f (y) = 1.
Since y ∈ O is a successor of x and f (y) = 1, we determine
x is observable and the event chain is x→ v→ y. If we start
with T = /0 and O = {y}, we will derive that f (v) = 0 and
f (y) = 0, thus x is unobservable in this case.

Now let us find out how to make the event y invocable, with
T = {x,u}. We initialize f (x) = 1 and f (u) = 1 to apply Eq. 1
with δ = 1 on the EDG. In this way, we derive that f (v) = 0
and f (y) = 0, which indicates that there does not exist an
event chain to invoke y. However, if we change C(v) = 1
and set T = {x,u}, our algorithm reports that f (v) = 1 and
f (y) = 1, thus y can be invoked through x→ v→ y. Also, if
we set W (< u,y >) = 1 and T = {x,u}, our approach will
derive that f (v) = 0 and f (y) = 1, thus y can also be invoked.

Test procedure generation. Given an event chain (or a sub-
graph) from an invocable action to an observable event, the
TPG component of Contester converts it into a test procedure.
A test procedure specifies the actions the UE must take once a
condition event occurs at a certain UE state. More specifically,
the procedure starts with the steps that lead the UE to the ini-
tial test state, then issue messages to invoke the condition
events and finally takes action to determine whether or not
the expected operations have been performed successfully.
Table 1 shows a test procedure for a security requirement:
Steps 1 to 4 guide the UE into the specified state (before the
NAS security activation); Step 5 triggers the condition event
(UE receives an AUTHENTICATION REJECT message with-
out integrity protection); Step 6 to 7 determine whether the
expected action (start timer T3247) has been taken.

To bring the UE to the initial test state, our TPG lever-
ages a generic procedure (the UE registration procedure [6]),
from which, the TPG extracts the steps that move the UE
from power-on to the target state through message transmis-
sion. Such a target state is typically described in a security
requirement in the form of before or after the occurrence of a
certain event: e.g., “before the network has established secure
exchange of NAS message”. Based upon such description,

the TPG searches the EDG to find the message transmission
event(s) in the set T that leads to the target event. In the
example, the message event is “MME sends a SECURITY
MODE COMMAND message to the UE”, which will trigger
an event chain leading to “the network has established secure
exchange of NAS message”. Then, our approach locates the
message mentioned in the transmission event (SECURITY
MODE COMMAND) to extract all steps from the general
procedure before the transmission event or after the event, de-
pending on the description of the target state. In the example,
the list of steps before the “MME sends a SECURITY MODE
COMMAND message to the UE”, is used to initiate the test
procedure. Note that in the presence of multiple event chains
toward the initial state, our approach produces one test proce-
dure for each chain. Moreover, we found that some security
requirements do not contain the description of the initial state,
and instead are supposed to be followed throughout the UE’s
operations. So for these requirements, the TPG provides two
initiate states: before and after the NAS security activation,
two crucial NAS security states that have also been studied
by related prior research [14, 29]. For each such state, our
approach creates a test procedure.

Right after the steps to set the UE’s initial state, the TPG
adds the event chain (or subgraph) for invoking the condition
event, and the operations to observe the occurrence of the
expected operation directly or through the observable event(s)
the operation initiates. Specifically, along the event chain,
the TPG adds each event’s statement to the procedure under
construction, together with the message automatically identi-
fied during the inference step. For example, for the step 5 in
Table 1, the TPG takes the condition event’s statement as its
description, enters the message name “AUTHENTICATION
REJECT” (identified when determing the invocable and ob-
servable sets). In addition to the message transmission event,
on the procedure are also events related to timers: whenever a
timer is set, we retrieve its expiration time from the specifica-
tion and enter the information into the Sleep column in the test
procedure sequence (Step 6 in Table 1). In the end, the confor-
mance test procedure includes the field verdict attribute [7],
which is set to “pass”, indicating that the expected operation
is observed directly or indirectly. Notably, the message’s spe-
cific parameters are set manually. However, this manual effort
is moderate since the parameter information is usually pro-
vided by the event’s statement. Taking step 5 in Table 1 as
an example again, the parameter “security header type” is set
to 0 according to the condition event description “without
integrity protection” and the message functional definitions
and content in the NAS specification [4].

3.3 Testing and Test Result Analysis
For each security requirement, our testing system (TS) uses
the test procedures generated by the TPG to evaluate a UE’s
conformance to the requirement. Following, we elaborate the
implementation of our test environment and the way the TS

performs the test and determine the test result.
Test environment building. During the testing, the TS con-
trols the network to communicate with the UE following the
test procedure sequence (the U-M, Message, Parameter and
Sleep columns in Table 1). To this end, our TS is built on a
hooked LTE simulator (simulating the network) with a com-
ponent called Test Controller, which guides the network to
perform the specified actions on the procedure. By analyzing
the traffic logs between the UE and the network, the Result
Analyzer component of the TS determines the test result (see
Figure 4) and outputs the verdict for the test.

In our implementation, we utilized an SDR board
(LimeSDR USB v1.4) connecting to a computer that runs
a simulator software (srsRAN v21.04 [36]), which simulates
the network to communicate with the UE through the air in-
terface. To let the TS monitor the NAS message the network
received from the UE and instruct the network to reply with
a specified message or perform other actions, we implanted
hooks in the simulator. Specifically, we placed instructions
to trigger the function HOOK (illustrated in Figure 11 at Ap-
pendix) right before the code for processing a specific inbound
message and for preparing a specific outbound message. The
HOOK before inbound message processing first notifies the
Test Controller of the message received from UE and then
fetches instructions from the Controller for the follow-up
action network shall take. If the follow-up action is to let
network wait for a timer to expire, HOOK will acquire the in-
struction for the next action again after sleep. If the follow-up
action is to send a specific message to UE, the HOOK stops
and lets simulator continue processing the inbound message
until another HOOK in front of outbound message delivery is
encountered. Also before issuing a specific output message,
the HOOK queries the Test Controller for the name and pa-
rameters of the message to be sent and then calls the simulator
API (e.g., liblte_mme_pack_attach_request_msg) to prepare
message and send it out, in accordance with test procedure.

