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Abstract

The large-scale code in software supports the rich and di-
verse functionalities, and at the same time contains potential
vulnerabilities. Fuzzing, as one of the most popular vulnera-
bility detection methods, continues evolving in both industry
and academy, aiming to find more vulnerabilities by covering
more code. However, we find that even with the state-of-
the-art fuzzers, there is still some unexplored code that can
only be triggered using a specific combination of program op-
tions. Simply mutating the options may generate many invalid
combinations due to the lack of consideration of constraints
(or called relationships) among options. In this paper, we
leverage natural language processing (NLP) to automatically
extract option descriptions from program documents and an-
alyze the relationship (e.g., conflicts, dependencies) among
the options before filtering out invalid combinations and only
leaving the valid ones for fuzzing. We implemented a tool
called CarpetFuzz and evaluated its performance. The results
show that CarpetFuzz accurately extracts the relationships
from documents with 96.10% precision and 88.85% recall.
Based on these relationships, CarpetFuzz reduced the 67.91%
option combinations to be tested. It helps AFL find 45.97%
more paths that other fuzzers cannot discover. After analyz-
ing 20 popular open-source programs, CarpetFuzz discovered
57 vulnerabilities, including 43 undisclosed ones. We also
successfully obtained CVE IDs for 30 vulnerabilities.

1 Introduction

As software complexity grows, the scale of code in software
increases rapidly. For example, according to OpenHub’s anal-
ysis report [36, 37], lines of code of popular software Apache
HTTP Server and MySQL have reached 1.6 million and 2.9
million, respectively. The large-scale code supports the rich
and diverse functions of the software, satisfying the various
needs of users. However, it also expands the attack surfaces
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and increases the difficulty of finding potential vulnerabilities,
bringing higher security risks and defense costs.

Coverage-guided fuzzing is one of the most successful vul-
nerability discovery techniques [69], which keeps mutating
the input to increase code coverage to trigger a potential se-
curity violation in the software (e.g., write access violations).
Most previous studies have focused on optimizing strategies
in the fuzzing process to increase coverage, such as seed selec-
tion [20,41], seed schedule [3,4,40,54,61,67], mutation [8,32],
and feedback strategies [1,6,15,16,30,33,44]. These improve-
ments have significantly enhanced the capability of fuzzers
to discover vulnerabilities. As of January 2022, more than
36,000 bugs have been discovered by Google’s continuous
fuzzing service, OSS-Fuzz, alone [19]. However, although
the latest fuzzers use different strategies to choose various
seeds and mutate inputs and already have a strong program
exploration capability, some code remains unexplored.

The main reason is that these latest fuzzers did not fuzz
the programs with some specific command-line options. A
command-line option (or simply option) tells the program
which operation to be modified. Some options correspond to
different program branches, meaning that some code can only
be reached by specifying certain options instead of changing
the input file. However, in previously exposed vulnerabili-
ties, only small parts of options were specified. For exam-
ple, Libtiff’s 103 CVEs from 2014 to 2020 specified only 20
different options, accounting for 9.8% of the total options,
implying that many option-dependent codes may remain un-
explored. Since the number of combinations may be large, it’s
unrealistic to iterate over them all. For example, the popular
image processing program ImageMagick has 242 different
options [23], with 7.1×1072 possible combinations.

Some researchers [5, 9, 29, 45, 55, 66] attempted to address
this limitation by mutating option combinations. However,
many mutated combinations may be invalid due to the lack of
considering the relationships among options, such as conflicts
(i.e., cannot be used together) and dependencies (i.e., must
use together). For example, only 11% of the combinations of
openssl-rsa generated with the mutation algorithm of prior



research are valid. This paper aims to extract relationships
among options but it is challenging for the following reasons.
Challenge - C1. Relationships among options are usually
declared in natural language in the documentation and can be
declared in entirely different ways, greatly increasing identifi-
cation difficulty. For example, the conflict between the -a and
-b options can be declared in several ways like, “-a cannot be
used with -b,” “-a is mutually exclusive with -b,” and “no more
than one of these options may be given.” Simple approaches
like template matching do not work well on this problem.
Additionally, some relationships are declared implicitly and
can only be identified by comparing multiple sentences. For
example, the tiffcp document describes the -B and -L options
as “Force output to be written with Big-Endian byte order”
and “Force output to be written with Little-Endian byte or-
der.” Although not explicitly declared, the conflict between
-B and -L can be inferred by comparing the two sentences,
which depict two diametrically opposite behaviors. An accu-
rate and straightforward way to identify these relationships is
manual inspection, but it is labor-intensive and unrealistic for
large-scale identification. How to find out relationships among
options from documents automatically becomes necessary.
Challenge - C2. After relationships in natural language form
have been identified from documentation, it is still hard to
automatically extract concrete relationships (e.g., conflicts or
dependencies). First, it is challenging to locate a relationship’s
related options automatically. For example, the sentence, “Ei-
ther -f or -b must be used with -C, and -C cannot be used with
-F or -d,” declares a dependency among the -f, -b, and -C op-
tions, along with a conflict among the -C, -F, and -d options.
These relationships’ related options cannot be automatically
determined without an accurate analysis of the grammati-
cal structure. Second, as mentioned before, the relationship
among options can be declared in entirely different ways. So
simple methods like keyword matching cannot be used to
determine the kind of relationship declared automatically.

In this paper, we addressed the above challenges and pro-
posed CarpetFuzz, an NLP-based fuzzing assistance tool for
extracting program option constraints. The basic idea of Car-
petFuzz is to use natural language processing (NLP) to iden-
tify and extract the relationships (e.g., conflicts or dependen-
cies) among program options from the description of each
option in the documentation and filter out invalid combina-
tions to reduce the option combinations that need to be fuzzed.
Given a program’s document, CarpetFuzz first extracts all its
options and corresponding descriptions by parsing the OP-
TIONS section. Then CarpetFuzz uses a machine learning
model to determine whether a relationship is declared in the
descriptions. Since such sentences account for very little in
the document (e.g., 3.4% in the tiffcp document), we use the
entropy-based uncertainty sampling [11], an effective active
learning methodology, to reduce human effort in labeling
training data. To identify relationships implicitly declared
by multiple sentences, CarpetFuzz summarizes a series of

features of implicit declarations and leverages NLP to find
all sentence pairs satisfying these features. After identifying
relationships among options in the program, CarpetFuzz lever-
ages a mixing forward and backward traversal method to find
the relationship-related node from the dependency tree (ob-
tained from the dependency parsing). Furthermore, based on
linguistics, CarpetFuzz leverages a polarity-based finite state
machine to determine concrete relationship. At last, Carpet-
Fuzz filters out combinations not satisfying these relationships
to reduce the number of combinations for fuzzing.

We evaluated CarpetFuzz on 20 popular real-world open-
source programs. According to their documents, CarpetFuzz
extracted 282 relationships from the documents which in-
clude 2952 sentences in 260.8 seconds with 96.10% precision
and 88.85% recall. Among these relationships, 218 were im-
plicitly declared, with 95.87% precision and 90.09% recall.
Based on these relationships, we reduced the 67.91% op-
tion combinations, significantly reducing the search space of
combinations, which demonstrated the necessity of extract-
ing option relationships. With the valid option combinations,
CarpetFuzz helped AFL find 45.97% more paths that other
fuzzers cannot discover. Also, CarpetFuzz found 57 crashes.
After our analysis, 30 crashes were related to specific option
combinations, proving the importance of fuzzing with valid
option combinations. So far, 30 crashes have been assigned
with CVE IDs. We also compared the fuzzing performance
of CarpetFuzz with the state-of-the-art option configuration
fuzzing tool POWER on its benchmark. CarpetFuzz found 94
unique crashes, 1.71 times that of POWER.
Responsible disclosure. We immediately disclosed all these
vulnerabilities to the software developers as soon as we
discovered them. Moreover, we have proactively provided
patches to them. Till now, 45 vulnerabilities have been fixed,
nine of which were fixed by our patches.
Contributions. The contributions of this paper are summa-
rized as follows:
• New technique. We proposed a novel technique for identi-

fying and extracting constraints among program options from
the documentation. To the best of our knowledge, this is the
first study that tries to use NLP to automatically figure out the
relationships among program options from the documenta-
tion. With the help of this technique, AFL finds 45.97% more
paths that other fuzzers cannot discover.
• Implementation and discoveries. We implemented the

prototype tool, CarpetFuzz, and evaluated it on 20 popular
real-world open-source programs. CarpetFuzz accurately ex-
tracted 88.85% of the relationships from their documents.
Through fuzzing these programs with the valid option combi-
nations obtained by CarpetFuzz, 57 unique crashes have been
found, 30 of which have been assigned with CVE IDs.
• Releasing code and data. We open-sourced our prototype

tool and dataset to promote research in this domain1.

1Available in https://github.com/waugustus/CarpetFuzz

https://github.com/waugustus/CarpetFuzz


2 Background and Related Work

2.1 Coverage-Guided Fuzzing
The coverage-guided fuzzing is a technique that leverages the
code coverage information obtained from the program instru-
mentation to guide the fuzzing process. Like the traditional
black-box fuzzing technique, the coverage-guided fuzzing
technique tries to trigger an exception in the target program
by keeping mutating the input, but it has a more effective mu-
tation process due to the coverage information. The process
of coverage-guided fuzzing is shown in Figure 1. To start a
coverage-guided fuzzing, users need to specify the options (in
the command line) and the seed file (step 1). The options are
stored in the configuration as a constant and will not change
in the whole fuzzing process. The seed file is passed into the
input queue and then sent into the mutation engine to change
its content (step 2). After mutation, the execution engine reads
the execution command from the configuration and replaces
the input with the mutated file to check its coverage (step 3).
If the mutated file activates new coverage (i.e., interesting),
this mutated file will be added to the input queue for further
mutation (step 4).

