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Abstract
Although smart speakers and other voice assistants are be-

coming increasingly ubiquitous, their always-standby nature
continues to prompt significant privacy concerns. To address
these, we propose KIMYA, a hardening framework that allows
device vendors to provide strong data-privacy guarantees.
Concretely, KIMYA guarantees that microphone data can only
be used for local processing, and is immediately discarded
unless a user-auditable notification is generated. KIMYA thus
makes devices accountable for their data-retention behavior.
Moreover, KIMYA is not limited to voice assistants, but is
applicable to all devices with always-standby, event-triggered
sensors. We implement KIMYA for ARM Cortex-M, and apply
it to a wake-word detection engine. Our evaluation shows that
KIMYA introduces low overhead, can be used in constrained
environments, and does not require hardware modifications.

1 Introduction

Over the past five years, we have witnessed a massive rise in
the popularity of voice assistants such as Apple’s Siri, Ama-
zon’s Alexa, or Google Assistant. In fact, in January 2021,
more than one in three adults living in the U.S. owned a smart
speaker [59]. Moreover, voice assistants are increasingly be-
ing integrated into everything from headphones to glasses and
cars, and recent technologies such as ARM Helium promise
to facilitate voice assistants even on the smallest devices [65].

Despite their success, the “always on” nature of voice assis-
tants has given rise to significant concerns about the privacy
and societal implications of these devices [35]. In particu-
lar, a significant fraction of people, including voice assistant
users, are worried about voice assistants being hacked [7, 24],
or that they are covertly recording and being used to spy
on them [27, 37, 38]. This fear has been further amplified
by reports that voice assistant interactions—including false
positives—are recorded and reviewed by humans [4]. More-
over, current hardware capabilities and attacks go well be-
yond speech recognition [52]. For example, smart-speaker

hardware is sufficiently precise to perform sonar ranging and
thereby detect movements as small as a heartbeat [60].

Today, voice assistant vendors are addressing these privacy
issues by allowing users to mute device microphones, and by
adding status indicators which show when devices are actively
recording audio. Although these methods can provide some
level of protection, they also have significant shortcomings.
Concretely, (i) muting a voice assistant removes almost all
of its (useful) functionality, and (ii) both microphone muting
and status indicator mechanisms are typically implemented
as opaque features, making it unclear how strong the privacy
guarantees they aim to provide really are. To illustrate the
latter, while Amazon requires devices to “implement (...) a
hardware-based microphone on/off control” [2], it only re-
quires “a dedicated microphone status indicator” [2], without
any further security requirements. If such a status indicator is
controlled by standard software, it can potentially be disabled
by a remote adversary.

On a more general level, the proliferation of sensors in
our daily lives is making it increasingly more difficult for
individuals to know when they are (not) being monitored. We
consider this trend to be undesirable, and believe that people
deserve the assurance that they are not being unknowingly
observed when they are in a private space [42].

Focusing on voice assistants, this leads us to the following
research question: How can we ensure that voice assistants
only record when spoken to, even when they have been com-
promised? However, voice assistants are just one instantiation
of a more general class of devices: those with always-standby,
event-triggered sensors. That is, devices that contain sensors
that are continuously on standby (i.e., processing the sensor
data for event detection), but only rarely triggered. Although
voice assistants are currently the dominant device in this class,
others, such as “always-on” cameras for smartphones, are al-
ready on the horizon [47]. When considering this more gen-
eral device class, our research question generalizes to: How
can we ensure that always-standby devices only record when
triggered, even when they have been compromised?

Answering this question requires us to unify the apparently



conflicting requirements of a device that is always sampling
its sensor, but should only record when triggered. Past work
on sensor privacy under adversarial settings has either focused
on restricting all access to sensors [6, 28], or on generating a
notification for any sensor sampling activities [40, 41]. How-
ever, such approaches cannot differentiate between an always-
standby device in standby mode (i.e., waiting for its trigger
event), or in triggered mode (i.e., actively processing sensor
data), and therefore do not address our research question.

In contrast, this paper makes the following observation:
the key challenge is to guarantee that always-standby devices
only locally process sensor data, and, if no event has occurred,
immediately discard the sampled data. If this guarantee is met,
the device cannot eavesdrop and its privacy implications are
minimal. Applied to a voice assistant, they must immediately
discard sampled audio if no wake word is detected.

To enable vendors to guarantee this property, we propose
KIMYA1, a hardening framework that restricts direct access
to sensor data, but provides an isolated, amnestic execution
container, inside of which applications can execute event-
detection routines. When using KIMYA, application code
maintains access to all sensor data, but can neither store nor
transmit it without generating a user-auditable notification.

By using user-auditable notifications, KIMYA can allow
application code to self declare when an event has occurred.
This is necessary, as generally no ground truth data about
event occurrences is available. After all, if such data were
available, no event detection would have to be performed in
the first place. Yet, the device user will often intuitively know
when an event has occurred. Hence, KIMYA’s notifications
make a device accountable for its detection behavior.

When a user notices that notifications are generated when
no trigger event has occurred, this strongly indicates that a
device either (i) has been compromised and is being used to
eavesdrop, or (ii) generates excessive false positives and is
therefore not privacy-preserving. Based on this information,
users can then decide to mend or, when this is not possible,
to stop using the device.

KIMYA runs on commodity microcontroller units (MCUs).
It achieves isolation by partitioning memory-mapped re-
sources into multiple regions, and restricts access to these
regions based on execution phases. Amnesia is achieved
by routinely erasing memory regions that store sensor data
or derivatives thereof. We design KIMYA’s erasure sched-
ule to not affect the continuity of event-detection algorithms.
KIMYA can run together with existing application code on the
same MCU and does not require additional hardware.

KIMYA allows for arbitrary code to be executed inside the
event-detection container and is not dependent on cryptog-
raphy. This is possible because KIMYA’s security properties
are based on isolation and amnesia rather than software at-
testation. Moreover, it ensures that KIMYA does not inhibit

1Swahilli for “silence”.

device vendors from updating their event-detection algorithms
once devices are in the field. It also ensures that KIMYA is
lightweight and applicable to constrained hardware. This is
important because (i) it has been shown that applications
such as wake-word detection are already possible on such
hardware [67], and (ii) industry is actively working to fur-
ther facilitate digital signal processing (DSP) and machine
learning applications on constrained devices [65].

Further, KIMYA’s lightweight design translates itself into a
small trusted computing base (TCB) size when implemented.
Combined with the strong properties KIMYA provides, this
allows security audits to focus on a small, reusable, module
with clearly defined functionality, which in turn facilitates
the work of independent certification centers, such as the new
Swiss National Test Institute for Cybersecurity (NTC).

We demonstrate KIMYA’s applicability by implementing
it on an ultra-low-power Cortex-M33 MCU with ARM
TrustZone. We design our implementation to be minimally
intrusive, allowing it to coexist with existing application
code on the same device. Further, we demonstrate KIMYA’s
practical applicability by applying it to a wake-word detection
engine running on a Cortex-M33 processor.

Concretely, this work presents the following contributions:
1. We design KIMYA, a hardening framework that provides

strong privacy guarantees for event-triggered, always-
standby sensors.

2. We implement KIMYA on ARM Cortex-M33, demon-
strating its applicability, even on low-end hardware. We
release our implementation as an open-source project.2

3. We implement a wake-word detection engine for ARM
Cortex-M33 and apply our KIMYA implementation to it.
We use this prototype to evaluate KIMYA’s performance.

2 Background: TrustZone on Cortex-M

We implement KIMYA using TrustZone on the ARM Cortex-
M architecture, the basics of which we describe below. How-
ever, KIMYA can also be implemented on other architectures,
as discussed in Section 9.3.

TrustZone on Cortex-M introduces two new processor se-
curity states: secure and non-secure [31]. These states are
orthogonal to traditional processor states such as thread vs.
handler mode and privileged vs. non-privileged mode. The
active security state is determined by the instruction pointer
and a security map which partitions executable addresses into
secure and non-secure regions.

Beyond executable memory, other MCU resources are as-
signed a security attribute. Resources marked as secure are
only accessible to code running in the secure state. Resources
marked as non-secure are accessible to all code. Because of
this separation, the security states are also referred to as the
secure and non-secure worlds.