The Test Controller follows the test procedure step by step
to issue messages, run a listener to receive notifications and
requests from the simulator and respond to them with the re-
quested information according to the test procedure. Take the
procedure in Table 1 as an example. After the Controller com-
mands the UE to reboot at the beginning of the test, it moves
onto the step 2 – waiting for an ATTACH REQUEST message
from the UE. During the test, if a notification from the simu-
lator, such as the reception of a message or completion of a
sleep, indicates the occurrence of the event expected, the Test
Controller will conclude that this step has been completed and
move to the next step. When the Controller receives a request
from a HOOK about the simulator’s next action, it replies
with the type of the actions for the next step, either message
transmission or sleeping. If a request is about the information
of the message to send to the UE, the Controller replies with
the message name and parameters according to the current
step in the test procedure. When the procedure runs to an end,

the Test Controller will invoke the Result Analyzer. Notably,
if the notification from the simulator is different from the
expected action and no value is given in the verdict field, the
TS stops and issues an error message.
Result. At the end of the test, the Test Controller issues a
message to the Result Analyzer, to indicate either a success
of the test when the expected last message has been received
by the Controller, or a failure, when the last message does
not arrive after a predetermined waiting time. The Analyzer
keeps track of all conformance tests related to the security
requirement and if any of them passes, it reports conformance
to the requirement; otherwise, it reports nonconformance.

4 Evaluation and Discovery
This section reports our evaluation of Contester, which pro-
vides evidence that our approach is capable of automatically
generating conformance test procedures and determining
whether a UE’s implementation complies with the LTE NAS
specification. In our research, we further ran Contester on
LTE security requirements to create test procedures and eval-
uate UEs on them to understand whether the implementations
of these UEs conform to the NAS security requirements. Our
evaluation has led to the discovery of many conformance fail-
ures, which we analyzed and present findings in this section.

4.1 Evaluation
Settings. In our experiments, we installed the TPG on a server
operating a Ubuntu 20.04 LTS, with a 1.5GHz CPU, 256GB
memory and 3.5TB hard drive, as well as CUDA 11.7 on four
GPUs (NVIDIA A40). Our Testing System includes an SDR
board (LimeSDR USB v1.4), a back-end host running a simu-
lator (srsRAN v21.04), Test Controller and Result Analyzer
on Ubuntu 18.04 with a 2.10GHz CPU, 8GB memory and a
512GB hard drive. The UE devices we evaluated include 20
mobile phones(e.g., iPhone 13, Pixel 5a, Honor Play20) and
2 IoT devices (both USB Dongles), which were connected
to the SDR board through an air interface. All experiments
were conducted in a radio-isolated shield box to prevent any
interference with the communication outside. The detailed in-
formation about the UEs is presented in Table 4 at Appendix.
Effectiveness. We evaluated the effectiveness of Contester
on its two key components: the TPG and the TS. The effec-
tiveness of the TPG mostly depends on the quality of the
EDG, a graph constructed by the EDB. The EDB includes
two important components: causal relation extractor and node
connector. In our research, we first evaluated the quality of the
causal relation extractor and the node connector respectively,
and then the EDG’s quality.

To evaluate the causal relation extractor, we built a dataset
with 100 randomly selected sentences from the LTE NAS
specification, 50 with causal relations (and logic relations) and
the rest not, and further manually drew the ground truth graph
for each sentence (empty graph for those carrying no causal
relations). On this dataset, we ran our causal relation extractor

to generate the graph for each sentence and calculated the
Graph Edit Distance (GED) [20] between the generated graph
and the ground truth graph. We found that our causal relation
extractor correctly identified the relation for 99 sentences, and
missed only on 1 sentence where the GED is 1. Specifically,
on this sentence, the extractor generated a wrong node with
a wrong statement. We analyzed this error and found that it
was caused by the failure of the SRL that wrongly labeled a
semantic element: missing the phrase “to 5” in the element
“UE may set the attach attempt counter to 5”. In general, the
average GED between the graphs generated by our causal
relation extractor and the ground truth graphs is 0.01, showing
the high efficacy of our extractor.

To evaluate our node connector, which classifies the rela-
tion between a pair of semantic elements into 4 classes, we
constructed another dataset with 400 pairs of semantic ele-
ments (100 pairs for each class). These pairs were gathered
from 500 randomly selected sentences from the LTE NAS
specification. On this dataset, our node connector correctly
classified 98 pairs for the class 0, 91 pairs for the class 1,
and all the pairs in the class 2 and class 3. In general, the
classification accuracy of our node connector is 97.25%.

To evaluate the correctness of the whole EDG, which is
built on the outputs of our causal relation extractor and node
connector, is hard, since the event dependency graph is huge,
making it impossible to manually build up a ground truth
graph for the whole specifications. Thus, we randomly se-
lected a set of nodes and edges to evaluate their correction.
Specifically, we randomly chose 200 nodes from the EDG
built on the NAS specification and checked the correctness
of the semantic elements represented by these nodes through
analyzing their origin sentences. Among these 200 nodes, 14
nodes carry wrong semantic elements and the rest contain
correct elements. Thus, we estimated that 93% nodes in the
EDG is correct. To evaluate the correctness of edges we first
randomly selected 100 pairs of nodes such that there is no
edge connecting two nodes in the same pair and built an edge
between them. Together with 100 real edges randomly se-
lected from the EDG, we constructed a set of 200 edges: 100
real edges and 100 false edges that do not exist in the EDG.
For those 100 false edges, we treated them as the negative
samples predicted by the EDB and manually checked whether
they should exist. For the 100 real edges, we considered them
as the positive samples and manually checked each edge to
determine whether both its direction and existence are correct.
In this way, we got 88 true positives, 97 true negative, 12 false
positives and 3 false negatives. So, we estimate the recall of
the edges to be 96.70% and the precision to be 88.00%.