Options

Seed File Input Queue Mutation

Execution

Configuration

User Input Fuzzing

①

①

②

③③

④ if interesting

Figure 1: Process of Coverage-guided Fuzzing.

Many studies have focused on improving coverage-based
fuzzing by modifying the seed selection [20, 41], seed sched-
ule [3, 4, 8, 32, 40, 54, 61, 67], and feedback strategies [1, 6, 15,
16, 30, 33, 44]. Among them, Rebert et al. [41] suggested six
seed selection approaches and formalized the problem as set
cover and integer linear programming. Böhme et al. [4] for-
malized the coverage-guided fuzzing process with a Markov
Chain model and sped it up by increasing the number of mu-
tations of seeds with low-frequency paths. Chen et al. [6]
proposed a fine-grained feedback metric leveraging byte-level
taint tracking to determine the branch-related byte. These
works significantly improved the fuzzing efficiency and in-
creased the coverage in the fuzzing process. However, in our
tests, these fuzzers cannot reach the option-related paths.

2.2 Option and Combination
A command-line option is an item of information that the user
specifies when the program starts to tell it which operation
to enable or disable [58]. A program usually has multiple

options, which follow the program name in the command line
and are separated by spaces. For example, tiffcp and pdftops
have 20 and 34 options, respectively. With the help of these
options, users can pass their demands to the program so that
it can do what they want.

When the demands become complex, users need to spec-
ify multiple options simultaneously instead of using a few
options. However, not all combinations are valid due to the
relationships (e.g., conflicts and dependencies) among op-
tions. An invalid combination may make the program throw
an exception and exit at an early stage. To prevent users from
using invalid combinations, developers usually note the re-
lationships among options in a natural language form in the
documentation, such as “make sense only when -p option
is specified,” and “The -level1 option cannot be used with
-form.”

To this end, some studies have sought unreachable paths
by combining options (or called option configurations).
AFLargv [5] mutates option configurations within the lower
and upper bounds of the number and size of command-line
options. Wang et al. [55] applied option-aware fuzzing to
directed grey-box fuzzing to reach unreachable target loca-
tions through option configuration search. Song et al. [45]
proposed a new coverage feedback metric, validity pair, to
predict whether the parser rejects an input to check the validity
of execution. Zeller et al. [64] designed a tool to automati-
cally infer option configuration from source code based on
specific option parsing modules (e.g., the getopt function
in C). POWER [29] utilized three mutation operations to
explore option configurations. However, due to the lack of
considering the constraint among options, many combinations
generated by most works may be invalid, reducing the search
efficiency. ConfigFuzz [66] considered such constraints but
relied on manual inspection. Although extracting constraints
among options may be a one-time job, it requires testers to
understand target programs in-depth, which is unaffordable,
especially when performing large-scale testing (e.g., thou-
sands of applications). Inspired by this finding, we studied
automatic constraint extraction from the documentation to
filter out invalid option combinations.

2.3 NLP-based vulnerability discovery.

There are also previous works trying to discover vulnerabili-
ties based on NLP, which mainly found programs’ constraints
from the code comments [17, 48–50, 59, 65] and documenta-
tion [31,38,68] to assist with static analysis. Furthermore, Xie
et al. [60] tried to extract information from the documentation
to guide fuzzing the deep learning (DL) libraries. However,
this work only applied to API libraries, not executable pro-
grams. Moreover, it relied on strictly formatted documents
(i.e., DL documents) and cannot be used to parse loosely for-
matted documents such as manpages. Different from previous
works, we tried to leverage NLP to parse loosely formatted



documents and extract constraints from the documents to filter
out invalid option combinations to assist with fuzzing.

3 Design

In this section, we describe the design of CarpetFuzz, an
NLP-based fuzzing assistance tool for extracting program
option constraints. The core idea is to use NLP to identify
and extract the relationships (e.g., conflicts or dependencies)
among program options from the description of each option
in the documentation and filter out invalid combinations to
reduce the option combinations that need to be fuzzed. We
first introduce a general overview of the whole design and
then show how each component works.

EDR
Identification

Relationship
Extraction

Fuzzing with
Combinations

Sentences
Relation-

ships

Combination
& Prioritization

① ③ ④

IDR
Identification

R-sentences

②

Documentation

Valid option
Combinations

Figure 2: Overview of CarpetFuzz. EDR: explicitly declared
relationships, IDR: implicitly declared relationships.

3.1 Overview

Figure 2 shows the overview of CarpetFuzz. Given a docu-
ment of the target program, CarpetFuzz first extracts all its
options and corresponding descriptions by parsing the OP-
TIONS section, and splits these descriptions into sentences
with NLP tools (step 1). Then CarpetFuzz identifies sentences
containing relationships (called R-sentences 2) among these
options (step 2). Specifically, with active learning algorithm,
CarpetFuzz builds a dataset from Linux manpages and trains
a machine learning model to identify explicitly declared rela-
tionships. To find the implicitly declared relationships, Car-
petFuzz combines the NLP parsing technique (dependency
parsing and constituency parsing) with our heuristic rules.
After identifying R-sentences, CarpetFuzz builds the depen-
dency trees of these R-sentences with the dependency parsing
and traverses the dependency tree from the node where the op-
tion is located to extract the concrete relationships and objects
(step 3). With the extracted relationships, CarpetFuzz builds
valid option combinations and prioritize them by coverage
(step 4). At last, CarpetFuzz passes these prioritized valid
option combinations to the fuzzer.

2In the rest of this paper, we use R-sentences to refer to sentences con-
taining relationships

3.2 Explicitly Declared Relationship Identifi-
cation

After analyzing a large number of documents, we find that the
explicitly declared relationships between options can mainly
be divided into five categories, including conflict, dependency,
implication, similarity, and supersedence (Appendix A). The
conflict among options represents that these options must not
be used together, and the dependency among options repre-
sents that these options must be used together. Implication
indicates that the function of one option includes another op-
tion. Similarity and supersedence indicate that the options’
functions are, respectively, roughly the same and replaceable.
All these three relationships indicate an overlap exists in mul-
tiple options’ functions. Although the combination of options
with these three relationships may not cause an exception, it
makes some options overwritten. Fuzzing with the combina-
tions of these options may have the same effect as fuzzing
with each and may be useless for discovering new paths. To
avoid such useless combinations and reduce the search space,
we treat these three relationships as conflicts in this paper.

We collect extensive documentation from the internet and
extract the sentences in all options’ descriptions as the unla-
beled dataset. To reduce the labeling cost, we use an active
learning algorithm to manually label part of the samples in the
unlabeled dataset and add them to the labeled dataset. Specifi-
cally, we first read a small set of the documents and manually
collected multiple keywords (about 20) in R-sentences (e.g.,
“combine with,” “imply,” “like,” “ignore”), which was a small
one-time job (about 5 minutes). Note that although these key-
words were from a few documents, they also applied to other
documents and could be systematically augmented through
data labeling in active learning. Then we sample a subset of
the sentences containing these keywords for manual labeling,
which is the initial training dataset of our model. Sentences
with the above five relationships are labeled as positive, and
other sentences are labeled as negative. Generally, hundreds
of labeled data are enough to train the initial model, indepen-
dent of the dataset’s size. We utilize the word2vec model [42]
to map words into vectors as the input features because of
its simplicity and low-cost. We have also evaluated more
advanced models (e.g., BERT [13]) and obtained a similar
performance. In each iteration of the active learning algorithm,
the prediction of all samples in the unlabeled dataset is ob-
tained using the machine learning model, and the samples are
selected for manual labeling according to the entropy-based
uncertainty sampling algorithm [11],

ei =−∑
1
j=0 P(y j|xi) · logP(y j|xi) (1)

where ei is the entropy of the i-th unlabeled sample,
P(y1|xi) represents the predicted probability that xi belongs to
class 1 (is an R-sentence), and P(y0|xi) represents the pre-
dicted probability that xi belongs to class 0 (is not an R-
sentence). Higher entropy represents higher uncertainty when



the model predicts the sample. Thus labeling those samples
helps update the model more effectively. K samples with the
highest entropies are manually labeled and added to the train-
ing set, and the model is retrained using the updated training
set (Appendix B). After T iterations, the final model will be
used for explicitly declared relationship identification. In par-
ticular, we manually labeled 1,381 sentences (557 positive
and 824 negative sentences) in the active learning process,
which only account for 0.46% of all the unlabeled sentences.
Note that data labeling is a one-time effort (only performed
in the training process, about 5 hours), and later testing does
not require human effort. We randomly sampled 1,000 data
from the remaining unlabeled dataset for evaluation, and the
accuracy, false-positive rate, and recall of the final model were
92.90%, 11.49%, and 98.42%, respectively.

