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Abstract
In this work, we perform a longitudinal analysis of the BNB
Smart Chain and Ethereum blockchain from their inception
to March 2022. We study the ecosystem of the tokens and liq-
uidity pools, highlighting analogies and differences between
the two blockchains. We discover that about 60% of tokens
are active for less than one day. Moreover, we find that 1%
of addresses create an anomalous number of tokens (between
20% and 25%). We discover that these tokens are used as
disposable tokens to perform a particular type of rug pull,
which we call 1-day rug pull. We quantify the presence of
this operation on both blockchains discovering its prevalence
on the BNB Smart Chain. We estimate that 1-day rug pulls
generated $240 million in profits. Finally, we present sniper
bots, a new kind of trader bot involved in these activities, and
we detect their presence and quantify their activity in the rug
pull operations.

1 Introduction

The cryptocurrency market is loosely regulated [4, 39]. Even
if policymakers are moving towards building a safer environ-
ment for cryptocurrency investors [56], it is a complex task,
and needs time. Meanwhile, blockchain-related technologies
evolve fast, and with the birth of the DeFi [67] investors begin
to move from centralized exchanges (CEX) like Binance to
decentralized exchanges (DEX). DEXes are distributed Ap-
plications (dApp) for trading that run on-chain powered by
smart contracts. While regulating the standard cryptocurrency
market is difficult, ruling the on-chain trading platform is even
more challenging. Indeed, even if the web interface of a DEX
can be shut down [3], its smart contracts are still reachable
and working on the blockchain.

DEX and DeFi dApp were born in the Ethereum
blockchain, but DeFi services rapidly pop up on all the
blockchains that support smart contracts. Although Ethereum
plays a leading role in the DeFi world, with over $68 billion
locked in its smart contracts, the BNB smart chain or BSC

(former Binance Smart Chain) proposes itself as a faster and
cheaper alternative.

Uniswap and PancakeSwap are the two most popular
DEXes on Ethereum and BSC. They rely on the Automated
Market Maker (AMM) model to handle the trading system.
At the basis of the AMM model, there is the concept of liq-
uidity pools, a smart contract that handles two tokens (trading
pair) that the user can swap. Unlike CEX, where the platform
defines the trading pairs, users can create their pair on DEXes
and let the other users use it. However, as we will see in the
following, some users abuse this freedom to carry out a series
of malicious operations.

In this work, we conduct a longitudinal investigation
of tokens and liquidity pools in the Ethereum and BSC
blockchains. We start by parsing over 3 billion transactions
of both blockchains, finding more than 1.3 million tokens and
1 million liquidity pools (Sec. 4). Then, we reconstruct their
lifetime—the time from their creation to their last transfer, dis-
covering that approximately 60% of the tokens have a lifetime
shorter than one day (Sec. 5). Hence, we define them as 1-day
tokens. A tiny fraction of addresses, just 1%, is responsible for
creating more than 20% of the tokens (Sec. 6). Surprisingly,
we also find that the tokens with a very short lifetime are
actively traded on liquidity pools. Albeit this phenomenon is
present on both blockchains, it is more widespread on BSC.
Diving into this subset of tokens, we observe that a large frac-
tion of liquidity pools used to trade the 1-day tokens show a
malicious pattern that we call 1-day rug pull (Sec. 7). We ana-
lyze all the liquidity pools looking for this pattern, and we find
272,349 potential rug pulls on BSC and 21,742 on Ethereum.
We estimate the cost of the operation and the gains of the or-
ganizers, finding that they earned approximately $240 million
with such activity (Sec. 7.2.1). Here, we see that the success
rate of the 1-day rug pull is not very high (between 40% and
60%). However, given the simplicity and the very low cost
of the operation, attackers can serially arrange the rug pulls
and cover a series of unsuccessful operations with a single
successful one. Finally, we study how this kind of operation
evolved over time, discovering that the BSC has gradually



surpassed Ethereum in terms of the number of operations and
gains. Moreover, we find that the operations are more preva-
lent during two specific events: the 2020 Defi Summer and
the 2021 Altcoin season (Sec. 7.2.2).

Our key contributions are:

• Analysis of BNB smart chain: To the best of our knowl-
edge, we are the first to study this young but well-
established blockchain, performing a longitudinal anal-
ysis from its inception to March 2022. We study the
tokens and the liquidity pools ecosystem, highlighting
analogies and differences with Ethereum.

• Short lifetime tokens and Token spammers: We es-
timate the lifetime of the tokens on both blockchains.
Discovering that about 60% of tokens last less than one
day. Analyzing who creates the tokens, we observe that
just 1% of addresses create an abnormal number of to-
kens (about 20-25% of tokens of the blockchains).

• 1-day rug pulls: We investigate the presence of the rug
pull pattern in 1-day tokens. We discover that on BSC,
81.2% of 1-day tokens listed on PancakeSwap have this
pattern. We estimate the gains of the attackers, observing
that even if the operation is very simple to arrange, given
its cheap cost, it is profitable when performed serially.

• The sniper bot 2.0: We find the presence of sniper bots
(Sec. 8), a particular kind of trader bot that observes the
blockchain’s mempool to buy newly listed tokens. To
the best of our knowledge, we are the first to illustrate
how this kind of trading bot works, detect their presence,
and quantify their activity in the rug pull operations.

2 Ethereum and BNB Smart Chain

Ethereum [11] is a proof-of-work1 blockchain. Its native coin
is the Ether (ETH), the second most popular cryptocurrency
after Bitcoin (BTC), with a market cap of more than 210
billion USD. A key feature of Ethereum is smart contracts,
pieces of code that execute in a decentralized way on-chain.
Through smart contracts, it is possible to create new digital
assets like (fungible) tokens and NFTs (non-fungible tokens).
The tokens. Tokens are cryptocurrencies that can be ex-
changed or traded. They are created on top of the blockchain,
and their mechanisms are defined using smart contracts. On
Ethereum, the ERC-20 [26] standard defines the main prop-
erties of tokens. An ERC-20 compliant smart contract must
implement a set of functions and events specified in the stan-
dard. These functions are reported in Table 5. Some of them
are optional, in particular the name(), the symbol(), and the
decimal() functions. On Ethereum, tokens and digital assets
are held into accounts.
Ethereum accounts. There are two kinds of accounts on

1Switched to proof-of-stake from 2022-09-15

Ethereum: Externally owned accounts (EOA) and contract
accounts. EOAs consist of a pair of public and private keys
generated with the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) [35]. An account is represented by its public
address, a 42-character hexadecimal string obtained concate-
nating "0x" to the last 20 bytes of the Keccak-256 [23] hash
of the public key. Instead, a contract account is tied to a smart
contract. It is represented with an address in the same format
as an EOA. A contract account is generated when a smart
contract is deployed to the Ethereum blockchain.
Transactions and fee. A transaction is an action that updates
the whole Ethereum network. It can be used to move digital
assets, deploy a smart contract, or invoke a smart contract. Ex-
ecuting a transaction has a cost, commonly called transaction
fee. The fee is variable and depends on two main factors: The
state of the network (if the network is heavily loaded, the fee
is usually higher) and the complexity of the operation that the
transaction triggers.
Smart contract deployment. Smart contracts are programs
that run on the Ethereum blockchain. They are written in a
high-level programming language (e.g., Solidity [21]) and
compiled into bytecode that runs on the Ethereum Virtual
Machine (EVM) [25]. A smart contract can be deployed by
sending a contract creation transaction from an EOA to the
zero address2. The contract creation transaction contains the
bytecode of the smart contract. A smart contract can also
create new smart contracts. Since a smart contract can start a
transaction only in response to a transaction that triggers it,
an EOA must trigger the generation of a new smart contract.
Events and logs. To facilitate the tracking of internal states
of smart contracts, Ethereum provides Events and an internal
Logs register. Each time an action changes the internal state of
a smart contract, it can fire an Event that notifies the change.
EVM and EVM compliance. Ethereum is a distributed state
machine that changes its state at each new block accordingly
to a predefined set of rules. The EVM [65] is the entity that
computes these changes in states. Other than Ethereum, other
blockchains rely on the EVM (e.g., BNB Smart Chain [7],
Avalanche [53], Fantom [27]), and they use one of the standard
EVM or a custom one. These blockchains are called EVM-
compliant. They run the same (or with minimal change) smart
contract written for Ethereum, use the same convention for
the address, and handle states the same way as Ethereum.
The BNB Smart Chain. The BNB Smart Chain [7] (pre-
viously Binance Smart Chain) or BSC is a blockchain that
was born in 2020. Its consensus is based on the PoSA [9]
(Proof of Stake and Authority). The coin of both chains is the
BNB (Build and Build, previously Binance Coin)—the third
coin by market cap with over 46 billion of capitalization. As
Ether for Ethereum, the BNB coin fuels the transactions on
the BNB chain. Because of EVM compatibility, it is possible
to create tokens in BSC similarly to Ethereum. However, in
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this case, tokens follow the BEP-20 standard instead of the
ERC-20.