To evaluate the end-to-end effectiveness of the TPG, we
constructed a dataset by randomly selecting 20 requirements
(with given initiate states, condition events and expected oper-
ations) from existing 3GPP NAS conformance test cases [7]
as the TPG’s input. On this dataset, the TPG successfully
generated 36 test procedures for 19 requirements, with 29

being correct. We first checked the requirement for which our
TPG did not generate the test procedures. This requirement
contains a condition event “attach attempt counter is less than
5”, which could not be handled since the specifications do not
explain how the event can be invoked. Then, we looked into 7
incorrectly generated procedures, and ascribed the failures to
the wrong classification results predicted by our node connec-
tor. Specifically, our node connector predicted that the event
“the UE shall set the attach attempt counter to 5” and the event
“the UE shall reset the attach attempt counter” have the same
semantics (labeled as class 1). So, our TPG wrongly believed
that the events causing “reset the attach attempt counter” can
also trigger the event “set attach attempt counter to 5”. The
result indicates that precision of 80% was achieved by our
TPG in generating test procedures.

To understand the effectiveness of the TS, we manually
checked its execution of the correctly generated test procedure
for the 19 requirements on 22 UEs, which were all correct.
Also, all results for the UEs were confirmed manually.
Performance. Our implementation of Contester took 25 min-
utes to build EDG for the whole LTE NAS specification,
including 5 minutes to extract the causal relations from the
specifications, which contains 575 pages and 8,522 sentences
with 284,047 words, 20 minutes to link nodes from different
sentences by the ML model, and 10 seconds to determine
whether each a node is invocable, observable, or not. Based
on EDG, for 20 security requirements, our TPG took only 2
seconds to infer the event chains (or subgraphs) on EDG for
5 condition events that cannot be directly triggered by the TS
and 3 expected operations that cannot be directly observed,
and generated 36 test procedures for all the requirements,
and the TS used around 66 hours to test them on all 22 UEs.
Specifically, running each test procedure on a UE took around
6 minutes on average (ranging from 30 seconds to 13 minutes)
and testing each security requirement on a UE took around
9 minutes averagely (ranging from 30 seconds to 2 hours).
This result offers strong evidence that Contester is capable
of generating security conformance test procedures for the
3GPP specifications and also executing the procedures on
UEs to determine their compliance with the requirements.

4.2 Processing Real Security Requirements
In our research, we used the Contester, with the same setting
as introduced in the evaluation (Section 4.1), to generate test
procedures for the security requirements in the LTE NAS
specification and tested 22 UEs to understand whether imple-
mentations of real devices meet NAS security requirements.
Security requirements. We extracted 50 security require-
ments, which are from three sources: 1) 34 from the NAS
security chapter, 2) 6 from the rest of the LTE NAS specifica-
tion [4] that refer to the security-focusing 33 series technical
specifications [2], and 3) 10 from the rest are the sentences
that require additional protection from the UE before the NAS
security context has been established to protect its commu-

nication with the MME. Note that all of these requirements
carry the verb “shall”, which is used in 3GPP specifications to
indicate that the requirements must be strictly followed [17].
Among them, 23 are the requirements under the handover
situation (network exchange), which today’s LTE simulators
do not fully handle. So we had to focus on the remaining
27 security requirements. Before running Contester on them,
we manually specified the initiate state, condition event and
expected operation in the security requirement sentence (such
as the example illustrated in Figure 5) as the TPG’s input.
The security requirement is presented in Table 3 at Appendix.

Testing result. For the 27 security requirements, Contester
generated 143 test procedures for the 22 requirements among
them, with spending 34 days, including only 4 seconds in test
procedure generation and the rest in testing on 22 UEs. We
found that the majority of time (96.26%) is consumed sleeping
for timers. For example, when testing the security requirement
S14 in Table 3, for each test on a UE with a test procedure,
the TS must sleep for 30 to 60 minutes to allow the timer
T3247 to expire and then check whether the MME receives a
specific message (e.g., ATTACH REQUEST message) from
the UE at that time. Among the 143 generated test procedures,
we manually confirmed that the 136 procedures are correct,
which can be used to tested for the 22 security requirements,
while the remaining 7 are wrong. First, we looked into the 7
wrongly generated test procedures, which are all generated for
the same security requirement S13. Its related event “attach
attempt counter is equal to 5” has been incorrectly linked to
the event “reset the attach attempt counter” by the ML model
too, as we analyzed in the evaluation. So, the TPG wrongly
thought that those events to trigger the event (“reset the attach
attempt counter”) can also be used to trigger the event (“at-
tach attempt counter is equal to 5”). Then, we checked the 5
security requirements, for which our TPG does not generated
procedures. Among the rest 5 security requirements, three
share a special condition event called NAS COUNT WRAP
AROUND, which could not be handled since the specifications
do not explain how the event can be invoked at all: the event
is considered to be common knowledge that the NAS counter
needs to be reset once overflown. Without the knowledge,
the TPG does not know how to issue a message to cause the
event to happen. The other two have the identical condition
event “establish a new NAS signalling connection”. The prob-
lem is that throughout the specifications, no description pro-
vides the complete information about how to invoke the event.
Specifically, the only clue we can find indicates that “initial
message” can trigger the event, yet the “initial message” is
only loosely specified as follows: “For this purpose the initial
NAS message (i.e., ATTACH REQUEST, TRACKING AREA
UPDATING REQUEST, ...” (Page 42, LTE NAS [4]). In the
end, still there is no clear information whether the message
should go from the MME to the UE or the other way around.

After testing the 136 successfully generated test procedures
for the 22 security requirements on the 22 UEs, Contester suc-

cessfully reported 287 conformance reports, which verifies
that the implementation of UEs follow the security require-
ment in the LTE NAS specification.