2https://github.com/KimyaGateway

https://github.com/KimyaGateway
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Figure 1: A high level overview showing how TrustZone (TZ)
on Cortex-M extends beyond the processor core.

There are two principal ways to configure which resources
are placed in which world. First, the Cortex-M core is ex-
tended with a secure attribution unit (SAU). The SAU is func-
tionally similar to a memory protection unit (MPU) and can
be used to configure specific memory regions as secure or
non-secure. Second, in order to extend the concept of security
states beyond the core, the data bus is extended to carry the
security state of each transaction. Individual peripherals can
either be made TrustZone-aware, or must be protected by a
security gate, as shown in Fig. 1 [31]. Other bus masters (i.e.,
direct memory access (DMA) controllers) must also indicate
the security state of their bus requests. Further relevant for our
work is that the MPU is duplicated, with one instance being
active when the core is in the secure state, and the other one
when the core is in the non-secure state [30]. Both instances
can be independently configured.

Contrary to TrustZone for Cortex-A, there is no secure mon-
itor in the Cortex-M architecture. Transitions from the non-
secure world to the secure world are facilitated through jumps
to developer-defined secure gateway (SG) instructions, which
provide a limited set of entry points into the secure world.
Secure functions can also make calls to the non-secure world.
After the non-secure function returns, control is then automat-
ically returned to the secure world. To speed up transitions
between the secure and non-secure worlds, some processor
registers are banked.

3 Adversary Model & Security Setting

We consider a setting in which a user has equipped a pri-
vate space, such as a home or workspace, with an Internet-
connected device that has an always-standby sensor. The goal
of the attacker is to access data from the always-standby sen-
sor when no trigger event has occurred, and to do so with
stealth, i.e., without generating a notification and without
leaving an auditable trace.

The KIMYA trust model distinguishes between the platform
vendor and application vendor of a device. The platform ven-
dor constitutes the entity that produces the hardware platform
and provides the KIMYA firmware. The application vendor

implements the device functionality. It is possible for the plat-
form and application vendor to be the same entity, but they
can also be different entities within the same company, or
different entities in different companies.

KIMYA requires the platform vendor to be trusted, as it
provides the TCB upon which KIMYA’s features are based.
However, the application vendor can be untrusted. As the
application vendor does not contribute to the TCB, compa-
nies providing both platform and application can focus their
security resources on a smaller entity and a minimal code
base. Platform vendors can obtain a trusted status through
reputation or auditing.

We consider an adversary with full control over the device’s
network connectivity who can view, inject, and drop packets.
Moreover, the adversary can exploit device vulnerabilities
and can execute code on the device. The adversary might
have already infected the device at the time of production.
However, we explicitly do not consider attacks against trusted
execution environments [11] or the platform code therein [34].
We also do not consider physical attacks, as adversaries with
physical access could install their own covert sensors in the
private space, significantly reducing the relevance of defenses
against such adversaries.

4 Design

4.1 Design Goals
KIMYA’s primary goal is to facilitate the privacy-preserving
use of always-standby sensors. More concretely, this goal can
be broken down into the following two subgoals.

G1, Availability: Sensor data must be made available to an
event-detection algorithm.

G2, Isolation: It must be ensured that only sensor data re-
lated to an event can be used for purposes other than
event detection. This is a high-level goal and will be
refined in Section 4.3.

Additionally, we have the following secondary goals.
G3, Lightweight: KIMYA should be lightweight and deploy-

able on microcontrollers. Its TCB should be small.
G4, Low-cost: KIMYA should not require designs to include

additional hardware.
G5, Non-restrictive: KIMYA should not restrict which event-

detection algorithms can be used.
G6, Agile: KIMYA should not prevent application vendors

from pushing updates to their devices, in particular, up-
dates to the event-detection logic.

4.2 Straw-Man Proposals
Because our solution should be lightweight (G3), we do not
consider mechanisms that rely on dynamic code analysis. Ad-
ditionally, both because of the lightweightness goal (G3), and
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Figure 2: Straw-man defenses for always-standby sensors.

to avoid the complexity of traditional attestation mechanisms,
we refrain from using software attestation. Combining this
restriction with the requirement for devices to be easily updat-
able (G6), this means that we must consider all application
code, including the event-detection code, to be untrusted.

Therefore, we focus on approaches whose properties are
independent of the executed code, and instead are based solely
on the properties of the environment in which code is executed.
Concretely, we focus on approaches that directly restrict ac-
cess to the always-standby sensor. Figure 2 displays two such
approaches which serve as straw men for our final design.

The first design (Fig. 2a) places a gateway between the
always-standby sensor and the application which also con-
tains the event-detection logic. This approach is most sim-
ilar to previous designs for peripheral access control, e.g.,
SeCloak [28]. However, once the gateway provides sensor ac-
cess to the application (as required by (G1)), it can no longer
control what purpose the sensor data is being used for, thus
violating the isolation goal (G2).

The second design (Fig. 2b) attempts to addresses this issue
by separating event-detection functionality from the rest of the
application. Event detection is then performed in an isolated
environment that has direct access to the sensor. Doing so
provides the event-detection code with continuous access to
the sensor, while still allowing the gateway to restrict access
for the other application code. Once the containerized code
declares that a sensor event was detected, a notification is
generated by the gateway and the application code is granted
access to the event-detection container and sensor data.

Although this design represents a significant improvement
over the design in Fig. 2a, it does not provide control over the
state stored in the event-detection container. This means that
it cannot yet fully satisfy the isolation goal (G2). Concretely,
the (untrusted) code running in the event-detection container
could continuously eavesdrop, store captured information in
the container, and exfiltrate this data to the application as soon
as an event is detected.

4.3 Event-Detection Timeline
The shortcomings in the straw-man designs show that a more
precise definition of the isolation goal (G2) is needed. Specif-
ically, it must be defined which information may be made
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Figure 3: The interaction timeline. indicates an interaction.

available to the main application once an event is detected.
To this end, we introduce the notion of a sensor interac-

tion. Each sensor interaction corresponds to a time window
during which data relevant for the device’s legitimate opera-
tion is sampled by the always-standby sensor. For example,
for the voice assistant interaction “Hey Kimya, what time is
it”, the time window would correspond to the period during
which the user is uttering this sentence. For event-triggered
sensors, interactions are initiated by an event. In the case of
our example, the event is the utterance of "Hey Kimya".

Ideally, KIMYA would only grant unrestricted access to
data sampled during the interaction period. However, doing
so is impractical. As is illustrated in Fig. 3, an event can
generally not be detected right at the start of an interaction
(e.g., the utterance “Hey Kimya” can only be detected once it
has been fully articulated). Similarly, immediately after the
trigger event, it is unclear how long an interaction will last.

Therefore, we introduce the durations tlifetime and tTRIGGERED,
as illustrated in Fig. 3. tlifetime specifies how much data from
before a trigger event can be released. In the case of a voice
assistant, it should be set based on the expected maximum
duration of the trigger phrase, plus any required pre-roll3. We
discuss this in more detail in Section 9.1. Similarly, tTRIGGERED
defines the duration for which data can be freely accessed
after an event. Because interactions might last longer than
tTRIGGERED, a time extension mechanism must be foreseen. This
can be achieved by allowing applications to generate sponta-
neous notifications, each of which resets tTRIGGERED. Doing so
effectively visualizes sensor-access behavior with a temporal
granularity of tTRIGGERED. Moreover, it facilitates interaction
models where user input is expected at the end of a prompt.

Based on this model, we extend the straw-man design of
Fig. 2b by additionally rendering the event detection container
amnestic. That is, by ensuring that no data older than tlifetime
can be present in the container.

A naive approach to implement amnesia could be to pe-
riodically zero out the event-detection container’s memory.
However, doing so risks trigger events being segmented by a
wipe. To illustrate this, consider again a wake-word detection
engine that listens for the phrase “Hey Kimya”. If a wipe
event were to occur after a user has said “Hey”, but before
they said “Kimya”, no trigger event would be detected. This

3pre-roll data refers to data captured just before a trigger-event occurred.
It is often used to calibrate noise levels.



would be a violation of the non-restrictiveness goal (G5).
In order to ensure data continuity while simultaneously

limiting data age, KIMYA instead uses multiple buffers that are
routinely wiped, and enforces an unidirectional information
flow between these buffers. We present this design in more
detail in the following section.

