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Abstract
Succinct zero knowledge proofs (i.e. zkSNARKs) are pow-
erful cryptographic tools that enable a prover to convince a
verifier that a given statement is true without revealing any ad-
ditional information. Their attractive privacy properties have
led to much academic and industrial interest.

Unfortunately, existing systems for generating zkSNARKs
are expensive, which limits the applications in which these
proofs can be used. One approach is to take advantage of pow-
erful cloud servers to generate the proof. However, existing
techniques for this (e.g., DIZK) sacrifice privacy by revealing
secret information to the cloud machines. This is problematic
for many applications of zkSNARKs, such as decentralized
private currency and computation systems.

In this work we design and implement privacy-preserving
delegation protocols for zkSNARKs with universal setup. Our
protocols enable a prover to outsource proof generation to
a set of workers, so that if at least one worker does not col-
lude with other workers, no private information is revealed to
any worker. Our protocols achieve security against malicious
workers without relying on heavyweight cryptographic tools.

We implement and evaluate our delegation protocols for
a state-of-the-art zkSNARK in a variety of computational
and bandwidth settings, and demonstrate that our protocols
are concretely efficient. When compared to local proving,
using our protocols to delegate proof generation from a recent
smartphone (a) reduces end-to-end latency by up to 26×,
(b) lowers the delegator’s active computation time by up to
1447×, and (c) enables proving up to 256× larger instances.

1 Introduction

Zero-knowledge Succinct Non-interactive ARguments of
Knowledge (zkSNARKs) are cryptographic proofs that enable
a prover P to convince a (computationally weak) verifier V
of statements of the form “Given a function F and a public in-
put 𝕩, there exists a private witness 𝕨 such that F(𝕩,𝕨) = 1”.
zkSNARKs satisfy two key properties that make them at-
tractive for applications: succinctness and zero knowledge.
Succinctness ensures that the cryptographic proof is small
(a few kilobytes) and easy to verify (a few milliseconds), re-
gardless of the complexity of F . Zero knowledge ensures that
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the cryptographic proof reveals no information about the wit-
ness 𝕨. Together, these properties have motivated a number
of zkSNARK constructions [27, 25, 6, 37, 4, 3, 10, 2, 33, 24,
11, 14, 15, 42], new applications relying on zkSNARKs for
privacy and efficiency [1, 31, 34, 45, 20, 43, 8, 9, 32, 30], as
well as industrial deployments of zkSNARKs [47, 35, 23].

The attractive properties of zkSNARKs come at a cost:
proving correct even a simple computation requires signifi-
cantly more time and memory than is required for the com-
putation itself. This overhead arises for two reasons. First,
the prover P “arithmetizes” the computation F , which (often)
involves expressing it as an arithmetic circuit C that is much
larger than the description of F . Next, for many popular zk-
SNARKs [26, 24, 14], P must perform expensive operations
whose time and space complexity grow at least linearly in |C|.

One way to prove large computations would be to out-
source the prover computation to more powerful machines on
cloud platforms (such as Amazon EC2 or Microsoft Azure).
However, this approach comes at the cost of privacy: the ma-
chines in the cloud learn the witness 𝕨. This is problematic for
privacy-focused applications of zkSNARKs, such as private
payments [1], private smart contracts [31, 9], and anonymous
credentials [20, 40]. In these applications, revealing the wit-
ness (which contains private information) to cloud machines
could hurt the privacy and anonymity of users.

A concrete illustration of this efficiency-privacy dilemma is
easily seen in a number of recent decentralized ledger systems
[9, 38] that leverage the privacy and succinctness properties
of zkSNARKs to enable users to privately prove that they
correctly executed a smart contract over their private data
(such as sender and recipient identities, currency amounts,
type of computation, and so on). However, the overhead of
generating these zkSNARKs has limited users to using only
simple smart contracts that can be proven on users’ machines,
thus hindering the adoption of these systems.

There is thus a need for methods that enable users to gener-
ate zkSNARK proofs cheaply and privately. In this work, we
investigate one such approach, and ask the following question:

Can users privately and efficiently outsource
zkSNARK proving to untrusted machines?

1.1 Contributions
We provide a positive answer to this question by designing and
implementing protocols that enable private delegation of the



prover in state-of-the-art universal-setup zkSNARKs [33, 24,
14]. Our protocols are secure in a strong malicious-security
threat model and, when applied to the recent zkSNARK of
[14], enable proving larger instances while also reducing the
end-to-end proving time. We detail our contributions below.

Delegating PIOP-based zkSNARKs. We construct a del-
egation protocol for a popular class of zkSNARKs that are
constructed from two components: polynomial interactive
oracle proofs (PIOPs) [24, 14, 11] and polynomial commit-
ment schemes (PC schemes) [29] (we review these below).
This class contains many efficient zkSNARKs [33, 24, 14, 13].
We design our protocol in two steps. First, we construct an
efficient, delegation-specific MPC protocol that uses a new
low-overhead technique for checking that the output proof
corresponds to the delegated witness. Then, we design effi-
cient arithmetic circuits for the various components of provers
of PIOP-based zkSNARKs. We illustrate the efficiency of our
construction by instantiating it with subcircuits for the PIOP
and PC scheme underlying the MARLIN zkSNARK [14] to
obtain a delegation protocol for this zkSNARK that is signifi-
cantly more lightweight than even the closely related protocol
of [36] that uses off-the-shelf MPC protocols.

Implementation and evaluation results. We contribute a
Rust library EOS1 that implements our delegation protocols.
We minimize implementation effort and code duplication by
designing abstractions for secret-shared field elements and
polynomials, that allow us to implicitly construct subcircuits
for PIOP and PC schemes by utilizing existing plaintext im-
plementations of the same. Furthermore, we construct our
zkSNARK prover circuits in a generic manner, allowing the
underlying PIOP and PC scheme subcircuits to be swapped
out easily. When combined with our generic MPC protocol,
this allows our library to delegate any PIOP-based zkSNARK
given just the corresponding plaintext implementations. We
provide concrete instantiations for our interfaces by imple-
menting a delegation protocol for the zkSNARK of [14].

We conduct comprehensive experiments to evaluate the
performance of our implementation. In short, our experiments
demonstrate that in a variety of bandwidth and computational
settings, our delegation protocols enable proving larger in-
stances in less time and with less memory. For example, when
delegating from a smartphone to powerful cloud machines,
our protocols reduce proof generation time by up to 26×,
lower the active computation time of the smartphone by up to
1447×, and enable proving 256× larger instances. These ben-
efits kick in for circuits as small as 215 gates. See Sections 7
and 8 for a detailed discussion.

1.2 Related work
Trinocchio [41] studies the problem of privacy-preserving
verifiable computation, where a delegator wishes to privately
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outsource a computation to a set of workers. Their proto-
col consists of two components: (a) an MPC protocol that
performs the computation; and (b) a zkSNARK delegation
protocol that uses the result of the MPC to generate a proof
that the computation was performed correctly. There are sev-
eral differences between their delegation subprotocol and our
protocols: (a) they target a zkSNARK with circuit-specific
setup [37], while we target a recent class of zkSNARKs with
universal setup; (b) they use Shamir secret sharing and provide
privacy against n/2 corruptions, while we use simpler additive
secret sharing and provide security against n−1 corruptions;
(c) they require the delegator to reconstruct the Shamir secret
shares of the final proof at the end, while our collaborative
setting does not require this additional step; (d) their protocol
has semi-honest security, while ours has malicious security.

Kanjalkar et. al. [28] design a protocol for auditable MPC,
where the goal is to prove to a third-party auditor that an execu-
tion of an MPC protocol was performed correctly. To achieve
auditability, this protocol uses a subprotocol that generates a
MARLIN zkSNARK [14] when the witness is secret-shared
across the MPC participants. While some techniques in this
subprotocol are similar to those in our delegation protocol
(when specialized to the zkSNARK of [14]), our protocols are
more general, and work with other PIOPs and PC schemes.
From a technical perspective, our protocol uses additive se-
cret sharing, while that of [28] (like Trinocchio) uses Shamir
secret sharing (SSS) [44], and therefore is secure only against
n/2 corruptions. Changing these systems to support n− 1
corruptions would change their performance profile, as they
rely on properties of SSS to implement secret multiplications.