3 AMMs, Uniswap and its forks

Uniswap [1] is one of the most popular decentralized applica-
tions (dApp). According to DefiLlama [41], a popular DeFi
statistics aggregator, Uniswap is the 5th dApp by TVL (Total
Value Locked, amount of money locked into smart contracts)
with over 6 billion USD.

Uniswap is the first dApp to use the AMM model success-
fully. This model relies on a mathematical formula to fix
the price of assets and on the concept of liquidity pools and
providers. A liquidity pool is a smart contract that contains
two or more cryptocurrencies that the user can swap for an-
other. Instead, a liquidity provider is a user who invests in
the liquidity pool, providing cryptocurrencies to the smart
contract. When a liquidity provider injects liquidity into the
liquidity pool, the smart contract mints LP-tokens and gives
them to the liquidity provider. The LP-token represents the
share of the liquidity pool owned by the investor. When the
liquidity provider desires to get back his cryptocurrencies,
he transfers the LP-tokens to the smart contract. The latter
burns the LP-tokens and provides the cryptocurrencies back
to the investor. In Uniswap V2, each pool consists of a pair of
ERC-20 tokens. The liquidity pool is divided into two parts,
each containing a single token, and both have an equivalent
value. Let a pool consist of x token A and y token B. At each
swap, the pool preserves x ∗ y. When a user swaps a token
A for token B (the user adds token A to the pool and takes
token B from the pool), x increases by a and y decreases by b,
where b is computed so that x∗ y does not change. The rate
a/b of the exchange depends on the ratio of x and y in the
pool. Consequently, the swap operation changes the current
exchange rate. The value of token A decreases while the value
of token B increases, and the two parts maintain the same
value.

Because of the success of this model, the popularity of
Uniswap and its open-source smart contracts [62], more than
50 protocols were born on several blockchains by forking
Uniswap smart contracts in the last years. Uniswap is on
its third version, but all its forks belong to the second ver-
sion since the third one is under a Business Source License.
For this reason, in this work, we focus on Uniswap V2 and
its forks. One of the most popular forks of Uniswap is Pan-
cakeSwap, which lives on BSC. It is the 1th dApp by TVL on
this blockchain with over 4 billion USD locked in its smart
contracts.

4 The Datasets

For our investigation, we build two different datasets: The
Token Dataset, which contains all the ERC-20 (resp. BEP-20)

tokens created, and the Liquidity Pool Dataset, which contains
data about liquidity pools. Each dataset has two versions, one
with data from the Ethereum blockchain and the other from
the BNB Smart Chain.

We consider the whole history of both blockchains from
their inception to March 2022. For the Ethereum blockchain,
we process all the blocks from block 0 (2015-07-30) to
block 14340000 (2022-03-07). For the BSC blockchain from
block 0 (2020-04-20) to block 15854000 (2022-03-07). Given
the large amount of data and the need to parse the entire
blockchains multiple times, for performance reasons and
to avoid overloading public nodes (e.g., nodes provided by
Binance [6] and Infura [34]) or services (e.g., BscScan or
Etherscan), we host and run an Ethereum and a BNB Smart
Chain node. Finally, to query the blockchains and process
the data, we use the Web3 [46] and the Ethereum-etl [44]
Python libraries. Web3 is a collection of libraries that al-
low the interaction with a local or remote EVM-compliant
node. Ethereum-etl allows extracting information from EVM-
compliant blockchains and exporting it into formats like CSV
or JSON. The data collection phase was performed on an
Ubuntu 20.04 machine with AMD EPYC 7301 (16-Core Pro-
cessor, 2.80 GHz), 1 TB of RAM, and 4 TB SATA SSD with
560/530 MB/s read and write speed. Data processing took
between 24 and 72 hours each time we parsed the entire
blockchain, depending on the kind of data retrieved.

4.1 The Token dataset

4.1.1 Gathering smart contracts

As a first step to building the Token dataset, we collect all the
contract creation transactions issued by EOAs. As mentioned
in Sec. 2, EOAs can deploy a smart contract by sending a
contract creation transaction to the zero address. We process
all the transactions in the considered time frame in BNB Smart
Chain (2.6 billion transactions) and in Ethereum (1.4 billion
transactions). We collect 2,195,399 and 4,420,389 contract
creation transactions respectively.

However, tokens can also be created by a smart contract
itself. Indeed, it could be the case that an EOA calls a smart
contract method, and its execution generates a new ERC-
20 (or BEP-20) compliant smart contract. In this case, the
token is created with a so-called internal transaction. Despite
the name, internal transactions are not real transactions, but
rather calls performed by smart contracts. These kinds of
transactions are stored off-chain—they are not visible simply
parsing the blockchain.

To track the tokens created by internal transactions, we can
operate in two ways: The first way is to re-execute all the
transactions in the blockchain in the EVM and trace all the
calls. This process is extremely expensive [57] from a com-
putational point of view. The alternative is to scan the Event
log looking for events that emit a Transfer event. The second



way is much faster and we estimate that it loses only 12% of
the total number of tokens created by internal transactions.
Moreover, the missing tokens are never been used, traded or
transferred, and are thus of little importance for our study (we
discuss in detail the impact of this choice in Sec. 11). So, we
parse all the logs of both blockchains, searching for smart
contracts that emit a Transfer event compliant with the ERC-
20 (resp. BEP-20) interface. Then, we use Etherscan [36] and
BscScan [37] to retrieve the transactions that created these
smart contracts and all the information.

At the end of these two steps, we have a collection of
3,087,274 and 4,534,599 smart contracts extracted from BSC
and Ethereum, respectively. For each of them, we store the
following information: The address of the contract, the block
number in which the smart contract has been generated, the
block in which the smart contract emits its last event, the EOA
that deployed the smart contract or in the case of internal
transactions the EOA address that triggers the first smart
contract, the amount of gas used, the cost of the gas unit (gas
price), the bytecode of the smart contract, and if the smart
contract has been deployed by an EOA or through an internal
transaction.

4.1.2 Token identification

Smart contracts are not only used to create tokens, as well as
not all smart contracts that emit a Transfer event are tokens
(e.g., NFT contracts). Thus, we need to identify which of the
retrieved smart contracts are ERC-20 (resp. BEP-20) com-
pliant. Unfortunately, this is not a trivial task, and in the last
years several works [13, 14, 22, 28, 63], attempted to face this
problem with several approaches that we describe in Sec. 10.
For our analysis, we follow the approach proposed by [14,63]
that leverage the bytecode of smart contracts.

According to the Solidity specification [40], in the byte-
code, smart contract’s methods are identified by signatures
that consist of the first 4 bytes of the Kekkack-256 hash of
the method name and parameters’ type. Thus, to verify if a
bytecode of a retrieved smart contract represents an ERC-20
(resp. BEP-20) compliant token, we verify if it contains at
least all the signatures of the ERC-20 (resp. BEP-20) manda-
tory methods. Tab. 5 in the Appendix shows the signature
of the mandatory and optional methods of the ERC-20 and
BEP-20 interfaces.

Of the 4,534,599 smart contracts’ bytecodes retrieved on
the Ethereum blockchain, we find that 389,348 (8.5%) are
ERC-20 tokens compliant, and 381,551 (98%) of them also
implement the optional functions of the ERC-20 interface. In-
stead, on the BNB Smart Chain, we find that 1,887,484 out of
3,087,274 (61%) are BEP-20 compliant, and, as for Ethereum,
almost all of them also implement the optional methods of the
BEP-20 interface. Although we found more smart contracts
on Ethereum than in BSC (4,534,599 vs. 3,087,274), there
are many more compliant tokens in BSC (1,887,484) than

Table 1: An overview of the Token dataset.