4.4 KIMYA Design

KIMYA provides two key features. First, it provides an iso-
lated execution environment that has direct access to data
from an always-standby sensor. Second, it ensures that this
container is amnestic, i.e., it provides strong guarantees on the
maximum age of sensor data (or information derived thereof).

In order to achieve these features, KIMYA segments its
host MCU into five memory regions, and introduces four exe-
cution phases. Because on modern MCUs most peripherals
are memory-mapped, these memory regions can also be con-
sidered to be resource regions. Concretely, the five memory
regions, as depicted in Fig. 4a, are:

Sensor: A region containing the always-standby sensor to
which access should be restricted.

Buffer A and Buffer B: Two memory regions forming a
pair of alternating buffers to store sensor data.

Scratch: A memory region that can be used to store state for
the event-detection algorithm.

All other memory: All memory-mapped resources not in-
cluded in the other four regions. This includes General
Purpose Input/Output (GPIO), timers, and communica-
tion peripherals.

KIMYA’s four execution phases are listed below. Execution
starts in the IDLE phase, and phase transitions are requested
by the application code.
IDLE: As long as no trigger event has been detected, all

application code that is not related to event detection is
executed in the IDLE phase.

ACQUIRE: Used to acquire sensor data, to perform data pre-
processing, and to store the result in the alternating buffer
formed by the Buffer A and Buffer B memory regions.

PROCESS: After acquiring fresh sensor data, the event-
detection is performed in the PROCESS phase. Event-
detection state can be stored in the Scratch region.

TRIGGERED: When a trigger event has ocurred, the applica-
tion code is executed in the TRIGGERED phase (instead
of in the IDLE phase) for a preset duration tTRIGGERED.
Before the TRIGGERED phase can be entered, a notifica-
tion (see Section 4.5) must be generated. Regenerating
this notification while the TRIGGERED phase is active
extends the duration of this phase to tTRIGGERED after the
notification was generated.

Depending on the active execution phase, KIMYA restricts
access to the various memory regions according to the per-
missions shown in Table 1. In the IDLE phase, no memory
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Figure 4: The KIMYA container.

Table 1: Memory access rights in the four KIMYA execution
phases. ‘4’ indicates read access, ‘v’ indicates write access.

MCU memory region

KIMYA phase Sensor Buf. A Buf. B Scratch All other mem.

IDLE - - - - 4 v

ACQUIRE (A) 4 4 v - - -
ACQUIRE (B) 4 - 4 v - -
PROCESS - 4 4 4 v -
TRIGGERED 4 v 4 v 4 v 4 v 4 v

regions related to the always-standby sensor and event detec-
tion are accessible. During the ACQUIRE phase, sensor data
can be sampled and written to one of the alternating buffers,
but no other memory can be accessed. During the PROCESS
phase, there is read-only access to both buffers and full access
to the Scratch memory. Finally, during the TRIGGERED phase,
all memory is fully accessible.

Enforcing the Table 1 access map has two desirable effects.
First, the ACQUIRE and PROCESS phase form an isolated con-
tainer in which event detection can be performed. Second, a
unidirectional data path, as illustrated in Fig. 4b is created.

In order to guarantee amnesia, KIMYA must enforce strong
limits on the maximum age of the data inside the KIMYA
container, that is, in the Buffer A, Buffer B, and Scratch mem-
ory regions.4 To this end, the following buffer management
schedule is executed every tlifetime/2 seconds: (i) zero out
the Buffer A or B that is not currently accessible from the
ACQUIRE phase; (ii) zero out the Scratch memory region; and
(iii) alternate Buffer A and Buffer B.

tlifetime is a static value representing the permissible lifetime
of sensor data. For most applications, this value will be on
the order of seconds or less. Because Buffer A and B are not
simultaneously erased, data continuity is provided.

Combining this buffer management schedule with the uni-
directional data path, ensures that at any point in time, the
data inside the KIMYA container cannot be older than tlifetime,
unless a notification is generated. Intuitively, this is the case
because both the Scratch region and the alternating buffers
are erased at least every tlifetime, and the unidirectional data
path ensures that no data can be transferred between Buffer A

4Data in the Sensor region is always fresh.



and Buffer B to circumvent the erasure schedule. A proof of
this property is provided in Section 6.1.

4.5 Notification Design

KIMYA has no event-detection logic built-in. Therefore,
KIMYA cannot rely on ground truth information to regulate
access to the TRIGGERED phase. Instead, KIMYA places con-
trol over the active execution phase with the application itself.
Concretely, execution starts in the IDLE phase, from which the
application can request specific functions to be executed in the
ACQUIRE or PROCESS phases. Upon returning, these functions
indicate if they want to return the MCU to the IDLE phase, or,
they can request a transition to the TRIGGERED phase. In the
latter case KIMYA will generate a user-auditable notification
before returning control back to the application code.

We do not prescribe a specific notification mechanism in
this work. Instead, KIMYA provides a flexible platform upon
which different notification mechanisms can be build. The
design of an effective privacy notification mechanisms is
orthogonal to our work, and has been studied before [48, 49].

To illustrate the flexibility KIMYA provides, we briefly
discuss three types of notification below.

LED indicators. Similar to current smart-speaker products,
a LED can be used to indicate when the device is in the
TRIGGERED phase. KIMYA then provides strong guar-
antees that this indicator LED cannot be circumvented.
Note that when using a visual indicator, a careful design
is needed to ensure its effectiveness [36, 46].

Bluetooth beacons. Devices could broadcast bluetooth bea-
cons containing information about the sensor that is
being accessed. Other devices receiving these beacons
could then visualize which information is being sampled
from their surroundings.

Centralized logging. KIMYA could require a central server
to be contacted before granting access to sensor data.
This server can log all sensor activity and make it avail-
able for later auditing.

In order to guarantee the availability and integrity of the no-
tification mechanism, it should be protected. This protection
can be achieved through isolation or by using cryptographic
techniques, depending on the notification mechanism that is
in use. For example, an LED indicator can be efficiently pro-
tected by isolating the control over the GPIO pin to which it
is connected. Conversely, a centralized logging scheme is best
protected by establishing a cryptographic channel between
the KIMYA gateway and logging server.

When notifications are generated in a machine-readable
format (e.g., Bluetooth beacons or logs on a central server), a
privacy assistant [12, 26] can be used to aid the user with the
auditing of notifications.

Application
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Figure 5: Simplified KIMYA execution flow. The parameter
t is introduced in Section 5.4. The notification process is
executed in the secure world.

5 Implementation on Cortex-M
We leverage TrustZone to implement KIMYA on a Cortex-
M33 MCU. Specifically, we prototype our implementation
on an STM NUCLEO-L552ZE-Q development board with an
ultra-low-power STM32L552ZE MCU running at 110 MHz
with MPU and a floating-point unit (FPU) [54].

We implement KIMYA as a gateway running in the secure
world. All application code (including event detection) runs
in the non-secure world and interacts with the secure-world
gateway to request KIMYA phase transitions. We illustrate the
basic KIMYA control flow in Fig. 5.

In order to transition to the ACQUIRE and PROCESS phases,
the application makes a call to the gateway, passing a func-
tion pointer. The gateway function then transitions the MCU
to the desired phase and executes the specified function in
the non-secure world. When a function call to the ACQUIRE
phase returns, the gateway transitions the MCU back to the
IDLE phase and returns control to the non-secure world.
Functions executing in the PROCESS phase can specify if
the MCU should be transitioned to the IDLE or TRIGGERED
phase before control is returned to the application. In the lat-
ter case the gateway will generate a notification (by calling
send_notification(), Fig. 5) before executing the phase
transition. In either case the non-secure world is informed
about the currently active phase when control is returned to it.



5.1 Enforcing the KIMYA Access Map

The core of our KIMYA implementation is the enforcement
of the access map in Table 1. We leverage a combination of
the MPU, the TrustZone configuration of peripherals, and the
TrustZone security gates (see Section 2) for this purpose. Con-
cretely, during the IDLE phase, all KIMYA container-related
memory regions are marked as secure in the TrustZone config-
uration, preventing the non-secure application from accessing
them. Therefore, full MPU control can be granted to the ap-
plication, ensuring compatibility with existing OSs.