The recent work of Ozdemir and Boneh [36] (henceforth
OB22) constructs “collaborative proving” protocols that allow
a set of parties that have secret shares of an NP witness to
jointly generate zkSNARK proofs with respect to that witness.
They present protocols for three zkSNARKs [26, 24, 14]. To
design efficient protocols, they leverage similar insights as we
do. For example, both protocols rely on additive homomor-
phisms to minimize the overhead of computing polynomial
commitments in a distributed setting. However, despite high-
level similarities, the protocols provide different efficiency
and security guarantees:
• Protocol design: Our protocols leverage the honest dele-

gator to minimize the cost of preprocessing in the MPC
protocol, while OB22 must rely on heavyweight cryptog-
raphy to do the same. Furthermore, our protocols mini-
mize overhead of malicious security by introducing the
notion of PIOP consistency checkers, while OB22’s use
of information-theoretic MACs leads to a 2× increase in
witness-dependent computation and worker communica-
tion, and a (2n−1)× increase in delegator communication.

• Implementation differences: The implementation of
OB22 does not describe or implement many of the opti-
mizations in Section 7.1. On the other hand, they implement
distributed proving for more zkSNARKs than we do.



Overall, these differences result in concrete performance ben-
efits: our protocols are 6–8× faster and require 3–5× less
communication. See Section 8.4 for a detailed comparison.

Another recent work [19] constructs a collaborative prover
for IOP-based SNARKs [3]. Their protocol for collaborative
IOP proving is similar to our protocol for PIOP delegation,
but, as with [36], the different application settings (distributed
computation vs delegation) results in concretely different
protocols and optimization choices. For example, they too
must rely on heavyweight cryptography to achieve malicious
security. As they do not implement or evaluate their protocols,
we cannot provide a quantitative comparison. However, due
to the similarities of their setting with that of [36], it is likely
that their protocol suffers from similar overheads.

Block and Garman [7] introduce protocols for distributing
the prover’s work in the honest-majority setting, where at
least n

2 +1 out of n workers are assumed to be honest. Their
protocols achieve an asymptotic speedup of n× compared to
the single-prover solution. However, they achieve this while
sacrificing privacy: even honest workers can see (portions of)
the witness. Furthermore, they neither implement nor evaluate
their protocol, making quantitative comparisons difficult. It
would be interesting to investigate whether their protocol can
be adapted to provide privacy-preserving delegation.

DIZK [46] distributes the prover computation for the zk-
SNARK in [26] across a cluster of machines, with the aim
of optimizing the space complexity of each machine, and
without hiding the witness from these machines. DIZK is
complementary to our work, as we can improve scalability of
our protocol by having each worker use DIZK’s techniques
to outsource its computations. This preserves privacy because
the compute cluster would only see the worker’s secret shares.

2 Construction overview

We consider delegation protocols where the zkSNARK prover
P delegates its proof computation to n different workers. We
focus on zkSNARKs constructed via the methodology in [14],
i.e., by composing a PIOP and PC scheme.

Protocol setting. Our protocols are in the preprocessing
model. That is, the delegating prover (henceforth D) out-
sources its work to a set of n remote workers W1, . . . ,Wn in
two phases: a preprocessing phase that is independent of the
witness for which a proof is being generated, and an online
phase that is witness-dependent. In the latter phase, D sends
to each worker the (short) public input 𝕩 and secret shares of
the (large) private witness 𝕨, and the parties then use the pre-
processing material to jointly compute the zkSNARK proof.
Our delegation protocols work in two different modes (Fig. 1):
• Isolated mode: Each honest worker communicates only

with the delegator D, and not with other workers. D is
online throughout the protocol execution.

• Collaborative mode: Workers communicate directly with

each other, and with the delegator D .
Isolated mode provides stronger security guarantees than col-
laborative mode, as workers are not even aware of each other,
but pays for this by incurring concretely higher communi-
cation and latency costs (see Section 8). In both modes, all
communication occurs over authenticated secure channels.

(a)

1
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Figure 1(a) Isolated delegation (b) Collaborative delegation

Threat model. Our protocols guarantee that the private
witness 𝕨 is completely hidden from all workers if at least
one worker is honest and does not collude with the others.
Dishonest workers can deviate arbitrarily from the protocol.
Indexed relations. An indexed relation R is a set of triples
(𝕚,𝕩,𝕨) where 𝕚 is the index, 𝕩 is the instance, and 𝕨 is the
witness. In this paper, we consider zkSNARKs for the popular
R1CS relation RR1CS, which is the set of triples (𝕚,𝕩,𝕨) =(
(𝔽 ,M,A,B,C),x,w

)
where 𝔽 is a finite field, and A,B,C are

M×M matrices over 𝔽 such that Az◦Bz=Cz for z := (x,w)∈
𝔽M . (Here “◦” denotes the entry-wise product.)

Remark 2.1 (witness reduction). zkSNARK proving contains
a “witness reduction” step that converts a high-level NP wit-
ness (e.g., a hash preimage) to a low-level witness (e.g., wire
assignments in the hash circuit) that is suitable for proving.
In our delegation protocols, the delegator performs witness
reduction and secret shares the resulting low-level witness
among the workers. An alternative definition could require the
workers to carry out witness reduction themselves via MPC.
However, we avoid this approach because, for many compu-
tations of interest, the cost of executing witness reduction in
MPC will outstrip the cost of doing it on the delegator.

2.1 Background: universal-setup zkSNARKs
The methodology of [14] constructs zkSNARKs from two
components: information-theoretic polynomial interactive or-
acle proofs (PIOPs), and cryptographic polynomial commit-
ment schemes (PC schemes). Below we review these com-
ponents and how they are combined to obtain zkSNARKs,
focusing on the computations of the zkSNARK prover.
A polynomial interactive oracle proof (PIOP) for an in-
dexed relation R = {(𝕚,𝕩,𝕨)} is an interactive protocol be-
tween a prover P and a verifier V that allows P to convince
V that it “knows” a valid witness 𝕨 such that (𝕚,𝕩,𝕨) ∈R.
P does so by sending the verifier polynomial oracles. The



verifier can then query these at points of its choice, and decide
to accept or reject based on the answers.2

A polynomial commitment (PC) scheme is a cryptographic
primitive that allows a committer to commit to a polynomial,
and then later prove to another party that the committed poly-
nomial evaluates to a claimed evaluation at a challenge point.

Constructing zkSNARKs from PIOPs and PC schemes.
A zkSNARK is a tuple of algorithms ARG = (G ,I ,P ,V ).
Below we focus on the prover P and the verifier V . The
methodology of [14] obtains a zkSNARK from a PIOP and a
PC scheme by first constructing an interactive argument as
follows. The interactive argument prover P and verifier V
respectively invoke the PIOP prover P and verifier V, but in
each round, instead of directly sending the polynomial oracles
output by P, P instead commits to these polynomials using
the PC scheme, and sends the resulting commitments to V .
After the interaction, V declares its queries to the committed
polynomials, and P replies with the desired evaluations along
with an evaluation proof attesting to their correctness relative
to the commitments. To obtain a zkSNARK, one can apply
the Fiat–Shamir transform [22] to this interactive argument.

2.2 Delegating zkSNARKs

Strawman: use off-the-shelf MPC protocols. A straight-
forward approach to delegating proving would be for the
delegator to secret share its witness with the workers, who
would then invoke a suitable MPC protocol to securely eval-
uate the prover. Unfortunately, this approach has significant
shortcomings in terms of concrete efficiency for two reasons.

First, existing state-of-the-art MPC protocols achieving
malicious security against a dishonest majority of workers rely
on relatively heavyweight public-key cryptography, which
has a non-trivial computational overhead. Second, these MPC
protocols require expressing the computation as an arithmetic
circuit. A straightforward translation of the zkSNARK prover
algorithm for popular zkSNARKs [24, 14] to circuit format
would require expressing complex operations such as elliptic
curve multi-scalar multiplications and polynomial arithmetic
as circuits, and this would be prohibitively expensive.

We show how to overcome both these issues below. Our
starting point is the relatively efficient SPDZ protocol [18].

Step 1: Designing specialized protocols for delegation.
The SPDZ protocol suffers from overheads primarily due to
two reasons: the need for expensive public-key cryptography
to generate correlated randomness for multiplication gates,
and the use of authenticated shares for malicious security.

We tackle the first cost by leveraging the fact that in the del-
egation setting, there is a trusted party that is guaranteed to be

2The PIOPs we consider in this work possess an additional algorithm
called an indexer that preprocesses the NP index into index polynomials. The
verifier has oracle access to these polynomials also.

honest: the delegator. We can use the delegator to either gen-
erate the correlated randomness (in collaborative mode), or di-
rectly implement the multiplication functionality (in isolated
mode), thus eliminating expensive public-key cryptography.

To eliminate the cost associated with authenticated shares,
we notice that our computation is “error-detecting”: we are
generating a zkSNARK. We expand on this idea and develop
new techniques to ensure malicious security next.