Ethereum BNB Smart Chain

Contracts Total ERC-20 Total BEP-20

External 4,420,389 293,688 2,195,399 1,021,427
Internal 114,210 95,660 891,875 866,057

Total 4,534,599 389,348 3,087,274 1,887,484
Total (w/o LP) - 323,863 - 1,078,016

Table 2: An overview of the Liquidity pools dataset.

Ethereum BNB Smart Chain

Events Uniswap Others PancakeSwap Others

PairC. 65,098 5,483 941,220 30,907
Mint 1,399,599 512,319 21,944,474 5,027,980
Burn 824,359 243,482 7,339,286 2,481,023
Swap 54M 27M 571M 179M

in Ethereum (389,348). This discrepancy suggests that BSC
may be a more interesting environment to study tokens and,
possibly, their misuse.

Lastly, we retrieve all the information about the identified
tokens such as the name, the symbol, the number of decimals,
and the total supply. To do so, we use the Ethereum-etl library
and the Contract Application Binary Interface (ABI) [24].
The ABI is an interface between two program modules. It
contains the specification for encoding/decoding methods and
structures to interact with the machine code and interpret the
results. Through the library, it is possible to instantiate smart
contracts in an object-oriented manner and call its methods
using an appropriate ABI. We instantiate the token contracts
using an ABI that contains the specifications of ERC-20 (resp.
BEP-20) methods and call the name(), symbol(), decimals(),
totalSupply() methods.

At the end of the process, we have a dataset of ERC-20
(resp. BEP-20) tokens containing all the information about
the smart contracts described in Sec. 4.1.1 and the related
tokens. Table 1 shows the number of smart contracts on both
blockchains.

4.2 Liquidity Pools dataset

To create the Liquidity Pool dataset, we consider Uniswap, its
forks, and the other protocols that leverage its smart contracts.

Uniswap has three main smart contracts: Factory, Pair, and
the Router. The Factory contract is responsible for creating
the smart contract that handles the liquidity pool and the LP-
tokens. The Pair contract keeps track of the balances of the
tokens in the pool and implements the AMM logic explained
in Sec. 2. The Router contract offers the entry point to in-
teract with the liquidity pools. Thus, it is possible to swap
tokens and add or remove cryptocurrencies from a liquidity



pool by interacting with the Router. Each of these contracts
implements a set of Events that notify their status changes.

To build our datasets, we parse the Event log of the
Ethereum and BSC blockchains. Following, we report the
events we look for and a brief description:

• PairCreated: This event is fired by the Factory con-
tract each time a new liquidity pool is created. We find
972,127 and 70,581 PairCreated events emitted on BSC
and Ethereum, respectively. From the event, we can ob-
tain the transaction hash, the block of the creation of the
liquidity pool, the address that created the liquidity pool,
the address of the liquidity pool, and the addresses of
the two tokens (the pair of the liquidity pool), the gas
used and the price paid per gas. Analyzing the address
that fired the event, we find that almost all the liquidity
pools of BSC are created in PancakeSwap (96.8%), and
almost all the liquidity pools of Ethereum are created in
Uniswap (92.2%).

• Mint & Burn: The Pair contract emits a Mint (or Burn)
Event each time an LP-token is minted (or burned). This
occurs whenever a liquidity provider adds (or removes)
tokens into a liquidity pool. Analyzing these events, we
obtain the transaction hash and the block of the Mint
(Burn) Event, the address of the liquidity pool, the ad-
dress that added (removed) the liquidity, the number of
LP-tokens minted (burned), the gas used, and the price
paid for the gas. We find 26,972,454 Mint events and
9,820,309 Burn events on BSC, and 1,911,918 Mint
events and 1,067,841 Burn events on Ethereum.

• Swap: This event is fired by the Pair contract each time
a user swaps tokens in a liquidity pool. From the event,
we obtain all the information related to the swap: The
transaction hash, the block in which the swap occurs,
the address of the liquidity pool used, the address that
performs the swap, the number of tokens swapped, the
gas used and the gas price. We find 750,508,160 events
on BSC and 82,447,051 events on Ethereum.

Moreover, we complete our dataset collecting for each smart
contract the block number in which it emits the last event.
Tab. 2 describes the final dataset.

Given that LP-tokens are ERC-20 (resp. BEP-20) compli-
ant tokens, they are already present in our Tokens Dataset.
However, our goal is to study standard tokens and liquidity
pools separately. Thus, as the final step, we get rid of the in-
formation related to the LP-tokens from the Tokens Dataset.
The last line on Tab. 1 reports the number of tokens after we
get rid of the LP-tokens.

5 The Lifetime of tokens

Our data collection revealed a surprisingly high number of
tokens and liquidity pools on Ethereum and BSC. Services
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Figure 1: Lifetime of tokens and liquidity pools on BSC and
Ethereum.

like CoinGecko [16] or CoinmarketCap [18] list about 13,000
cryptocurrencies on 602 centralized and decentralized ex-
changes. Therefore, it is unclear what is the role of the large
majority of tokens in the blockchain ecosystem.

To obtain a first insight into the characteristics of tokens
and liquidity pools, we introduce the concept of lifetime. We
define the lifetime of a token in the following way: A token
begins its lifetime at the block where its smart contract has
been deployed, while it ends its lifetime in the last block
where it emits any Event. Similarly, a liquidity pool begins its
lifetime at the block where the PairCreated event is emitted,
and it ends in the last block where the liquidity pool’ smart
contract emits any Event.

Fig. 1 shows the CDF of tokens’ lifetime and liquidity
pools’ lifetime on Ethereum (blue lines) and BSC (yellow
lines). Tokens and liquidity pools are shown with solid and
dashed lines, respectively. The slope of the curves tells that
the lifetime of the tokens in BSC is generally shorter than
the lifetime of the tokens in Ethereum. Consider that BSC
is a young blockchain, with slightly more than two years of
activity (released on 2020-04-20), while Ethereum is more
than seven years old (released on 2015-07-30). The longevity
of Ethereum is also visible by the long tail of its tokens in the
CDF. Nonetheless, it seems that Ethereum’s tokens that tend
to be more solid and long-lasting. This difference is smaller
when we look at liquidity pools. Indeed, PancakeSwap, which
handles about 97% of the liquidity pools in BSC, was born
only four months after the release of Uniswap V2. From
the CDF, we can also note a few additional interesting facts,
particularly when we look at the first 24 hours of the life of
tokens and liquidity pools.
A significant fraction of tokens is never active. Looking at
the zoomed image in the center of Fig. 1 (b), it is possible
to see that a significant fraction of tokens have a lifetime of
length zero, meaning that the token is active only in one block,
when it was created. This phenomenon is more common in
Ethereum, with 104,836 out of 323,863 (32.4%) tokens that



Table 3: Summary of 1-day and 1-block tokens for BSC and
Ethereum.

Lifetime BSC Ethereum

1-day 638,703 (59.2%) 187,378 (57.8%)
1-block 167,318 (15.5%) 104,836 (32.4%)

Total tokens 1,078,016 323,863

belong to this category, against 167,318 out of 1,078,016
(15.5%) in BSC. In the following, we refer to the tokens that
last only one block as 1-block tokens, while to the other tokens
as active tokens. We find 910,698 and 136,485 active tokens
on BSC and Ethereum, respectively. Table 3 succinctly reports
on these statistics.
A large part of active tokens has an extremely short life-
time. Fig. 1 (b) shows that about 60% of the tokens in BSC
and Ethereum have a lifetime shorter than one day. We re-
fer to these tokens as 1-day tokens. Considering only active
tokens, we find that 471,385 (51.7%) of all the active BSC
tokens and 82,542 (37.7%) of all the Ethereum active tokens
are 1-day tokens. Looking at the data at a higher granularity
(Fig. 1 (b)), we can note that the death ratio of BSC tokens
is surprisingly high. Proportionally, BSC has approximately
half of the 1-block tokens of Ethereum, about the same pro-
portion of dead tokens after 60 minutes, and a significantly
larger proportion of dead tokens after the first 4 hours. As we
can see in Fig. 1 (c), the first four hours of token life are also
crucial in Ethereum.
Almost all the BSC tokens with short lifetimes have a
liquidity pool. Here, we find one of the main differences
between BSC and Ethereum. 468,556 out of 471,385 (94.8%)
active tokens with a lifetime shorter than one day in BSC have
a liquidity pool. In Ethereum, only 33.1% (27,346). It seems
that on BSC the liquidity pool is the main reason for creating
a token.