4.3 Findings and Analysis
During the security conformance testing on the 22 UEs, Con-
tester reported 227 failures, in which the UEs did not pass the
test procedures. Such a failure indicate that the corresponding
security requirement could be violated by the UE’s implemen-
tation. In our research, we manually analyzed each failure, to
determine whether it was caused by a problematic implemen-
tation of the security requirement or by a disruption of the
event chain so the condition event of the requirement was not
invoked or the occurrence of the expected operation did not
lead to an observable event. For this purpose, we leveraged
the 3GPP current test cases, which all commercial UEs are
required to pass before being released. Specifically, if all the
causal relations in the chain (except the one describes the
security requirement under test) have conformance tests al-
ready released by the 3GPP [7], we have reason to believe that
the conformance of these relations to the specifications has
already been evaluated on the commercial UEs used in our
study, and therefore a failure in our security conformance test
should be attributed to a violation of the security requirement
by the UE. In this way, we discovered 197 security require-
ment violations, including 190 never reported before, up to
our knowledge, on the 22 commercial UEs. Every UE under
test violates at least 3 security requirements, 14 at most, 8.95
(=197/22) on average. Among the 22 security requirements,
only 3 of them (S17, S19 and S21) have been correctly fol-
lowed by all UEs. The remaining 19 are violated by at least
one UE. Especially, there are 2 security requirements (S11 ans
S20) that no UE implements correctly. This result reveals se-
vere violations of LTE NAS security requirements by today’s
commercial phones and IoT devices, which are provided by
the mainstream device vendors and baseband manufacturers.
Detailed information can be found in Table 4 at Appendix.
Analysis of security violations. In our research, we found that
the purpose of these security requirements is to protect the UE
against three types of classic threats to the cellular network:
the man-in-the-middle attack, the fake base station attack,
and the replay attack. Failure to implement these security
requirements may expose the UE to these attacks, further
resulting in serious consequences, such as denial of service,
eavesdropping, and location leakage. Below, we elaborate on
the violated security requirements and discuss their potential
consequences if they are not followed by the UE.

The man-in-the-middle (MITM) attack could have serious
consequences on a cellular network, e.g., enabling the adver-
sary to eavesdrop on sensitive communication and modify
the commands issued by the MME to operate on the UE [33].
To avoid such risks, the LTE NAS protocol utilizes integrity
protection and encryption for the communication between the
UE and the MME. To this end, the LTE specification provides

security requirements to specify when and how to perform
integrity protection and encryption. For example, the security
requirement S16 states that with the exception of two emer-
gency situations, the UE must always activate such protection;
the security requirements (S7, S8 and S9) state that once the
security context has been established between the UE and the
MME, all the messages issued by the UE must be protected
and the UE shall only process the encrypted messages with
integrity signatures. Failure to implement these security re-
quirements will result in end-to-end attacks in the real-world
network, as prior research demonstrated [14, 33]. However,
among the UEs we tested, still there are 8 devices (e.g., Galaxy
A71 5G, Honor 6X) that violate these requirements, including
20 cases that have never been discovered before. In addition,
in order to achieve the integrity protection and encryption, the
security parameters (e.g., keys for calculating integrity signa-
tures) are exchanged by the security mode control procedure
first, whose security protection must also be assured. Thus, to
prevent the MITM attackers from undermining these param-
eters, the security requirement S12 asks the UE to compare
a hash value from the MME with a locally calculated hash
value on the parameters the UE originally sent to the MME
so as to detect any unauthorized change to the parameters.
If a UE fails to implement this security requirement, it will
face a bidding down attack [12]. In our testing, we found
that 13 UEs do not meet the requirement, even including the
mobile Honor Play20, a new phone published last year in
June. In addition to the protection on exchange of security
parameters, the LTE specification also mandates the UE to
carefully handle the parameters on the UE side. For example,
when the UE and the MME refresh the security parameters
(by creating or using a new EPS security context), the security
requirements (e.g., S1, S2, S3 and S4)) demand that the UE
must delete the previously used or currently used EPS security
context. However, we found that 14 devices do not delete the
specified EPS security context as required. They continue to
accept the messages encrypted and integrity-protected with
the supposed to-be-deleted EPS security context, which can
be utilized to perform a replay attack to locate the UE, as the
LTEInspector [22] does. To the best of our knowledge, our
work is the first to uncover this type of security requirement
violation, in which the UE wrongly handles the critical secu-
rity parameters (EPS security context), resulting in a failure
to meet the security requirement of the NAS specification.

The fake base station attack is one of the most prevalent
attacks in the cellular network, using a fake base station to
simulate a network to communicate with the victim UE in
order to steal sensitive information or deny the UE’s service
for a period of time. Against these attacks, the LTE offers
an authentication procedure that allows the UE to identify
fake base stations. To successfully proceed with this proce-
dure, the LTE specification provides security requirements
(e.g., S10 and S11). However, we found that 14 UEs fail to
meet S10 and all the UEs fail to meet S11, which will cause

the authentication procedure fail. Sending reject messages
to the victim UE to command it to disconnect from the net-
work is an attack performed through the fake base station,
which has been widely reported in recent years [12, 14, 41].
To safeguard the UE against this type of attacks, the 3GPP re-
leases a brunch of security requirements mandating the UE to
carefully handle these reject messages (S6, S13, S14, S15, S17,
S18, S19, S20, S21, and S22). For example, when a UE receives
an AUTHENTICATION REJECT message without integrity
protection, which could be sent by a fake base station, the
security requirement S15 requires the UE to reconnect the
network after a default period of time (30-60 minutes), rather
than remaining out of service until reboot. In our tested UEs,
we found that all the 22 UEs fail to implement some of these
security requirements. Even the most recently released iPhone
13 (09/24/21) violates security requirements S6, S15, S18, S20
and S22.

Replaying specific messages to the UE would result in a
traceability attack [11, 22]. The 3GPP specification claims
that they will provide replay protection in the communication
between the UE and the MME [5]. The security requirement
S5 in the LTE NAS specification states that the UE can only
accept a message with a given sequence number once. How-
ever, we found 12 UEs do not follow this security requirement,
including the Google Pixel 5a and Honor Play 20, which are
released on 08/26/21 and 06/16/21 respectively.

Our discovery reveals a pervasive failure of today’s UE im-
plementations in meeting 3GPP NAS security requirements,
exposing them to the security risks for which the 3GPP has
already provided mitigation. Although the 3GPP has issued
9 conformance test cases for 2 security requirements, our
findings show that this is far from enough for protecting the
UE. So the LTE NAS security requirement conformance test-
ing is urgently needed and our technique will facilitate the
development of these tests.