Step 2: Enforcing malicious security. A natural first step
is to use the zkSNARK to succinctly check that the MPC exe-
cution is correct by having the delegator verify the zkSNARK
produced by the workers, and reject if it is invalid. Roughly,
the security argument would be that because the zkSNARK
is knowledge-sound, the adversary cannot produce an invalid
proof by deviating from the protocol (and hence using an
invalid witness). This idea almost works, but is insufficient
by itself. The adversary can attempt to malleate its shares of
the delegator’s valid witness w to produce a proof of a related
statement. Even if the resulting proof is invalid, it can leak
information about w. Consider the example of a booleanity
constraint b · (1−b) = 0 for a variable b, and an adversarial
malleation that adds 1 to b: if b’s original value was 0, then
the constraint is still satisfied, and the proof is valid, whereas
if the original value was 1, then the constraint is violated, and
the proof is invalid. Thus by observing whether the proof
verifies or not, the adversary can learn the value of b.

However, while we cannot leverage the succinct verifica-
tion property of the zkSNARK, we can still try to use the
succinct verification properties of the underlying components
of the zkSNARK, the PIOP and the PC scheme. We do so by
introducing the notion of a consistency checker for the PIOP,
and combine this with the PC scheme to enable the delegator
to efficiently check that the polynomials computed during
the MPC execution are consistent with those that an honest
prover would have computed. We formalize this intuition and
construct an MPC scheme that does not rely on authenticated
triples at all. See Sections 5 and 6.3 for details.

Step 3: Designing efficient circuits for zkSNARK provers.
To design efficient circuits for proving PIOP-based zk-
SNARKs, we leverage the fact that the underlying building
blocks, namely PIOPs and PC schemes, are highly algebraic:

• PIOP: The operations performed by the provers of many
popular PIOPs [33, 24, 14, 13] consist of a few common
operations on polynomials. By optimizing the number of
multiplications in, and the multiplicative depth of, circuits
for these operations, we can improve the corresponding
parameters of the PIOP prover circuit. We now describe
some of these operations and how we optimize their circuits.
– Multipoint evaluation and interpolation of polynomials

over smooth multiplicative subgroups (see Section 3) are
key building blocks of PIOP provers. Efficient algorithms
for these can be derived from FFTs (resp. IFFTs), and
since the latter is a linear operation with respect to the



coefficients (resp. evaluations) of the polynomial, the
corresponding circuit contains no multiplication gates.

– Affine polynomial operations use no multiplication gates.
– Division by a public polynomial: Dividing a polynomial

p by a public polynomial g is a linear operation on the co-
efficients of p, and thus requires no multiplication gates.

– Multiplication of two polynomials: To multiply two poly-
nomials p,q ∈ 𝔽≤d [X ], one can rely on efficient FFT-
based methods as follows: (a) evaluate p and q on a set
S of size greater than 2d via the aforementioned tech-
niques; (b) compute the point-wise product of the evalua-
tions, to obtain the evaluations of the product polynomial
r ∈ 𝔽≤2d [X ]; and finally, (c) invoke the IFFT to interpo-
late the evaluations and recover r.
Since the FFT and IFFT steps are linear, we only re-
quire ∼ 2d multiplication gates, for Step (b). Moreover,
because this point-wise product can be computed in par-
allel, the multiplicative depth of this circuit is 1.

• PC schemes: Unlike PIOP provers, the algorithms in PC
schemes require operations over elliptic curves. At first
glance, this is problematic as it requires us to express these
operations as circuits. However, we leverage and extend
past abstractions for elliptic-curve circuits [36] that exploit
the fact that addition in elliptic curve groups corresponds to
addition in the corresponding scalar field. This allows us to
express the commitment and opening algorithms of popular
PC schemes such as that of [29] as low-depth circuits.

By combining these optimizations, we are able to obtain cir-
cuits for the zkSNARK prover whose computational overhead
nearly matches native execution. See Section 4 for details.
Overall, these optimizations lead to excellent concrete effi-
ciency, as we demonstrate in Section 8.

3 Preliminaries

We assume that all public parameters have length at least λ,
so that algorithms that receive these can run in time poly(λ).
Algebraic preliminaries. For a finite field 𝔽 , a smooth mul-
tiplicative subgroup of 𝔽 is a subgroup of the multiplicative
group 𝔽 ∗ having order 2k for some k ∈ ℕ. The structure of
such a subgroup enables efficient polynomial arithmetic. For a
function f : H→ 𝔽 we denote by f̂ the univariate polynomial
over 𝔽 with degree less than |H| such that f̂ (a) = f (a) for
every a ∈ H. f̂ is then called the low-degree extension of f .
Random oracles. A random oracle ρ is a function sampled
uniformly from the set of functions from {0,1}∗ to {0,1}λ.

3.1 Circuit model
Most efficient MPC protocols require expressing the computa-
tion as a circuit. In our case, the computation being performed
(zkSNARK proving) requires not only standard addition and
multiplication operations, but also operations such as (elliptic

curve) group arithmetic and random oracle calls. To capture
this richer functionality, we extend prior work [36] and con-
sider an extended circuit model that includes these operations.

Definition 3.1 (Oracle elliptic-curve circuit). Let 𝔽 be a finite
field of prime order q, and let 𝔾 be the q-order subgroup of
an elliptic curve. Then, an oracle elliptic-curve circuit Cρ

𝔽 ,𝔾
is an arithmetic circuit where (a) each wire takes on values
either in 𝔽 or 𝔾, and has either public or private visibility,
and (b) each gate is one of the following:
• Add𝔽 (wi ∈ 𝔽 ,w j ∈ 𝔽 )→ wk ∈ 𝔽 Set wk := wi +w j, where
“+” denotes addition in 𝔽 .

• Mul𝔽 (wi ∈ 𝔽 ,w j ∈ 𝔽 )→ wk ∈ 𝔽 sets wk := wi ·w j, where
“·” denotes multiplication in 𝔽 .

• Add𝔾(wi ∈𝔾,w j ∈𝔾)→wk ∈𝔾 sets wk := wi+w j, where
“+” denotes addition in 𝔾.

• Mul𝔾(wi ∈ 𝔽 ,w j ∈ 𝔾)→ wk ∈ 𝔾 sets wk := wi ·w j, where
“·” denotes scalar multiplication in 𝔾. At least one of wi or
w j must have public visibility.

• RO({wi}i)→wk ∈ 𝔽 sets wk := ρ({wi}i). Each wi must be
public.

• Reveal(wi)→ wk sets wk := wi and makes wk public.
For every gate except Reveal, the output wk is public if and
only if all input wires are public.

When 𝔽 , 𝔾, and ρ are obvious from context, we will omit
them, and instead write C. The circuit depth DEPTH(C) is
the maximum number of Mul𝔽 and Reveal gates in a path
from an input wire to an output wire, when all input wires to
these gates are private. This is strictly larger than traditional
notions of multiplicative depth. We use this more general
notion because the round complexity of our protocol scales
with circuit depth, and not multiplicative depth.

3.2 Additive secret sharing
Additive secret sharing enables sharing a message m among n
parties so that obtaining n−1 shares reveals no information
about m. Formally, a secret sharing scheme for a finite field 𝔽
is a pair SS= (Share,Combine) with the following syntax.
• Sharing: On input a message m∈ 𝔽 , and a number of parties

n, Share outputs n secret shares [JmKi]
n
i=1.

• Combining: On input secret shares [JmKi]
n
i=1,Combine com-

bines these shares to compute the message m ∈ 𝔽 n.
When the number of parties n is clear from context, we omit
it when invoking SS.Share. We abuse notation and denote
component-wise secret shares of the coefficients of a poly-
nomial p ∈ 𝔽≤d [X ] by [JpKi]

n
i=1. Additive secret sharing pre-

serves additive homomorphisms: for messages m1,m2 ∈ 𝔽 ,
for all i ∈ n, Jm1 +m2Ki = Jm1Ki + Jm2Ki.

3.3 Polynomial commitments
A polynomial commitment scheme enables a sender to com-
mit to a polynomial p and then later prove the correct evalua-



tion of p at a desired point. It consists of a tuple of algorithms
PC = (Setup,Trim,Commit,Open,Check) satisfying com-
pleteness, extractability, and hiding (see [14] for definitions
of these). We are interested in Commit and Open:
• PC.Commitρ(ck, p; p̄)→C. On input the commitment key
ck, a polynomial p over the field 𝔽 , PC.Commit outputs a
commitment C to the polynomial p. The randomness p̄ is
used if the commitment C is hiding.

• PC.Openρ(ck,C, p,z; p̄)→ π. On input the commitment
key ck, a commitment C, the polynomial p committed inside
C, an evaluation point z ∈ 𝔽 , and commitment randomness
p̄, PC.Open outputs an evaluation proof π.