6 Token spammers

In this section, we change perspective and explore who creates
tokens. Retrieving the list of creator addresses from our token
dataset, we find 144,795 and 464,095 different addresses that
create at least one token, respectively, in Ethereum and BSC.
Comparing these numbers with the total number of cumula-
tive unique addresses on Ethereum (189,858,744) and BSC
(140,522,222)3, we see that they represent only a very small
fraction of the addresses, the 0.07% in Ethereum and 0.33%
in BSC. Fig. 2 shows the distribution of the number of tokens
created by addresses in Ethereum and BSC. The first thing
to notice is that the two distributions are extremely similar.
The large majority of these addresses (70%) create only one
token, as we can see in the zoomed image on the bottom right

3Data retrieved from Etherscan and BSCscan respectively
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Figure 2: Distribution of the number of tokens created by the
addresses that create at least one token in BSC and Ethereum.
For the sake of visualization, the CDF is cut at 100 tokens.
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Figure 3: Fraction of addresses that create at least one token
with respect to the fraction of tokens that they create.

corner of Fig. 2. 95% of addresses create five tokens or less,
and just 1% of addresses create more than 18 tokens.
A small fraction of addresses creates a disproportionate
amount of tokens. Fig. 3 shows the CDF of tokens created
by fraction of addresses. From the figure, we can see that
although 70% of addresses create just one token, the total
amount of tokens created by these addresses account for only
30% of the tokens on the two blockchains. And more inter-
estingly, we find that just 1% of the addresses creates 24.3%
(262,023) of the tokens in BSC, and similarly, 1% of the
addresses in Ethereum create 20.1% (67,869) of the tokens.
These addresses create an average of 51 and 61 tokens in
Ethereum and BSC, respectively. We will refer to these ad-
dresses as token spammers.
Token spammers are more prevalent in BSC. Although the
distribution of the number of tokens created by addresses in
Ethereum and BSC is almost identical (Fig. 3), the absolute
numbers are different. Indeed, in terms of raw numbers, we
find that BSC has almost four times more token spammers
than Ethereum (4,231 vs. 1,329), and the spammers of BSC
create almost four times more tokens in BSC than in Ethereum



(262,023 vs. 67,838).
Token spammers create tokens mainly with contract cre-
ation transactions. As mentioned in Section 2, tokens can
be created in two ways: By sending a contract creation trans-
action or by sending a transaction to a smart contract that
generates the token. We find that 94.8% of the tokens on BSC
and 82.3% of the tokens on Ethereum are created directly by
sending a contract creation transaction.
Token spammers create short lifetime tokens. As we have
seen, a significant amount of tokens have a lifetime shorter
than one day. Investigating the relationship between token
spammers and 1-day tokens, we discover that most of the
tokens created by the spammers have a lifetime shorter than
one day. The spammers created 170,768 1-day tokens out
of 262,023 (65.1%) and 40,552 1-day tokens out of 67,869
(59.8%), respectively, in BSC and Ethereum.

7 The Anatomy of a Rug Pull

The top token spammer creates 17,936 tokens in the time-
frame of our analysis. If we look at the name of these tokens,
we find that almost all of them have the same name (the to-
kens have only 76 unique names), with the most used being
’Pornhub’ with 605 occurrences. The median lifetime of these
tokens is extremely small: 45 mins. Lastly, almost all of the to-
kens (99.7%) created by this address have a liquidity pool. We
study the liquidity pools of these tokens and find out that they
are used to perform an operation commonly known as rug
pull [43, 48]. In the following, we report a detailed example
of a rug pull operation carried out by this address.

We focus on OnlyFans4, a token created by the top token
spammer on block 8090747 (2021-06-07 01:40:34 PM UTC)
by issuing a contract creation transaction. On block 8090751
(2021-06-07 01:40:46 PM UTC), after 4 blocks from its cre-
ation, the token spammer creates a liquidity pool that contains
the pair (OnlyFans, WrappedBNB) and adds a liquidity of 20
Wrapped BNB (almost $7,180 at the moment of the operation)
and 44 trillion of OnlyFans tokens.

After just 6 seconds, on block 8090753, an address swaps
4 million OnlyFans for 0.002 Wrapped BNB ($0.718). This
operation is followed by 11 other swaps—performed by 11
different addresses—for a total buy of 5.1740396∗1012 On-
lyFans for 2.67 Wrapped BNB ($958). After 2 hours from the
creation of the token, at block 8093101 (2021-06-07 03:38:55
PM UTC), the token spammer removes all the liquidity from
the liquidity pool, leaving it drained. Since the 12 addresses
added Wrapped BNB into the pool by buying OnlyFans, the
token spammer collects 22.67 Wrapped BNB and has a profit
of 2.67 Wrapped BNB ($958).

We can formalize these operations in the following way:

1. Eve creates a new ERC-20 token τ.
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2. Eve creates a new liquidity pool with pair (τ, B), where
B is a valuable token, e.g. Wrapped BNB.

3. Eve adds liquidity to the liquidity pool. The reserves of
the pool are now (reserveτ,reserveB).

4. At this point, Eve is the only one that owns token τ.
Investors can buy token τ by swapping their tokens with
token τ in the liquidity pool.

5. Suppose that Bob buys a few τ swapping it with B.
The new reserves of the liquidity pool are (reservetau −
δtau,reserveB +δB)

6. Lastly, Eve removes all the liquidity from the liquidity
pool. The net gain of the operations is δB minus the gas
fees to execute the transactions.

An improved version of the operation. The rug pull de-
scribed above is the simple version of the operation. However,
to attract more investors, the attacker can manipulate some
statistics of the liquidity pool. A well-known market manipu-
lation that the attacker can use is wash-trading [12]. In this
case, the creator of the pool tries to create the impression
that the liquidity pool is active, faking the trading volume by
repeatedly buying and selling tokens. Similarly, another way
that attackers have to drum up the attention of investors is to
inflate the price by buying the 1-day token gradually.
Finally, the attacker can also hedge his gains—eliminating
the risk of an unrealized profit while the liquidity pool is still
active. The attacker can maintain a reserve of tokens and,
when investors start to buy the 1-day token, gradually sell the
owned token, starting to take profit from the operation.

Clearly, rug pull operations can harm investors. However,
we cannot consider it a "fraud" because the phenomenon is
currently not regulated. In Appendix B we discuss this subject
in depth.

7.1 Looking for 1-day Rug Pulls
We leverage our datasets to identify rug pulls systematically.
Since we saw a considerable number of 1-day tokens and
most of them are created serially, we narrow our investigation
to the 332,265 in BSC and 25,180 in Ethereum 1-day tokens
with a liquidity pool. Given the duration of these operations,
we will refer to them as 1-day rug pulls. We analyze all the
Events emitted by the liquidity pools, looking for all the pools
that emitted only one Mint and one Burn event in which the
address that performs the transaction burns at least 99% of the
minted LP-tokens (we don’t use 100% since a small fraction
of tokens might be stuck in the wallet due to rounding).

7.1.1 Estimating the gains of the operations

The simple operation, where the attacker does not swap in
his liquidity pool, can be carried out by performing just four



transactions: A transaction that creates the token, one that
creates the liquidity pool, one to add the liquidity, and finally,
the last transaction to remove the liquidity. These transactions
can be performed individually, or they can be aggregated by
leveraging a smart contract. Of course, we consider both cases
when computing the fees. If the attacker performs swaps on
the liquidity pool, we also consider the transaction fees paid
for each swap.

To perform our estimation we use the following formula:

base_gain = δB − fees (1)
net_gain = base_gain−Tin +Tout − feesswap (2)

The formula can be split into two components. The first part
computes the gain in the case of the simple operation.The
second formula takes into account the improved version of
the operation, where the creator of the liquidity pool manip-
ulates it by performing swaps operations. In this case, we
remove from the gain Tin, that is the amount of tokens that
the manipulator artificially adds to the liquidity. We also add
to the gain Tout , the quantity of tokens that the manipulator
removes from the liquidity pool before the final removal of
the liquidity (Tout ). Finally, we remove from the gain the fees
used to perform the swap operations ( f eeswap).