5 Discussion
Limitation. Although running Contester can automatically
generate test procedures for given security requirements by
automated reasoning on the EDG, there is still some manual
labor involved in building the graph: 1) during extracting
causal relations, we manually created rules to extract it from
the SML’s output and added those causal relations that the
3GPP specification does not mention but are the common
knowledge being used by the specification (e.g., “start a timer”
and “expiry of timer”); 2) to generate the training examples
of class 2 and 3 for the ML model, we manually found the
proper noun that contains a specific instance or belongs to a
generic concept from the specification. These manual labors
render Contester less effective in building the EDG. Moreover,
limited by the capability of today’s simulators, which do not
fully support the exchange of network environment, we did
not generate test procedures for 27 security requirements that
is related to network exchange and did not test UEs for them.

These will be tested once the simulator fully supports it.
Future work. 3GPP specifications contain a wealth of infor-
mation, which could be extracted by NLP-enabled semantic
analysis to enhance the security assurance of the cellular net-
work. A meaningful attempt is this research that uses NLP
techniques to extract semantic meanings from 3GPP spec-
ifications and, based on them, builds the EDG to facilitate
automatic LTE conformance test generation. Down this road,
a more comprehensive and precise EDG could be built by
bringing in more advanced techniques in the future to im-
prove the test procedure generation. An imminent future work
could be automatizing the manual step included to check
whether the failure of a test procedure is caused by the in-
correct implementation on the security requirement or not
through using NLP-based techniques to understand current
3GPP conformance testing specifications.

6 Related Work

Testing in LTE network. Prior research revealed a sig-
nificant number of implementation issues in the LTE net-
work [14,23,25–27,29,31,33]. Rupprecht et al. [31] develope
the first LTE testing framework and uncovered several UEs
that accepted insecure security algorithm. Kim et al. [27]
propose a semi-automatic method for fuzzing the LTE net-
work based on some basic security properties. Park et al. [29]
introduce a negative testing framework that can comprehen-
sively test UE devices. Different from these negative testing
approaches, Contester is designed to perform conformance
(positive) testing on the end-user devices through automati-
cally generating test procedures. Moreover, Kim et al. [26]
study how to verify whether the communication message
structure conforms with the LTE specification design. Hus-
sain et al. [23] compare two UEs’ behaviors represented by
FSMs to identify deviant activities. Unlike these conformance
testing studies on LTE networks and UEs, Contester is used
to determine whether the implementation of actions on UEs
adheres to security requirements as laid out by specifications.
NLP/ML in LTE security analysis. Leveraging NLP/ML
technologies, two prior studies show that semantic infor-
mation from 3GPP specifications can be automatically ex-
tracted for LTE security analysis [12,14]. Specifically, Chen et
al. [14] apply textual entailment and dependency parsing to
identify hazard indicators from the LTE specifications, which
are used to generate test cases for discovering vulnerabilities
in the UE and the network. Chen et al. [12] built an NLP/ML
pipeline including PU learning and self training to detect
security-relevant Change Requests from 3GPP specifications,
so as to understand security risks in the 3GPP ecosystem. Our
research differ from these studies in both the research purpose
and the techniques developed to serve the purpose. We aim at
enabling automated reasoning about an event chain from the
specifications for a conformance test, and leverage NLP/ML
techniques not used in the prior studies, including semantic

role labeling, constituency parsing, data augmentation, etc.
NLP/ML techniques in network protocol analysis. The

NLP/ML techniques have been leveraged to not only facili-
tate LTE security analysis, but also improve network protocol
security [13, 24, 28]. Chen et al. [13] employ a suite of NLP
techniques, including dependency parsing and word embed-
ding, to recover the FSMs of different payment service for
logic-vulnerability discovery. Jero et al. [24] propose a sys-
tem that uses NLP techniques to extract network protocol
rules for grammar-based fuzzing. Pacheco et al. [28] devel-
oped a method for automatically extracting FSMs from RFC
documentation, which could then facilitate a network proto-
col security analysis, such as attack synthesis. Our research,
unlike these prior studies, aims to establish causal relations
across events to reason about an event chain for triggering the
action in a conformance test and for observing its outcome.

7 Conclusion
Conformance testing is critical to security assurance. How-
ever, conformance test case generation faces a unique chal-
lenge that a testing system often cannot directly invoke con-
dition event for a security requirement and/or directly ob-
serve occurrence of expected operation to be triggered by the
condition event. In our research, we proposed an approach
(Contester) to address it, which uses NLP/ML techniques to
build EDG from 3GPP specifications and performs automated
reasoning on graph to discover event chains, which once in-
voked leads to a chain reaction so that the testing system can
either indirectly trigger the target event or indirectly observe
the occurrence of the expected event. Such chains are then
converted by Contester into conformance test procedures and
our testing system execute them on the UE to evaluate its con-
formance to the 3GPP security requirements. After running
Contester for 22 security requirements and testing 22 real-
world UEs, our research discovered 197 security requirement
violations, 190 of which had never been reported before.

8 Acknowledgment
We would like to thank the anonymous reviewers for their in-
sightful comments, particularly our shepherd for the guidance
for preparing the final version. The research is supported in
part by NSF CNS-2154199.

References

[1] https://sites.google.com/view/contester.

[2] 3GPP. Specifications by Series. https:
//www.3gpp.org/specifications-technolog
ies/specifications-by-series.

[3] 3GPP. Work Plan. https://portal.3gpp.org/#
/55935-work-plan.

[4] 3GPP, TS 24.301, v16.8.0. Non-Access-Stratum (NAS)
protocol for Evolved Packet System (EPS); Stage 3,
2022.

[5] 3GPP, TS 33.401, v16.3.0. 3GPP System Architecture
Evolution (SAE); Security architecture, 2022.

[6] 3GPP, TS 36.508, v16.8.0. Evolved Universal Terres-
trial Radio Access (E-UTRA) and Evolved Packet Core
(EPC); Common test environments for User Equipment
(UE) conformance testing, 2022.

[7] 3GPP, TS 36.523-1, v16.8.0. Evolved Universal Ter-
restrial Radio Access (E-UTRA) and Evolved Packet
Core (EPC); User Equipment (UE) conformance spec-
ification; Part 1: Protocol conformance specification,
2022.

[8] 3GPP, TSG-RAN Meeting #90-e. MCC Task Force 160
(TF160) Description and Terms of Reference for 2021,
2021.