3.4 Polynomial interactive oracle proof
A polynomial interactive oracle proof (PIOP) for an in-
dexed relation R is an interactive protocol specified by a
tuple PIOP= (𝔽 ,k,s,I,P,V) where 𝔽 is a finite field, k is the
number of rounds, s( j) is the number of prover polynomials
in the j-th round, and I, P, V are algorithms described next.

In an offline phase, the indexer I preprocesses the NP index
𝕚 into a set of indexed polynomials that are made available to
the prover P (in full) and to the verifier V (as oracles).

During the online phase, P(𝔽 , 𝕚,𝕩,𝕨), in each round j ∈ [k],
receives a message µ j ∈ 𝔽 ∗ from V(𝕩) and replies with s( j)
oracle polynomials p j,1, . . . , p j,s( j) ∈ 𝔽 [X ]. V can query these
polynomials and the indexed polynomials. A query consists
of a location z ∈ 𝔽 for an oracle pi, j, and its corresponding
answer is pi, j(z)∈ 𝔽 . After the interaction, the verifier accepts
or rejects. Every PIOP we consider in this paper is required
to achieve perfect completeness, negligible knowledge sound-
ness error, and zero knowledge. See [14] for details.

3.5 zkSNARKs
A succinct preprocessing non-interactive argument of knowl-
edge in the random oracle model (ROM) for an indexed rela-
tion R is a tuple of algorithms ARG= (G ,I ,P ,V ) satisfying
completeness, knowledge soundness, succinctness, and zero
knowledge. The indexer I preprocesses the NP index 𝕚 into
index-specific proving (ipk) and verification (ivk) keys. The
prover P , on input ipk, an instance 𝕩, and a witness 𝕨 such
that (𝕚,𝕩,𝕨) ∈R, outputs a proof π which can be checked by
the verifier V when given as input ivk and 𝕩.

Constructing zkSNARKs from PIOPs and PC schemes.
[14] constructs a zkSNARK from a PIOP and a PC scheme as
follows. First, the argument indexer I , on input 𝕚, invokes the
PIOP indexer I to obtain the indexed polynomials, and com-
mits to these using PC.Commit. It then constructs ipk out of
these polynomials and ck, and sets ivk to be the commitments.

The interactive argument prover P and verifier V respec-
tively invoke the PIOP prover P and verifier V. In each round,
instead of directly sending the polynomial oracles output by P,
P instead commits to these polynomials via PC.Commit, and

sends the resulting commitments to V , which invokes V to
generate its next message. After the interaction, V invokes V
to generate its queries to the committed polynomials. It sends
these to P , who replies with the desired evaluations along
with an evaluation proof attesting to their correctness relative
to the commitments. To obtain a zkSNARK, the Fiat–Shamir
transform [22] is applied to this interactive argument.

4 Circuits for common operations

We now describe efficient circuits for operations that are com-
monly found in zkSNARK provers. These circuits will be
used as building blocks for the PIOP prover circuits and for
the PC scheme circuits in Section 4.3. When self-evident, we
will omit proofs of claims about circuit depth.

4.1 Circuits for polynomial arithmetic
The fundamental objects in PIOP-based zkSNARKs are poly-
nomials, and so it is natural that provers for such zkSNARKs
make heavy use of polynomial arithmetic. We now describe
efficient circuits for common operations on polynomials.

PolyAdd(p1, p2)→ p3:
1. For i ∈ {0, . . . ,d}, set coefficient p3,i := Add𝔽 (p1,i, p2,i).

Claim 4.1. The circuit depth of PolyAdd is 0.

FFT(polynomial p,pub subgroup H)→{p(ωi)}|H|−1
i=0 :

1. Compute the FFT via the standard algorithm [17], using
only additions and multiplications by public values.

Claim 4.2. The circuit depth of FFT is 0.

IFFT(evaluations {p(ωi)}|H|−1
i=0 ,pub subgroup H)→ poly. p:

1. Compute the IFFT via the standard algorithm [17], using
only additions and multiplications by public values.

Claim 4.3. The circuit depth of IFFT is 0.

PolyEval(priv p,pub point z)→ priv v:
1. Compute v := ∑

d
i=0 pi · zi.

Claim 4.4. The circuit depth of PolyEval is 0.

PolyMul(priv p1,priv p2)→ priv p3:
1. Construct domain H over which p1, p2 will be evaluated.
2. Compute e1 := FFT(p1,H) and e2 := FFT(p2,H).
3. Compute e3 as the element-wise product of e1 and e2.
4. Interpolate these to obtain priv p3 := IFFT(e3,H).



Claim 4.5. The circuit depth of PolyMul is 1.

Proof. FFT and IFFT have depth 0, and the |H| multiplica-
tions are independent of each other.

PolyDiv(p,pub divisor d)→ (quotient q, remainder r):
1. Obtain quotient and remainder via Euclidean division.

Claim 4.6. The circuit depth of PolyDiv is 0.

Proof. This follows because polynomial division is linear
when the divisor d is public. Consider polynomials p1
and p2 such that (q1,r1) := PolyDiv(p1,d), and (q2,r2) :=
PolyDiv(p2,d). Consider p3 :=αp1+βp2 for arbitrary α,β∈
𝔽 , and let (q3,r3) := PolyDiv(p3,d). Then we have that

p3 = q3 ·d + r3 = α(q1 ·d + r1)+β(q2 ·d + r2)

= (αq1 +βq2) ·d +(αr1 +βr2)

This means that q3 = αq1 + βq2 and r3 = αr1 + βr2,
and hence PolyDiv(αp1 +βp2,d) = α ·PolyDiv(p1,d)+β ·
PolyDiv(p2,d), which implies that PolyDiv is linear.

4.2 Circuits for group arithmetic

MSM(priv ccc ∈ 𝔽 n,pub GGG ∈ 𝔾n)→ priv R ∈ 𝔾:
1. Output result priv R := ∑

n
i=1Mul𝔾(ci,Gi).

Claim 4.7. The circuit depth of MSM is 0.

4.3 Circuits for PC schemes
A circuit CPC for a PC scheme consists of subcircuits for
two operations: committing to polynomials, and producing
an evaluation proof for a committed polynomial at a given
point. In this section we will describe efficient subcircuits for
the popular pairing-based PCKZG polynomial commitment
scheme [29, 14]. Later we will use versions of these circuits
that allow committing to multiple polynomials with strict
degree bounds, and opening these at multiple points. Circuits
for these can be constructed from our simpler circuits via the
transformations in [14] without increasing circuit depth.

4.3.1 Circuit for PCKZG

CKZG.Commit(pub ck, p; p̄)→C:
1. Parse ck as ({αiG}D

i=0,{αiγG}D
i=0).

2. C :=MSM(p,{αiG}d
i=0)+MSM(p̄,{αiγG}d

i=0).

Claim 4.8. The circuit depth of CKZG.Commit is 0.

CKZG.Open(pub ck,C, p,pub z; p̄)→ proof π:
1. Compute random evaluation priv v̄ := PolyEval(p̄,z).
2. Compute witness and randomized witness polynomials:

(w,_) := PolyDiv(p,X− z); (w̄,_) := PolyDiv(p̄,X− z).
3. Commit to w: W :=CKZG.Commit(ck,w; w̄).
4. Output π := (W, v̄).

Claim 4.9. The circuit depth of CKZG.Open is 0.

5 Consistency checkers for PIOPs

Recall from Section 2.2 that the goal of a consistency checker
is to efficiently check that the polynomial oracles produced
by a (potentially malicious) PIOP prover match those that an
honest prover would have produced when interacting with the
same verifier messages. We first formally define consistency
checkers in Section 5.1, and then, in Section 5.2, describe an
efficient consistency checker for the PIOP of [14].