7.2 Results
After processing our data, we discover that an incredibly high
number of liquidity pools are actually rug pulls. In BSC,
272,349 out of 332,265 (81.2%) of the considered liquidity
pools have a rug pull pattern, while 21,742 out of 25,180
(86.3%) in Ethereum. This result shows that attackers use
most of the 1-day tokens as disposable to carry out rug pulls.

These operations are arranged by 116,516 different ad-
dresses in BSC and 16,539 different addresses in Ethereum.
As we can expect from the previous analyses, most of the
token spammers that operate in BSC are linked to this kind of
activity. Indeed, in BSC, 2,112 out of 4,231 (50%) token spam-
mers performed at least one rug pull. Instead, in Ethereum,
there are only 45 token spammers (0.3%) that have been in-
volved in this activity. We find 115 addresses that perform
more than 100 rug pulls in BSC, accounting for 19.1% of the
operations, with the most active performing 16,102 operations.
Instead, in Ethereum, we find only one address performing
more than 100. Interestingly, combining the information in
the BSC and Ethereum dataset, we find a token spammer that
operated on both blockchains with the same address 5. He
performs five rug pulls on Ethereum and three on BSC.

Looking at the liquidity pools, we find that BNB (97.8% of
the cases) is the token paired the most with the 1-day token.
It is followed by USDT (0.67%) and BUSD (0.15%), two
stablecoins pegged to the USD. Instead, Wrapped Ether is
paired with all the 1-day tokens in almost all the liquidity
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pools with a rug pull in Ethereum. As the next step, we want
to estimate the number of users that fall prey to such activities.
To do so, we exclude the addresses that swap into liquidity
pools they have created themselves from this analysis. We
collect 251,250 different addresses in BSC and 57,552 in
Ethereum that interact with at least one liquidity pool with a
rug pull pattern. These addresses performed 2,903,022 swaps
on the considered liquidity pools in BSC and 317,257 in
Ethereum.

We divide the swaps into buy (1-day token) and sell opera-
tions. As we can expect, given the anatomy of the 1-day rug
pull, we find that most of the operations are buy operations.
More in detail, in BSC 2,286,056 (78.7%) are buy operations
and 616,966 (21.3%) sell operations. In Ethereum, we find
a very similar pattern, with 254,061 (80.1%) buy operations
and 63,196 (19.9%) sell operations.

As final metric, we compute the average value of the
swaps performed by the users. The average amount of swaps
is almost identical for buy and sell operations on both the
blockchains, with 0.01 BNB for BSC and 0.19 ETH for
Ethereum’s liquidity pools. Interestingly, we notice a con-
siderable difference in the average swap amount between the
two blockchains. Indeed, the average swap is approximately
$3 on BSC and $360 on Ethereum.

7.2.1 The gains

Before computing the gains of the attackers, we calculate
the average price an attacker has to invest to arrange the
operation. If the attacker does not perform any swap into
the liquidity pool, the cost of the operation is on average
0.03 BNB in the case of BSC and 0.2 ETH for the Ethereum
blockchain. Thus, the investment needed to perform such
operations is low, even if it could vary substantially when the
blockchains are overloaded. For instance, we found some rug
pulls that reached the cost of 1.1 BNB or even 3.3 ETH. The
base cost to arrange the operation is interesting because it
represents a bound to the loss the attackers have to afford for
each operation.

We leverage our datasets to compute the gain of the opera-
tion using the formula 1 described in Sec. 7.1.1. We describe
the 266,340 operations on BSC and the 21,594 on Ethereum
in terms of successful and unsuccessful operations based on
the operation’s net gain. In particular, we consider an opera-
tion successful if the net gain is strictly positive.

Successful operations. Among the liquidity pools with a
rug pull pattern, there are 104,404 (39.1%) operations in BSC
and 13,368 (61.9%) in Ethereum closed with a profit for the
attacker. A possible reason for the higher success rate of the
rug pull on Ethereum could be that, as we saw, on average,
users tend to invest more money. Indeed, on average, attracting
only one investor is enough to cover the operation’s cost. To
investigate what can affect the gains, we combine information
on gains with those of the manipulations. When the creator of



the liquidity pool does not perform any kind of manipulation,
the net gain is, on average 0.11 BNB in BSC and 1.34 ETH in
Ethereum. Operations carried out on liquidity pools that suffer
wash-trading activity have an average gain of 0.25 BNB in
BSC and 12 ETH in Ethereum, which is considerably higher
than the previous case. Instead, we notice a negligible increase
in gains in the case of pump operations with respect to the
gains obtained by the liquidity pools without manipulation.
Moreover, we find that both kinds of manipulation have no
impact on the success rate. This show that operations that
have wash trading are generally more profitable. However,
the attacker has to perform several swaps, increasing its cost
and loss in case of an unsuccessful operation.

Unsuccessful operations. There are 161,936 (60.9%) liq-
uidity pools in BSC and 8,226 (38.1%) in Ethereum, for which
the attacker does not cover the transaction fees with the oper-
ations. For the 14% (21,122) of these liquidity pools of BSC
and the 20% (1,506) of Ethereum, we notice that the oper-
ations were unsuccessful because nobody swapped into the
liquidity pools. Considering the results we obtained, we can
conjecture that the aim of the attackers is not to be successful
every time but to arrange rug pulls serially and take profit in
the long run. Indeed, the loss of an unsuccessful operation
is minimal, and a streak of operations closed in loss can be
covered with a single profitable operation.

Financial cost of 1-day rug pulls and comparison with
other blockchain phenomena. In our study, we find that the
number of 1-day rug pulls (21,594) and attackers (16,439)
in Ethereum is significantly lower than in BSC (266,340 op-
erations carried out by 117,110 rug pullers). Nonetheless,
the total gain of Ethereum operations, around $150 million,
is remarkably higher than the gains of BSC operations, that
amount to $91 million. Moreover, the same trend holds when
considering the volume of rug pull operations, which we de-
fine as the total value of BNB and ETH swapped. Here we
find that Ethereum has a volume of $772.5 million against
the $243.5 million of BSC. To gain insight into the magni-
tude of 1-day rug pull operations, we compare our metrics
with popular blockchain shenanigans, like MEV and front-
running. Tab. 4 in Appendix reports more relevant metrics
collected from related works about operations carried out in
Ethereum. As we can see, 1-day rug pull is the second type
of operation by profit, generating slightly lower gains than
Sandwich Attacks ($174.34 million in accordance with Qin
et al. [50]). Particularly interesting is the number of addresses
that perform the operations. Indeed, in Ethereum, the num-
ber of attackers that performed 1-day rug pulls is almost five
times the number of the Sandwich Attackers (the fraud with
the higher number of attackers in our comparison). We believe
the operations are performed by a large number of addresses
due to their ease of execution. The reported numbers highlight
that 1-day rug pulls is a significant phenomenon in the DeFi
ecosystems that involve hundreds of thousands of malicious
actors and move more than 1 billion USD.