3.3 Implicitly Declared Relationship Identifi-
cation

As mentioned in the introduction, it is challenging to identify
implicitly declared relationships. These relationships involve
multiple options whose behaviors are different but related and
can only be identified when the association is found. After an-
alyzing the documentation of a large number of programs, we
have only found implicitly declared conflicts (implicitly de-
clared dependency has not been found yet). In this paper, we
only discuss the identification of implicitly declared conflicts.
We find that the sentences implicitly declaring a conflict (i.e.
implicit R-sentences) among different options usually have
the same objects and same/antonyms verbs, implying that
these options do the same (or opposite) things on the same
object. Their grammatical structures usually satisfy parallel
structures (i.e., repetition of the same grammatical form in
several parts), which may be because the document’s authors
copied the description for each conflict option for convenience.
For example, the descriptions of the -B and -L options are

“Force output to be written with Big-Endian byte order,” and
“Force output to be written with Little-Endian byte order.” Since
these two sentences have the same predicate (i.e., force), ob-
ject (i.e., output), and grammatical structure (parse trees), we
can determine that they are implicit R-sentences.

To determine whether several sentences are implicit R-
sentences, we need to extract the objects, predicates, and the
parse trees of their descriptions. Figure 3 shows the process of
extracting these features. We first preprocess the descriptions
(step 1) by extracting the first sentence of each description for
analysis because such a sentence is usually the topic sentence
introducing what the option does. We find that some topic
sentences for options may have no subject (begins with a
verb), causing mistakes in the NLP parser, such as misjudging
the verb “force” as a noun. Therefore, for a sentence that
begins with a verb, we restore its subject (i.e., it) and modify
the verb’s person to avoid parsing errors. For example, the
description “Force output to be written with Big-Endian byte

order” of the -B option in tiffcp will be modified as “It forces
output to be written with Big-Endian byte order.”

Force output 
to be written 
with Big-
Endian byte 
order. This 
option ...

It forces 
output to 
be written 
with Big-
Endian 
byte order.

Description Preprocessing

Constituency
Parsing

Dependency
Parsing

Object & 
Predicate

Parse
Tree

Object:    output
Predicate: force

① ②

Figure 3: Process of extracting the features for identifying
implicit R-sentences.

After the preprocessing, sentences will be analyzed with
dependency parsing to find predicates and direct objects. (step
2). Specifically, we use NLP tools to label each word’s de-
pendency tag and find the words with the tag “dobj” (i.e.,
the direct object) and “ROOT” (i.e., the predicate). To de-
termine if these two sentences have parallel structures, we
use constituency parsing to build their parse trees and remove
their leaf nodes since leaf nodes represent the specific words
instead of grammar structures. If their lengths are the same,
we judge them as parallel when their remaining trees are iden-
tical. If their lengths are different, we first traverse the shorter
tree from its last node to find its nearest branch node and then
remove this branch node and all of its children nodes. If the
remaining tree is a subtree of the longer tree, we regard these
two trees are in parallel structures. Finally, several sentences
are considered as implicit R-sentences when they have the
same object, the same or mutually antonymous predicates,
and parse trees with parallel structures.

Moreover, in some documents, multiple options are written
together in the same position, which is another kind of implic-
itly declared conflict. For example, the -des, -des3, and -idea
options in openssl-ec are written together as “-des|-des3|-idea,”
as shown in Figure 4. However, options written together are
not necessarily conflicting - they may be aliases for the same
option. For example, although the -s and –silent options are
written together as “-s, –silent,” they are not conflicting but
the same option. We can determine whether a topic sentence
shared by multiple options is an implicit R-sentence by check-
ing its subject. When the subject is plural (e.g., “they” or
“these options”), it means that this sentence is an implicit
R-sentence.

-des|-des3|-idea
These options encrypt the private key with the 

DES, triple DES, IDEA or any other cipher supported 
by OpenSSL before outputting it. …

openssl-ec
document

Figure 4: Example of options written in the same position.



Altogether, we discovered 218 implicitly declared conflict
pairs from 20 popular program documents. The precision and
recall were 95.87% and 90.09%, respectively.

3.4 Relationship Extraction

After finding out the R-sentences from the documentation,
we need to extract the specific relationships from these sen-
tences, including conflicts and dependencies (As mentioned
in Section 3.2, implication, similarity, and supersedence are
also treated as conflicts).
Extracting explicitly declared relationships. For R-
sentences of explicitly declared relationships, we first divide
complex sentences into multiple clauses with constituency
parsing. If a clause contains options, we replace their names
with custom symbols (e.g., option_A) to avoid the minus sign
interfering with parsing. We then use dependency parsing
to obtain the parse tree of this clause. Figure 5 shows the
extraction process of explicitly declared relationships based
on the parse tree. First, we locate where the first option occurs
and traverse the parse tree forward to see if any other op-
tion has co-dependencies with the first option (i.e., the “conj”
tag). Since R-sentences may contain other programs’ options,
we check if the located option belongs to the target program
before analyzing. We treat options with co-dependencies as
a single option and confirm the conjunctions (i.e., the “cc”
tag). For options without co-dependencies, we perform the
relationship extraction process for them separately. Second,
we traverse the parse tree from the option’s position back-
ward to find the verb or adjective related to the option (i.e.,
the “pobj” and “prep” tags). We then compare this word to
our keywords, which are collected from many documents and
augmented based on synonyms, to confirm if it is a keyword.
If not, we search for all its synonyms and compare them to the
keywords. Third, we traverse the parse tree from the verb’s
position backward to find the negations and modals (i.e., the

“aux” tag) related to this verb for determining the concrete
relationships.

Dep. Tree

Process

Option_A must not be used with option_B and option_C

nsubjpass

aux
neg conj

aux-
pass

prep pobj cc

②
③ ①

②

④

①

Figure 5: Example of dependency parsing and extraction pro-
cess of explicitly declared relationships. The part above the
dotted line is the parse tree from dependency parsing, the text
on the bold line represents the dependency tag, and the arrow
represents the dependency relationship. The part below the
dotted line shows the relationship extraction process, where
the arrow indicates the traversal direction.

As mentioned above, relationships can be declared in en-
tirely different ways. For one thing, the same relationship can
be declared by various keywords. For another thing, the rela-
tionship described by the same keyword may vary in different
contexts. For example, the keyword "use" describes the depen-
dency, neutrality (no relationship), and conflict, respectively,
in “must be used,” “be used,” and “must not be used.”

Based on linguistics [25], conflict and dependency can be
regarded as a pair of polar opposite items, and neutrality is
the intermediate (i.e., neither conflict nor dependency) be-
tween the two polarities. These three items can be transitioned
according to specific sentence components, like keywords,
deontic modals (i.e., modals indicating obligation and permis-
sion, like “must,” “should,” and “have to”), and negations.
We use two finite state machines (FSMs) to describe the
state transition process, as shown in Figure 6. The choice of
FSM is related to the semantic-based classification of key-
words, including conflicting and dependency keywords (Ap-
pendix C). Each FSM contains three states, SD, SN , and SC
(i.e., dependency, neutrality, and conflict), and two possible
initial states. The initial state of FSM is the default relation-
ship of the keyword (Appendix C), which is expressed without
deontic modals and negations. For example, since “be used”
expressed neutrality, the default relationship of the keyword

“use” is neutrality. After determining the initial state, we can
infer the final state based on the deontic modals and negations
in the sentence, which is the relationship expressed. Note that,
based on linguistics [22], deontic modals take scope under
negations, which means that only negations have an effect
when both are present 3. We take the sentence, “-A must not
be used with -B and -C,” as an example. Since the keyword

“use” is a dependency keyword, the bottom FSM is chosen,
and the initial state is neutrality. Since the sentence has both
deontic modal and negation, only the negation will have an
effect. From the FSM for dependency keywords, the state will
be transitioned from neutrality to conflict.

Deontic 
modality

Initial state
SC SN SD

Negation

Deontic 
modality

Negation

Deontic 
modality

Initial state
SD SN SC

Negation

Deontic 
modality

Negation

FSM for 
conflict 

keywords

FSM for 
dependency 
keywords

Figure 6: FSMs for conflict and dependency keywords. The
dotted lines point to possible initial states.

Extracting implicitly declared relationships. For implicit R-
sentences, they are determined to be declarations of conflicts,
and we only need to map these sentences to the corresponding
options, which is already done in step 1 in Figure 2. For exam-
ple, based on the method in Section 3.3, we can know that the

3An even number of negations will cancel each out.



sentences “Force output to be written with Big-Endian byte
order” and “Force output to be written with Little-Endian
byte order” are implicit R-sentences. According to the cor-
respondence between the options and the sentences, we can
know that these two sentences belong to the -B and -L op-
tions, respectively. Finally, we extract the conflict relationship
between the -B and -L options.

Finally, with our relationship extraction method, we suc-
cessfully extracted 282 relationships from 20 popular program
documents with a precision and recall of 96.10% and 88.85%.

3.5 Combination and Prioritization

Based on the extracted relationships between options, we
could filter out all invalid option combinations. Specifically,
we combine all options with length n (0≤ n≤ k, where k is
the number of options) and perform a validity check on the
generated combinations against the extracted relationships. A
combination is considered valid only if it satisfies all depen-
dencies and has no conflicts. For options that can have values,
we manually collected reasonable values for each option from
the documentation and randomly picked one value for each
option in each combination.