5.1 Definition
Ch is a consistency checker for a PIOP= (k,s,I,P,V) for
R if the following properties hold.
• Completeness: For all size bounds N ∈ ℕ, and for all effi-

cient adversaries A , the following probability equals one:

Pr


stCh := (𝕚,𝕩,𝕨)
for j ∈ {1, . . . ,k} :
(stCh,b j)← Chppp j(stCh)
b j = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(𝕚,𝕩,𝕨)← A(N)
stP := (𝕚,𝕩,𝕨)
stV := 𝕩 and pppI := I(𝕚)

for j ∈ {1, . . . ,k} :
(stV,c j)← V(stV)
(stP, ppp j) := P(stP,c j)


• Soundness: For all size bounds N ∈ ℕ, and all adversaries

P̃ = (P̃1, P̃2), the following probability is negligible:

Pr



stCh := (𝕚,𝕩,𝕨)
stP := (𝕚,𝕩,𝕨)
V p̃pp,pppI(stV) = 1
for j ∈ {1, . . . ,k} :
(stP, ppp j) := P(stP,c j;r j)

(stCh,b j)← Chp̃pp j(stCh)
(b j = 1)∧ (ppp j ̸= p̃pp j)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(𝕚,𝕩,𝕨) ∈R← P̃1(N)
stP := (𝕚,𝕩,𝕨)
stV := 𝕩 and pppI := I(𝕚)

for j ∈ {1, . . . ,k} :
(stV,c j)← V(stV)
(stP, ppp j) := P(stP,c j)

(p̃pp j,r j) := P̃2(c j)


We will assume that Ch can be decomposed into two sub-
algorithms ChQ and ChD, where ChQ outputs the queries
it wishes to make to its oracles, along with the expected an-
swers, and ChD checks that the responses to these queries are
consistent with the expected answers.

5.2 Consistency checker for MARLIN’s PIOP
We now provide an overview of our consistency checker for
the MARLIN PIOP of [14], and leave details to Appendix B.



Background on the MARLIN PIOP. Let us recall the struc-
ture of the MARLIN PIOP for the R1CS relation (described
in Section 2), with an eye towards aspects relevant towards
constructing a consistency checker. The PIOP uses as a build-
ing block a subPIOP for a holographic lincheck [14] that is
used to prove a matrix-vector product. It batches three such
subPIOPs (one for each R1CS matrix) together, resulting in
a protocol with three rounds. In the first round, the prover
sends polynomial oracles that are LDEs of the witness w, and
of Az and Bz, and sends a randomized masking polynomial.
In the second round, it sends two polynomials relating to the
univariate sumcheck lemma [2]. The third round is witness-
independent, and does not need to be checked for consistency.
Consistency checker. Our consistency checker, when given
access to the first round polynomial oracles, proceeds by
(1) sampling a random query point s, (2) locally evaluating
the LDE of the witness w at s, and (3) querying the LDE of
w (which is given as oracle) at s, and checking that the result
matches the local evaluation. This checker is exceedingly sim-
ple and efficient. In particular, it only performs O(|w|) field
multiplications operations. (In our application to delegation,
this corresponds to the computation performed by the delega-
tor to enforce worker honesty.) These simple checks suffice
because, by the soundness of the holographic lincheck sub-
PIOP, if the adversary changes any of the other polynomials,
the PIOP verifier’s checks will fail. (In our application, this
corresponds to the final delegated proof being invalid.)

6 Delegated SNARKs

A delegation protocol ΠSNARK for a zkSNARK ARG =
(G ,I ,P ,V ) is a protocol between a computationally weak D
and n powerful workers [Wi]

n
i=1 which allows D to outsource

the computations involved in P to the workers. In this sec-
tion we formally define ΠSNARK, and construct a delegation
protocol for the class of PIOP-based zkSNARKs.

6.1 Notation for MPC protocols

Protocol participants. We consider two kinds of partic-
ipants: (a) an honest delegator D that wishes to outsource
zkSNARK proof generation; and (b) n workers [Wi]

n
i=1 that

collectively perform the outsourced computation.
Protocol communication. Parties in our protocols commu-
nicate in one of two modes:
• Isolated mode: Honest workers communicate only with D ,

and not with each other, over secure authenticated channels.
• Collaborative mode: Workers communicate with each other

and with D over secure authenticated channels.

6.2 Definition
Let ARG = (G ,I ,P ,V ) be a SNARK for an indexed NP
relation R. Then ΠSNARK is a delegation protocol for ARG

with respect to the ideal functionality FSNARK (Fig. 2) if it is
a protocol between a delegator D and n workers [Wi]

n
i=1 such

that, for every (𝕚,𝕩,𝕨) ∈R and for every efficient real-world
adversary A , there exists an efficient ideal-world simulator SA ,
such that the output of the real execution is indistinguishable
from the output of the ideal execution. That is, the following
probability distributions are indistinguishable:

{REALΠ,A ,P((ipk,𝕩,𝕨),⊥)} ≈ {IDEALF ,S ,P((ipk,𝕩,𝕨),⊥)}

Here P := {D} ∪ [Wi]
n
i=1 denotes the set of all involved

parties, and ipk is the proving key specific to the index 𝕚.

1. Receive (ipk,𝕩,𝕨,r) from D
2. Compute π← P ρ(ipk,𝕩,𝕨;r).
3. Send (ipk,𝕩,π) to all workers (and hence to S ).
4. If S sends reject, output ⊥; else, output π to D .

Figure 2: Ideal functionality FSNARK.

We require the delegator’s computation in ΠSNARK to take
time O(|𝕨|). This precludes operations like MSMs and FFTs.

6.3 Delegating PIOP-based zkSNARKs
We construct a delegation protocol for SNARKs produced by
the compiler of [14]. In more detail, we achieve the following
theorem (we provide a proof in Appendix A).

Theorem 6.1 (delegating PIOP-based SNARKs). Let R be
an indexed relation. Consider the following components:
– PIOP= (k,s,I,P,V) is a polynomial IOP for R (see Sec-

tion 3.4), and CPIOP is a circuit for P;
– PC = (Setup,Trim,Commit,Open,Check) is a polyno-

mial commitment scheme (see Section 3.3), and CPC is
a circuit for (PC.Commit,PC.Open); and

– Ch is a consistency checker for PIOP.
Let ARG = (G ,I ,P ,V ) be a zkSNARK for R obtained by
invoking the compiler of [14] on PIOP and PC. Then CSNARK

(Fig. 3) is a circuit for P , and ΠSNARK (Fig. 4), when instanti-
ated with CSNARK, is a delegation protocol for ARG.

7 Implementation

We provide EOS, a Rust library that realizes our delegation
protocols for zkSNARKs, and includes components of inde-
pendent interest. EOS relies on, and contributes to, the state-
of-the-art arkworks libraries [16]. We generalize the existing
arkworks implementations of PIOP and PC schemes of [14]
to support our new abstractions for secret-shared field ele-
ments and polynomials, thus avoiding duplicated effort.

7.1 Optimizations

Improved parallelization. For the zkSNARKs that we con-
sider in this work, the majority of the computational overhead



CSNARK.Init
ρ(pub ipk,pub 𝕩,priv 𝕨;priv r):

1. Obtain from ipk the index 𝕚 and the verification key ivk.
2. Initialize random oracle state: stρ := RO(ivk,𝕩).
3. Initialize PIOP prover state: priv stP := (𝕚,𝕩,𝕨).
4. Initialize PIOP verifier state: pub stV := 𝕩.
5. Set round number j := 1.
6. Set PIOP verifier randomness µ j :=⊥.
7. Setup state: stP := (ipk,stρ,stP,stV, j,µ j).

CSNARK.Round
ρ:

1. Parse stP = (ipk,stρ,stP,stV, j,µ j).
2. Run PIOP verifier: (stV,msg j) := V(stV,µ j).
3. Set (stP, ppp j) := P(stP,msg j,r j).
4. Compute pub CCC j := Reveal(CPC.Commit(ipk.ck, ppp j; p̄pp j)).
5. Compute pub (stρ,µ j+1) := RO(stρ,CCC j).
6. Set stP := (stρ,stP,stV, ipk, j+1,µ j+1).
7. If the round j+1 is witness-independent, Reveal(stP ).

CSNARK.Finalize
ρ→ pub π:

1. Denote by ppp the set of all index and prover polynomials, and by CCC and p̄pp the
corresponding commitments and random polynomials.

2. Compute the query set Q := QV(stV).
3. Evaluate ppp at Q via PolyEval to obtain evaluations vvv, and send these to D .
4. Compute evaluation proof πPC :=CPC.Openρ(ck,CCC, ppp,Q; p̄pp).
5. Assemble and reveal to D the final proof π := (CCC,vvv,πPC).

Figure 3: Circuit CSNARK for zkSNARK prover.

Preprocess(C):
If In isolated mode, output nothing. Otherwise, D samples multiplication triples for the workers as follows.
1. For each k ∈ [|C|Mul𝔽 ]:

(a) For each i ∈ [n−1], D samples seed si←{0,1}λ and computes Wi’s share of the k-th triple: (JαkKi,JβkKi,JγkKi) := PRG(si).
(b) D computes (JαkKn,JβkKn) := PRG(sn).

2. D sets JγkKn := (∑n
i=1 JαkKi ·∑n

i=1 JβkKi)−∑
n−1
i=1 JγkKi, and sends to worker Wn (sn, [JγkKn]

m
k=1), and sends to the other workers si.

