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Abstract When a bank finds two clients interested in the same stock

Inventory matching is a standard mechanism for trading fi-
nancial stocks by which buyers and sellers can be paired. In
the financial world, banks often undertake the task of finding
such matches between their clients. The related stocks can
be traded without adversely impacting the market price for
either client. If matches between clients are found, the bank
can offer the trade at advantageous rates. If no match is found,
the parties have to buy or sell the stock in the public market,
which introduces additional costs.

A problem with the process as it is presently conducted is
that the involved parties must share their order to buy or sell
a particular stock, along with the intended quantity (number
of shares), to the bank. Clients worry that if this information
were to “leak” somehow, then other market participants would
become aware of their intentions and thus cause the price to
move adversely against them before their transaction finalizes.

We provide a solution that enables clients to match their
orders efficiently with reduced market impact while main-
taining privacy. In the case where there are no matches, no
information is revealed. Our main cryptographic innovation is
a two-round secure /inear comparison protocol for computing
the minimum between two quantities without preprocessing
and with malicious security, which can be of independent
interest. We report benchmarks of our Prime Match system,
which runs in production and is adopted by a large bank in the
US — J.P. Morgan. Prime Match is the first secure multiparty
computation solution running live in the financial world.

1 Introduction

An axe is an interest in a particular stock that an investment
firm wishes to buy or sell. Banks and brokerages provide their
clients with a matching service, referred to as “axe matching".
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but with opposite directions (one is interested in buying and
the other is interested in selling), the bank can offer these two
clients the opportunity to trade internally without impacting
the market price. Both clients, and the bank, benefit from this
internalization. On the other hand, if the bank cannot find
two matching clients, the bank has to perform the trade in
the public market, which introduces some additional costs
and might impact the price. Banks, therefore, put efforts into
locating internalized matches.

One such effort is the following service. To incentivize
clients to trade, banks publish a list of stocks that they are
interested in trading, known as “axe list". The axe list that the
bank publishes contains, among other things, aggregated in-
formation on previous transactions that were made by clients
and facilitated by the bank. For instance, to facilitate clients’
trades, the bank sometimes buys stocks that some clients wish
to sell. The bank then looks to sell those stocks to other clients
at advantageous rates before selling those stocks in the public
market. Those stocks will appear in the bank’s axe list.

The axe list consists of tuples (op,symb,axe) where op €
{buy,sell}, symb is the symbol of the security to buy or sell,
and axe is the number of the shares (quantity) of the security
to buy or sell (we sometimes use the terminology of “long"
for buy and “short" for sell). This axe list provides clients
the ability to locate available (synthetic) trades at reduced
financing rates.

Unfortunately, this method is unsatisfactory. Although the
information in the axe list of the bank relates to transactions
that were already executed, there is a correlation between
previous transactions that a client performed and future trans-
actions that it might wish to trade. Thus, clients feel uncom-
fortable with seeing their recent (potentially large) trade his-
tory (although anonymized and aggregated) in the axe list that
the bank publishes, and sometimes ask the bank to remove
their previous trades from the axe list. Clients, therefore, face
the following dilemma: keeping their axes published reveal
information about their future potential trades or investment
strategy, while continuously asking to remove trades from the



axe list limits the banks’ ability to internalize trades and offer
advantageous rates, to begin with.

The bank currently uses some ad-hoc methods to mitigate
the leakage. For instance, it might aggregate several stocks
together into “buckets" (e.g., reveal only the range of available
stocks to trade in some sector), or trim the volumes of other
stocks. This does not guarantee privacy, and also makes it
harder to locate potential matches.

1.1 Our Work

We provide a novel method for addressing the inventory
matching problem (a simple double auction, which is periodic,
with a single fixed price per symbol). Our main contribution
is a suite of cryptographic protocols for several variants of the
inventory matching problem. The system we report, called
Prime Match, was implemented and runs in production in J.P.
Morgan since September 2021. Prime Match has the potential
to transform common procedures in the financial world. We
design the following systems:

* Bank-to-client inventory matching: Prime Match supports a
secure two-party (bank-to-client) inventory matching. The
client can privately find stocks to trade in the bank’s full
axe list without the bank revealing its axe list, and without
the client revealing the stocks and quantities it wishes to
trade. The protocol is secure against a semi-honest bank
and malicious client and is of two rounds of communication
(three rounds if both parties learn the output).

* Client-to-client inventory matching: We extend Prime
Match to support a secure (client-to-client) inventory
matching. This is a three-party protocol where the bank
is an intermediate party that mainly delivers the messages
between two clients and facilitates the trade if there is a
match. This enables two clients to explore whether they
can have potential matches against each other and not just
against the axe list of the bank. This further increases poten-
tial matches. The protocol is secure in the presence of one
malicious corruption and is of three rounds of interaction.

e Multiparty inventory matching: We also extend the client-
to-client inventory matching to multiple clients coming at
once and looking to be matched.

We expand on each one of those scenarios below.

Bank-to-client inventory matching: We replace the current
procedure in which the bank sends an axe list to a client,
and the client replies with which stocks to trade based on
the axe list, with a novel bank-to-client inventory matching.
Prime Match allows the bank to locate potential matches
without revealing its axe list, and without the client revealing
its interests. Moreover, as the bank can freely use accurate
axe information (as the axe list is hidden), clients have no
longer an interest to remove themselves from the axe list. All
parties enjoy better internalization and advantageous rates.
Importantly, the bank does not learn any information about
what the client is interested in on any stock that is not matched,

and likewise, the client does not learn any information on what
is available unless she/he is interested in that as well. Only
after matches are found, the bank and the client are notified
and the joint interest is revealed. At a high level, for two
orders (buy,X,axe; ) and (sell,X,axe;) on the same symbol X,
we provide a secure two-party protocol that computes as the
matching quantity the min quantity between axe; and axe,.'
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Figure 1: Client-to-bank topology. Client C sends an encrypted
order orderc = (buy, X, axe) to the Bank (secure matching engine)
which holds orderg = (sell, X, axe»). The engine computes the mini-
mum between axej and axep.