Although the invalid combinations are filtered, which make
up most of the total combinations (e.g., 99.84% in openssl-
rsa), the number of the left valid combinations may still be
large (e.g., millions), and it is impractical to test all these
combinations, which would require enormous computing re-
sources. In this paper, we leveraged N-wise testing [57] to
further prune the combinations that need to be tested. This
testing is an effective method for combinatorial interaction
testing which greatly reduces the combinations that need to
be tested by focusing on defects caused by the interaction
of N factors. According to the research, almost all flaws are
caused by the interaction of no more than six factors [27].
So we used 6-wise (N = 6) testing to prune the valid option
combinations.

After pruning the combinations, we prioritize each combi-
nation based on its coverage in the dry run on the same seed
file. Specifically, combinations with higher coverage will have
a higher priority. We use this prioritization technique for two
primary considerations. First, fuzzing with combinations with
higher coverage in the dry run is more likely to discover new
paths during the fuzzing process. Second, for some invalid
combinations not identified in previous steps, our prioritiza-
tion technique can lower their priority, reducing their chances
of being tested.
Fuzzing with combinations. Finally, we fuzzed each pro-
gram with all the prioritized pruned option combinations.
Specifically, we instrument the target program to allow it to
read options from a file and let the fuzzer modify the file on
the fly to switch the combinations in use. At the beginning
of fuzzing, we use all the given combinations to mutate the
seed files and record the corresponding combination when

generating a new test case. Then we use the corresponding
combination to mutate each test case in the queue.

4 Implementation

This section introduces the implementation of the prototype
of CarpetFuzz in our research, including dataset collection,
model training, NLP analysis, prioritization, and fuzzing.
Dataset collection. We collected the training dataset by crawl-
ing the manpages of all command-line programs (37,672)
from the Debian Manpages Project [12], the complete reposi-
tory of all manpages contained in Debian. Note that documen-
tation exists in three forms, manpages, online documentation,
and help command. Considering that online documentation is
usually generated from manpages, and the output of help com-
mands is generally brief and does not have the information
we need due to space limitations, we selected the manpages to
parse. After crawling these manpages, we extracted the con-
tent of the options sections based on the GNU roff language
(i.e., Groff) [56] and mapped each option to its description.
Specifically, we removed all format tags defined in Groff and
distinguished different options by paragraph separators (the

“.TP” and “.IP” tag). We treat the content between multiple
options as their descriptions. Then we used spaCy [47] for sen-
tence segmentation. Finally, we collected 302,875 sentences
related to options (228,827 after deduplication).
Model training. We utilized the Word2Vec model in the Gen-
sim library [42] to map words into vectors, trained with the fol-
lowing parameters: size = 300, window = 5, and other default
settings. Since the description of an option may contain itself,
we convert the option names in the sentence to option_itself
and option_other during preprocessing. We used XGBoost
to classify sentences related to options as we experimentally
found that XGBoost [7] had a better performance than other
machine learning models (e.g., SVM [10] and RF [21]). We
utilized the default hyper-parameters for training the initial
model on the initial dataset (297 positive and 139 negative
sentences). At every iteration of the active learning process,
we selected 20 (K = 20) sentences with the highest entropy
for manual labeling and retrained our model with the opti-
mal hyper-parameters from the grid search [28]. We stopped
training after 70 consecutive iterations (i.e., T = 70). The
hyper-parameters of the final model were: max_depth = 6,
n_estimators = 200, colsample_bytree = 0.8, subsample =
0.8, learning_rate = 0.1, and other default settings.
NLP analysis. We used NLTK [39] to output all parts of
speech for a word and LemmInflect [2] to convert a verb to
third-person singular after adding the subject. We utilized
spaCy for sentence segmentation to extract the first sentence
and dependency parsing to label each word’s dependency tag.
For constituency parsing, we used the AllenNLP library [24]
to build the parse trees and extracted clauses based on the

“SBAR” tag. In the analysis, we found that different numbers
lead to different dependency parsing results, which is a flaw of



the NLP model. As a fix, we removed all non-option numbers.
Prioritization and Fuzzing. We used the PICT tool [34]
to implement the 6-wise testing and automatically generate
model files based on the extracted relationships to specify lim-
itations on combinations. We used afl-showmap [62] to count
edge coverage information for a dry-run as a sorting criterion
and LLVM pass [53] to instrument the target program.

5 Evaluation

This section describes our evaluation of CarpetFuzz, includ-
ing the effectiveness of both its end-to-end operation and
individual components.
Real World Dataset. In this evaluation, we evaluated the ef-
fectiveness of CarpetFuzz on the latest versions of 20 popular
real-world programs (Appendix D). These programs handle
11 different types of input files, including image (TIFF and
JPG), certificate (PEM), text (MD and JSON), traffic packet
(PCAP), executable file (ELF), archive (LRZ), audio (OGG
and SPX), and document (PDF). We chose these programs
because they were widely used programs with more than
ten options and were continuously maintained. We collected
their latest manpages from the compilation directory (i.e.,

“share/man/man1/”) and manually extracted all R-sentences
and relationships for evaluation. The number of options and
relationships 4 for each program 5 are shown in Appendix D.
Experimental Setup. We used CarpetFuzz to augment
AFL [63] and compared it to the original AFL to demon-
strate how CarpetFuzz could help with it. In order to highlight
the effect of CarpetFuzz, we also selected the latest versions
of AFLfast [4], MOPT-AFL [32], and AFLplusplus [14] for
comparison, which were among the most popular improved
fuzzers based on AFL. Each fuzzer started with the same sin-
gle seed file collected from AFL directory, test directory (for
PEM and MD format), or online corpus [35] (for OGG and
SPX formats). We continuously fuzzed our test programs for
48 CPU hours and repeated the experiment five times to avoid
the effects of the inherent uncertainty of fuzzers mentioned
in [26]. Our experiments were performed on a machine of
Intel Xeon Platinum 8268 with 24 CPU cores and 188GB
RAM, which runs Ubuntu 20.04.5 LTS.
Research Questions. In the following sections, we aim to
answer the following research questions:
RQ1. What is the performance of CarpetFuzz?
RQ2. What is the accuracy of relationship identification?
RQ3. What is the accuracy of relationship extraction?
RQ4. What is the effectiveness of CarpetFuzz’s prioritization
technique?
RQ5. What is the fuzzing performance of CarpetFuzz com-
pared to the state-of-the-art techniques?

4In order to facilitate comparison, we split the relationship among multiple
options into multiple relationships between every two options.

5We have removed all help, version options, and options requiring specific
support that we cannot satisfy (e.g., exceptional file support and OPI support).

RQ6. Can CarpetFuzz discover real-world vulnerabilities?

5.1 Performance of CarpetFuzz (RQ1)
In this experiment, we aimed to evaluate the performance of
CarpetFuzz. To highlight the improvement of the performance
of AFL by CarpetFuzz, we defined the evaluation metrics as
the number of edges only covered by CarpetFuzz.

From the 20 programs’ manpages, CarpetFuzz extracted
282 relationships and filtered out 67.91% of the option com-
binations on average (Appendix E). With the relationships,
CarpetFuzz reduced the option combination to be tested in
the 20 programs by 25.00% to 99.85%. It can be seen that
for programs with complex relationships among options (e.g.,
openssl-rsa and eu-elfclassify), CarpetFuzz can greatly reduce
the number of combinations to be tested. We manually labeled
the relationships in these programs to evaluate the process of
filtering out invalid option combinations. The precision and re-
call ranged from 68.46% to 100% and from 70.00% to 100%,
respectively, and the average values were 98.01% and 94.19%,
demonstrating that CarpetFuzz could accurately identify and
filter out invalid option combinations. Note that only a few
misjudgments occurred in pdftotext and tiffcp (Section 5.3)
but accounted for a large proportion of all relationships ex-
tracted due to a small number of total relationships, which led
to a low precision/recall (68.48%/70.00%).

After filtering the invalid option combinations, we used the
6-wise testing mentioned in Section 3.5 to prune the remain-
ing combinations further. To evaluate whether pruning would
cause a loss of coverage, we randomly sampled 100,000 valid
combinations for each program for comparison (Appendix F).
The results showed that our pruning technique could reduce
much more combinations (98.91%) compared to random sam-
pling while only slightly losing edges (2.54%).

We then used AFL, AFLfast, MOPT-AFL, and AFL++ to
fuzz each program without options (or with the minimum
options to make it work) and used CarpetFuzz to fuzz with the
pruned option combinations in order of priority. The growth
curves of the code coverage of each fuzzer converged within
48 hours , representing that the coverage of these fuzzers was
eventually stabilized, and using 48 hours of coverage basically
represents the coverage capability of these fuzzers per run.