When the application makes a call to the ACQUIRE
or PROCESS phases, the KIMYA gateway calls
prepare_ACQUIRE() or prepare_PROCESS() (Fig. 5)
to take control of the MPU for the duration of that call. The
required container resources are temporarily marked as
non-secure, making them accessible to the application code.
The MPU is then configured according to Table 1 to enforce
the necessary access restrictions.

Before control is returned to the main application code,
the gateway either transitions the MCU back to the IDLE
configuration described above (by calling prepare_IDLE(),
Fig. 5), or to the TRIGGERED configuration. In the latter case,
the prepare_TRIGGERED() call marks all container-related
memory regions as non-secure, and grants MPU control to
the application. The application now has direct access to all
resources needed to process the trigger event.

5.2 Enforcing Amnesia

In order to guarantee the amnestic property of the KIMYA
container, the Buffers A/B and Scratch memory must be peri-
odically erased and the one-way dataflow illustrated in Fig. 4b
guaranteed. While this could be achieved using a secure
timer-driven interrupt, our implementation instead checks if
buffer maintenance is needed each time before entering the
ACQUIRE, PROCESS, or TRIGGERED phase. This ensures that
all data older than tlifetime is erased before it can be accessed,
while avoiding long interrupt routines.

We further extend the KIMYA API for the non-secure world
with a maintain_buffers(t) call. This call prepones buffer
maintenance by up to t time units. This allows the non-secure
application to schedule buffer maintenance ahead of time,
thereby eliminating the need for buffer maintenance to com-
plete before the KIMYA container can be accessed and thereby
reducing timing jitter.

5.3 Non-Secure Calls

Although we can rely on standard toolchain behavior to
secure calls to the secure gateway (i.e., the application’s
ACQUIRE() and PROCESS() calls in Fig. 5), this is not the
case for the gateway’s calls into the non-secure world (i.e.,
the container_exec() calls in Fig. 5). The reason for this is

twofold. First, upon entering the ACQUIRE or PROCESS phases,
the MPU will be in a highly restrictive state. Because the main
application’s stack will not be accessible, a new stack must
be set up for the containerized function. Second, the official
toolchain requirements for TrustZone on Cortex-M [31] are
designed to provide isolation between the secure and non-
secure worlds, but do not isolate non-secure function calls
made by the secure world from the main non-secure appli-
cation thread. Concretely, standard toolchain behavior does
not clear all non-secure world registers before and after non-
secure function calls, and would thus allow for communica-
tion from the KIMYA container to the main application.

To address these issues, we implement container_exec()
as an assembly function that performs the following tasks.

1. Push all general-purpose, special, and floating-point pro-
cessor registers to the secure stack. In the case of banked
registers, the non-secure register is pushed.

2. Clear all registers saved on the stack.
3. Move the non-secure stack pointer to a memory region

that will be writeable in the container. When transition-
ing to the ACQUIRE phase, the stack pointer is moved
to the top of the currently active Buffer A/B. For the
PROCESS phase the top of the Scratch region is used.

4. Branch and link to the containerized function in the non-
secure world.

5. Once the containerized function has returned, erase and
restore all saved registers. This includes the non-secure
stack pointer.

5.4 Ensuring Container Isolation
Beyond the core aspects described above, a number of other
measures must be taken to ensure no data can be leaked from
a KIMYA container. We discuss these practical measures here
and present a more theoretical discussion in Section 6.2.
Container execution time. Using a timer, real-time clock
(RTC), or similar peripheral, it is possible for the main appli-
cation to measure the execution time of a KIMYA container.
When no special care is taken, the event-detection code run-
ning in the KIMYA container could modulate its execution
time to establish a uni-directional communication channel out
of the container. This channel could have a capacity of up to
log2 ( fcpu)bps, where fcpu is the core frequency in Hz.

In order to prevent this source of information leakage, we
require the application to specify a desired execution time
for each call to the ACQUIRE or PROCESS phases. The called
function must return before the specified duration has passed.
The gateway will then wait for the remainder of that duration
before control is returned to the application. A read-only timer
is made available in the container to allow the event-detection
code to know how much execution time is left. This timer can
also be used as a relative time base for event-detection tasks.
TRIGGERED execution time. When an event has been de-
tected and a notification generated, the MCU is transitioned



to the TRIGGERED phase. By default the MCU can stay in
this phase for up to tTRIGGERED seconds. tTRIGGERED is an imple-
mentation defined value. Before this duration has passed, the
application must either (i) yield back to the IDLE phase, or
(ii) request another notification to be generated, extending the
yield deadline to tTRIGGERED seconds beyond that request. This
deadline is enforced using an interrupt triggered by a secure
timer. Setting the PRIS bit in the Application Interrupt and
Reset Control Register (AIRCR) ensures that the non-secure
application cannot mask this interrupt [32].

Caches. The STM32L552ZE MCU used for our implemen-
tation has a built-in instruction cache [54]. In order to prevent
cache-timing attacks, the KIMYA gateway clears this cache
whenever leaving the ACQUIRE or PROCESS phases. There are
no other caches present on the STM32L552ZE.

DMA. As shown in Fig. 1, the MPU is part of the Cortex-
M33 core, and therefore does not affect the operation of
the DMA controller. Because KIMYA container resources
are marked as non-secure during the ACQUIRE and PROCESS
phases, this means that the application could preprogram the
DMA controller to steal sensitive information while the MCU
is in one of those phases. We propose two mechanisms to pre-
vent this attack. First, the gateway can disable the DMA con-
troller before moving container resources to the non-secure
world. Second, the DMA controller can be moved to the se-
cure world, removing the non-secure application’s ability to
program it directly. A thin secure-world DMA configura-
tion shim can then verify that no DMA operations affect the
KIMYA container memory regions. Our implementation uses
the former strategy.

Peripheral use. In some cases, peripherals must be acces-
sible in the KIMYA container. For example, our wake-word
detection prototype (see Section 7) requires the cyclic redun-
dancy check (CRC) peripheral to be available for intellectual
property management.5 In such cases, it must be ensured that
(i) container isolation cannot be violated by using peripherals
as communication channels with the main application, and
(ii) that container amnesia cannot be violated by storing in-
formation in peripheral registers during memory wipe events.
This can be achieved by setting all writeable peripheral mem-
ory locations to a well-known value after the function call
from the ACQUIRE or PROCESS phase returns. In the case of
our prototype, this is done by resetting the CRC peripheral.

Handling policy violations. Whenever event-detection or
main application code violates a KIMYA policy (e.g., a con-
tainer executing longer than was requested by the main appli-
cation), a notification is generated. This ensures that misbe-
having applications are detected and can be mended.

5The proprietary STM X-CUBE-AI neural network library uses the CRC
peripheral to verify that it is running on STM hardware.

6 Security Analysis

KIMYA’s security guarantees are derived from the two main
properties it provides: amnesia and isolation. We provide a
theoretical proof of KIMYA’s amnesia property in Section 6.1.
Isolation is discussed in Section 6.2.

6.1 Amnesia
In Section 4.4 we claimed that no data in the KIMYA container
can be older than tlifetime. We will now prove this property.

Proof model. In order to facilitate the proof, we intro-
duce the variables Tsensor, Tbuffer A, Tbuffer B, Tscratch, which
keep track of the genesis time of the oldest data that can
be present in each memory region inside the KIMYA con-
tainer. Because only the latest sample can be read of the
sensor, we assume Tsensor = t at all times t. At t = 0, all
buffers are zeroed out, so we initialize the other variables
as Tbuffer A = Tbuffer B = Tscratch = 0.

Whenever t = n · tlifetime
2 ,n ∈ N, buffer maintenance is per-

formed. This is modeled using the following sequential op-
erations: T ′

buffer B = Tbuffer A, T ′
buffer A = Tscratch = t, where

we model the alternating buffer using a renaming opera-
tion to simplify notation. Additionally, at any point in time,
the following two operations may be performed arbitrarily
often: α : T ′

buffer A = min(Tbuffer A,Tsensor), and β : T ′
scratch =

min(Tbuffer A,Tbuffer B,Tscratch). α and β model the ACQUIRE
and PROCESS phase, respectively.