[9] 3GPP, TSG-RAN Meeting #94-e. MCC Task Force 160
(TF160) Description and Terms of Reference for 2022,
2021.

[10] 3GPP Working Group 5. Meeting records. https:
//www.3gpp.org/ftp/tsg_ran/WG5_Test_ex-T1/.

[11] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark
Ryan, Nico Golde, Kevin Redon, and Ravishankar Bor-
gaonkar. New privacy issues in mobile telephony: fix
and verification. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 205–216, 2012.

[12] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, Xi-
aoFeng Wang, Xiaozhong Liu, Haixu Tang, and Dong-
fang Zhao. Seeing the forest for the trees: Understanding
security hazards in the {3GPP} ecosystem through in-
telligent analysis on change requests. In 31st USENIX
Security Symposium (USENIX Security 22), pages 17–
34, 2022.

[13] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng
Wang, Kai Chen, and Wei Zou. Devils in the guidance:
Predicting logic vulnerabilities in payment syndication
services through automated documentation analysis. In
USENIX security symposium, pages 747–764, 2019.

[14] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu,
Chang Yue, Xiaozhong Liu, Kai Chen, Haixu Tang, and
Baoxu Liu. Bookworm game: Automatic discovery of
lte vulnerabilities through documentation analysis. In
2021 IEEE Symposium on Security and Privacy (SP),
pages 1197–1214. IEEE, 2021.

https://sites.google.com/view/contester
https://www.3gpp.org/specifications-technologies/specifications-by-series
https://www.3gpp.org/specifications-technologies/specifications-by-series
https://www.3gpp.org/specifications-technologies/specifications-by-series
https://portal.3gpp.org/#/55935-work-plan
https://portal.3gpp.org/#/55935-work-plan
https://www.3gpp.org/ftp/tsg_ran/WG5_Test_ex-T1/
https://www.3gpp.org/ftp/tsg_ran/WG5_Test_ex-T1/

[15] Daniel Jurafsky and James H. Martin. Speech and Lan-
guage Processing. MIT Press One Rogers Street, Cam-
bridge, MA 02142-1209, USA, 2009.

[16] ETSI. TTCN-3. http://www.ttcn-3.org/.

[17] ETSI. ETSI Drafting Rules (EDR), 2022.

[18] Anthony Fader, Stephen Soderland, and Oren Etzioni.
Identifying relations for open information extraction.
In Proceedings of the 2011 conference on empirical
methods in natural language processing, pages 1535–
1545, 2011.

[19] Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Eduard
Hovy. A survey of data augmentation approaches for
nlp. arXiv preprint arXiv:2105.03075, 2021.

[20] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li.
A survey of graph edit distance. Pattern Analysis and
applications, 13(1):113–129, 2010.

[21] Google. Translation AI. https://cloud.google.c
om/translate.

[22] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and
Elisa Bertino. Lteinspector: A systematic approach for
adversarial testing of 4g lte. In Network and Distributed
Systems Security (NDSS) Symposium 2018, 2018.

[23] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq,
Omar Chowdhury, and Elisa Bertino. Noncompliance as
deviant behavior: An automated black-box noncompli-
ance checker for 4g lte cellular devices. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1082–1099, 2021.

[24] Samuel Jero, Maria Leonor Pacheco, Dan Goldwasser,
and Cristina Nita-Rotaru. Leveraging textual specifica-
tions for grammar-based fuzzing of network protocols.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9478–9483, 2019.

[25] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino.
Prochecker: An automated security and privacy analy-
sis framework for 4g lte protocol implementations. In
2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 773–785. IEEE,
2021.

[26] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun,
and Yongdae Kim. Basespec: Comparative analysis
of baseband software and cellular specifications for l3
protocols. In NDSS, 2021.

[27] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim.
Touching the untouchables: Dynamic security analy-
sis of the lte control plane. In 2019 IEEE Symposium

on Security and Privacy (SP), pages 1153–1168. IEEE,
2019.

[28] Maria Leonor Pacheco, Max von Hippel, Ben Weintraub,
Dan Goldwasser, and Cristina Nita-Rotaru. Automated
attack synthesis by extracting finite state machines from
protocol specification documents. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 51–68. IEEE,
2022.

[29] C Park, Sangwook Bae, B Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. Doltest: In-depth downlink
negative testing framework for lte devices. In USENIX
Security Symposium, 2022.

[30] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. Stanza: A python natural lan-
guage processing toolkit for many human languages.
arXiv preprint arXiv:2003.07082, 2020.

[31] David Rupprecht, Kai Jansen, and Christina Pöpper.
Putting {LTE} security functions to the test: A frame-
work to evaluate implementation correctness. In 10th
USENIX Workshop on Offensive Technologies (WOOT
16), 2016.

[32] Rico Sennrich, Barry Haddow, and Alexandra Birch. Im-
proving neural machine translation models with mono-
lingual data. arXiv preprint arXiv:1511.06709, 2015.

[33] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valt-
teri Niemi, and Jean-Pierre Seifert. Practical attacks
against privacy and availability in 4g/lte mobile com-
munication systems. arXiv preprint arXiv:1510.07563,
2015.

[34] Dan Shen and Mirella Lapata. Using semantic roles to
improve question answering. In Proceedings of the 2007
joint conference on empirical methods in natural lan-
guage processing and computational natural language
learning (EMNLP-CoNLL), pages 12–21, 2007.

[35] Peng Shi and Jimmy Lin. Simple bert models for re-
lation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255, 2019.

[36] srsLTE, v21.04. https://www.srslte.com/.

[37] Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang. Im-
proving constituency parsing with span attention. arXiv
preprint arXiv:2010.07543, 2020.

[38] Jan Tretmans. An overview of osi conformance testing.
Formal Methods Tools group University of Twente, 2001.