Client-to-client inventory matching: The above approach
only enables matching between the bank’s inventory to each
client separately but does not allow a direct matching among
different clients. For illustration, consider the following sce-
nario: Client A is interested in buying 100 shares of some
security X, while client B is interested in selling 200 shares
of the same security X. On the other hand, the bank does not
provide X in its inventory axe list. The bank either distributes
in a non-private way its axe list to clients A and B (as it is
being conducted prior to our work) or engages twice in a
bank-to-client inventory matching described above, the first
time against client A and the second time against client B.
The two clients do not find X in the list, and both clients would
have to trade on the public market at higher costs.

Prime Match allows the clients and the bank not to miss
such opportunities. We provide a mechanism that acts as a
transparent matching engine. Each client provides as input
to the computation his/her encrypted axes, and the clients
then interact and learn whether their axes match or not, see
Figure 2. For this solution, we provide a three-party secure
minimum protocol I, among two clients and the bank as
the intermediary party to facilitate and execute the trade if
there is a match.
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Figure 2: Client-to-client topology. Client C| and C; send encrypted
orders order; = (buy, X,axe;) and ordery = (sell, X, axep), respec-
tively, to the Bank which computes the minimum of axe; and axes.

Secure Matching Engine

'In our actual protocol, each party also provides a range of quantities it
wishes to trade, i.e., a minimum amount and a maximum amount. If there is
no match that satisfies at least its minimum quantity, then there is no trade.
To keep the introduction simple, we omit this additional complexity for now.



Multi-party protocol. A potentially powerful mechanism
would be to support multiple clients coming at the same time,
where all clients talk to each other through the bank who
facilitates the trades when there are matches. This might in-
crease the potential number of matches for each client. We
implement such a mechanism based on our client-to-client
matching protocol, where we invoke it (g) times, for each pos-
sible pair of clients, when 7 is the total number of participating
clients. Since the service of axe matching is relatively exclu-
sive, i.e., it is offered only to selected clients, n is relatively
small (around 10 per day), and thus this approach suffices for
the current needs.

At this point, we only implement this relatively degener-
ated form of multiparty matching. We provide security for
a semi-honest bank and malicious clients. In the multiparty
setting, there are further challenges that have to be explored,
such as what information is leaked by the functionality due to
partial matches (i.e., client A can fulfill its order, say, selling
1000 shares by matching with client B and C, each wishing to
buy 500 shares). Moreover, to achieve malicious security, the
protocol also has to guarantee that the bank does not discrimi-
nate against clients, e.g., when two clients are both interested
in buying some security, then it treats them fairly and does
not prefer to match the “big client" over the “small client." In
fact, it is impossible to support security against a malicious
bank in this case already because of the star network — the
clients communicate through the bank with no authentication
(see [7]). Therefore, achieving malicious security would re-
quire some different setups and further techniques. We leave
this for future research.

From a business perspective, the clients generally do trust
the bank, and the bank is also highly regulated and will not
risk its reputation by attempting to cheat. Therefore, semi-
honest bank generally suffices.

Secure minimum protocol. At the heart of our Prime Match
engine is a secure protocol for comparing two input values
axe; and axey, each in {0,...,2" — 1} C F,. The protocol,
given the bit-decompositions of axe; and axep, computes the
minimum between the two. We have a two-party variant (bank
to client) and a three-party variant when only two parties have
inputs (client-to-client) and the third party (the server) helps in
the computation. For the latter, an interesting property of our
protocol is that the two clients only perform linear operations,
and therefore can operate non-interactively on encrypted in-
puts (or secret-shared, or homomorphic commitments, etc.).
The server facilitates the computation. For ¢-bit inputs, our
protocol runs in three rounds of interaction and with O(¢?)
communication where in the first round clients provide their
input, and in the last (third) round the output is revealed. The
protocls also offers malicious security.

Implementation and evaluation. All three scenarios were
implemented, and we report running times in Section 5. On
the bottom level, both bank-to-client and client-to-client proto-

cols can process roughly 10 symbols per second with security
against malicious clients under conventional machines with
commodity hardware. Our system is running live, in produc-
tion by J.P. Morgan. To the best of our knowledge, this is the
first MPC solution running live in the financial world. Com-
mercially, the main advantage of the system is the increased
opportunities for clients to find matches.

As clients do not wish to spend resources to use such a
service (installation of packages, maintenance cost, etc.), and
cannot commit to providing tech resources before testing
the product, Prime Match is implemented as a browser ser-
vice. This raises several challenges in the implementation, see
Section 5. Moreover, in the client-to-client matching a star
topology network is required where clients communicate only
with the bank. Clients do not wish to establish communication
with other clients and reveal their identities to other clients.

Our contributions. To conclude, our contributions are:

We identify a real-world problem in which cryptogra-
phy significantly simplifies and improves the current
inventory matching procedure.

* We provide two new protocols: bank-to-client inventory
matching and client-to-client inventory matching. Those
completely replace the current method which leaks infor-
mation and misses potential matches. Our protocols are
novel and are specifically tailored to the problem at hand.
We do not just use generic, off-the-shelf, MPC protocols
(see Section 1.3 for a discussion).

* At the heart of our matching engine is a novel two-round
comparison protocol that minimizes interaction and re-
quires only linear operations.

* The protocols are implemented and run live, in produc-

tion, by a major bank in the US — J.P. Morgan.

1.2 Related Work

Prior works on volume (quantity) matching. We now com-
pare the prior privacy-preserving volume matching architec-
tures [4,9,13] to Prime Match. The MPC-based volume match-
ing constructions of [9, 13] derive their security by separating
the system’s service operator/provider into several (e.g., 3)
distinct servers, whose collusion would void the system’s se-
curity guarantees. The clients submit their encrypted orders
to the servers by secret sharing, such that no single server
can recover the encrypted orders. The clients have no control
over these servers and no clear way to prevent them from
colluding.

Allowing clients to themselves serve as contributing op-
erators of the system would present its own challenges. For
instance, it would impose a disproportionate computational
burden on those clients who choose to serve as operators.
Moreover, it is unclear how to incentivize clients to run heavy



computations, and to play the role of the operators.”