3. For each i ∈ [n−1], Wi computes (J[αk]
m
k=1Ki,J[βk]

m
k=1Ki,J[γk]

m
k=1Ki) := PRG(si).

4. Wn additionally computes (J[αk]
m
k=1Kn,J[βk]

m
k=1Kn) := PRG(sn).

Online:
1. The delegator D has input (pub ipk,pub 𝕩,priv 𝕨,priv r). It sends to the workers ipk and 𝕩 in the clear, and secret shares 𝕨 and r.
2. D initializes the PIOP checker state: stCh := (𝕚,𝕩,𝕨).
3. Initialize the SNARK prover: ExecCircuit(CSNARK.Init

ρ).
4. For each round j ∈ {1, . . . ,k}:

(a) The parties invoke ExecCircuit(CSNARK.Round
ρ) to execute the j-th round of the SNARK prover, and D receives (stρ,stV,CCC j).

(b) D invokes ChQ to obtain queries to ppp j (the polynomials in CCC j), and the expected answers: (stCh,Q,vvv j)← ChQ(stCh).
(c) The workers receive Q from D , and invoke ExecCircuit(CPC.Open) to reveal to D the evaluation proof π j.
(d) D verifies π j with respect to (CCC j,Q,vvv j), and the workers to proceed if it is valid. (This corresponds to the check of ChD.)

5. D obtains the final proof π← ExecCircuit(CSNARK.Finalize
ρ).

ExecCircuit(circuit C): Process each gate of C as follows:
• Add𝔽 (wa,wb)→ wc:

– If wa and wb are both public, then the workers just set pub wc := wa +wb.
– If wa and wb are both private, then each worker Wi sets JwcKi := JwaKi + JwbKi.
– Else, assuming wlog that wa is public, W1 sets JwcK1 := wa + JwbK1, while every other worker Wi sets JwcKi := JwbKi.

• Mul𝔽 (wa,wb)→ wc:
– If wa and wb are both public, then the workers just set pub wc := wa ·wb.
– If wa and wb are both private, then:

* In isolated mode, the workers send shares of wa and wb to D , who reconstructs wa and wb and reshares wc := wawb.
* In collaborative mode, the workers use the triples generated in the preprocessing step to evaluate the multiplication.

– Else, without loss of generality assume wa is public and wb is private. Then each worker Wi sets JwcKi := wa · JwbKi.
• Add𝔾(wa,wb)→ wc: Proceed as in Add𝔽 , but use group addition instead.
• Mul𝔾(wa,wb)→ wc: Proceed as in Mul𝔽 , but use scalar multiplication in 𝔾 instead. (This is linear if wa or wb are pub).
• Reveal(wa)→ wb:

– If wa is public, then the workers just set pub wb := wa.
– Else, in isolated mode, each worker Wi sends JwaKi to D , who combines these shares and returns pub wb := ∑

n
i=1 JwaKi.

– Else, in collaborative mode, each worker Wi broadcasts JwaKi, and all workers reconstruct pub wb := ∑
n
i=1 JwaKi.

• RO(wa1 , . . . ,wak )→ wb: Set pub wb := ρ(Reveal(wa1), . . . ,Reveal(wak )).

Figure 4: Our delegation protocol for PIOP-based zkSNARKs



of the prover arises from finite field FFTs and elliptic-curve
multi-scalar multiplications (MSMs). This is reflected in our
delegation protocols as well: the majority of the worker-time
is spent in these two tasks. Thus, achieving an efficient imple-
mentation of these tasks is critical for our protocol to be ben-
eficial. One strategy is to leverage parallelism. However, the
libraries that we use in our implementation3 provide parallel
implementations for FFTs and MSMs that achieve diminish-
ing returns as the number of threads increases; after a thresh-
old number t of threads, the latency of the FFT and MSM
algorithms does not decrease with the number of threads.

To overcome this issue, we leverage the insight that zk-
SNARK prover perform many independent FFTs and MSMs
that can be computed concurrently and in parallel. In more
detail, we modified the underlying libraries to allocate to
each FFT or MSM only t threads, and to then run multiple
FFTs/MSMs in parallel. Hence, if a machine has mt threads
for some m, then our implementation performs m FFTs/MSMs
in parallel, each running with t threads.

In our experiments (Section 8), these optimizations reduce
the time required to commit to a batch of polynomials by up
to 3× and the time required to run the PIOP prover by up to
4×. These improvements are of independent interest, and we
plan to upstream them to the relevant libraries.
Reduced delegator communication when secret sharing
vectors. Having the delegator naively secret share a vector
v to all workers requires communicating n · |v| field elements.
We instead adopt a technique from the semi-honest MPC
literature [21, 39] and have the delegator send a full share of
size |v| only to a single worker while the rest get PRG seeds.
This reduces communication to |v|+Oλ(n) field elements.
Lower memory usage for PIOP delegation. Our delegator-
based triple-generation protocol requires the delegator to pro-
cess many field elements (proportional to the number M of
constraints in the R1CS instance being delegated). A straight-
forward implementation would have the delegator keep all
these elements in memory, resulting in large memory usage
for the delegator. Instead, we observe that the delegator only
requires streaming access to these elements, and so can pro-
cess them in batches. We implement this idea and enable the
delegator to only use a constant amount of additional memory
(beyond that required to produce the initial witness).
Reducing latency for secret multiplications. For an R1CS
instance with M = 2k constraints, the PIOP prover P of [14,
Appendix E] computes the following secret multiplication:

ẑA · ẑB := (z̄A + rAvH) · (z̄B + rBvH)

Here H is a multiplicative subgroup of size M, z = (x,w) ∈
𝔽M , z̄A and z̄B are the LDEs of zA := Az and zB := Bz, respec-
tively, over H, vH is the vanishing polynomial of H (of degree
|H|), and rA and rB are randomly sampled elements in 𝔽 . As
both ẑA and ẑB have degree |H|, their product has degree 2|H|

3https://arkworks.rs/marlin for PIOPs, and https://arkworks.
rs/poly-commit for PC schemes

and is specified by 2|H|+ 1 evaluations. Multiplying them
thus requires FFTs and IFFTs of size 4|H| (as we must round
to the next power of two), which is expensive for large H. We
avoid this by rewriting the multiplication as:

ẑA · ẑB = z̄Az̄B + rAvH z̄B + rBvH z̄A + rArBv2
H .

Since v2
H can be computed efficiently in the clear without

FFTs, evaluating this expression now only requires FFTs of
size 2|H|. This enables the following optimizations:
• Isolated mode: Workers send their shares of FFT(z̄A) and

FFT(z̄B) to the delegator. The delegator samples rA and rB
locally, reconstructs FFT(z̄A) and FFT(z̄B), and then sends
shares of FFT(z̄A)◦FFT(z̄B), rA, rB, and rArB to the workers,
who use these shares to compute shares of the final product.

• Collaborative mode: The workers locally sample shares of
rA and rB, use multiplication triples to compute shares of
{FFT(z̄A)◦FFT(z̄B), rAzB, rBzA, rArB}, and then use these
to locally compute shares of the final product.

Overall, these improvements reduce worker computation (the
FFT is smaller and the additional multiplications can be per-
formed in parallel), and worker communication (only 2|H|
secret multiplications need to be performed, instead of 4|H|).

Reducing communication for scalar-vector products. In
the foregoing optimization, in collaborative mode, workers
have to compute the scalar-vector products rAzB and rBzA
using multiplication triples. Each such product requires |H|
triples {(ai,bi,ai ·bi) ∈ 𝔽 3}i∈[|H|]. However, all of a1, . . .a|H|
are used to open the same value (for example, rA). Instead of
generating and then wasting |H|−1 of these values, we reduce
communication cost in both the preprocessing and online
phases by using triples of the form {a,bi,a · bi}i∈[|H|] ∈ 𝔽 3.
When delegating with two workers, this optimization reduces
per-worker communication from 8|H| to 6|H| field elements.

8 Evaluation

We evaluate EOS by using it to delegate the prover of the
zkSNARK of [14], with the aim of answering the following
questions:

Q1: Do our delegation protocols enable proving R1CS
instances larger than possible with local proving?