[39] Ubiquitous Knowledge Processing Lab. Semantic
Textual Similarity. https://www.sbert.net/docs
/usage/semantic_textual_similarity.html#se
mantic-textual-similarity.

http://www.ttcn-3.org/
https://cloud.google.com/translate
https://cloud.google.com/translate
https://www.srslte.com/
https://www.sbert.net/docs/usage/semantic_textual_similarity.html#semantic-textual-similarity
https://www.sbert.net/docs/usage/semantic_textual_similarity.html#semantic-textual-similarity
https://www.sbert.net/docs/usage/semantic_textual_similarity.html#semantic-textual-similarity

[40] Jason Wei and Kai Zou. Eda: Easy data augmentation
techniques for boosting performance on text classifica-
tion tasks. arXiv preprint arXiv:1901.11196, 2019.

[41] Chuan Yu and Shuhui Chen. On effects of mobility
management signalling based dos attacks against lte
terminals. In 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC),
pages 1–8. IEEE, 2019.

APPENDIX

Table 2: Causal relation extraction rules.

Label Leading term Example

ARGM-TMP
(Modifier-Temporal)

when, while,
once, upon, after

Once the encryption of NAS messages has been
started between the MME and the UE, the rece-
iver shall discard the unciphered messages ...

ARGM-MNR
(Modifier-Manner) by

The UE initiates the attach procedure by sending
an ATTACH REQUEST message to the MME.

ARGM-ADV
(Modifier-Adverbial) if

If the attach attempt counter is equal to 5, the
UE shall delete any GUTI, TAI list ...

1: procedure HOOK(hook_place)
2: if hook_place is before processing inbound message then
3: NOTIFY(msg)
4: next_action TEST CONTROLLER
5: if next_action is to issue message then
6: return
7: if next_action is to wait then
8: SLEEP(time)
9: NOTIFY(time)
10: goto 4
11: end if
12: if hook_place is before processing outbound message then
13: msg TEST CONTROLLER
14: SEND_MSG(msg)
15: end if
16: exit
17: end procedure

Figure 11: The pseudocode of the HOOK function.

Table 3: Summary of security requirements.
S: The sources where the security requirement extracted (∗: source 1, •: source 2, ◦: source 3 (see Section 4.2)) TP: # of test procedures;
P: The purpose of a security requirement (M: against the MITM attack, F: against the fake base station attack, R: against replay attack).

Note: The all security requirements are present in our website [1], here we list the ones that were tested in our TS.
ID SECURITY REQUIREMENT S TP P

S1
In the present document, when the UE is required to delete an eKSI, the UE shall set the eKSI to the value "no key is available" and consider also the associated
keys KASME or K’ASME, EPS NAS ciphering key and EPS NAS integrity key invalid (i.e. the EPS security context associated with the eKSI as no longer valid). ∗ 19 M

S2
When a partial native EPS security context is taken into use through a security mode control procedure, the MME and the UE shall delete the previously current
EPS security context. ∗ 1 M

S3

When the MME and the UE create an EPS security context using null integrity and null ciphering algorithm during an attach procedure for emergency bearer
services, or a tracking area updating procedure for a UE that has a PDN connection for emergency bearer services (see subclause 5.4.3.2), the MME and the UE
shall delete the previous current EPS security context.

∗ 1 M

S4
The UE shall mark the EPS security context on the USIM or in the non-volatile memory as invalid when the UE initiates an attach procedure as described in
subclause 5.5.1 or when the UE leaves state EMM-DEREGISTERED for any other state except EMM-NULL. ∗ 13 M

S5 Specifically, for a given EPS security context, a given NAS COUNT value shall be accepted at most one time and only if message integrity verifies correctly. ∗ 10 R

S6
Except the messages listed below, no NAS signalling messages shall be processed by the receiving EMM entity in the UE forwarded to the ESM entity, unless
the network has established secure exchange of NAS messages for the NAS signalling connection: ... ∗ 8 F

S7
Once the secure exchange of NAS messages has been established, the receiving EMM or ESM entity in the UE shall not process any NAS signalling messages
unless they have been successfully integrity checked by the NAS. ∗ 10 M

S8
If any NAS signalling message is received as not integrity protected even though the secure exchange of NAS messages has been established by the network,
then the NAS shall discard this message. ∗ 10 M

S9
Once the encryption of NAS messages has been started between the MME and the UE, the receiver shall discard the unciphered NAS messages which shall have
been ciphered according to the rules described in this specification. ∗ 10 M

S10
If the UE finds that the "separation bit" in the AMF field of AUTN supplied by the core network is 0, the UE shall send an AUTHENTICATION FAILURE
message to the network, with the EMM cause #26 "non-EPS authentication unacceptable" (see subclause 6.1.1 in 3GPP TS 33.401 [19]). ◦ 1 F

S11
If the UE finds the SQN (supplied by the core network in the AUTN parameter) to be out of range, the UE shall send an AUTHENTICATION FAILURE
message to the network, with the EMM cause #21 "synch failure" and a re-synchronization token AUTS provided by the USIM (see 3GPP TS 33.102 [18]). ◦ 1 F

S12
If HASHMME and the locally calculated hash value are different, the UE shall include the complete ATTACH REQUEST or TRACKING AREA UPDATE
REQUEST message which the UE had previously sent in the Replayed NAS message container IE of the SECURITY MODE COMPLETE message. ◦ 1 M

S13
If an ATTACH REJECT message including timer T3402 value different from "deactivated", was received integrity protected, the UE shall apply this value until a
new value is received with integrity protection or a new PLMN is selected. Otherwise, the default value of this timer is used. • 2 F

S14

If the UE receives an ATTACH REJECT, TRACKING AREA UPDATE REJECT or SERVICE REJECT message without integrity protection with EMM cause
value #3, #6, #7, #8, #11, #12, #13, #14, #15, #31 or #35 before the network has established secure exchange of NAS messages for the NAS signalling
connection, the UE shall start timer T3247 with a random value uniformly drawn from the range between 30 minutes and 60 minutes.

• 33 F

S15
Upon receipt of an AUTHENTICATION REJECT message, if the message is received without integrity protection, the UE shall start timer T3247 with a
random value uniformly drawn from the range between 30 minutes and 60 minutes, if the timer if not running. • 2 F

S16

The UE shall accept a SECURITY MODE COMMAND message indicating the "null integrity protection algorithm" EIA0 as the selected NAS integrity
algorithm only if the message is received for a UE that has a PDN connection for emergency bearer services established, or a UE that is attached for access to
RLOS, or a UE that is establishing a PDN connection for emergency bearer services or a UE that is requesting attach for access to RLOS.