7.2.2 A longitudinal view

Fig. 4 provides a longitudinal view of the daily number of
rug pull operations (Fig. 4 a), the liquidity added (Fig. 4 b)
and the gains (Fig. 4 c). Analyzing the trends of the chart, we
identify three different phases, divided by the black dashed
lines in the figure. In the first phase, we find the first spike of
1-day rug pulls in Ethereum. In the second phase, rug pulls
start to increase in the BSC. However, the Ethereum gains are
generally higher for the same invested liquidity. Finally, in
the third phase, we see that BSC surpasses Ethereum in terms
of liquidity added, number of operations, and gains. In the
following, we describe in detail the three phases:
Phase 1: DeFi Summer. The first phase took place approxi-
mately from June 2020 to March 2021. At the beginning of
this phase, we see an increase in the daily number of rug pull
operations in Ethereum, with a peak of 179 daily operations
in October 2020. Then, the number of operations steadily
decrease until March 2021. We believe that the increase in
the number of operations was bootstrapped by a phenomenon
known in the crypto-community as DeFi Summer 2020 [42].
During this period, DeFi became extremely popular, and, as a
result, the market capitalization and prices of several tokens
soared [51]. This interest in DeFi attracted new users looking
for investment opportunities, which may have triggered the
increase in rug pull operations. Fig. 4 (b) shows that there
is a significant amount of liquidity invested in these opera-
tions, on average $37,941 (44 ETH), with an average gain
of $5,969 (5.65 ETH) (Fig. 4). Note that this phase involves
only the Ethereum blockchain because the BSC was released
in September 2020 and was not very popular yet.
Phase 2: Altcoin season. Fig. 4 (a) shows a second spike in
the number of rug pulls from March 2021 to September 2021.
In this case, the spike involves both Ethereum and the BSC,
which reach a maximum peak of 195 and 2,309 daily opera-
tions. It is interesting to notice that the number of operations
over time follows the same trend for Ethereum and BSC. For
this reason, we believe an exogenous event caused this spike.
Analyzing the events of that period, we believe this rise in the
number of operations may be a so-called Altcoin Season. An
Altcoin Season is a period in which Altcoins6 perform better
than Bitcoin, significantly increasing their value. Previous
study [38] shows that an Alt Season is marked by a drop of an
indicator called Bitcoin dominance. This indicator measures
the ratio between the market capitalization of Bitcoin to the
total market capitalization of the entire cryptocurrency market.
According to Coinmarketcap [18], in this period, the Bitcoin
dominance decreased from 69% of January 2021 to 39% in
May 2021. This market phase is frequently characterized by
"Fear of missing out" (FOMO) [5], which makes investors
more inclined to buy riskier tokens. For this reason, we be-
lieve investors have flocked to AMM markets to buy tokens,

6Altcoins [32] is a combination of the two words "alternative" and "coin".
The term is used to indicate all cryptocurrencies except Bitcoin.
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Figure 4: The figure shows the number of rug pull operations (a), the initial liquidity added to each pool (b), and the gain for
each operation over time. All the metrics are aggregated daily. The dashed vertical lines divide the three phases we identify.

and rug pull operations skyrocketed. Fig. 4 (b) shows that the
liquidity invested in these operations is higher for Ethereum,
with an average of $39,625 (50 ETH) against the $5,624 (15
BNB) of BSC. Operations in Ethereum are also way more
profitable, with an average gain of $5,836 (6.3 ETH) against
the $48.4 (0.12 BNB) of BSC operations.
Phase 3: The overtaking of the BSC. The last phase goes
from October 2021 to March 2022. In this phase, we find
an interesting twist, as BSC surpasses Ethereum in terms of
liquidity added and gains of rug pull operations. Indeed, in
this phase, rug pulls in BSC have significantly more liquidity
invested than in the past (56.9 BNB on average vs. 15.3 BNB
of the previous phase) and higher gains (2.26 BNB on average
vs. 0.12 BNB of the previous phase). For this reason, we can
see in Fig. 4 that the total daily invested liquidity and gains in
BSC are significantly higher than Ethereum and reached more
than one million USD. In Sec. 11, we explore some possible
reasons for this increase.

7.2.3 Tokens’ names

To further deepen our analysis of rug pulls, we focus on the
names used in the operations. Analyzing the rug pulls, we no-
tice several tokens with the same name in BSC and Ethereum.
We find that of the 272,349 tokens involved in the opera-
tions in BSC and 21,742 in Ethereum there are only 157,864
(57.9%) and 18,801 (86.4%) unique names. Thus, we attempt
to cluster the 1-day tokens into categories and enumerate
them. Table 6 in the Appendix shows the most used names
and the number of occurrences for each of them.

As a first category, we explore clones—tokens with the
same name as an existing (and more popular) cryptocurrency.
To systematically search for these cases, we use as an authori-
tative source the CoinGecko APIs [16]. Leveraging them, we
retrieve the names and the addresses of all tokens created and

verified with the indexer service on the BSC and Ethereum.
At the end of the process, we build a list of 5,325 tokens for
BSC, and 5,172 tokens for Ethereum. We complement this
list by adding popular variations for some tokens’ names (e.g.,
we also considered ADA as a possible name for the Cardano
token). Using our list, we discover 22,002 cloned tokens in
BSC and 1,781 in Ethereum. The most cloned tokens in BSC
are Berryswap (370), Shiba Inu (191), and SafeMoon (158).

The second category we explore is the one of tokens that
attempt to impersonate companies or websites. In this case,
to obtain a list of possible target companies, we retrieve the
name of the companies of the Standard and Poor’s 500 (S&P
500) stock market index. Instead, for the websites, we extract
from the Alexa ranking 7 the name of the top-ranked 200
websites. Using in conjunction these two lists, we find 4,638
tokens of this category in BSC and only 95 in Ethereum.
The companies and websites that are present the most are
Pornhub (1,023), Spacex(419), Onlyfans (398), Oracle (319),
and Amazon (270).

We find several names that contain popular meme-related
words like "Doge", "Inu" or "Shiba". This is not surprising,
since meme tokens are very popular after the events that in-
volved the "meme stocks" of GameStop (GME) and AMC
Entertainment (AMC) in late 2020 [45]. Luckily, CoinMarket-
Cap and CoinGecko offer a categorization of the tokens that
also contain the "meme" category. We leverage these lists to
extract the most frequent words and search for them into the
tokens involved in rug pulls. We find a huge amount of tokens
of this category: 54,229 in BSC and 4,835 in Ethereum.

As the last category of our investigation, we look for DeFi
services (e.g., Deriswap, Shibaswap, and Eco Finance). In
this case, we simply search for tokens containing the "swap",
"defi" and "finance" keywords. With this approach, we find for

7Data retrieved 2022-04-26
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Figure 5: Scatter plot of the number of liquidity pools with
a 1-day rug pull pattern where the address swapped and the
average delay from the pool creation.

this category 25,524 tokens in BSC and 3,751 in Ethereum.
With our simple categorization, we covered the names of

39% of the 1-day tokens on the BSC and 48% on Ethereum.
Even if we were not able to categorize all the tokens, we get
some insights on how attackers pick the name to arrange their
operations. In particular, we note a strong trend in choosing to-
kens’ names related to the meme category and leveraging the
name of popular cryptocurrencies, services, and companies.

8 Sniper Bots 2.0

We find that a large fraction of rug pulls are successful, even
if they are zero-effort operations, without fake tokens or wash
trading. Since these kinds of operations are very quick and
simple, it is still unclear how they can be profitable. We ana-
lyze the operations carried out inside rug pulls more in-depth
and discover that their success may be due to the activity of a
particular class of trading bots, called Sniper Bots.

Sniper bots are automated bots that monitor time-bound
activities and perform an action before or after anyone else.
An example of sniper bot are “Scalping Bots”, bots that mon-
itor the availability of target products from a website and buy
them as soon as they are available (e.g., Nvidia GPUs) [10].

With the birth of and the widespread adoption of AMMs, a
new kind of sniper bot has been developed, which we de-
fine Sniper Bots 2.0. These kinds of sniper bots are pro-
grams that buy tokens on liquidity pools as soon as they
are listed. To do so in the fastest way, sniper bots can lever-
age the mempool— the list of transactions not yet inserted in
blockchain blocks. We find examples of these bots distributed
for free on Github [20, 52, 60] and for a price at several other
websites [2, 49]. Analyzing the code, we can infer how they
work. As a first step, the sniper bot must search for newly

listed tokens. The fastest implementation scans the mempool
looking for transactions whose byte-code indicates that they
are adding liquidity to a brand new liquidity pool. Another
possibility is that the sniper bot waits for the token to be listed
on services like BscScan or Etherscan. Then, the bot sends
a swap transaction to buy the token, and if the gas price is
properly adjusted, it is executed in the same block (but imme-
diately after) of the transaction that adds the liquidity. Sniper
bots typically execute only the buy operation. The user then
can freely decide when to sell the token and make a profit.
However, we also found some variants that automatically sell
the token when the price reaches a pre-defined goal.

8.1 Identifying Sniper Bots

We conjecture that one of the reasons for the profitability of
rug pulls operations are sniper bots that buy tokens from ev-
ery liquidity pool indiscriminately. Thus, we can consider the
liquidity pools involved in rug pulls as “honey pots” to detect
sniper bots. To verify our intuition, we focus on addresses that
swapped inside liquidity pools with a rug pull Fig. 5 shows
the phenomenon: Every dot is an address, and its position
indicates the number of different liquidity pools where the
address swapped and the average delay from the pool creation.
The figure shows a few addresses that swap in thousand of
liquidity pools almost immediately after their creation. Since
these addresses perform these operations serially and incredi-
bly fast, we believe they must be sniper bots. We set up two
conservative thresholds to identify evidence of addresses used
by sniper bots.