Proof. We now prove that at any time t, it holds that Tmin =
min(Tsensor,Tbuffer A,Tbuffer B,Tscratch)≥ t − tlifetime.

To this end, we first proof that neither operation α nor β

can change Tmin. This holds because both operations assign
the minimum value from a subset of variables considered for
Tmin to a variable from that same set, thus not changing Tmin.

Next, we show that neither α nor β can change the vari-
ables Tbuffer A and Tbuffer B. For β this holds trivially, as it
does not write to either of those variables. α writes only to
Tbuffer A, so cannot affect Tbuffer B. Moreover, because time
is monotonically increasing, we know that Tbuffer A ≤ t, so
T ′

buffer A = min(Tbuffer A,Tsensor) = min(Tbuffer A, t) = Tbuffer A.
We know that Tmin ≥ t − tlifetime

2 at t = 0 because all vari-
ables are initialized at 0. Now assume that Tmin ≥ t− tlifetime

2 at
t = k · tlifetime

2 ,k ∈ N, then at t = (k+1) · tlifetime
2 , after perform-

ing buffer maintenance it holds that (i) Tsensor = t (by assump-
tion), (ii) Tbuffer A = Tscratch = t (because of the wipe event),
and (iii) Tbuffer B = Tbuffer A(t = k · tlifetime

2 ) = k · tlifetime
2 because

Tbuffer A was set at t = k · tlifetime
2 and cannot have changed

since then (see above). Thus, it holds that Tmin ≥ t − tlifetime
2

at t = (k+1) · tlifetime
2 ,k ∈ N. Therefore, by induction it holds

that for all n ∈ N : Tmin ≥ t − tlifetime
2 at t = n · tlifetime

2 .
Finally, because neither operations α nor β can change Tmin,

and because buffer maintenance is performed at least every
tlifetime

2 , it must hold that Tmin ≥ t − tlifetime at any time t. □



6.2 Isolation

In order for KIMYA’s isolation (and by extension amnesia)
property to hold, it must be ensured that no covert channels
exist. This section presents an overview of the considerations
made during the design of KIMYA. As motivated in Section 3,
we do not consider adversaries with physical access.

6.2.1 Storage Channels

Under storage channels we consider channels that transmit
data by explicitly writing it to a storage location from which
it can later be read back. Two types of storage are available
on our target MCU: memory-mapped and register storage.

Memory-mapped storage. Memory-mapped storage com-
prises all storage locations that have a memory address and
are accessed over the data bus using load or store instructions.
As described in Section 5, our KIMYA implementation dynam-
ically manages the MPU, TrustZone configuration, and the
DMA controllers, and combines this with (re)setting memory
location to well-known values to ensure that no communica-
tion is possible using these resources.

Processor registers. Some storage locations on the Cortex-
M33 core are not memory-mapped, but can be directly ac-
cessed using dedicated instructions. To prevent covert chan-
nels that leverage these registers, we analyze the Cortex-M33
ISA to identify all writeable registers. As discussed in Sec-
tion 5.3, we constructed the container_exec() function to
ensure that all these registers are set to a well-known value
after the containerized call returns.

6.2.2 Other Channels

Beside channels that directly write data to storage locations,
other, indirect, channels must be considered as well. We in-
spect the architecture [33] and reference manual [55] of our
target MCU to identify potential covert channel and present
tailored defences below.

Timing channels. A containerized call could leak infor-
mation by modulating its execution time. As discussed in
Section 5.4, the application must therefore specify an exact
execution time for each containerized function call.

Caches. Our target MCU has an instruction cache. Timing
analysis on this cache could be used to establish a covert
channel. As specified in Section 5.4 we flush the cache after
every containerized call to prevent this.

Counters. Our target MCU has multiple debug and perfor-
mance counters, e.g., a cache-miss counters. The container-
ized code could attempt to actively to influence these timer.
We ensure that these counters are not readable by the non-
secure world application.

Physical channels. Channels communicating using
physical properties could be established. For example, the
event-detection code could attempt to influence the temper-
ature of the MCU package, which could then be measured
using the MCU’s built-in temperature sensor. We did not
explicitly consider such channels, but if deemed necessary,
they could be avoided by restricting non-secure access to
specific resources, such as, the on-board temperature sensor.

Although the relative simplicity of our target MCU compared
to high-end processors facilitates a covert-channel analysis,
we consider strong claims about the total covert-channel ca-
pacity to be beyond the scope of this work. However, we
do note that KIMYA’s amnesia property strictly limits the
attacker’s window to exfiltrate information from the KIMYA
container. This significantly reduces the utility of low-capacity
covert channels, as any information not exfiltrated within at
most tlifetime from its genesis is lost to the attacker.

7 Prototype Application

In order to demonstrate KIMYA’s practicality, we implement
a proof-of-concept keyword-spotting pipeline on an ultra-low-
power STM32L552ZE MCU, simulating the wake-word de-
tection functionality of a voice assistant. We train the pipeline
using recordings of one of the authors speaking the same
words as used in the Google Speech Commands dataset [61].
The word “cat” is used as keyword. We then apply KIMYA to
this detection engine.

7.1 Keyword-Spotting Pipeline

A typical keyword-spotting pipeline first extracts high-level
speech features from the audio signal and then feeds these fea-
tures to a neural network classifier [67]. Running inferences
on speech features instead of raw audio considerably reduces
the input dimensions of the classifier, thereby significantly
simplifying the classifier’s network and training process.

A commonly used feature set for speech processing are
mel-frequency cepstral coefficients (MFCCs) making up the
mel-frequency cepstrum [15]. Given the constrained nature
of our target platform, we instead use the mel spectrum, a
less processed version of the cepstrum. In order to obtain a
mel spectrum of an audio segment the following steps must
be taken. First, the audio segment is segmented into shorter
chunks to which a fast Fourier transform (FFT) is applied.
The resulting coefficients represent the Fourier spectrum of
each chunk. Plotting these spectra against time results in the
spectrogram of the audio segment. This spectrogram shows
how the frequency components in the segment change over
time. The frequency coefficients in each chunk’s Fourier spec-
trum are then binned using the mel scale [53], a scale based
on the sensitivity of the human ear. The end result is a mel
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spectrogram, showing how the human-perceived spectrum of
the audio segment changes over time.

We implement the keyword spotting pipeline shown in
Fig. 6. The input to the pipeline is 16-bit mono audio sampled
at 16 kHz from a SPH0645LM4H microphone with digital
Inter-IC Sound (I2S) output. The audio is processed in chunks
of 1024 samples or 64 ms. These chunks are non-overlapping
and a rectangular sampling window is used. Because the
spectrum of each chunk is independent, each audio chunk
must be processed only once, and the result can be appended
to the previous mel spectrogram from which the oldest chunk
is simultaneously dropped. From each chunk, a 13-coefficient
mel spectrum is extracted. 15 such spectrums form the mel
spectrogram that is used as input for the classifier network.

We use the convolutional neural network (CNN) shown in
Fig. 7 to perform the keyword spotting task on the 15x13 mel
spectrograms. The network contains two convolutional layers
and one dense layer, totaling 10,454 trainable parameters.

The feature extraction is performed with the ARM CMSIS-
DSP software library [29] using single precision floats. The
neural network is executed in the STM X-CUBE-AI run-
time [56], again using single precision floats.

7.2 KIMYA Integration
We implement the keyword-spotting pipeline with KIMYA as
shown in Fig. 6. Mel-spectrum coefficients are calculated in
the ACQUIRE phase and CNN inference is performed in the
PROCESS phase.

In order to minimize the required number of KIMYA phase
changes, we use the secure world to implement a virtual sen-
sor. As the microphone is sampled at 16 kHz, and the MCU’s

I2S peripheral only has a 8-frame FIFO buffer, the event-
detection code would have to read out this buffer at least
every 8

16kHz = 500µs. As each access of the I2S peripheral
require a transition to the ACQUIRE phase, this would be inef-
ficient. Instead, we permanently configure the I2S peripheral
as a secure-world resource, and set up a secure-world DMA
stream from the I2S FIFO buffer to an alternating 1024-frame
(= 64 ms) memory buffer. This memory buffer is then treated
as a virtual sensor, taking the place of the I2S peripheral in the
Table 1 access map. Additionally, a check_for_new_data()
API call is provided for the application to check if a new
buffer frame is available.