The fully homomorphic approach of [6] imposes a compu-
tational burden on a single server in a star topology network
in which clients communicate with the server. Moreover, the
concrete efficiency of the proposed GPU-FHE scheme is slow.
Furthermore, the scheme of [6] does not offer malicious se-
curity. FHE-based solutions for malicious security are much
less efficient than the ones based on MPC.

Prior works on privacy-preserving dark pools. A recent
line of research has attempted to protect the information con-
tained in dark pools [4, 10] run by an operator. The systems
described in these works allow users to submit orders in an
“encrypted” form; the markets’ operator then compares orders
“through the encryptions”, unveiling them only if matches
occur. The functionality of privacy-preserving dark pools is a
continuous double auction in which apart from the direction
(buy or sell) and a desired trading volume, a price (indicating
the “worst” price at which the participant would accept an
exchange) is submitted. The operator “matches” compatible
orders, which, by definition, have opposite directions, and for
which the price of the buy order (the “bid”) is at least the price
of the sell order (the “ask”). [9, 10] are based on MPC with
multiple operators and the work of [4] is based on FHE.

Dark pools are different than our setting, as matches are
also conditioned on an agreement on a price (requiring many
more comparisons) leading to more complex functionality. In
comparison, inventory matching is a simple double auction,
which is periodic, with a single fixed price per symbol. More-
over, dark pools support high-frequency trading, which means
that they have to process orders very fast. All prior works’ per-
formance on dark pools (including multi-server dark pools)
does not suffice for high-frequency trading. In comparison,
axe-list matching is a much slower process; with the current,
insecure procedure of axe-matching, a few minutes might
elapse between when the bank sends its axe list, and the time
the client submits its orders. Since ensuring privacy intro-
duces some overhead, clients might not necessarily prefer a
slower privacy-preserving dark pool over a fast ordinary dark
pool. Furthermore, secure comparison is a necessary building
block for dark pools. Any of the comparison protocols from
prior works, [11,14,23,24,27,28], including ours, can be used
for dark pools, but all of them have some overhead. Unfortu-
nately, neither of these works can lead to a fast dark pool (in
a star topology network) which is close to the running times
of a dark pool operating on plaintexts. Achieving fast enough
comparison that is suitable for high-frequency trading is an
interesting open problem.

The work of Massacci et al. [25] considers a distributed
Market Exchange for futures assets which has functionality
with multiple steps where one of the steps includes the dark
pool functionality. Their experiments show that their system

2Part of the success of the Prime Match system is related to the fact that
clients are offered a web service to participate in the system which requires
minimal tech support by the clients.

can handle up to 10 traders. Moreover, orders are not con-
cealed: in particular, an aggregated list of all waiting buy and
sell orders is revealed which is not the case in solution and the
dark pool solutions. Note that there are works that propose
dark pool constructions on the blockchain [5, 19,26] which
is not the focus of our work. Moreover, these solutions have
different guarantees and security goals. None of the above
solutions is in production.

Prior works on secure 3-party Less Than comparison.
There are several works in the literature that propose se-
cure comparison protocols of two values in the information-
theoretic setting [1, 11, 14,23,24,27,28]. See Table | for a
detailed comparison of these works compared to ours. Our
protocol does not require preprocessing and runs in 2 rounds
of interaction. Our cost incurs an £> overhead since we secret
share ¢ bit numbers in a field of size ¢. Similar overhead also
appears in prior works. The security parameter A overhead is
required due to the use of coin flipping and the additional use
of commitments in the malicious protocol. The main reason
for the higher overhead of prior secret sharing-based protocols
in Table 1 is that they require interaction per secure multiplica-
tion leading to an increased round complexity (= log /). Our
protocol does not require any secure multiplications, which is
a significant benefit in upgrading our passive protocol to one
with malicious security.

The works of [15, 16, 18, 22], based on multiplica-
tive/additive homomorphic encryption, provide 2 (or constant)
round solutions but they only offer passive security. The com-
putational cost is capped at O(A - £) modular multiplications.
Moreover, some works require a trusted setup assumption
to generate the public parameters. For instance the modu-
lus generation of the homomorphic Paillier encryption-based
solutions.

The most recent work of [1], based on functional secret
sharing in the preprocessing model, is a three-round solution
offering only passive security with the cost of O(¢) PRG calls
in its online phase.

1.3 Why Specifically-Tailored Protocols?

A natural question is why we design a specifically tailored
protocol for the system, instead of just using any generic, off-
the-shelf secure computation protocols. Those solutions are
based on securely emulating arithmetic or Boolean circuits,
and require translating the problem at hand to such a cir-
cuit. Specifically, for our client-to-client matching algorithm,
which is a three-party secure protocol with one corruption, it
looks promising to use some generic MPC protocols that are
based on replicated secret sharing, such as [2, 12] or garbled
circuits [21,29].

There are two main requirements from the system (from
a business perspective) that leads us to design a specifically-
tailored protocol and not a generic MPC: (1) The need for
a constant number of rounds; (2) Working with committed



Offline Online Offline Online
Protocol Communication Communication Computation Computation Rounds | Security | Corruption
[27] - O((Clogt)- (£+35)) O((Clogt)- (£+35)) 31 passive HM
[11] - O(L-(t+5)) O(L-(t+5)) O(log!) | passive HM
[28] - O(£* +log ) O(£* +log ) O(log!) | passive DM
This work - O(£% +log?) O(£% +log() 2 passive DM
[23] o(?) O(logl- (L +35)) o) O(logl- (L +5)) O(logl) | active HM
[14] - O((Clogl)-(£+s) O((¢logt)- (L +35)) 44 active HM
[24] o(¢) O((Clogt)-(¢+s) o(¢) o(l-(L+s)) O(logt) active DM
This work - ol-(L+1)) O(L-(£+1)) 2 active HM

Table 1: Cost of passive and active comparison protocols in terms of offline, and online communication and computation
complexity; in terms of rounds; in terms of security; and in terms of corruptions supported. HM stands for honest majority, while
DM stands for dishonest majority. £ denotes to the bit length of the input, s is the statistical security parameter and A is the
computational security parameter. The work of [24] achieves statistical security over arithmetic fields but it achieves perfect

security over the arithmetic rings.

inputs. Furthermore, no offline preprocessing is possible since
clients wish to participate only during the live matching phase.
We provide a comparison with generic MPC techniques in
the full version.