Q2: For locally-provable R1CS instances, what is the over-
head (if any) of delegation, in terms of end-to-end time and
communication costs, and how do these costs scale with in-
stance size? We answer these questions via a comprehensive
evaluation. We answer Q1 in Section 8.2 by comparing the
instance sizes provable via delegation with the correspond-
ing sizes provable locally, within the same memory and time
budgets for the delegator. We answer Q2 in Section 8.3 by
comparing the cost of delegated proving to that of proving in
both fully-private and non-private baselines. We also evaluate
how these costs scale with R1CS instance size. Additionally,
in Section 8.4, we provide a detailed comparison with [36].

https://arkworks.rs/marlin
https://arkworks.rs/poly-commit
https://arkworks.rs/poly-commit


8.1 Experimental setup

Delegator setups. All experiments were evaluated with three
different delegator setups.
• Setup LAPTOPHB: The delegator is an AWS r4.xlarge

instance with 32GB of RAM and 4 cores of an Intel Xeon
E5-2686 CPU at 2.3GHz. It is located in us-west-2, and
has a network throughput of 3Gbps. This setup emulates a
midgrade laptop with a strong network connection.

• Setup LAPTOPLB: The delegator is the same as in
LAPTOPHB, but with a throttled connection of 350Mbps
down and 13Mbps up. This setup emulates a midgrade
laptop with an average network connection.

• Setup MOBILE: The delegator is a Google Pixel 4a smart-
phone with 6GB of RAM and a Qualcomm Snapdragon
730G processor (six cores at 1.8GHz and two cores at
2.2GHz). It is located in Northern California and uses a Wi-
Fi connection with 350Mbps download speed and 13Mbps
upload speed. This setup represents a commodity smart-
phone with an average Wi-Fi connection.

Workers. In each of the foregoing setups, the delega-
tors interacted with two worker machines running on AWS
c5.24xlarge instances with 192GB of RAM and 96-core
Intel Xeon Platinum 8000 series CPUs at 3.6GHz. We placed
the worker machines in different regions to simulate different
trust domains: worker W1 in the us-west-1 (Northern Cali-
fornia) region, and worker W2 in the us-east-1 (Northern
Virginia) region. Each worker cost $0.14/sec.

In all setups, the RTT between (a) D and W1 was 21ms,
(b) D and W2 was 72ms, and (c) W1 and W2 was 62ms.

8.2 Can delegation prove large instances?

In Table 1 we evaluate the largest R1CS instances that can be
proven locally and via delegation with EOS, within fixed time
budgets and memory budgets. Our evaluation shows that in
every case, EOS enables proving larger instances. In particu-
lar, in all setups, delegation in both isolated and collaborative
mode enables proving up to 256× larger instances within
the same memory budget of 3GB; in MOBILE, collaborative
mode delegation can prove 32× larger instances within the
same time budget of 100s; finally, in LAPTOPHB, the largest
delegatable instance size is the same in isolated and collabora-
tive modes, while in LAPTOPLB and MOBILE, collaborative
mode supports larger sizes. This is because in the latter setups,
delegator-worker communication is the bottleneck.

Remark 8.1 (witness streaming). Given streaming access to
the witness, the delegator’s algorithm in our protocols can be
executed in a streaming manner, requiring only constant space.
Hence, if the witness can itself be generated in a streaming
manner, then our protocols enable delegation for instances of
any size (assuming worker instances with sufficient memory).

setup
prover
type

time budget memory budget

size increase size increase

LAPTOPHB
local 218 — 217 —
isolated 221 8× 225 256×
collab. 221 8× 225 256×

LAPTOPLB
local 218 — 217 —
isolated 219 2× 225 256×
collab. 221 8× 225 256×

MOBILE

local 216 — 217 —
isolated 219 8× 225 256×
collab. 221 32× 225 256×

Table 1: Largest instance sizes provable when the delegator
has (a) a time budget of 100s and maximum available memory
budget; and (b) a memory budget of 3GB and no time budget.

8.3 What is the overhead of delegation?
We have established that, for fixed time and memory budgets,
our delegation protocols enable proving larger instance sizes
than is possible when proving locally. Now we examine the
latency and communication costs incurred during delegation.
Baselines. We compare these costs for delegation protocols
against the same costs for the following baselines.
• DEL: the delegator locally generates the zkSNARK.
• WORKER: a single worker locally generates the zkSNARK.
These baselines represent two extremes in the trade-off be-
tween privacy and proving cost: proving on the delegator is
slow but hides the witness, while proving on a worker ma-
chine is fast but completely leaks the witness. Our delegation
protocol explores the space between these extremes by guar-
anteeing privacy as long as at least one worker is honest.

8.3.1 End-to-end time for proof generation

In Fig. 5, we compare the end-to-end time (henceforth la-
tency) required to produce a proof in EOS with the latency of
Baselines DEL and WORKER. These numbers do not include
preprocessing time.4 We find that:
• In LAPTOPHB, latency when delegating in isolated mode

is lower than in Baseline DEL by 5.5×–8.5×, while latency
in collaborative mode is lower by 5.5×–9×. The speedups
are similar as the high bandwidth means that delegator-
worker communication is not a bottleneck. Furthermore,
the overhead with respect to the optimal non-private Base-
line WORKER is at most 1.1×–1.9× in both modes, which
demonstrates that, given sufficient bandwidth, EOS has low
computational overhead.

• In LAPTOPLB, the restricted upload bandwidth hinders
latency compared to LAPTOPHB. This is expected because
the delegator must secret-share the witness with the workers,
and must help compute secret multiplications. While both
costs are linear in the instance size, in isolated mode, the



communication for the secret multiplication occurs during
proof generation itself, but in collaborative mode it occurs
in the preprocessing phase (see Fig. 8), resulting in a lower
online delegator cost. Concretely, Fig. 5 shows that isolated
mode achieves a 1.7× speedup over Baseline DEL while
collaborative mode achieves a 5.7× speedup.

• In MOBILE, as in LAPTOPLB, the restricted bandwidth
worsens the latency. However, the smartphone delegator
of MOBILE is much less powerful than the laptop delega-
tor of LAPTOPLB, which is illustrated by the larger gap
between Baselines DEL and WORKER. This means that
isolated mode still provides a 7.6×–8.5× speedup, while
collaborative mode achieves a 22×–26× speedup.

In summary, EOS provides a speedup over Baseline DEL in
all setups. The most significant improvements occur when the
delegator has sufficient bandwidth or is resource constrained.
If preprocessing is possible, collaborative mode provides su-
perior performance to isolated mode.

8.3.2 Delegator online time

In Fig. 6, we show the time for which the delegator is actively
participating in the proof generation. This metric, which we
call “online time”, includes computation time in local proving
(Baseline DEL) and, in delegation, time spent for computation
and communication during the online phase.4

In general, we see that the delegator online time is lower
in collaborative mode than in isolated mode, as in the latter
the delegator has to additionally assist with computing secret
multiplications and verifier challenges. However, in both cases
the online time is significantly lower than the times in the
baselines. Concretely, in Fig. 6 we see the following speedups:

• In LAPTOPHB, delegation in isolated mode reduces dele-
gator online time by at least 19×, while delegation in col-
laborative mode reduces online time by at least 592×.

• In LAPTOPLB, delegation in isolated mode reduces dele-
gator online time by at least 2×, while delegation in collab-
orative mode reduces online time by at least 12×.

• In MOBILE, delegation in isolated mode reduces delegator
online time by at least 10×, while delegation in collabora-
tive mode reduces online time by at least 96×.

Notice that in all cases, the gap between isolated and col-
laborative mode reduces as the instance size increases. This
is because at lower instance sizes, the overhead of the dele-
gator’s secret multiplications is larger than the overhead of
delegator-worker communication. As instance size increases,
the communication overhead starts dominating.

4We exclude preprocessing time from these figures as it is independent of
the witness, and the preprocessed material can be generated and stored much
before it is needed. See Section 8.3.3 for details.

8.3.3 Cost of preprocessing

We evaluate preprocessing cost in Fig. 7. We find that at
small instance sizes, the preprocessing cost is similar in all
setups, but that as instance size increases, the low bandwidth
in the LAPTOPLB and MOBILE setups becomes a bottleneck,
leading to much higher times than in LAPTOPHB. Further-
more, we see that the preprocessing time converges in the low-
bandwidth setups, which indicates that the communication
cost is the dominating factor. Note that because preprocessed
material can be stored on the server until it is needed, it can
be generated when the delegator’s device is connected to a
high-bandwidth network, thus lowering preprocessing cost.

8.3.4 Communication overhead of delegation

In Fig. 8, we report the cost of delegator-worker communica-
tion and find that it is the same for each setup. As expected, the
cost grows linearly with the instance size, and isolated mode
incurs a higher cost, even when accounting for preprocessing.