We used the edges that AFL could reach as the baseline
to evaluate CarpetFuzz’s performance. Due to the inherent
uncertainty, the coverage of each run of the same fuzzer may
be very different, so the single coverage cannot represent the
coverage capability of the fuzzer. Instead, we took the union
of the coverage of the five runs to represent the edges that
the fuzzer is capable of reaching. We defined the number of
unique edges (edges unreachable for the baseline) of the test
fuzzer n and the ratio of unique edges r as

n = |E f −E f
⋂

Eb| r =
|E f −E f

⋂
Eb|

|Eb|
(2)



where E f represents the union of the fuzzer’s edge cover-
age in five runs, and Eb represents the union of the baseline’s
edge coverage in five runs. Then we counted the number and
ratio of unique edges for each fuzzer, as shown in the first 14
columns of Table 1. With the AFL as the baseline, AFLfast
found the fewest unique edges, and the ratio of unique edges
on these 20 programs was 1.31% on average, which may be
because AFLfast mainly improved AFL’s seed schedule strat-
egy to speed up the convergence of the coverage curve. MOPT
and AFL++ found much more unique edges than AFLfast, and
the ratios of unique edges of these two fuzzers were 4.47%
and 5.39%, respectively. We thought that MOPT and AFL++
performed much better than AFLfast, probably because they
improved the mutation strategies of AFL. However, even with-
out optimizing any strategy of AFL, CarpetFuzz found the
most unique edges, and the average ratio of unique edges
was 47.23%. On all these 20 programs, the ratio of Carpet-
Fuzz was higher than other fuzzers and was 336.20% at most
(lrzip), which was at least 293.33 times (AFL++) the ratio
of other fuzzers. The results showed that for some programs,
such as eu-elfclassify and jpegotim, few unique edges might
be discovered by improving the fuzzing strategy, but this can
be alleviated by specifying certain valid option combinations.

We also took the union of the edges of the first four fuzzers
to investigate how many edges of CarpetFuzzcould not be
discovered by other fuzzers, as shown in the last three columns
of Table 1. The results showed that an average of 94.59% of
the unique edges of CarpetFuzz were not discovered by other
fuzzers, and CarpetFuzz could help AFL find 45.97% more
edges that other fuzzers cannot discover on average.

5.2 Accuracy of Relationship Identification
(RQ2)

Accuracy of identifying explicitly declared relationships.
During the active learning process, we performed 70 iterations
and collected 1,817 manually labeled data as the training set.
We used the final model to predict all sentences in the dataset
(except the training and validation sets), with 7,483 sentences
predicted as positive and 221,344 sentences predicted as nega-
tive. We randomly sampled 500 sentences from each category
and manually labeled them for evaluation. The model’s ac-
curacy on the evaluation dataset was 92.90%, indicating that
it has high accuracy. The false-positive rate and recall were
11.49% and 98.42%, implying that our method had a lower
risk of identifying R-sentences as non-R-sentences and, thus,
may avoid missing some relationships.

We then evaluated our model on the sentences of the 20
programs’ manpages. According to the results of manual
labeling, 75 sentences were explicit R-sentences among the
2,952 sentences from the documents. Our model predicted 76
sentences to be positive, including 9 false positives and 8 false
negatives. The accuracy is 98.80%, and the false-positive rate
and recall were 0.67% and 89.33%, respectively. Although

the accuracy of this dataset was higher, its F1 score was lower
(0.89) than the former evaluation dataset (0.92). The main
reason may be that this dataset was imbalanced. Note that
eight of the nine false positives were judged as neutrality and
ignored in the relationship extraction process (described in
Section 3.4), which did not affect the extraction results.
Accuracy of identifying implicitly declared conflicts. From
these documents, we found 232 unique conflict pairs declared
implicitly. We performed an identification with the method in
Section 3.2 and found 218 such conflict pairs, among which
the false positives and false negatives were 9 and 23, respec-
tively. The precision was 95.87%, and the recall was 90.09%,
implying that our method had a good performance in identi-
fying implicitly declared conflicts. After our analysis, these
nine false positives were all due to a lack of relevant common
sense. For example, the topic sentences of -X and -Y options
in tiffcrop were “Set the horizontal/vertical dimension of a
region to extract relative to the specified origin reference.” Al-
though both options were to “set the dimension,” our tool did
not know that horizontal and vertical dimensions were differ-
ent, requiring human common sense. Seven false negatives
were also due to a lack of relevant common sense. In the topic
sentence of the -s option in jpegoptim, “Strip all markers
from output file,” our tool did not know that the “all marker”
referred to all kinds of markers rather than a specific marker.
So it missed the implicitly declared conflicts between the -
s option and options to strip single kinds of markers. Seven
false negatives came from the inaccurate parsing results of the
NLP parser underlying our implementation (e.g., SpaCy). For
example, in two topic sentences with the same structure, “out-
put monochrome sixel image” and “output 15bpp sixel image,”
the parser judged the word “monochrome” as a noun while
regarding “15bpp” as a number, leading these sentences to be
mistaken as non-parallel and thus identified as non-conflicting.
Nine false negatives were due to slight differences in topic
sentences. For example, the topic sentences of -pvk-strong
and -pvk-none options were “Enable Strong PVK encoding
level” and “Don’t enforce PVK encoding.” Since both the
verbs (enable versus enforce) and objects (level versus encod-
ing) differed, our tool cannot identify the implicitly declared
conflict from these sentences. Interestingly, we found that
such missing conflicts were identifiable from their names.

5.3 Accuracy of Relationship Extraction
(RQ3)

After manual labeling, we found 305 relationships from the
20 programs, including 284 conflicts and 22 dependencies.
Our tool found 282 relationships, of which 264 were conflicts
and 18 were dependencies. The precision and recall of con-
flict were 95.83% and 89.40%, and those of dependency were
100% and 81.82%. The precision and recall of all relationships
were 96.10% and 88.85%, implying that our tool performed
well in extracting relationships. We found that dependencies



Table 1: Results of each fuzzer with 48 hours. Eb: the union of the baseline’s edge coverage in five runs, E f : the union of the
fuzzer’s edge coverage in five runs, n: the number of unique edges, r: the ratio of unique edges.

Program
Baseline CarpetFuzz

AFL AFLfast MOPT AFL++ |E f |
Compare to AFL Compare to ALL

|Eb| |E f | n r |E f | n r |E f | n r n r nall rall Pct.
cmark 6308 6229 106 1.68% 6608 372 5.90% 6860 552 8.75% 7080 960 15.22% 876 13.89% 91.25%
editcap 3340 3201 140 4.19% 3749 465 13.92% 3755 464 13.89% 3800 635 19.01% 550 16.47% 86.61%
eu-elf 140 134 0 0.00% 140 0 0.00% 140 0 0.00% 194 54 38.57% 54 38.57% 100.0%classify

img2sixel 1584 1635 84 5.30% 1981 440 27.78% 2055 494 31.19% 2172 710 44.82% 685 43.24% 96.48%
jpegoptim 165 158 0 0.00% 165 0 0.00% 165 0 0.00% 284 120 72.73% 120 72.73% 100.0%
jpegtran 4695 4708 49 1.04% 4845 155 3.30% 4995 301 6.41% 4339 898 19.13% 875 18.64% 97.44%

jq 1910 1900 14 0.73% 1895 9 0.47% 1935 25 1.31% 2255 374 19.58% 365 19.11% 97.59%
lrzip 1047 1029 2 0.19% 1051 4 0.38% 1057 12 1.15% 4559 3520 336.20% 3518 336.01% 99.94%

ogg123 321 321 0 0.00% 320 0 0.00% 325 5 1.56% 363 42 13.08% 41 12.77% 97.62%
openssl- 2109 2109 0 0.00% 2111 2 0.09% 2111 2 0.09% 2599 490 23.23% 489 23.19% 99.80%asn1parse

openssl-ec 5015 5036 37 0.74% 5029 29 0.58% 5058 57 1.14% 7578 2601 51.86% 2561 51.07% 98.46%
openssl-rsa 5350 5337 27 0.50% 4994 33 0.62% 5441 95 1.78% 6291 1135 21.21% 1106 20.67% 97.44%

pdftops 984 999 17 1.73% 1002 19 1.93% 1005 21 2.13% 1059 76 7.72% 68 6.91% 89.47%
pdftotext 969 975 8 0.83% 974 5 0.52% 977 8 0.83% 1026 62 6.40% 60 6.19% 96.77%
podofo 236 239 3 1.27% 239 3 1.27% 239 3 1.27% 248 12 5.08% 12 5.08% 100.0%encrypt

speexdec 495 495 0 0.00% 548 53 10.71% 497 2 0.40% 594 99 20.00% 99 20.00% 100.0%
tcpprep 442 435 0 0.00% 454 12 2.71% 441 0 0.00% 883 454 102.71% 453 102.49% 99.78%

tcpreplay 369 364 3 0.81% 373 9 2.44% 400 39 10.57% 657 315 85.37% 298 80.76% 94.60%
tiffcp 4570 4348 140 3.06% 4930 474 10.37% 5057 721 15.78% 5544 1048 22.93% 724 15.84% 69.08%

tiffcrop 5152 5049 211 4.10% 5309 327 6.35% 5522 489 9.49% 5814 1018 19.76% 809 15.70% 79.47%
Average 1.31% 4.47% 5.39% 47.23% 45.97% 94.59%

may be more challenging to extract, resulting in a lower recall
and higher precision. Among the four false negatives of de-
pendencies, two were due to the false negatives of the model,
and two were due to the inability to find the corresponding
options. For example, our model identified the R-sentence in
pdftotext, “This is ignored in all other modes,” but our tool
cannot find the options corresponding to “all other modes.”
In fact, even humans could hardly find out the options cor-
responding to these “modes.” For example, we could find
that the -layout option corresponded to the physical layout
mode only when we combined its name with the description
of the -table option, “Table mode is similar to physical layout
mode.” Among the 11 false positives and 30 false negatives of
conflicts, 5 and 32 were due to failure to identify R-sentences
and implicitly declared conflicts, respectively (mentioned in
Section 5.2). Two were due to the inability to find the cor-
responding options. Another two were due to the incorrect
extraction because of a lack of human common sense. The
-RSAPublicKey_in and -RSAPublicKey_out options were put
together, sharing the description “Like -pubin and -pubout
except RSAPublicKey format is used instead.” Since the sub-
ject of the description was not plural, our tool mistakenly
treated these two options as the same option, resulting in a
false positive (i.e., -RSAPublicKey_in versus -pubout) and a
false negative (i.e., -RSAPublicKey_out versus -pubout).