The control flow of the keyword-spotting application fol-
lows the typical KIMYA flow illustrated in Fig. 5. If the ap-
plication is in the IDLE phase, it checks if a new microphone
frame is available. If so, it calls into the ACQUIRE phase, per-
forms the feature extraction on the microphone data and stores
the result in the alternating Buffer A/B. Performing this task
in the ACQUIRE phase, ensures that it does not need to be
repeated when the buffers are alternated and the Scratch mem-
ory is erased. Next, a call to the PROCESS phase is made. This
call copies and orders the required data from the Buffers A/B
to the Scratch memory to assemble the mel spectrogram for
the most recent audio data and runs the neural network in-
ference on it. If the keyword was detected, the MCU is tran-
sitioned to the TRIGGERED phase, and the main application
thread starts streaming microphone data to a serial port. This
simulates a voice assistant streaming microphone data to a
cloud service for further processing.

The non-secure application must ensure that no interrupts
that violate the KIMYA access map (Table 1) occur while the
core is in the ACQUIRE or PROCESS phase. Therefore, non-
secure interrupts are masked by setting the fault mask for the
duration of the container calls. Further, all functions using
the Buffer A, Buffer B, and Scratch memory regions must be
aware that these memory regions can be erased between calls.
To this end, a canary value is placed in each buffer. When
this value reads as zero, the function knows the memory was
emptied and re-initializes all necessary data structures.

Configuration values. We set tlifetime = 2s and tTRIGGERED =
5s. Buffer A, Buffer B, and the Scratch memory are each
16 KiB. Two proof-of-concept notification mechanism are
used simultaneously: a LED that is continuously lit when the
TRIGGERED phase is active, and a LED that flashes upon enter-
ing the TRIGGERED phase or extending the tTRIGGERED deadline.
We protect the notification mechanisms by limiting access to
the GPIO pins that controls the LEDs to the secure world.

8 Evaluation

A basic evaluation of the on-MCU pipeline shows a precision
of 100 % and a recall of 89 %. This evaluation was performed
using 100 utterances of the keyword, and 100 utterances of
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uniformly sampled other words in the dataset. Because evalu-
ating the performance of keyword-spotting systems is a com-
plex task with many variables, and because we consider it
to be beyond the scope of our proof of concept, we did not
perform a more detailed performance analysis of the pipeline.
Instead, we focus on the performance differences between the
pipeline running with and without KIMYA.

We use the setup shown in Fig. 8 to evaluate our KIMYA im-
plementation. We use two identical STM NUCLEO-L552ZE-
Q development boards. One board has TrustZone activated
and is running the keyword-spotting pipeline inside a KIMYA
container. The other board functions as a reference and has
TrustZone disabled. The reference is thus running the entire
keyword-spotting pipeline in the non-secure world, without
KIMYA. Functionality that is needed for KIMYA compatibility
(i.e., to reinitialize data structures or to copy and reorder data
from the alternating Buffer A/B) is removed.

To facilitate an accurate comparison of the two boards,
they are both connected to the same I2S microphone. The
microphone is configured as an audio source, the MCUs as
sinks. Only the KIMYA board generates a clock. This setup
ensures that both boards receive identical microphone data.

Functional evaluation. As a preliminary evaluation, we
verified that it is not possible to access microphone data with-
out generating a notification: doing so results in a hard fault,
stalling the MCU. We also logged the status of a button to the
serial port, demonstrating that KIMYA does not prevent the
transfer of data that did not originate in the KIMYA container.

8.1 Macro Benchmarks

We evaluate KIMYA using four macro benchmarks: output cor-
relation with the reference implementation, pipeline latency,
MCU duty cycle, and binary size.

8.1.1 Evaluation Setup

Each board updates the mel spectrogram and runs the neural
network inference process each time a new chunk of 1024

microphone samples is available. This corresponds to one in-
ference per 64 ms or 15.6 inferences per second. Each board
exposes a keyword_detected signal on a GPIO pin which
we sample at 16 MSamples/s using a logic analyzer. We stim-
ulate the microphone using recordings of the keyword to gen-
erate 300 detection events per evaluation setting. This results
in 600 measurable transitions of the keyword_detected sig-
nal. The boards also expose a signal indicating if the pipeline
is running or if the MCU core is idle. We sample this signal
to calculate the MCU duty cycle.

We run the macro benchmarks in three software settings. In
the first setting, the application fully relies on the KIMYA gate-
way to perform buffer management. In the second setting, the
application proactively makes calls to maintain_buffers()
(see Section 5.2) to ensure that no buffer maintenance must be
performed when running the pipeline. In the third setting, the
application additionally proactively reinitializes the neural
network after the Scratch memory was erased by executing
a dedicated network initialization function in the PROCESS
phase. All code was compiled using GCC and optimized for
binary size (-Osize).

8.1.2 Results

Output correlation. When compensating for the additional
delay introduced by KIMYA, both keyword_detected sig-
nals have a correlation coefficient of 1 in all settings. That
is, they are identical. We confirm this in an additional experi-
ment in which we allow both keyword-spotting pipelines to
print their prediction and confidence score to a serial port.
These values are also identical. This is expected and confirms
that KIMYA does not introduce data loss and does not affect
computational results.

Latency. Because voice commands do not have well-
defined boundaries, the absolute latency of a keyword-
spotting pipeline is ambiguous. Instead, we measure the rela-
tive latency of the KIMYA-enabled pipeline compared to the
reference implementation. The results are shown in Fig. 9. We
see that in the basic setting, a median 1.43 ms of additional
delay is incurred because of the KIMYA containerization. In
about 5 % of cases an additional 0.5 ms of delay is incurred
on top of that. This corresponds to the pipeline runs where
the gateway performs buffer maintenance before either call to
the KIMYA container. In the setting where the application per-
forms buffer maintenance proactively, this tail is not present.
Finally, we see that when the application proactively reini-
tializes the neural network, the median delay is reduced to
1.19 ms. This improvement can be seen uniformly across all
detection event runs, because when the application specifies
a duration for a KIMYA container call, it must always assume
a worst-case execution time. Thus, if the state of the neural
network is unknown, the application must budget time for
reinitialization during every PROCESS call.
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Table 2: Sizes of ROM and RAM sections of the benchmark
binaries in KiB.

Secure (Gw.) Non-secure (App.)

ROM RAM ROM RAM

With KIMYA 17.01 2.19 156.46 1.95
Reference – – 162.61 28.53

MCU duty cycle. The reference implementation runs at
a duty cycle of 24.5 %. The KIMYA implementation with-
out proactive buffer management has a duty cycle of 26.8 %.
Proactively calling maintain_buffers() did not meaning-
fully change the duty cycle. However, when combined with
proactive reinitializations, the duty cycle was slightly reduced
to 26.5 %. This improvement stems from the fact that in the
latter case, time to initialize the neural network must only be
budgeted in the dedicated reinitialization calls, and not in all
calls to the PROCESS phase.

Binary size. Table 2 shows the binary sizes of the KIMYA
and reference implementations. There were no meaningful
differences between the three KIMYA settings. We see that
using KIMYA does not measurably increase the binary of the
non-secure application. In fact, the reference binary is larger
than the KIMYA-enabled application binary. We attribute the
difference in the ROM sections to variations in compiler op-
timizations. The reference RAM region is larger because it
includes statically allocated variables that are dynamically
allocated in the Buffer A/B or Scratch regions in the KIMYA
implementation. The small secure-world binary size shows
that the KIMYA gateway has a small binary footprint.

8.2 Micro Benchmarks

To better understand the origin of the additional delay ob-
served in the macro benchmarks, we perform micro bench-
marks to measure the cost of individual KIMYA operations.
These benchmarks use the proactive reinitialization setting.
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Figure 10: Boxplot showing the overhead of entering and
exiting the KIMYA container. Exit timing excludes time
spent waiting to reach the specified container execution time.
Whiskers drawn at percentiles 1 and 99.