8.4 Comparison with the protocols of OB22
As mentioned in Section 1.2, the distributed proving proto-
cols of OB22 [36] are not specialized for delegation, and do
not perform as well as EOS does in this setting. To estimate
the actual cost of these differences, we evaluated OB22 on
LAPTOPHB using their open-source code.5 We chose to eval-
uate in LAPTOPHB as OB22 compares best in this setting:
in the other setups, where bandwidth is a bottleneck, OB22
does progressively worse because of its higher communica-
tion cost. The results of this evaluation are reported in Fig. 9,
where we compare the latency of OB22 to that of our protocol,
and find that EOS is 6–8× faster. Additionally, our protocols
require 5× less communication between workers and 3× less
communication between the delegator and worker machines.

9 Conclusion

In this paper, we define, construct, and implement delegation
protocols for zkSNARKs. Our delegation protocols enable
speedups in proving time in a variety of bandwidth and compu-
tation settings, and achieve malicious security without relying
on traditional tools used in malicious MPC.
Acknowledgements. We thank the anonymous reviewers as
well as our shepherd for their detailed feedback that simpli-
fied and improved the presentation of this paper. This work
was supported in part by the NSF CISE Expeditions CCF-
1730628, NSF Career 1943347, and gifts/awards from the
Ethereum Foundation, Sloan Foundation, Bakar Program, Al-
ibaba, Amazon Web Services, Ant Group, Capital One, Erics-
son, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia,
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Figure 5: Latency of proof generation when delegating the zkSNARK of [14] in the three setups.
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Figure 6: Delegator online time for the zkSNARK of [14] in the three setups.
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A Proof of security for Theorem 6.1

Preprocess(C):
1. If we are in isolated mode, output nothing.
2. If we are in collaborative mode, then generate multiplication triples

as in ΠSNARK.

Online:
1. Receive the index proving key ipk, the NP instance 𝕩, and the proof

π = (CCC,vvv,πPC) from FSNARK.
2. Set the simulated witness �̃� := 0|𝕨|, and sample secret shares for

it: [J�̃�Ki]
n
i=1← SS.Share(𝔽 , �̃�,n).

3. Set the simulated randomness r := 0∈ 𝔽 , then sample secret shares
for it: [JrKi]

n
i=1← SS.Share(𝔽 ,r,n).

4. Set the initial Ch state to stCh := (𝕚,𝕩, �̃�).
5. Send to the adversarial parties their shares of �̃� and randomness r,

along with the index proving key ipk, and the NP instance 𝕩.
6. Simulate the protocol execution for all the parties using their secret

shares of �̃� and r.
7. Handle the execution as follows:

• To evaluate linear gates, (Add𝔽 , Add𝔾, Mul𝔾, and Mul𝔽 when
one of the inputs is public), there is no interaction between par-
ties, and so computation proceeds locally according to ΠSNARK.

• To evaluate Mul𝔽 (wa,wb),
– Isolated mode: receive from A its shares of wa and wb, com-

bine these with the honest parties’ shares, and share the results
back to A .

– Collaborative mode: proceed as in ΠSNARK.
• To evaluate Reveal, (a) read from π the actual wire value w

revealed at this gate, (b) read from the simulated execution of
honest parties their shares the expected messages w̃, and then
(c) broadcast w− w̃. Upon receiving wA = wA + ε from A , re-
construct the (possibly incorrect) public wire value w̃ := w+ ε.

• To evaluate RO(w), read the expected output o of ρ at that point
from the proof π by running the SNARK verifier V , and return
to the adversary this output. Add the mapping (w 7→ o) to the
programming µ.

• To handle checks related to the PIOP consistency checker Ch,
(a) Invoke ChQ(stCh) to obtain the query set Q and the ex-

pected answers vvv.
(b) Send Q to A , and receive the shares of the opening proof

in return.
(c) Let CCC j be the set of commitments corresponding to the

polynomials ppp j being queried in this round.
(d) If the proof passes, invoke the PC extractor to obtain the

polynomials committed inside CCC j . If these extracted poly-
nomials are consistent with the polynomials expected from
the simulation at this point, continue. Otherwise, send
reject to FSNARK.

8. Let π′ be the final proof obtained at the end of the protocol. If
V (ivk,𝕩,π′) = 0, then send reject to FSNARK.

9. Output the programming µ for the random oracle.

Figure 10: Simulator SA for ΠSNARK.

In Fig. 10 we describe a simulator S for ΠSNARK.
We argue that the output of our simulator is correct in two

steps. First, we argue that the all steps prior to a Reveal gate
are simulated correctly, and then argue that the outputs of
Reveal gates are also simulated correctly.

Input. From the perspective of the corrupted parties, the
received shares of �̃� and r are indistinguishable from random.

Linear gates do not involve any communication between
parties. Multiplication gates require exchanging either partial
openings that are perfectly hiding (collaborative mode), or
perfectly random shares (isolated mode), and thus reveal no
information in either the real or the ideal world.

Multiplication gates are handled either by sending shares
to the delegator (in isolated mode), or by opening blinded wire
values (in collaborative mode). In both cases, the adversary
learns nothing about the shared values.

For random oracle gates, if the input is public, then, as-
suming the random oracle is sampled uniformly at random
from U(λ), then no adversary can distinguish between the
programmed random oracle and the actual random oracle.

For reveal gates, our circuits reveal two kinds of values:
wires representing commitments and evaluation proofs, and
wires representing evaluations of prover polynomials. We will
analyze each of these.
• Commitments and evaluation proofs. In the ideal world, the

revealed shares are hiding commitments corresponding to
random polynomials, while in the real world, we reveal hid-
ing commitments to the actual shares of the witness. In both
worlds, the commitments sum up to the actual commitment
output at that gate. Since the PC scheme is hiding, these are
indistinguishable. The same holds for evaluation proofs.

• Evaluations of prover polynomials. In the ideal world, we
reveal evaluations of shares of random polynomials, while
in the real world, we reveal evaluations of shares of prover
polynomials. Since honest parties in both cases randomize
their polynomials in the same way (using fresh random-
ness), In both worlds, these shares of evaluations sum up
to the actual evaluation output at that gate. Since the PIOP
is bounded-query zero-knowledge, the distributions of the
revealed evaluations are identical in both worlds.

Leakage in consistency checks. There is no leakage in the
consistency checks, as the adversary sees neither the evalua-
tions nor the opening proof that is involved in the consistency
check.

Probability of rejection due to consistency checks. If the
adversary behaves honestly, then by perfect completeness of
the PIOP checker and the PC scheme, as well as correctness
of the PC extractor, the consistency checks will always pass.
If the adversary deviates from the protocol, then it can lead to
a distinguishing advantage if either the real check passes, but
the ideal check fails, or vice versa.

The first case happens if either the (a) PIOP checker was
accepted a polynomial that is not consistent with its checks, or
(b) the PC scheme’s evaluation binding is broken, or (c) the PC
scheme’s randomness binding is broken. The probability of
all three is negligible, and so by the union bound this happens
with negligible probability.



The second case happens if the extractability of the PC
scheme is broken: the adversary was able to produce a proof
for an invalid claim (we know the claim is invalid from the
soundness of the PIOP checker). This happens with negligible
probability.

Hence, overall the distinguishing advantage is negligible.
Probability of rejection due to incorrect output proof. In
both worlds the delegator checks if the output proof is correct.
In both cases, since the previous consistency checks ensure
that some part of the output proof corresponds to the dele-
gator’s witness, we can invoke knowledge soundness of the
scheme to assert that the probability of the real check passing
(but the ideal check failing) is negligible.

B Consistency checker for MARLIN

The algorithm described below is a consistency checker for
the MARLIN PIOP of [14].

Chppp1(𝕚,𝕩,𝕨):
1. Parse 𝕨 as a vector w ∈ 𝔽 n, and let H be a smooth multi-

plicative subgroup of 𝔽 of order n.
2. Parse the oracles ppp1 as (s, ŵ, ẑA, ẑB).
3. Sample an evaluation point z← 𝔽
4. Query the oracle ŵ at z, to obtain v ∈ 𝔽 .
5. Use barycentric evaluation [5, 12] to locally evaluate ŵ at z

in O(n) field operations, and check that the result is v.

We now show that this is a consistency checker for the MAR-
LIN PIOP.

Completeness follows from completeness of the MARLIN
PIOP: if the PIOP prover is honest, then its oracle ŵ will
be consistent with the witness w, and so the evaluations will
match.

Soundness follows from soundness of the MARLIN PIOP,
and in particular of the subPIOPs for holographic lincheck:
if ŵ is consistent with the witness w, and the PIOP veri-
fier’s checks pass, but the other prover polynomials do not
equal those produced in the honest execution, then we know
that these polynomials take on values inconsistent with the
lincheck relation. We can use this fact to then construct an
adversary against the lincheck subPIOP, and hence against
the MARLIN PIOP, which is a contradiction.
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