5.4 Effectiveness of Prioritization Technique
(RQ4)

To evaluate the effectiveness of our prioritization technique
mentioned in Section 3.5, we randomly selected ten pro-

grams from our real-world dataset and provided each program
with five shuffled pruned valid combination lists (CarpetFuzz-
Rand) to compare with the prioritized combinations. Each
combination list was fuzzed for 48 hours. We then took the
average number of unique paths n̄ as the evaluation criterion,
defined as,

n̄ =
∑

5
i=1 |E fi −E fi

⋂
Eb|

5
(3)

where Eb represents the union of the baseline’s (AFL,
AFLfast, MOPT, and AFL++) edge coverage in five runs
in Section 5.1, which stands for their coverage capability. E fi
represents the edge coverage of CarpetFuzz and CarpetFuzz-
Rand in the i-th run. The results are shown in Table 2. With
our prioritization technique, CarpetFuzz found more edges on
each program that other fuzzers could not discover (7% more
on average), proving that this technique was effective in find-
ing more unique edges. In three programs, the improvement
was more evident (more than 10%). Especially in openssl-ec,
CarpetFuzz found 20% more unique edges than CarpetFuzz-
RAND. In seven programs, the capability of finding unique
edges was slightly improved (within 5%).
Interesting findings When analyzing those combinations
with the lowest priority, we found that some conflicts were
only declared at runtime. For example, there were four con-
flicts in img2sixel (-P versus -8, -p versus -e, -p versus -I,
and -p versus -b) not declared in any online documentation,
manpage, or help command. We could get a hint only when
running the program with any of these combinations, like “op-
tion -p, –colors conflicts with -I, –high-color.” We also found
that two dependencies in tiffcrop were declared conflicts at



Table 2: Unique edges of CarpetFuzz with and without pri-
oritization. ALL: the union of AFL, AFLfast, MOPT, and
AFL++. Ranked: CarpetFuzz. Random: CarpetFuzz-RAND.

Program Compare to AFL Compare to ALL
Ranked Random Rate Ranked Random Rate

cmark 920.8 916.6 1.00 871.6 867 1.01
editcap 480.8 480 1.00 480.4 479.4 1.00

img2sixel 492.8 485 1.02 484.6 427.4 1.13
jpegoptiom 117.4 114.4 1.03 117.4 114.4 1.03

openssl- 480.8 480 1.00 480.4 479.4 1.00asn1parse
openssl-ec 1847 1541.2 1.20 1823.6 1521.2 1.20
pdftotext 60.8 60.2 1.01 60 60 1.00
speexdec 98.8 98.2 1.01 98.8 98.2 1.01

tiffcp 660.6 534 1.24 485 376.8 1.29
tiffcrop 838 811.2 1.03 739.2 727.8 1.02
Average 599.78 552.08 1.05 564.1 515.16 1.07

runtime (-K versus -S, -J versus -S). We could find a com-
ment left by the author in the source code, “Maybe someday
but not for now,”, which implied that the dependencies in the
documentation exist but were not implemented yet. Although
these invalid combinations were missed in the previous steps,
our prioritization technique still found them by ranking the
dry run’s coverage and gave them the lowest priority.

5.5 Fuzzing performance compared to the
state-of-the-art techniques (RQ5)

In order to evaluate whether extracting the relationships
among options could improve the fuzzing performance,
we selected the SOTA option configuration fuzzing tool,
POWER [29], for comparison. POWER is also a fuzzer sup-
porting switching option combinations on the fly. Still, the
combinations it used were generated from random mutation
(insert, remove, replace), unlike CarpetFuzz. We evaluated
CarpetFuzz 6 and POWER on the POWER’s benchmark
(same programs, same versions, same seeds). Each program
in the benchmark was fuzzed by CarpetFuzz and POWER
for 24 hours, repeated 5 times. For crashes reported during
fuzzing, we used the top three entries of the stack traces from
AddressSanitizer [43] for deduplication, as suggested in [26].
From these programs, CarpetFuzz extracted 225 relationships
with a precision of 90.67% and found 94 unique crashes after
deduplication, 1.71 times POWER (55), as shown in Table 3.
Among the 94 unique crashes, 70 were not discovered by
POWER, demonstrating the advantage of CarpetFuzz in find-
ing vulnerabilities. Although it is also possible for POWER
to generate corresponding combinations through mutation,
the time required may be very long due to randomness. In
contrast, CarpetFuzz can generate these combinations quickly
based on the extracted relationship, demonstrating the impor-
tance of considering relationships.

Note that POWER also found 31 unique crashes that Car-
petFuzz did not discover. We acknowledged that random mu-

6Since POWER is based on AFL++, we used the AFL++-based Carpet-
Fuzz for comparison, to be fair.

Table 3: Vulnerabilities discovered on the POWER’s dataset.
Exclusive crash: crash only found by the specific fuzzer. Av-
erage edge: average number of edges across all test cases.

Program
CarpetFuzz POWER

#Uniq. #Excl. Avg. #Uniq. #Excl. Avg.
crash crash edge crash crash edge

avconv 3 3 2623.73 0 0 2209.15
bison 5 3 1365.97 4 2 1148.31
cflow 3 1 479.10 3 1 642.79
cjpeg 0 0 115.58 0 0 73.46
djpeg 0 0 132.33 0 0 52.97

dwarfdump 1 0 1857.72 2 1 1376.34
exiv2 2 1 1078.32 1 0 1402.15

ffmpeg 1 0 2134.40 2 1 2768.37
gm 0 0 1172.00 0 0 566.98
gs 0 0 9306.35 0 0 9447.74

jasper 0 0 741.13 0 0 524.47
mpg123 4 4 921.51 0 0 421.19
mutool 0 0 52.44 0 0 48.33
nasm 4 4 936.64 9 9 898.18

objdump 10 9 1111.69 2 1 1012.09
pdftohtml 0 0 1672.19 0 0 1536.17
pdftopng 4 1 1683.99 5 2 1592.40
pdftops 6 1 1552.22 6 1 1528.50
pngfix 0 0 205.91 0 0 210.00
pspp 28 21 1080.37 12 5 1021.12

readelf 3 3 464.49 0 0 460.36
size 0 0 309.68 0 0 428.10

tiff2pdf 0 0 684.29 0 0 661.90
tiff2ps 0 0 377.32 0 0 376.28
tiffinfo 0 0 367.90 0 0 331.87

vim 1 0 4733.48 2 1 4279.16
xmlcatalog 0 0 768.18 4 4 748.26

xmllint 14 14 1155.51 3 3 1467.75
xmlwf 0 0 134.90 0 0 160.57
yara 5 5 434.81 0 0 407.62
Total 94 70 55 31

tation may be more effective in finding unexpected behaviors
caused by some invalid combinations. However, CarpetFuzz
aims to explore the deep code related to option combinations,
which requires the tested combination to be valid. We an-
alyzed the average unique edges triggered by all test cases
generated by CarpetFuzz and POWER, as shown in columns
3 and 6 of Table 3. In 22 programs, the average number of
edges of CarpetFuzz was greater than that of POWER. In 8
programs, CarpetFuzz performed worse than POWER. The
results for seven programs (except ffmpeg) were caused by
treating the strings inserted in the command line by POWER
as input file names, which brought in more edges. Note that
these “new” input files would not be mutated as fuzzers only
mutates files symbolized as “@@.” So the new edges they
brought would not be used to find new bugs, which is why
CarpetFuzz still found more bugs in these programs even with
fewer average edges (19 versus 7). The result for the rest one
(i.e., ffmpeg) was due to a lack of supporting position-specific
options, which only take effect in a specific position. Since
CarpetFuzz currently does not support constraints related to
option positions, it cannot generate combinations that allow
these options to take effect and thus found fewer edges and
bugs (1 versus 2) in this program. Note that programs with
such options are rare (less than 5%). More detailed analyses
of these eight programs’ results are presented in Appendix G.



The results showed that the average unique edges of test cases
generated by CarpetFuzz were 1.16 times that of POWER on
average, up to 2.50 times in djpeg, proving that CarpetFuzz is
more effective in exploring option-related deep code.