1.4 Overview of our Techniques

We focus in this overview on the task of client-to-client match-
ing (see Figure 2): A three-party computation between two
clients that communicate through the bank. We present our so-
lution while hiding only the clients’ quantities axe. However,
our detailed protocol additionally hides both the directions
and the symbols. We present our protocol in the semi-honest
setting and then explain how to achieve malicious corruption.

Semi-honest clients and server: The client provides secret
shares (and commitments) for all possible symbols and for
the two possible sides. If a client is not interested in buying
(resp. selling) a particular stock, it provides O as its input for
that symbol and size. It is assumed that the total number of
symbols is around 1000 — 5000, and of course, the number
of sides is 2. Thus, each party has to provide roughly 2000 —
10000 values. To see if there is a match between clients A and
B on a particular stock, we securely compute the minimum
between the values the parties provided with opposite sides
(i.e., A sells and B buys, or B sells and A buys).

Each one of the clients first secret shares its secret value
axe using an additive secret sharing scheme. The two clients
then exchange shares’. Then, they decide on the matching
quantity by computing two bits indicating whether the two
quantities are equal or which one of the two is minimal.

We design a novel algorithm for computing the minimum.
The algorithm consists of two phases. As depicted in Fig-
ure 3, the first phase works on the shares of the two secrets

3The communication model does not allow the two clients to talk directly,
and each client talks only to the server. However, using encryption and
authentication schemes, the two clients can establish a secure channel while
the server just delivers messages for them.

(a,b), exchanged via the matching engine using symmetric
key encryption, while performing only linear operations on
them (min protocol). Looking ahead, each one of the two
clients would run this phase, without any interaction, on its
respective shares. The result would be shares of some secret
state (dg,d;) in which some additional non-linear processing
is needed after reconstruction to obtain the final result. How-
ever, the secret state can be simulated with just the result of
the computation — i.e., the two bits indicating whether the two
numbers are equal or which one is minimal. Therefore, at the
end of the first phase, the two clients can send the shares to the
server, who reconstructs the secret state and learns the result,
again using just local (this time, non-linear) computations.
Our minimum protocol min is described in Section 4.2, and
we overview our techniques and contributions in the relevant
section. Our semi-honest protocol is given in Section 4.3.

Malicious clients. We now discuss how to change the proto-
col to protect against malicious clients.

Zooming out from computing minimum, the auction works
in two phases: a “registration” stage, where clients submit
their orders, and the matching stage, where the clients and
the bank run the secure protocols to find matching orders. In
the malicious case, the parties submit commitments to the
quantities of their orders to the server. The list of participants
is not known in advance, only the clients who submitted a
commitment can participate in the current matching phase.
Moreover, the list of participants (at each run) is not public
and is only known to the server.

Of course, clients have to be consistent, and cannot use
different values in the matching phase and in the registra-
tion phase. In the matching phase, the clients secret shares
their inputs (additive secret sharing), and prove using a Zero-
Knowledge (ZK) proof that the shares define the committed
value provided in the registration phase.

More specifically, client C; commits to a during registra-
tion, i.e., sends Com(a) to the server and commits to the
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Figure 3: Client-to-client matching protocol for computing the min-
imum between the quantities a from client C; and b from client C
in the semi-honest setting. As described in Footnote 3, the communi-
cation between the two clients through the server is encrypted, and
so the view of the server in this communication is just dy, d>.

shares (aj,ap) of the minimum by sending Com(a;) and
Com(ay) to the server. It also proves in ZK the statement
that Com(a) = Com(a;) + Com(az) given that the commit-
ment scheme is linearly homomorphic allowing to perform
additions on committed values.

On top of the basic semi-honest protocol (as depicted in
Figure 3) we also exchange the messages shown in Figure 4
where every party forwards a commitment to the other party
for the share that it does not hold. Client C receives a com-
mitment to by and client C, receives a commitment to aj.

Next, recall that our minimum protocol requires only linear
work from the clients, and thus it allows to work on any
linearly-homomorphic cryptosystem, such as linear secret
sharing scheme, linearly homomorphic commitments, linearly
homomorphic encryption scheme, and so on. In the semi-
honest setting, we used this property to work only on the secret
shares. We run the linear algorithm three times in parallel, on
different inputs:

1. First, each client simply runs the algorithm on additive
shares, just as in the semi-honest solution. This is de-
picted in Figure 3. Running the algorithm on those shares
would result in shares of some secret state that will be
delivered to the server. The server reconstructs the state
and computes the result from this state.

2. Second, the parties run the algorithm on the commit-
ments of the other party’s share. This is depicted in
Figure 4. Since the commitment scheme is also linearly-
homomorphic, it enables Alice to compute a commit-
ment of what Bob is supposed to send to the server in
the first invocation, and vice versa.

3. Third, the parties also compute (again, using only linear
operations!) information that allows the server to learn
the openings of the other party’s commitment. This en-
ables the server to check that all values it received in the
first invocations are correct.

Malicious server. Our final system does not provide security
against a malicious server, unless the two clients can authenti-
cate themselves to each other, or can talk directly. We show
that if the client can communicate to each other, then we can
also support malicious server for the comparison protocol.

a=a;+a b=b;+b>

Com(ay) Com(b>)
— | Secure Matching Engine | «———

Com(b») Com(ay)
Com(d>) = min(Com(as),Com(b,)) Com(d;) = min(Com(az),Com(by))

Com(d) = Com(d;) + Com(d>)

Figure 4: Client-to-client matching protocol for computing the
minimum in the presence of a malicious adversary. In addition to
values computed in Figure 3, the parties compute commitments of
the value that the other participant is supposed to send to the server.

The server receives shares of some secret states, together
with commitments of the secret states. It then reconstructs
the secret state and checks for consistency. It then has to
perform some non-linear operations on the secret state to
learn the result. Applying generic ZK proofs for proving that
the non-linear operation was done correctly would increase
the overhead of our solution. Luckily, the non-linear opera-
tion that the server performs is ZK-friendly, specifically, it is
enough to prove in ZK a one-out-of-many proof (i.e., given a
vector, proving that one of the elements in the vector is zero;
see Theorem 4.4). For this particular language, there exists
fast ZK solutions [20]. See Section 4.4 for a description and
details.