For BSC, we consider all the addresses that swap on aver-
age with a delay smaller than five blocks (15 seconds) and
that swap in at least 100 different liquidity pools. We flag 130
addresses as possible sniper bots. These addresses represent
only 0.03% of all the addresses that swap inside liquidity
pools involved in rug pulls. What is impressive is that they
swap in 235,777 liquidity pools, representing 68.7% of all
the liquidity pools with a rug pull. Moreover, these addresses
also perform an impressive number of swaps: 2,691,173, that
account for 24% of all the swaps performed in liquidity pools
with a rug pull. We find that 31% of these swaps are per-
formed in the same block where the liquidity is added for the
first time in the liquidity pool. In these cases, we can confirm
that the sniper bots scanned the mempool to swap in the same
block where the liquidity is added. However, we also find
sniper bots that perform the swap operations a few blocks
after the liquidity is created.

We find sniper bots to be less present in Ethereum. Also,
in this case, we pick two thresholds and consider all the ad-
dresses that swap on average with a distance lower than three
blocks (45 seconds) and that swap in at least 10 liquidity pools.
We find 64 possible sniper bots that swap in 30% of all the
liquidity pools and perform a much smaller fraction of swaps
with respect to BSC sniper bots (3.5% of the total). However,



interestingly, a higher percentage of swaps are performed in
the same block where the liquidity is added in the liquidity
pools (60%).

9 1-day Rug Pull Mitigation

Our study highlights that the 1-day rug pulls have some dis-
tinctive features. In the following, we propose some metrics
that stem from the lessons learned from our analysis that may
be useful to build a detection system.

• Token lifetime: This metric measures the time that
elapses since the creation of the token. Indeed, we find
that 1-day rug pull operations are performed in a very
short timeframe (§7.1).

• Distribution of the liquidity: This metric tracks the
distribution of the LP-tokens. In 1-day rug pulls, the
liquidity pool creator owns all the liquidity (§7). Thus,
it should be considered extremely risky when a single
address owns most of the liquidity.

• Address rug pull records: This metric tracks addresses
that performed a rug pull operation to add them to a list
of potential malicious addresses. Indeed, we find that
some addresses perform rug pulls multiple times. (§6).

• Deceptive token name: This metric measures the simi-
larity between the name of tokens contained in the liquid-
ity pools and popular existing tokens or companies. We
find that attackers often deceive investors by exploiting
the name of the token. (§7.2.3).

An attacker aware of these metrics can try to evade the detec-
tion by putting more effort into carrying out the operations
(e.g., using different addresses or creating the token in ad-
vance). Nonetheless, a distinctive characteristic of 1-day rug
pulls is that they are easy to execute and require low effort by
the attacker. Thus, we believe the proposed metrics could be
sufficient to discourage this operation. Moreover, new metrics
and more sophisticated techniques can be developed to iden-
tify attackers trying to circumvent the detection. For example,
it is possible to follow the money flow between addresses
associating different addresses to the same attacker.

We believe that AMMs are interested in leveraging the
proposed metrics to build a detection system. Indeed, some
have already put effort into this direction. For instance, Pan-
cakeSwap recently included in its interface a service called
HashDit [33], which provides a risk level in investing in a
liquidity pool. HashDit is a Token Contract Scanning service,
that estimates the risk of a token by analyzing the code of
its smart contract [8]. We believe the proposed metrics can
enhance this and other existing services by adding insightful
information.

10 Related Work

Tokens identification. In previous work, there are mainly two
token identification approaches: behavior-based and interface-
based. The behavior-based method assumes that a token con-
tract maps addresses to the number of tokens owned and
contains a function to transfer tokens. Chen et al. [13] fol-
low this approach, analyzing the EVM execution path to find
smart contracts data structures that indicate the bookkeeping
of a token. The interface-based approach, the technique we
take in this work, aims to find tokens that conform to specific
interfaces (e.g., the ERC20 interface). This method involves
discovering the implemented functions within the smart con-
tract bytecode. Several works use this approach [14, 22, 63].
Frowis et al. [28] proved that the interface-based technique
could detect 99% of the tokens in their ground truth dataset.
Liquidity pool scams. Xia et al. [66] characterize scam to-
kens on Ethereum. First, they leverage CoinMarketCap [18]
to obtain a ground truth of official and scam tokens. They
used The Graph [31] to obtain 21,778 tokens and 25,131
liquidity pools from May 2020 to December 2020. A guilt-
by-association heuristic is adopted to enlarge the dataset, sub-
sequently used to train a machine learning model. More than
11,182 fraudulent tokens were discovered after they ran their
classifier on the expanded dataset. Mazorra et al. [43] ex-
tended Xia et al. dataset by including Uniswap data until 3
September 2021, discovering an additional 18 thousand scam
tokens. They provide three categories for rug pulls: simple,
sale, and trap-door. Then, they found that more than 97.7%
of the tokens labeled as scams are involved in rug pulls.
Rug pull mitigation. Rug pulls are a very recent issue, and
to the best of our knowledge there is no actual solution to
prevent them. However, there is a new proposed standard
and some protocols that can help to mitigate the problem. To
counter the theft of tokens, Wang et al. [64] proposed a new
token standard called ERC-20R. With this standard, a transac-
tion is reversible for a short time (dispute period) after it has
been performed. During this period, the sender can request
to freeze the disputed asset to a set of decentralized judges.
If judges agree to lock the disputed asset, it starts another
period of time in which the sender can convince judges to
revert the transaction. Instead, liquidity locker protocol (e.g.,
Unicrypt [61]) allows locking LP-tokens inside smart con-
tracts for a given amount of time. This solution assures that
the liquidity cannot be removed from the pool until the timer
expires, making rug pull impossible. Of course, this solution
does not prevent rug pulls after the time expires or dumping
one of the tokens in the liquidity pool.

11 Discussion

What is the impact of not collecting all the internal trans-
actions? Unlike other works [14, 63], we do not collect all
smart contracts generated by internal transactions. We collect



smart contracts created directly by EOAs, and expand our
dataset by adding contracts that emitted at least one Transfer
Event. This approach could lead to the loss of a small per-
centage of tokens. We can perform a rough estimation of the
ERC-20 token we miss by comparing the number of tokens
we retrieved with the number of tokens retrieved by Chen
et al. [14] at the same block height. Our approach retrieves
146,928 tokens instead of 165,955, approximately 12% less.
However, it is important to note that, by design, our approach
misses only tokens that are never used, traded, or transferred.
So, the missing tokens do not represent interesting cases for
our study.
Why does it appear that rug pulls and token spammers
are more frequent in BSC than in Ethereum? From a
technical point of view, rug pulls work the same way in the
two blockchains. Indeed, since BSC is EVM compliant and
PancakeSwap is a fork of Uniswap, the same smart contract
can be used on both blockchains. However, the cost of the
operation is significantly different. As we saw in Sec. 7.1.1,
performing a rug pull in BSC is cheaper (on average $10.5
with peaks of $600) than in Ethereum (on average $400 with
peaks of over $2,000). These costs represent a fixed cost for
the attacker, and going even or gaining money may be more
difficult in Ethereum versus BSC.
Are cost-efficient blockchains vulnerable to 1-day rug
pulls? As discussed, one of the possible reasons for the preva-
lence of rug pulls on BSC is the low transaction cost. This
could suggest that cost-efficient blockchains are more vulner-
able to 1-day rug pulls. However, to confirm this hypothesis, it
is necessary to examine whether the phenomenon is common
in blockchains with costs similar to the BSC.