8.2.1 Container Operations

Container entry and exit. We instrument the code on the
KIMYA-enabled board to write well-known values to a GPIO
port at key points in the execution flow. This creates an 8-bit
parallel signal that can be used to profile both the secure and
non-secure worlds.

As shown in Fig. 10, entering the KIMYA container takes
between 11 and 14 µs. Leaving the container to the IDLE
phase takes around 5 µs. Due to the additional overhead
required (i.e., buffer management, setting up the tTRIGGERED
timer), leaving from PROCESS to the TRIGGERED phase takes
around 8 µs. These times exclude any time spent waiting to
reach the specified container execution time (see Section 5.4).

Figure 11 decomposes the operations shown in Fig. 10 into
three suboperations: (i) switching from the non-secure world
to the secure gateway, (ii) executing the gateway logic, and
(iii) returning from the gateway to the non-secure world. We
see a base cost of 1 to 2 µs to switch between the secure and
non-secure worlds. KIMYA-specific logic (i.e., MPU configu-
ration, buffer checks, timer management) adds around 10 µs
per container call. Results for the PROCESS phase are similar
and therefore not shown.

Buffer management. The timing values shown in Figs. 10
and 11 include buffer management logic, but because the
application performs proactive buffer maintenance, it does not
include buffer erasure overhead. We separately measure buffer
erasure to take 261 µs per 16 KiB memory region, resulting
in an average 0.06 % core load for buffer erasure.

8.2.2 Comparison to Macro Benchmarks

Summing up the median container entry and exit times with
a median 33 µs spent waiting for the specified container ex-
ecution time to be reached (not shown in Fig. 10), results in
an overhead of 70 µs per pipeline run. This number is signif-
icantly lower than the 1.19 ms measured during the macro
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benchmarking. To understand the origin of this discrepancy,
we perform further benchmarking on the application and con-
tainer code. We observe that the inference call to the (precom-
piled) neural network library takes 15.50 ms in the KIMYA
container instead of 14.46 ms in the reference implementa-
tion. This difference of 1.04 ms makes up the majority of
the 1.12 ms of unapportioned overhead. We attribute this per-
formance gap to the different memory access pattern in the
KIMYA implementation, leading to more bus contention.

9 Discussion

9.1 Limitations
Data lifetime. Although KIMYA provides strong guaran-
tees that no sensor data can be stored beyond tlifetime, it re-
quires tlifetime to be configured at twice the actual useful data
lifetime. For example, our prototype implementation uses
tlifetime = 2s, although only 1 s of data is fed into the CNN.

This is a direct consequence of using two buffers to form
the alternating buffer A/B. Extending the alternating buffer
to a ring buffer composed of n buffer elements, would allow
tlifetime to be reduced to 1+ 1

n−1 times the true data lifetime.
Limiting factors are (i) the size of the chunks in which data
is preprocessed, and (ii) the requirement to wipe the entire
scratch region each time an element of the ring buffer is wiped.

Imperfect auditing. KIMYA relies on device users to per-
form notification auditing. Past work has shown that the de-
sign of notification mechanisms is critical to ensure the audit
quality [46]. However, even with an optimal notification mech-
anism it is possible that a user would miss some false-trigger
events. When designing a notification mechanism, it is impor-
tant to ensure that systematic misbehavior will eventually be

noticed by the user. If this is not the case, an adversary could
simply keep the KIMYA device in the TRIGGERED phase at all
times. Care must also be taken to ensure that other factors
(e.g., the location of the device) do not hinder the notifica-
tion mechanism (e.g., placing a device with a light-based
notification mechanism in a closed closet).

Instead of generating a false-trigger event, an adversary
could also artificially extend the the time during which the
device stays in the TRIGGERED phase after detecting a true-
trigger event. If kept within limits, we expect users to be more
likely to attribute such behavior to non-malicious technical
limitations. As an example, we consider an adversary that
extends each trigger by 10 s. Assuming 18 smart-speaker
interactions per day [5], this would allow an adversary to
maliciously capture up to 3 min of superfluous audio a day
without raising suspicion.

Alternative event detection. KIMYA does not place restric-
tions on which type of events the application code can detect.
Therefore, the KIMYA mechanism by itself does not provide
any privacy guarantees. Instead, the core KIMYA mechanism
needs to be used together with suitable notification and audit-
ing mechanisms.

For example, consider the case where an adversary writes
code that detects specific information (e.g., by triggering on
the keyword “password”). The attacker could then poten-
tially export this data by generating only a small amount of
low-frequency false-positive notifications. Depending on the
notification and auditing mechanisms used, these notifications
may go unnoticed.

The use of software attestation mechanisms to limit which
code can be executing inside the KIMYA container could miti-
gate this attack, although at the cost of reduced system agility.
Alternatively, the quality of the notifications and notification
auditing could be improved, for example, through the use of
privacy assistants [12, 26].

Multi-stage pipelines. For efficiency and accuracy reasons,
event-detection pipelines often use multiple stages with de-
creasing false-positive rates and lazy evaluation [21, 25]. In
such cases, our KIMYA implementation requires container ex-
ecution time for all pipeline stages to be budgeted during each
call. Modifications that allow the container execution time
to be dependent on the result of the pipeline stages could be
made, but would create a (small) information channel out of
the container. Logging when the container execution time was
extended could deter adversaries from abusing this channel.
Alternatively, this channel can be eliminated by decoupling
the KIMYA execution time from that of the main application,
for example, by executing KIMYA on a dedicated core.

Some vendors offer cloud-based wake word verification
services, intended to be used as the last stage of a keyword-
spotting pipeline [23]. KIMYA requires a notification to be
generated each time data is sent to such a service. If the on-
device pipeline stages have a high false-positive rate, this can



dilute the value of KIMYA notifications. However, there is an
ongoing trend to move voice assistant functionality from the
cloud to end-user devices [8,22]. Therefore, we anticipate that
cloud-based wake-word detection will disappear over time.

Reduced scheduling flexibility. Calls to the ACQUIRE and
PROCESS phases are fixed-duration and non-preemtable. This
results in a reduced scheduling flexibility, and in certain cases,
might lead to a performance degradation. However, as em-
bedded systems are designed assuming worst-case execution
times, a KIMYA-enabled system should be able to meet the
same deadlines as an equivalent non-KIMYA system.

TCB bloating. In our KIMYA implementation, all code run-
ning in the secure world has the same security level, and is
thus able to affect KIMYA’s properties. Therefore, all secure
world code is part of KIMYA’s TCB. If additional functionali-
ties are implemented using TrustZone, this has the potential
to bloat the TCB size. A secure-world OS could be used
to limit the access permissions of secure-world code. TCB
bloat affects all platforms of which the hardware provides a
single-world secure environment.

9.2 Multiple Sensors
This work focuses on regulating access to a single event-
triggered sensor. However, many devices have multiple sen-
sors. In such cases the following KIMYA deployment models
are possible:

Independent. The access permissions for each sensor are
considered individually. Multiple sensors can be protected by
creating multiple, independent, KIMYA containers.

Cross-sensor. The permissions for multiple sensors can
be linked together, enabling opportunities for cross-sensor
activations. Consider, for example, a smart display with both
a camera and a microphone. In this setting, KIMYA could be
configured to link access permissions for the camera to events
detected on the microphone. This way, KIMYA can ensure
that camera data cannot be accessed unless the user speaks an
activation phrase, e.g., “Hey Kimya, turn on the camera”.

Virtual sensors. The trigger output of a KIMYA enabled
sensor can be used as a virtual sensor input for sensor access
management or attack detection systems (e.g., 6thSense [51]).

9.3 Deployability
MCU requirements. Implementing KIMYA requires a
mechanism that allows protected gateway code to restrict
the resource access of application code. Our implementa-
tion on ARM Cortex-M uses a combination of TrustZone
and the MPU for this purpose. Many modern, embedded,
architectures provide similarly suitable mechanisms. These
include: (i) TrustZone on ARM Cortex-A [45] in combi-
nation with a MPU or memory management unit (MMU);
(ii) Physical Memory Protection (PMP) and machine mode

on RISC-V [62]; and (iii) LX secure mode (XLS) on Xtensa
LX [10] in combination with an MPU or MMU. In the ab-
sence of suitable hardware security extensions, KIMYA could
be implemented as an OS service, although this would result
in increased TCB size and significantly reduced robustness.