• 1 M

S17 If the ATTACH REJECT message with EMM cause #25 was received without integrity protection, then the UE shall discard the message. • 1 F

S18

The UE shall take the following actions depending on the EMM cause value received in the ATTACH REJECT message.
#22 (Congestion); If the ATTACH REJECT message is not integrity protected, the UE shall start timer T3346 with a random value from the default range
specified in 3GPP TS 24.008 [13].

• 2 F

S19 If the TRACKING AREA UPDATE REJECT message with EMM cause #25 was received without integrity protection, then the UE shall discard the message. • 2 F

S20

The UE shall take the following actions depending on the EMM cause value received in the TRACKING AREA UPDATING REJECT message.
#22 (Congestion); If the TRACKING AREA UPDATING REJECT message is not integrity protected, the UE shall start timer T3346 with a random value from
the default range specified in 3GPP TS 24.008 [13].

• 2 F

S21 If the SERVICE REJECT message with EMM cause #25 or #31 was received without integrity protection, then the UE shall discard the message. • 4 F

S22

The UE shall take the following actions depending on the EMM cause value received in the SERVICE REJECT message.
#22 (Congestion); If the SERVICE REJECT message is not integrity protected, the UE shall start timer T3346 with a random value from the default range
specified in 3GPP TS 24.008 [13].

• 2 F

Table 4: Summary of tested devices and security requirement violations.
Last update: MM/DD/YY, -: no public information. Note: The security requirement violations never reported before are highlighted in red.

Name Device
vendor

Baseband
vendor Chipset model Fireware version Last update Violated security requirement

1 iPhone 13 Pro Max Apple Qualcomm X60M 1.59.03 03/15/2022 S6, S10, S11, S15, S18, S20
2 iPhone 13 Apple Qualcomm X60M 15.5(19F77) 07/01/2022 S6, S10, S11, S15, S18, S20, S22
3 iPhone 12 Pro Apple Qualcomm X55M 15.5(19F77) 07/01/2022 S6, S10, S11, S15, S18, S20, S22
4 iPhone 11 Apple Intel XMM 7660 3.04.01 07/21/2022 S11, S18, S20
5 iPhone 6 Apple Qualcomm MDM9625 7.80.04 07/15/2021 S1, S4, S5, S10, S11, S12, S15, S18, S20
6 Pixel 5a Google Qualcomm Snapdragon 765G b9-0.4-7617867 10/05/2021 S1, S4, S5, S6, S10, S11, S15, S18, S20, S22
7 Pixel 3 Google Qualcomm Snapdragon 845 g845-00194-210812-B-7635520 03/01/2022 S1, S4, S5, S10, S11, S12, S15, S18, S20, S22
8 Pixel 2 Google Qualcomm Snapdragon 835 g8998-00034-2006052136 10/05/2020 S1, S4, S5, S6, S10, S11, S12, S18, S20, S22
9 Honor 30S Honor Hisilicon Kirin 820 21C93B377S000C000,21C93B377S000C000 03/01/2022 S6, S11, S15, S18, S20, S22
10 Honor 6X Honor Hisilicon Kirin 655 21C60B269S007C000,21C60B269S007C000 01/01/2021 S6, S7, S8, S9, S11, S12, S15, S18, S20, S22
11 Honor Play20 Honor Unisoc T610 FM_BASE_19C_W22.04.3 04/01/2022 S1, S4, S5, S11, S12, S14, S15, S18, S20, S22
12 Redmi K30i Xiaomi Qualcomm Snapdragon 756G MPSS.HI.2.0.c7-00269-1213_0042_eec7a04f5 12/01/2021 S1, S4, S5, S10, S11, S15, S18, S20
13 Redmi Note2 Xiaomi Mediatek Helio X10 MOLY.LR9.W1423.MD.LWTG.MP.V24.P58 12/01/2016 S8, S9, S11, S12, S15, S18, S20
14 Xiaomi MIX 2S Xiaomi Qualcomm Snapdragon 845 4.0.c2.6-00335-0220_1946_40a1464 12/01/2020 S1, S4, S5, S10, S11, S12, S15, S18, S20, S22
15 Galaxy A71 5G Samsung Samsung Exynos 980 A7160ZCU5CUL9 01/01/2022 S2, S4, S5, S8, S9, S10, S11, S12, S13, S14, S15, S20, S22
16 Galaxy S10 Samsung Qualcomm Snapdragon 855 G9730ZCU6GVA7 01/01/2022 S4, S6, S10, S11, S18, S20, S22
17 Huawei E3276 USB Dongle Huawei - - - - S3, S5, S11, S12, S16, S18, S20
18 Nexus 6P Huawei Qualcomm Snapdragon 810 angler-03.61 02/01/2016 S1, S4, S5, S6, S7, S8, S9, S10, S11, S12, S18, S20, S22
19 Nexus 6 Motorola Qualcomm Snapdragon 805 MDM9625_104670.31.05.51R 02/01/2016 S1, S4, S5, S6, S7, S8, S9, S10, S11, S12, S15, S18, S20, S22
20 Nexus 4 LG Qualcomm Snapdragon S4 Pro M9615A-CEFWMAZM-2.0.1700.33 07/08/2015 S6, S7, S8, S9, S11, S12, S15, S16, S18, S20
21 Realme GT OPPO Qualcomm Snapdragon 888 Q_V1_P14,Q_V1_P14 04/01/2022 S4, S6, S10, S11, S15, S18, S20, S22
22 SINELINK MF782 USB Dongle SineLink - - - - S1, S2, S4, S5, S6, S7, S8, S9, S11, S12, S18, S20

	Introduction
	Background
	3GPP Conformance Testing
	Natural Language Processing

	Contester: Design and Implementation
	Overview
	Test Procedure Generation
	Testing and Test Result Analysis

	Evaluation and Discovery
	Evaluation
	Processing Real Security Requirements
	Findings and Analysis

	Discussion
	Related Work
	Conclusion
	Acknowledgment