Considering our case study of BSC, we believe the low
cost of transactions is not the only reason for the high num-
ber of rug pulls. In particular, BSC provides one of the first
DeFi ecosystems that is cheaper and faster than Ethereum. It
quickly became very popular. Moreover, thanks to EVM com-
patibility, many no-code tools, libraries, and smart contracts
already developed for Ethereum can also be used on BSC.
This allows the deployment of smart contracts and the cre-
ation of new tokens with limited technical capabilities. Thus,
the high number of potential victims, the little technical chal-
lenge, and the cost-efficiency made the BSC fertile ground
for malicious actors to carry out 1-day rug pulls. Even though
the low cost can facilitate rug pulls, increasing the costs of
blockchains is not a real solution. Instead, a possibility is to
shift the focus to DEXes’s protocol and smart contracts for
token creation. In particular, it could be possible to design
more secure smart contracts to handle tokens (e.g., ERC-20R)
or AMM protocols with policies that disincentive rug pull
operations.
Can different users coordinate to carry out the same oper-
ation, or can a user use multiple addresses? In this work,
we considered each address belonging to a single different
user, and we assumed there is no coordination among ad-

dresses. Nonetheless, a user may change the address he uses
to perform each rug pull. It is also possible that a group of
users coordinate to carry out the operation. For example, a
user can create a liquidity pool while others perform wash
trading. A possible approach to detect this malicious behavior
is to gather all the transactions among the allegedly involved
addresses and look for malicious patterns or communities
(e.g., using graph analysis). In this work, we do not perform
this analysis, but we plan to explore more sophisticated rug
pulls as an extension of this work.

12 Ethical considerations

In this paper, we examined 3 billion transactions from
Ethereum and the BSC. We focused our research on the ad-
dresses that create tokens and how they use them. All data
we retrieved is publicly available, and EOA addresses are
pseudo-anonymous. We never attempted to deanonymize the
addresses or violate their privacy during this work. Conse-
quently, and in accordance with our IRB’s policies, we did
not require express approval to conduct our analysis.

13 Conclusion and Future Work

In this work, we conduct a thorough investigation of the to-
kens and the liquidity pools of the BNB Smart Chain and
Ethereum. We studied the lifetime of the tokens and their
creators. We discovered two very interesting metrics: 60%
of the total tokens of both blockchains do not survive their
first day (1-day token), and a tiny fraction of addresses (1%
of addresses), which we called token spammers, created more
than 20% of the tokens. We explore the correlation between
token spammers and 1-day tokens, and we found that token
spammers strongly impact the existence of 1-day tokens.

More interestingly, we find that token spammers use 1-day
tokens as disposable tokens to arrange rug pulls, exploiting the
mechanism of liquidity pools. We selected from our dataset
all the liquidity pools that show evidence of a rug pull and dis-
sect the operations, analyzing them from several perspectives.
Finally, we introduce the sniper bot, trading bot that aims to
buy tokens at their listing price. However, they unwillingly
became victims of the rug pulls because of their mechanism.

As future work, we believe it is interesting to further refine
our results by including addresses that cooperate to perpetrate
rug pulls in the analysis. It could be possible to uncover other
malicious and more sophisticated patterns. As discussed in
Sec. 11, cost-efficient blockchains could be more exposed
to the 1-day rug pulls. Thus, it is interesting to extend our
analysis to blockchains with transaction costs comparable to
BSC (e.g., Algorand [30]). Finally, another promising direc-
tion is further exploring sniper bots to provide a more detailed
analysis of their typologies and operations.
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Table 4: Comparison with other blockchain operations. We report only on frauds performed on Ethereum since our work is the
first to analyze the Binance Smart Chain.

Operation Tot Gain ($) # Addresses # Operations Blockchain From To

[29] Counterfeit Tokens 17.35M 364 573 Ethereum 2015-07-30 2020-03-18
[58] Displacement 4.1M 74 2,983 Ethereum 2015-07-30 2020-11-21
[50] Fixed Spread Liquidations 89.18M 2,724 31,057 Ethereum 2018-12-01 2021-08-05
[59] Honeypots 90K 53 690 Ethereum 2015-08-07 2018-10-12
[58] Insertion 13.9M 1,975 196,691 Ethereum 2015-07-30 2020-11-21
[50] Sandwich Attacks 174.34M 3,488 750,529 Ethereum 2018-12-01 2021-08-05
[15] Smart Ponzi 17.70M 444 835 Ethereum 2015-08-01 2020-05-20
[58] Suppression 1.03M 128 50 Ethereum 2015-07-30 2020-11-21

1-day rug pulls 148.93M 16,439 21,594 Ethereum 2015-07-30 2022-03-07
1-day rug pulls 90.78M 117,110 266,340 BSC 2020-04-20 2022-03-07

A Functions and events of the ERC-20 and
BEP-20 standards

Table 5: Functions and events of the ERC-20 (Ethereum)
and BEP-20 (Binance Smart Chain) standard interface. We
report in yellow the methods that are optional in the ERC-20
interface and in red the only method that is optional in both
interfaces.

Function Signature

name() 06fdde03
symbol() 95d89b41
decimals() 313ce567
totalSupply() 18160ddd
balanceOf(address) 70a08231
transfer(address,uint256) a9059cbb
transferFrom(address,address,uint256) 23b872dd
approve(address,uint256) 095ea7b3
allowance(address,address) dd62ed3e

Event Signature

Transfer(address,address,uint256) ddf252ad
Approval(address,address,uint256) 095ea7b3

B Are 1-day rug pulls frauds?

1-day rug pulls are very different from more notorious rug
pulls like Squid Game [47] or Luna Yield [17]. Indeed, these
operations lasted weeks or months, and their perpetrator ex-
ploited extensive marketing campaigns and misleading ad-
vertising to deceive users into investing in their tokens. In
the case of Squid Game, the scammer created a token in the
BSC following the success of the homonym Netflix televi-
sion series [54]. Due to the extensive marketing campaign
promoting the token as official on social media platforms
such as Twitter and Telegram, its value skyrocketed from a

few cents to over $2,856 in less than a week [19]. Then, the
scammer removed nearly all of the liquidity from the pool
($3.3 million), causing the token’s value to plummet to near
zero [47]. In our paper, we study 1-day operations that aim
to make a profit with the least possible effort in a short time
frame. For this reason, it is unlikely that they leverage so-
phisticated marketing campaigns to lure investors, like in the
case of Squid Game. However, some 1-day rug pull opera-
tions use other kinds of deceptive tactics. The first uses token
names identical or slightly different from well-known com-
panies or popular tokens. As we saw in Sec. 7.2.3, this case
involves 8.7% of Ethereum rug pulls, and 10% of BSC rug
pulls. Another deceptive technique consists in attempting to
legitimate the project by verifying the smart contract code on
BSCscan and Etherscan. The verification consists in upload-
ing the source code so that the platform can compile it and
verify that it matches the bytecode of the token stored in the
blockchain. The verification provides users transparency and
gives more guarantee that the token is not fraudulent. We find
the smart contract is available and verified for 55% (147,069)
of BSC and 67% (14,722) of Ethereum tokens involved in
the 1-day rug pull operations. Finally, another technique to
legitimate the token consists in creating the "official" Tele-
gram group of the token. We find evidence of this technique
in the smart contract’s code and then inspect the groups on
Telegram. Indeed, analyzing the source codes, we notice that
19,096 token smart contracts in BSC and 1,334 in Ethereum
report a link to the Telegram group of the token. Although the
organizers of 1-day rug pulls use deceptive techniques to dupe
investors, we cannot consider these operations frauds because
the phenomenon is still not regulated. In any case, people lose
money: Investors bought the token in 92.7% of the Ethereum
rug pulls and in 91.2% of the BSC ones, and in all these cases
the investment is lost. For this reason, we believe that these
operations, even if not illegal, are exploitative of the DeFi
ecosystem and should be contrasted to safeguard investors.
Indeed, regulators are starting to take action to contrast them.



For example, New York State Senator Kevin Thomas proposes
criminalizing rug pulls and other crypto frauds by introducing
a new bill amendment request (Senate Bill S8839) [55]. The
idea of the bill is to introduce the crime of illegal rug pull that
occurs if the creator of the token sells more than 10% of his
tokens within five years of their last sale.

C Token names

Table 6: Token names most frequently used in 1-day rug pull
operations.

BNB Smart Chain Ethereum

Name # of tokens Name # of tokens

Pornhub 1,023 Hyve.works 50
Galaxy 588 Deriswap 32
Seedswap 502 Shibaswap 28
Lionswap 429 Apple core finance 17
Eco.finance 421 X20.finance 16
Spacex 419 Yield farm rice 15
Onlyfans 419 The sandbox 14
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