Organization. The paper is organized as follows. In Section 2
we provide the preliminaries, while some are deferred to the
appendices. In Section 3 we provide the main matching en-
gine functionality. In Section 4 we provide our protocol for
computing the minimum, including the semi-honest and the
malicious versions. In Section 5 we report the system perfor-
mance and in Appendix C we mention challenges pertaining
to the deployment of our system.

2 Preliminaries

Notations. We use PPT as an acronym for probabilistic poly-
nomial time. We use A to denote the security parameter, and
negl(A) to denote a negligible function (a function that is
smaller than any polynomial for sufficiently large A).

Commitment schemes. A commitment scheme is a pair
of probabilistic algorithms (Gen,Com); given public pa-
rameters params < Gen(1*) and a message m, com :=
Com(params,m;r) returns a “commitment” to the message
m. To reveal m as an opening of com, the committer simply
sends m and r (this is sometimes called “decommitment”).
For notational convenience, we often omit params. A commit-
ment scheme is homomorphic if, for each params, its message,
randomness, and commitment spaces are abelian groups, and
the corresponding commitment function is a group homo-
morphism. We always write message and randomness spaces



additively and write commitment spaces multiplicatively. See
full version for more details.

Zero-knowledge proofs. We use non-interactive zero-
knowledge for three languages. See formal treatment in full
version.

¢ Commitment equality proof: Denoted as the relation
RcomEq» the prover convinces the verifier that the two
given commitments cg,c; hide the same value.

¢ Bit proof: Denoted as the relation Rg;jiproof, allows the
prover to prove that a commitment ¢ hides a bit, i.e., a
value in {0,1}.

* Out-of-many proofs. Denoted as the relation Konemany
allows a prover to prove that one of the commitments
Vo, ..., Vy in the statement is a commitment of 0.

3 The Prime Match Main Functionalities

We now describe our Prime Match inventory matching func-
tionalities. We describe the bank-to-client functionality (Sec-
tion 3.1), the client-to-client functionality (Section 3.2), and
the multi-client system (Section 3.3).

3.1 Bank to Client Matching

This variant is a two-party computation between a bank and
a client. The bank tries to find matching orders between its
own inventory and each client separately. As mentioned in
the introduction, this essentially comes to replace the current
procedure of axe-matching as being conducted today, with
a privacy-preserving mechanism. Today the bank sends its
inventory list to the client who then submits orders to the bank.
Note, however, that if the bank runs twice with two different
clients, and the bank does not hold some security X, and two
clients are interested in X with opposite directions, then such
a potential match will not be found.

The functionality proceeds as follows. The client sends to the
bank its axe list. This includes the list of securities it is inter-
ested in, and for each security whether it is interested in long
(buy) or short (sell) exposures, and the quantity. The client
sends its own list. The functionality finds whether the bank
and the client are interested in the same securities with oppo-
site sides, and in that case, it provides as output the matching
orders and the quantity is the minimum between the two
amounts.

FUNCTIONALITY 3.1 (4g>c—-Bank-to-client func-
tionality).

The functionality is parameterized by the set of all pos-
sible securities to trade, a set U.

Input: The bank P* inputs lists of orders
(symby,sidej,amount}) where symb;, C U is the
security, side; € {buy,sell} and amount} is an

integer. The client sends its list of the same format,
(symb{, sidef ,amount€).
Output: Initialize a list of Matches. For each i,j
such that symb] = symeC and side; # sideJC, add
(symb,’-‘,side}‘,sidejc-,min{amountgﬂamountjc.}) to M.
Output M to both parties.

From a business perspective, it is important to note that the
input of the client (and the bank) serves as a “commitment” -
if a match is found then it is executed right away.

The functionality resembles a set intersection. In set inter-
section, if some element is in the input set of some party but
not in its output, it can conclude that it does not contain in the
other set. Here, if a party does not find a particular symbol
in its output although it did provide it as an input, then it is
still uncertain whether the other party is not interested in that
security, or whether it is interested but with the same side. We
show how to implement the functionality in the presence of a
malicious client or a semi-honest server in Appendix A.

Bank to multiple clients. In the actual system, the bank has
to serve multiple clients. This is implemented by a simple
(sequential) composition of the functionality. Specifically,
the functionality is now reactive where clients first register
that they are interested to participate. The bank then runs
Functionality 3.1 with the clients — either according to the
basis of first-come-first-served, or some random ordering. We
omit the details and exact formalism as they are quite natural
given a semi-honest bank.

Range functionalities. In Appendix B, we show a variant of
the protocol where each party inputs a range in which it is
interested and not just one single value. L.e., if a matched order
does not satisfy some minimal value, it will not be executed.
Since the minimum value does not change throughout the
execution, whenever the bank receives 0 as a result of the
execution it cannot decide whether the client is not interested
in that particular symbol, or whether it is interested — but the
matched amount does not satisfy the minimum threshold.

3.2 Client to Client Matching

In this variant, the bank has no input and it tries to find po-
tential matches between clients facilitating two clients that
wish to compare their inventories. This is a three-party com-
putation where the bank just facilitates the interaction. It is
important to notice that the clients do not know each other,
and do not know who they are being paired with. The bank
selects the two clients and offers them to be paired.

FUNCTIONALITY 3.2 (¥cyc—Client-to-client func-
tionality).

The functionality is parameterized by the set of all pos-
sible securities to trade, a set U. This is a three-party



functionality between two clients, P; and P, and the
bank P*.

Input: The client P; inputs a list of orders
(symbl-l,side,-l,amount}). The client P, inputs a list of
orders (symb?,side?, amount?), and the bank has no in-
put.

Output: Initialize a list of Matches. For each
i,j such that symb,~1 = symb? and side,-1 #* side?,
add (symb},side},side?,min{amount},amount%}) to
M. Output M to all three parties. ‘

In the next section, we show how to implement this functional-
ity in the presence of a malicious client or a malicious server,
assuming that the two clients can communicate directly, or
have a public-key infrastructure. When the two clients can
communicate only through the server and there is no public-
key infrastructure (PKI) or any other setup, there is no au-
thentication and the server can impersonate the other client.
We therefore cannot hope to achieve malicious security. We
achieve security in the presence of a semi-honest server. See
a discussion in the next subsection.