Additionally, KIMYA requires one timer, and a mechanism
to ensure that control is periodically returned to the gateway.
The latter can be established using interrupts generated by the
timer, or through a gateway-controlled watchdog timer.

Hardware and software design. For KIMYA to be effec-
tive, the hardware design of KIMYA enabled products must
ensure that the KIMYA gateway can restrict the application
access to the event-triggered sensor. We expect this to be
the case in most existing designs. Designers must implement
base KIMYA functionality for their target platform analog to
KIMYA for Cortex-M as described in Section 5. Additionally,
a covert-channel analysis must be performed and countermea-
sures similar to those in Section 5.4 must be implemented.

To dimension the size of the Buffer A/B and Scratch mem-
ory regions, one must consider the amount of intermediary
state that the ACQUIRE process will generate, and the required
amount of temporary state used for signal processing. In our
demo application, Buffer A and B each require 11 KiB of
RAM. Of those 11 KiB, around 800 B is used to store the mel
spectrograms, the remainder is used as temporary storage for
signal processing. Similarly, our demo application requires
a 8 KiB Scratch region, all of which is used as temporary
storage for the CNN. If original sensor data is to be stored
for reprocessing after a trigger event, sufficient space must
be allocated for it in the Buffer A/B regions. For our demo
application, this would correspond to 32 KiB per buffer.

Finally, a notification mechanism must be designed and
implemented as discussed in Section 4.5. If cryptographically
protected notifications are used, a key-establishment mecha-
nism must also be implemented.

In-field retrofitting. If an existing hardware designs make
it possible to isolate the sensor that is to be protected, KIMYA
can—in principle—be retrofitted to these devices using a
vendor-issued software update. However, depending on the
existing product configuration (i.e., TrustZone setup, MCU
fuses, and exposed interfaces), the complexity of the update
process can vary greatly. Some devices could be retrofitted
using an over-the-air software update, others might require
physical contact, and yet others could be impossible to retrofit.

9.3.1 Compatibility with Popular Voice Assistants

We explore the compatibility of three popular devices with
KIMYA: (i) the Amazon Echo Dot (3rd generation), (ii) the
Google Nest Home Mini, and (iii) the Apple HomePod. We
base this analysis on publicly available data.

Amazon Echo Dot 3rd generation. This device has four
microphones, connected to two ADCs. The ADCs are con-



nected to the CPU using both an I2C bus (for configura-
tion) and an I2S bus (for audio data) [13]. The ADCs are
Texas Instruments TLV320ADC3101 chips. The CPU is a
Mediatek MT8516. Given that the MT8516 supports Trust-
Zone for Cortex-A [17], implementing KIMYA should be
possible. However, special care must be taken because the
ADCs feature a miniDSP [57] which has access to the micro-
phone stream and has (limited) storage capabilities. Hence,
the miniDSP could be abused to break KIMYA isolation. Fur-
ther research to determine the maximum storage duration on
the ADCs, or to determine if the memory on the ADCs can
efficiently be flushed would be needed. Alternatively, it could
be ensured that only signed code can be loaded onto the ADC.
Given that the Echo Dot already uses trusted boot [17], and
that we expect the ADC configuration to be static, this is a
plausible strategy.

Google Nest Home Mini. Not much information is avail-
able about this device, only that it runs on a Synaptics AS370
SoC (ARM Cortex-A52) [58]. No explicit information about
TrustZone support can be found, but we find it likely for it
to be available. The device has 3 on-board microphones [9],
but it is unclear how the audio signal is digitized. Based on
the presence of a recent Cortex-A based CPU, we expect that
KIMYA support would be possible on this device. Care must
be taken to ensure that the SoC and ADC architectures do not
break KIMYA isolation.

Apple HomePod. Apple’s HomePod speaker runs on a
custom Apple-designed APL1011 SoC [63]. The HomePod
uses seven MEMS microphones which are digitized by a
Conexant CX20810 ADC [63]. This ADC does not have
an on-board DSP, and is therefore unproblematic. However,
we were unable to find any documentation indicating that
the APL1011 silicon features the hardware security features
required to support KIMYA.

10 Related Work

There are a number of proposals to limit access to sensor data.
We discuss the most relevant areas of research below.

Control of sensor access. SeCloak [28] uses TrustZone on
Cortex-A to allow mobile device users to disable access to
specific peripherals. Brasser et al. [6] propose a similar mech-
anism, but allow a third party to control access restrictions
instead of the device owner. AWare [43] is targeted towards
mobile devices, and provides an operating-level service that
binds user interactions with specific user interface elements to
sensor access rights. EnTrust [44] further generalizes this to
other types of input events, and to cooperating applications.

Although they provide strong guarantees, none of these
works is designed to capture the semantics of always-
standby sensors. Therefore, sensor access must be perma-
nently granted for event detection to work. Moreover, these
works were not designed for constrained environments.

Work on trusted I/O paths (e.g., SGXIO [64] and Wimpy
kernels [68]) can be used to provide secure I/O access to
trusted execution environments (TEEs). Although TEEs pro-
vide isolation, they do no provide amnesia. It might be possi-
ble to implement KIMYA-like logic using multiple TEEs (e.g.,
multiple SGX enclaves) and message passing channels, but
future work would be needed to confirm this.

Auditing of sensor access. Viola [41] provides guarantees
that sensor notifications (e.g., LED indicators) are active when
(and only when) a sensor is accessed. Ditio [40] securely
logs sensor access for later auditing. Neither of these mecha-
nisms is designed for always-standby sensors, and will mark
an always-standby sensor as being continuously accessed.
6thSense [51] analyses sensor access patterns to detect mali-
cious activity. However, it does not support always-standby
sensors. Depending on the concrete sensor type, 6thSense
would mark an always-standby sensor as always accessed, or
assign it an access state that is independent from the event de-
tection. KIMYA can be used to augment 6thSense as discussed
in Section 9.2.

Trigger limitations. Mhaidli et al. [39] propose to use non-
verbal communication cues, such as gaze and volume level
as a pre-trigger for voice assistants, however they do not con-
sider adversarial settings. Our work is orthogonal to their
proposal. In fact, in Section 9 we discuss how their work,
and more generally, cross-sensor triggers, can be included
in KIMYA. EKOS [1] uses collaborative keyword-spotting to
limit (adversarial) false positives. Contrary to KIMYA, EKOS
requires keywords to be heard by multiple devices and does
not consider on-device adversaries.

Information flow tracking. There is a large body of
work on information-flow or taint tracking for mobile de-
vices [3, 14, 18, 20]. FlowFence [16] provides taint tracking
for Internet of Things (IoT) cloud platforms. These works rely
either on static or dynamic code analysis. In the former case,
they must be combined with software attestation or similar
mechanisms. In the latter case, they are challenging to apply to
constrained environments. Moreover, these mechanisms were
not designed to support always-standby semantics, meaning
that they do not provide guarantees on which historic data can
be accessed when a trigger event occurs.

Skill behavior. A number of works [19, 50, 66] analyze the
behavior of third-party voice assistant skills. This is compara-
ble to analyzing the behavior of Android or smart-home apps,
and focuses on individual functionality add-ons, rather than
on the underlying system. Therefore, we believe these works
to be synergetic to ours.

11 Conclusion

Despite their high popularity, voice assistants continue to
prompt significant privacy concerns. These concerns often



focus on the always-standby nature of such assistants, and a
perceived lack of transparency in how they operate.

KIMYA demonstrates that it is possible to unify the func-
tionality of always-standby sensors with strong, low-level,
guarantees on privacy. Moreover, our implementation for
Cortex-M demonstrates that KIMYA introduces low overhead
and is applicable to constrained environments.

Although we have implemented KIMYA for Cortex-M, its
design is not platform specific, and can be implemented on
other architectures (e.g., Cortex-A, RISC-V, Xtensa LX, ...) as
well. Moreover, as KIMYA does not require hardware modifi-
cations, it can be retrofitted to existing systems. This reduces
time to market, and makes it possible to bring significant pri-
vacy enhancements to millions of devices already deployed
in people’s homes.
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