5.6 Real-world Vulnerabilities Discovered
(RQ6)

We have continuously run the CarpetFuzz-assisted fuzzer on
our real world dataset to discover new vulnerabilities. So far,
we have found 57 unique crashes, of which 43 are 0-days,
as shown in Table 4. These vulnerabilities cover a variety
of vulnerability types, including double free, use after free,
buffer overflow, floating point exception, and assertion fail-
ures. In these 43 0-days, we have obtained 30 CVE IDs, and
the other 13 are still under request. We analyzed the trig-
gering conditions of these vulnerabilities and calculated the
minimum number of options required to trigger them (i.e.,
the shortest combination). Among these vulnerabilities, 47
require at least one option to be triggered (82.46%), and 30
of them require at least two options (52.63%), proving the
importance of options in vulnerability discovery. We found
that for these vulnerabilities, combining all of the options may
not be helpful due to conflicts among options. For example,
the shortest combination to trigger the heap buffer overflow in
tiffcp.c:1373 (CVE-2022-0924) is “-i -s -p separate.” Since
the -s option conflicts with the -t option, any combination
containing both these two options will not trigger this vulner-
ability, including the combination of all options. Similarly,
the -Z option in tiffcrop conflicts with the -X, -Y, and -z op-
tions, and the -p option in img2sixel conflicts with -e, -I, and
-b options, so combining all options would not trigger these
programs’ vulnerabilities, such as CVE-2022-2058 and CVE-
2022-29978. We analyzed the longest combinations of these
three vulnerabilities, which were 14 (18 in total), 25 (33 in
total), and 23 (28 in total), respectively, demonstrating that
these vulnerabilities could not be triggered by combining all
options. It is worth noting that most of the programs have
been integrated into the OSS-Fuzz project [19] and have been
extensive continuous fuzzing in recent years. However, we
can still find new vulnerabilities in these programs, proving
that fuzzing with valid option combinations is still a novel
and effective method for discovering vulnerabilities at this
stage.

6 Discussion

Limitation and future work. Although CarpetFuzz achieved
good results in relationship identification and exraction, there
were still some false negatives and false positives. One rea-
son is the limitations of the NLP model (spaCy, NLTK, and
AllenNLP) that CarpetFuzz relies on, which mainly comes
from the dependency parser’s accuracy. Although the accu-
racy has reached 97% [46] and is enough for fuzzing, we find

that parsing errors usually occur when dealing with complex
sentences or computer terms, causing seven false negatives in
Section 5.2. Note that a few false negatives will only affect
the number of combinations (i.e., more invalid combinations)
to test but not the final fuzzing results since our prioritiza-
tion technique will give these missed invalid combinations
the lowest priority (Section 3.5). Our performance will be
further improved with NLP’s development. Another reason is
a lack of human common sense, as mentioned in Section 5.2.
Some conflicts can only be determined with certain common
sense, such as “horizontal dimension” and “vertical dimen-
sion.” Although they are both “dimensions,” humans know
that “vertical” and “horizontal” are two non-interfering with
each other. In future work, we consider adding a common-
sense knowledge graph to assist CarpetFuzz in identifying
such relationships. In addition to being found from descrip-
tions, relationships can also be determined by comparing
option names, as mentioned in Section 5.2. CarpetFuzz cur-
rently identifies relationships based on descriptions and may
perform better by combining description and option name.

Since CarpetFuzz is implemented based on AFL, it also
has the limitations of AFL itself. For example, CarpetFuzz
only detects vulnerabilities that crash the programs. How-
ever, by compiling the target programs with LLVM Sanitizers,
such as TSan [51] and UBSan [52], the fuzzer in CarpetFuzz
can also detect non-crash vulnerabilities. Additionally, Car-
petFuzz only runs on Linux systems. This limitation can be
solved by implementing CarpetFuzz to fuzzers supporting
other systems, such as WINAFL [18]. Since other systems
may use different identifiers to represent options (e.g., “/” in
Windows), the code for parsing documents in CarpetFuzz
must also be changed accordingly.
Importance of considering a large number of combina-
tions. Considering a large number of combinations is im-
portant for finding potential option-related vulnerabilities. In
Section 5.6, more than half of vulnerabilities require spe-
cific combinations to be triggered, which only accounts for a
small proportion of all combinations (e.g., 1.56% for CVE-
2022-3626). Moreover, due to the conflicts among options,
combining all options would cause the programs to throw
exceptions and thus not help discover these vulnerabilities.
Without considering a large number of combinations, these
very few specific combinations will be missed, causing these
vulnerabilities to be missed.
Importance of filtering invalid option combinations. Fil-
tering the invalid option combinations is important for saving
time in finding vulnerability-related combinations. In Sec-
tion 5.6, CarpetFuzz found 18 vulnerabilities that require four
or more options to be triggered, accounting for 31.57% of all
discovered vulnerabilities. CarpetFuzz can save 85.06% of the
time by filtering invalid combinations for vulnerabilities with
four or more options. Although most vulnerabilities (68.43%)
in Table 4 have fewer than four options, the number of combi-
nations is still large (e.g., 6850 for jpegoptim) due to the large



Table 4: Vulnerabilities discovered by CarpetFuzz. #Options: minimum number of options to trigger the vulnerability.
Program Vulnerability Type Location 0-day or 1-day? Options Fixed?0-day? CVE Require? #Options

img2sixel

segmentation violation fromgif.c:283 NO N/A YES 1 NO
assertion failure stb_image.h:1894 YES CVE-2022-29977 NO 0 NO

floating point exception encoder.c:633 YES CVE-2022-29978 YES 1 NO
encoder.c:636 YES Requesting YES 1 NO

heap-buffer-overflow quant.c:876 YES Requesting YES 2 NO

jpegoptim segmentation violation

jpegoptim.c:711 NO N/A YES 2 YES
jpegoptim.c:906 YES Requesting YES 1 YES
jpegoptim.c:632 YES Requesting NO 0 YES
jpegoptim.c:1055 YES Requesting YES 1 YES

jpegtran floating point exception transupp.c:157 YES Requesting YES 2 YES
transupp.c:161 YES Requesting YES 2 YES

jq heap-use-after-free jv.c:31 NO N/A YES 4 YES
assertion failure jv_parse.c:305 NO N/A YES 1 NO

openssl-asn1parse double-free mem.c:277 YES CVE-2022-4450 YES 1 YES
openssl-rsa assertion failure packet.c:387 YES Requesting NO 0 YES

pdftops segmentation violation gmem.cc:356 YES Requesting YES 1 NO
stack-buffer-overflow gmem.cc:148 NO N/A NO 0 NO

pdftotext segmentation violation gmem.cc:356 YES Requesting NO 0 NO
stack-buffer-overflow Dict.cc:98 NO N/A NO 0 NO

tcpprep assertion failure tree.c:746 NO N/A YES 1 YES
tree.c:746 YES Requesting YES 1 YES

tcpreplay assertion failure send_packets.c:116 YES Requesting YES 5 NO

tiffcp

heap-buffer-overflow tiffcp.c:1373 YES CVE-2022-0924 YES 3 YES
tiffcp.c:948 YES CVE-2022-4645 NO 0 YES

assertion failure tif_read.c:99 YES CVE-2022-0865 NO 0 YES

segmentation violation tif_lzw.c:619 YES CVE-2022-1622 YES 1 YES
tif_lzw.c:624 YES CVE-2022-1623 YES 1 YES

tiffcrop

heap-buffer-overflow

tif_unix.c:340 YES CVE-2022-3626 YES 6 YES
tif_unix.c:346 YES CVE-2022-1056 YES 1 YES
tif_unix.c:346 YES CVE-2022-3597 YES 4 YES
tif_unix.c:346 YES CVE-2022-3627 YES 4 YES
tif_unix.c:368 YES CVE-2023-0801 YES 3 YES
tiffcrop.c:3414 NO N/A YES 6 YES
tiffcrop.c:3502 YES CVE-2023-0800 YES 2 YES
tiffcrop.c:3516 YES CVE-2023-0803 YES 4 YES
tiffcrop.c:3604 YES CVE-2022-3598 YES 1 YES
tiffcrop.c:3609 YES CVE-2023-0804 YES 4 YES
tiffcrop.c:3724 YES CVE-2023-0802 YES 3 YES
tiffcrop.c:6905 YES CVE-2022-2953 YES 5 YES
tiffcrop.c:7345 YES CVE-2022-3599 YES 1 YES
tiffcrop.c:8023 NO N/A NO 0 YES
tiffcrop.c:8903 NO N/A YES 3 YES

segmentation violation

tif_unix.c:340 YES CVE-2022-0907 YES 1 YES
tif_unix.c:368 YES CVE-2023-0797 YES 4 YES
tiffcrop.c:3400 YES CVE-2023-0798 YES 4 YES
tiffcrop.c:3488 YES CVE-2023-0795 YES 4 YES
tiffcrop.c:3592 YES CVE-2023-0796 YES 4 YES
tiffcrop.c:6247 YES Requesting YES 6 NO

floating point exception

tiffcrop.c:5801 NO N/A YES 1 YES
tiffcrop.c:5802 YES CVE-2022-0909 NO 0 YES
tiffcrop.c:5807 NO N/A YES 4 YES
tiffcrop.c:5808 NO N/A YES 4 YES
tiffcrop.c:5817 YES CVE-2022-2056 YES 3 YES
tiffcrop.c:5818 NO N/A YES 3 YES
tiffcrop.c:5936 YES CVE-2022-2057 YES 2 YES
tiffcrop.c:5941 YES CVE-2022-2058 YES 5 YES

heap-use-after-free tiffcrop.c:3701 YES CVE-2023-0799 YES 4 YES
Total 57 43 30 47 45

number of options, and CarpetFuzz can save 20.71% of the
time. Additionally, CarpetFuzz found 1.71 times more unique
crashes than POWER (Section 5.5), which generates com-
binations through random mutation without filtering invalid
combinations, proving that filtering invalid option combina-
tions is important in new vulnerability discovery.