3.3 The Multi-Client System

We now proceed to the multiparty auction. Here we have
parties that register with their intended lists, and the bank
facilitates the orders by pairing the clients according to some
random order. The functionality is now reactive; The parties
first register, in which they announce that they are willing to
participate in the next auction, and they also commit to their
orders. In the second phase, the bank selects pairs of clients in
a random order to perform client-to-client matching. Looking
ahead, typically there are around 10 clients that participate in
a given auction.

For simplicity of exposition and to ease readability, we
write the functionality as the universe is just a single symbol.
Moreover, instead of sending the side explicitly, the client
sends two integers L and S, representing its interest in long
(buy) or short (sell) exposure, respectively. Rationally, each
party would put one of the integers as O (as otherwise, it would
just pay extra fees to the bank). Generalizing the functionality
to deal with many symbols is performed in a natural manner,
where the number of total symbols is 1000-5000 in practice.
The main functionality can process all the different symbols
in parallel.

FUNCTIONALITY 3.3 (#mc — Multi-client matching).
This is an n+ 1 party functionality between n clients
Pi,...,P, and a bank P*.

Upon initialization, %y initializes a list £ = 0 and
two vectors L and S of size n, where n bounds the total
number of possible clients.

Fuc-Register(P;, L;,S;). Store L[i] = L; and S[i] = S;
and add i to P. Send to the bank P* the message
registered(P;).
Fuc-Process().
1. Choose a random ordering O over all pairs of P.
2. For the next pair (i, j) € O try to match between P;
and P; (we can assume wlog that always i < j):

(a) Compute My = min(L[i],S[j]), b = (L]i] <
S, BY = (S[i] < L[j))-

(b) Compute M; = min(S[i], L[j]), b} = (S[i] <
L[j]) and by = (S[i] < L[})).

(c) Send (i,j,Mo,M1,b%,b}) to P, and
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(l7J7M07M1) Wlth (b87b(1)’b(1)7b}) to P*
(d) Update L[i] = L[i] — Mo and S[j] = S[j] —Mo.
(e) Update S[i] = S[i] — M, and L[j] = L[j]— M.

On malicious server. Our final protocol (see full version)
for Fuc is secure in the presence of a semi-honest P* (and a
malicious client). Inherently, clients communicate through a
star network where the bank facilitates the communication.
Moreover, we assume no PKI, clients do not know how many
clients are registered in the system, and how many clients
are participating in the current auction. This can be viewed
as “secure computation without authentication", in which
case the server can always “split" the communication and
disconnect several parties from others (see [7] for a formal
treatment).

We prove security in the presence of a semi-honest server.
In fact, our protocol achieves a stronger notion of a guarantee
than just semi-honest, as in particular, it runs the underlying
comparison protocol (a single invocation of a client-to-client
matching) which is secure against a malicious server.

Another relaxation that we make is that the ordering of
pairs is random, and we do not have a mechanism to enforce it.
Note also that the functionality leaks some information to the
server; in particular, after finding a match, the bank executes
it immediately. The bank can infer information about whether
two values equal to 0, and therefore whether a client is not
interested in a particular symbol. In contrast, each client just
learns whether its value is smaller or equal to the value of the
other party, and therefore when it inputs O it can never infer
whether the other party is interested in that symbol or not.

4 Securely Computing Minimum

A pivotal building block in Prime Match is a secure minimum
protocol. In Section 4.1, we review our functionality for com-
puting the minimum. We focus on the case of client-to-client
matching with an aiding server. We show how to convert the
protocol for two parties in Appendix A.

In Section 4.2 we present the underlying idea for computing
the minimum. The algorithm computes the minimum while



using only linear operations (looking ahead, those would be
computed on shared values) while pushing the non-linear
operations on reconstructed data. In Sections 4.3 and 4.4 we
show a semi-honest and a malicious protocol for computing
the minimum, respectively.

4.1 The Minimum Functionality

After receiving a secret integer from each one of the two
parties, the functionality compares them and gives as a result
two bits — which indicate which one of the two inputs is
smaller than the other, or whether they are equal. It also gives
the result to the server.

FUNCTIONALITY 4.1 (¥comp: Server-aided secure

minimum functionality).

Consider two players, Py and Py, and a server P*.

e Input: Py and P; respectively send integers vo and v
in {0,...,2" — 1} t0 Feomp-

* Output: Fcomp sends by := (vo < vy) to Py, by :=
(vi <) to Py, (bo,by) to P*.

In the rest of this section, we will show how to imple-
ment this functionality in the presence of a semi-honest (Sec-
tion 4.3) and malicious adversary (Section 4.4).*

4.2 Affine-Linear Comparison Function

We first describe an abstract algorithm which compares two
elements vg and vy of {0,...,2" — 1} C Fy, given their bit-
decompositions. We separate the algorithm into two parts:
Comparisonlnitial (Algorithm 1) and ComparisonFinal (Algo-
rithm 2). Both parts do not use any underlying cryptographic
primitives.

In the first algorithm (Comparisonlnitial), all operations on
the bit-decompositions of the two inputs vy and v; are linear.
Looking ahead, this will be extremely useful when convert-
ing the algorithm into a secure two-party protocol, where vg
and v; are additively shared between the two parties (or also
just committed, encrypted under additively homomorphic en-
cryption scheme, etc.). In particular, this part of the protocol
can be executed without any interaction, just as the algorithm
itself when vy and v; are given in the clear. The second al-
gorithm (ComparisonFinal) can be computed by a different
party, given all information in the clear. Looking ahead, this
will be executed by the server P* on the outputs of the first
part. This part contains some non-linear operations, however,
this part of the algorithm does not have to be translated into a
secure protocol.

Overview Algorithm 1 (Comparisonlnitial). Our approach is
inspired by the algorithm of Wagh, Gupta, and Chandran [28,

“For ease of presentation, Functionality 4.1 is for the semi-honest version
of the protocol; For the malicious case, we will use a slightly different
functionality on committed inputs; See full version.

Alg. 3], which compares a secret-shared integer with a public
integer. (Specifically, its inputs consist of an array of public
bits and an array of secret-shared bits.) We extend the algo-
rithm and allow the comparison of two private integers using
only linear operations.

We achieve this F,-linearity in the following way. We
fix integers vo and v; in {0,...,2" — 1}, with big-endian bit-
decompositions given respectively by

n—1 n—1

Vo = Z 2”717j~l)07j, and v; = Z Pt Vi) -

Jj=0 Jj=0
We follow the paradigm of [28], whereby, for each j €
{0,...,n—1},aquantity w; is computed which equals 0 if and
only if v j = vy ;. Meanwhile, for each j € {0,...,n—1}, we
setcj:=1+vo;—vij+Yicjwi (Wealsosetc, 1= Zz;(l) W,
as we discuss below). The crucial observation of [28] is that,
foreach j € {0,...,n—1},¢c;=0so0longas vy ; < vy j as bits
(thatis, if 1 +vg j — vy, ; = 0) and the higher bits of vy and v,
agree (inducing the equality }'; . ;wx = 0). By consequence,
some cj,for j€{0,...,n—1}, must equal 0 whenever vo < v.
Similarly, ¢, = 0 whenever vp = vy. In summary, vo < vy im-
plies that some ¢; = 0, for j € {0,...,n}.

The main challenge presented by this technique is to ensure
that the opposite implication holds; that is, we must prevent
the sum ¢ :=1+vp j —v1 j + Y jwi from equalling O (pos-
sibly by overflowing) modulo g—that is, even when wy # 0
for some k < j—and hence yielding a “false positive” ¢; = 0,
which would falsely assert the inequality vy < vy. [28] pre-
vents this phenomenon by ensuring that each w; € {0,1},
and choosing 2 +n < g (they set n = 64 and ¢ = 67). In
fact, [28] defines w; := (vo ; — vl_rj)z. Under this paradigm,
cji=1+vo;—vi;+ Z,Kj wy is necessarily non-zero so long
as either v ; > v; ; as bits (so that 1 +vg ; — vy ; > 0) or any
wy #£ 0, for k < j.

This squaring operation is nonlinear in the bits vy ; and vy j,
and so it is unsuitable for our setting. We adopt the following
recourse instead, which yields [F-linearity at the cost of re-
quiring that the number of bits n € O(logg) (a mild restriction
in practice). The key technique is that we may eliminate the
squaring—thereby allowing each w; to remain in {—1,0,1}—
provided that we multiply each w; by a suitable public scalar.
In fact, it suffices to multiply each (unsquared) difference w;
by 22%/. In Theorem 4.4 below, we argue that this approach
is correct.

Our modifications to [28] also include our computation of
the non-strict inequality vy < vi—effected by the extra value
cp,—as well as our computation of the opposite non-strict in-
equality, vi < vy, in parallel. The latter computation proceeds
identically, except uses —1+4vg j — vy j € {—2,—1,0} at each
bit.

Of course, the intermediate value v ; — v ; need only be
computed once per iteration of the first loop.

Overview of Algorithm 2 (ComparisonFinal). Note that in
Algorithm 1, waceum = 0 as long as vo j = vy, and it attains



Algorithm 1 Comparisonlnitial ((vo,...,von—1),
(V1,05-+-,V1,0-1))

1: Assign Waceym =0

2: for j€{0,...,n—1} do

3: SetC()J' = 1+v07j—v17j+waccum.

4: Setcyj:=—1+4+vp;—V1j+Waccum

5: Set w; := (vo,j — v1.;) and Waccym += 22"/ -w;
6: Set co, and ¢, equal t0 Waccum

7: Sample a random permutation T <— S, 1|

8: for j€{0,...,n} do

9:  Sample random scalars so j, s1,; from F,, \ {0}.
10: Assign doﬁj “=50,j " Co.n(j)>

11: Assigndu =S81,j CLa())

12: return (doy,...,do,) and (di,...,d1 )

a non-zero value at the first j for which vo ; # v1 ;. Up to that
point, (co,j,c1,j) = (1,—1). At the first j for which vo j # vy j:

o If vo > vy (ie., (vo j,v1,j) = (1,0)), then we get that
(co,jsc1,5) = (2,0).

o If vo < i (i.e., (voj,v1,;) = (0,1)), then we get that
(co.jsc1,) = (0,-2).

The algorithm then makes sure that no other value of
cp,jp = 0, essentially by assigning waccum to be non-
zero. If vo = vy then ¢p, = c1,, = 0. Finally, all the
bits (co,0,---,¢0n),(C1,05-.-,¢1,,) are permuted and re-
randomized with some random scalars. Observe that if vy > v,
then all the values do, . ..,dop are all non-zero, and one of
di1p,...,d1 ,1s zero. If vi > v then exactly one of the values
dip,...,d1,is0Oand all dyy,...,dp, are non-zero.

It is crucial that the vectors (doo,...,do,) and
(d1,0,-..,d1,,) do not contain any information on vy, v; other
than whether vy < vy or v; < vg. Specifically, these values
can easily be simulated given just the two bits vo < v; and
v1 < vg. Therefore, it is safe to give both vectors to a third
party, which will perform the non-linear part of the algorithm.
For a vector of bits (x,...,x,) € {0,1}"™", the operation
any'_ox; returns 1 iff there exists j € [0,...,n] such that
x; = 1. Algorithm 2 simply looks for the 0 coordinate in the
two vectors. We have:

Algorithm 2 ComparisonFinal ((do o, ..,do ),
(di0,---:d1n))

1: Assign by := any’}:o (do,;=0)
2: Assign by :=any]_ (d,; = 0)
3: return by and b,

In the below theorem, we again consider bit-decomposed
integers vy = Z;?;é 277177y j and vy = Z;f;é 21y
we view the bits v; ; as elements of {0, 1} C IF,. The following
theorem is proven in the full version:

Theorem 4.4. Suppose n is such that2+4-(2"—1) < gq.
Then for every vo,v) € Fy

(vo <vi,vi <wo) =

ComparisonFinal (Comparisonlnitial (v, V1)) ,

where vy, v are the bit-decomposition of vy, vy, respectively.
Moreover; for every i € {0,1}:

o Ifv; <vi_; then there exists exactly one j € {0,...,n}
such that d; j = 0. Moreover, j is distributed uniformly in
{0,...,n}, and each d;  for k # j is distributed uniformly
inF,\{0}.