Optimal number of options. CarpetFuzz used the N-wise
method to prune valid option combinations. The smaller the
value of N, the better the effect of pruning, but the interaction
of more than N options will be ignored. The choice of 6 in

this paper is based on the research that almost all flaws are
caused by the interaction of no more than six factors [27].
Moreover, three of the 57 crashes need at least 6 options to be
triggered, which would be missed with N < 6, demonstrating
the necessity of considering 6-wise combinations. We are
unsure if crashes requiring more options exist. Considering
the effect of increasing the value of N on the number of
combinations (e.g., 679 for N = 6 and 1658 for N = 7 in
tiffcrop), we think N = 6 is an appropriate choice in practice.



7 Conclusion

We designed and implemented CarpetFuzz, an NLP-based
fuzzing assistance technique for extracting program option
constraints. Benefitting from active learning, machine learn-
ing, and NLP techniques, CarpetFuzz accurately extracted
relationships among options from documents and filtered out
67.91% of option combinations. With the pruned valid combi-
nations, CarpetFuzz helped AFL find 45.97% more paths that
other fuzzers cannot discover on 20 popular programs and
found 57 unique crashes, of which 30 were assigned CVE IDs.
Also, CarpetFuzz found 94 unique crashes on the previous
work’s benchmark, 1.71 times that of the previous work.
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Appendix

A Category of the explicitly declared relation-
ships in this paper

Table 5 shows the categories of the explicitly declared rela-
tionships in this paper.

Table 5: Category of the explicitly declared relationships in
this paper.

Category Example
Conflict The -level1 option cannot be used with -form.

Dependency Make sense only when -p option is specified.
Implication This flag implies (and is incompatible with) -e.
Similarity Like -a but write only the image dimensions.

Supersedence -G supersedes usage of any -l or -m options.

B Algorithm of the active learning

Algorithm 1 shows the active learning algorithm framework.

Algorithm 1 The active learning algorithm framework.
Input: An unlabeled dataset, U = {x1,x2, ...,xn}, n denotes the

number of samples in U ;
A small labeled dataset based on keywords, L = {x1,x2, ...,xm},
m denotes the number of samples in L;
Oracle f : X ← Y
The number of samples to select, k;

Output: Final classifier C
Initialization: Unlabeled data U :=U , labeled data L := L, Clas-
sifier C based on L ;
for t = 1→T do

Entropy(x(i))← calculate entropy on U using classifier C ;
Select top k x(i)← argmaxx∈U Entropy(x)
Evaluate y(i)← f (x(i))
Update U←U\x(i)
Update L ← L ∪ (x(i),y(i))
Update C ← C (L)

return C

C Keywords used in this paper

The keywords used in this paper is shown in Table 6.

Table 6: Keywords for relationship extraction.
Category Initial state Keywords

Conflict SC

implicit, conflict, discard, exclude, cancel, dis-
courage, disregard, alias, terminate, imply, over-
ride, equivalent, ignore, similar, include, iden-
tical, better, exclusive, supersede, superfluous,

same, replace, obsolete

Conflict SN
disable, unspecified, unprovide, unavailable,

separate

Dependency SD
support, match, require, need, valid, active, af-

fect, assume

Dependency SN
use, enable, specify, give, provide, meaningful,

available, combine, appear

D Real world dataset
Table 7 shows the 20 programs in our real world dataset.

Table 7: Target programs evaluated in our experiments. OPT.:
option, REL.: relationship.

Program Package Format #OPT. #REL.
cmark cmark-git-9c8e8 md 9 3
editcap wireshark-4.0.1 pcap 31 4

eu-elfclassify elfutils-0.188 elf 22 71
img2sixel libsixel-git-6a5be jpg 28 6
jpegoptim jpegoptim-1.5.0 jpg 34 29
jpegtran libjpeg-turbo-2.1.4 jpg 21 1

jq jq-1.6 json 24 4
lrzip lrzip-0.651 lrz 22 10

ogg123 vorbis-tools-1.4.2 ogg 13 1
openssl- openSSL-git-31ff3 pem 12 2asn1parse

openssl-ec openSSL-git-31ff3 pem 16 3
openssl-rsa openSSL-git-31ff3 pem 28 71

pdftops xpdf-4.0.3 pdf 30 30
pdftotext xpdf-4.0.3 pdf 24 5

podofoencrypt podofo-0.9.8 pdf 11 1
speexdec speex-1.2.1 spx 12 18
tcpprep tcpreplay-4.4.2 pcap 19 17

tcpreplay tcpreplay-4.4.2 pcap 29 20
tiffcp libtiff-git-b51bb tiff 18 4

tiffcrop libtiff-git-b51bb tiff 33 6

E Filtered option combinations
The result of filtering invalid option combinations is shown
in Table 8.

F Comparison between 6-wise and random
sampling

Table 9 shows the result of pruning.

G In-depth analysis of the performance in Sec-
tion 5.5

We have analyzed these eight programs and their manuals
manually. The results for seven programs (except ffmpeg)
were caused by treating the strings inserted in the command
line by POWER as input file names. The result for the rest one
(i.e., ffmpeg) was due to a lack of supporting position-specific
options. We also found that two programs’ documents did not



Table 8: Filtered option combinations based on the extracted
relationships. REL.: number of relationships extracted by
CarpetFuzz , PRC.: precision, PCT.: percentage of the filtered
option combinations.

Program #REL. Invalid Combination
PCT. PRC. Recall

cmark 2 43.75% 100.00% 82.35%
editcap 4 62.50% 100.00% 100.00%

eu-elfclassify 66 99.68% 100.00% 99.80%
img2sixel 5 69.24% 100.00% 87.10%
jpegoptim 22 94.99% 100.00% 97.54%
jpegtran 1 25.00% 100.00% 100.00%

jq 4 68.36% 100.00% 100.00%
lrzip 6 68.75% 100.00% 84.62%

ogg123 1 25.00% 100.00% 100.00%
openssl-asn1parse 2 43.75% 100.00% 100.00%

openssl-ec 3 50.00% 100.00% 100.00%
openssl-rsa 69 99.85% 99.99% 99.93%

pdftops 31 98.10% 99.35% 100.00%
pdftotext 9 85.35% 68.46% 90.12%

podofoencrypt 1 25.00% 100.00% 100.00%
speexdec 12 88.28% 100.00% 93.39%
tcpprep 17 98.85% 100.00% 100.00%

tcpreplay 21 99.62% 99.71% 100.00%
tiffcp 2 43.75% 100.00% 70.00%

tiffcrop 4 68.36% 92.77% 79.05%
Average 67.91% 98.01% 94.19%

Table 9: Result of pruning. OC: option combination.
Program 6-wise Sampling

#OC #Edge #OC #Edge
cmark 150 1,086 288 1,086
editcap 704 991 100,000 993

eu-elfclassify 1,110 111 26,624 111
img2sixel 610 1,211 100,000 1,244
jpegoptim 988 208 100,000 213
jpegtran 414 1,833 100,000 2,076

jq 558 1,232 100,000 1,354
lrzip 645 113 100,000 114

ogg123 257 351 6,144 351
openssl-asn1parse 249 2,212 2,304 2,212

openssl-ec 385 6,266 32,768 6,266
openssl-rsa 2,042 5,592 100,000 5,595

pdftops 1,494 608 100,000 609
pdftotext 786 562 100,000 562

podofoencrypt 203 237 1,536 237
speexdec 271 573 480 577
tcpprep 710 573 6,048 573

tcpreplay 1,327 565 100,000 570
tiffcp 384 1,246 100,000 1,291

tiffcrop 679 1,351 100,000 1,589
Average 698.30 1,346.05 63809.60 1,381.15

clearly write all the relationships. We described the details as
follows.

First, we found seven of these programs treated all non-
option-related strings in the command line as input files. Since
POWER randomly inserted strings into the command line dur-
ing the mutation, these newly inserted strings were recognized
as part of input files. For example, both the “abc” and “@@”
in the command, “cflow -a -T abc @@ -o /tmp/foo,” will
be recognized as input files and processed. If the files repre-
sented by the new strings do not exist, the new edges would
be only a little bit (less than five). However, POWER often
replaces the output file names with the above strings during
the mutation process, causing such files to exist and more

new edges. For example, POWER can replace the command
“cflow -T @@ -o /tmp/foo” with “cflow -a -T @@ -o abc,”
which generates the file named “abc.” By parsing the file, the
command “cflow -a -T abc @@ -o /tmp/foo” will have 62
new edges (even more with more such files), but no new bug
was generated.

Additionally, sometimes, POWER could insert options be-
fore the program, like “-a -T cflow @@ -o /tmp/foo.” Due
to POWER’s implementation, argv[0] would not be changed,
and the command would be parsed as “cflow -T cflow @@
-o /tmp/foo” (ignoring the first option “-a”). The program
would treat the second “cflow” as an input and parse itself. If
the input type of the program happened to be ELF (e.g., size),
the new edges could be a lot (e.g., 92).

Second, we found some options in ffmpeg only take effect
in a specific position. For example, the “-f” option would
specify the output format only between the input and output
in the command line. Since CarpetFuzz currently does not
support constraints related to option positions, it cannot gen-
erate combinations that allow -f to take effect, resulting in
1208 fewer edges.

Third, after analyzing those combinations with the lowest
priority, we found two programs’ documents do not mention
some conflicts. Specifically, the cflow’s document missed the
conflict between -format=posix and –emacs, and the exiv2’s
document missed the conflicts among -D, -P, -t, -p, -t, and -d
options. Since our prioritization technique gave the missed
invalid combinations the lowest priority, as mentioned in Sec-
tion 3.5, the impact was little.
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