* Ifv; > v|_; then the vector (d;q,, . ..,d; ) is distributed
uniformly in IFZ“ \ {0},

We emphasize that Algorithm 1 uses only F,-linear opera-
tions throughout. A number of our below protocols conduct
Algorithm | “homomorphically”; that is, they execute the
algorithm on elements of an F,-module M which is unequal
to IF, itself. As a basic example, Algorithm | may be executed
on bits (v, j);?;(l) and (vi, j);?;(]) which are committed, provided
that the commitment scheme is homomorphic (its message,
randomness and commitment spaces should be F,-modules,
and its commitment function an F,-module homomorphism).
Furthermore, Algorithm 1 may be conducted on additive -
shares of the bits (vo, j)f;;(l) and (v, j);f;(l).

In this latter setting, sense must be given to the affine addi-
tive constants £1. As in [28], we specify that these be shared
in the obvious way; that is, we stipulate that Py and Py use the
shares 0 and +1, respectively.

4.3 The Semi-Honest Protocol

For simplicity, we first describe a protocol that securely com-
putes this functionality in the setting of three-party computa-
tion with an honest majority and a semi-honest adversary. We
give a maliciously secure version in Protocol 4.3 and prove
its security in the full version.

Theorem 4.5. [f Ilct is a secure coin-tossing protocol, G is a
pseudorandom generator, and the two clients communicate us-
ing symmetric authenticated encryption with pseudorandom
ciphertexts, then Protocol 4.2 securely computes Functional-
ity 4.1 in the presence of a semi-honest adversary corrupting
at most one party. Each party sends/receives O(n*> + \) bits,
where n is the length of the input and \ is the sec. parameter.

4.4 The Maliciously Secure Protocol

We now give our malicious protocol for Functionality 4.1 in
Protocol 4.3. To ease notation, we denote N = {0,...,n—1}.
We already gave an overview of the protocol as part of the in-
troduction. The parties commit to the inputs, share their inputs,
commit to the shares, and prove that all of those are consistent.
Then, each party can operate on the shares it received (as in



* The protocol:

secret s.

~1
shares ((vi7j>‘1’7i);f=0 to Py_;.

evaluates

7. P* sends b; to P,.
* Output: Each P; outputs b;. P* outputs (bg,b;).

PROTOCOL 4.2 (Semi-honest secure comparison protocol).
* Input: Py and P; hold integers vy and vy, respectively, in {0,...,2" — 1}. P* has no input.
1. Py and P engage in the coin-tossing procedure ITcT (see full version for a formal definition) to obtain a A-bit shared
2. Each party P; (for i € {0,1}) computes the bit decomposition v; = Z’};é n=1-j. v; j, for bits v; j € {0,1}.

3. Foreach j € {0,...,n— 1}, P, computes a random additive secret-sharing v; j = (v; ;)¢ + (vi ;)7 in F,. P; sends the

4. After receiving the shares ((vl,,; ﬁ?);f;é, from P;_1, P; executes Algorithm | on the appropriate shares; that is, it

(((o1)g - ({e117)'g ) + Comparisoninitial ( ({vo,1¢)’ g ((1.11)'p) -

where all internal random coins are obtained from G(s).
5. P; sends the output shares (<d07j>?)?=0, ((dLj)?)';:O to P*.
6. After receiving all shares, P* reconstructs for every j € {0,...,n}:

doj:={do )+ (do ;)] and d;:={(d1;)§+(di)],

and finally executes Algorithm 2 to receive (bg,b;) := ComparisonFinal ((dO.j)?ZO , (dl_,j)’;.:o).

the semi-honest protocol), but also on the commitment that
it holds on the other parties’ share. When P* receives the
shares of d from party P, it also receives a commitment of
what P;_; is supposed to send. The server can therefore check
for consistency, and that no party cheated. Moreover, each
party P; can also compute commitments of the two vectors
jg,c?l. When the server comes to prove P; that v; < vj_j, it
has to show that there is a 0 coordinate in its vector [i;-. This
is possible using one-out-of-many proof. See the full version
for the full security proof. We note that the functionality is
slightly different than that of Functionality 4.1.

4.5 Bank-to-Client

We show in Appendix A a two-party (Bank-to-Client) version
of the protocol, where the bank does not just facilitate the
computation but also provides input. In a nutshell, the parties
use linear homomorphic encryption — ElGamal encryption —
instead of secret sharing.

S Prime Match System Performance

We report benchmarks of Prime Match in two different en-
vironments, a Proof of Concept (POC) environment, and the
production environment after refactoring the code to meet
the requirements of the bank’s systems. The former bench-
marks can be used to value the performance of the comparison
protocol for other applications in different systems.

Secure Minimum Protocol Performance: For the purposes
of practical convenience, adoption, and portability, our client
module is entirely browser-based, written in JavaScript. Its
cryptographically intensive components are written in the C
language with side-channel resistance, compiled using Em-
scripten into WebAssembly (which also runs natively in the
browser). Our server is written in Python, and also executes
its cryptographically intensive code in C. Both components
are multi-threaded—using WebWorkers on the client side and
a thread pool on the server’s—and can execute arbitrarily
many concurrent instances of the protocol in parallel (i.e.,
constrained only by hardware). All players communicate by
sending binary data on WebSockets (all commitments, proofs,
and messages are serialized).

We run our experiments on commodity hardware through-
out since our implementation is targeted to a real-world appli-
cation where clients hold conventional computers. In particu-
lar, one of the two clients runs on an Intel Core i7 processor,
with 6 cores, each 2.6GHz, and another one runs on an Intel
Core i5, with 4 cores, each 2.00 GHz. Both of them are Win-
dows machines. Our server runs in a Linux AWS instance of
type c5a.8xlarge, with 32 vCPUs. In the first scenario, we run
the client-to-bank inventory matching protocol for two clients
where we