
Extending a Hand to Attackers: Browser Privilege Escalation Attacks via
Extensions

Young Min Kim Byoungyoung Lee

Seoul National University
{ym.kim, byoungyoung}@snu.ac.kr

Abstract
Web browsers are attractive targets of attacks, whereby at-
tackers can steal security- and privacy-sensitive data, such
as online banking and social network credentials, from users.
Thus, browsers adopt the principle of least privilege (PoLP)
to minimize damage if compromised, namely, the multipro-
cess architecture and site isolation. We focus on browser
extensions, which are third-party programs that extend the fea-
tures of modern browsers (Chrome, Firefox, and Safari). The
browser also applies PoLP to the extension architecture; that
is, two primary extension components are separated, where
one component is granted higher privilege, and the other is
granted lower privilege.

In this paper, we first analyze the security aspect of ex-
tensions. The analysis reveals that the current extension ar-
chitecture imposes strict security requirements on extension
developers, which are difficult to satisfy. In particular, 59
vulnerabilities are found in 40 extensions caused by violated
requirements, allowing the attacker to perform privilege esca-
lation attacks, including UXSS (universal cross-site scripting)
and stealing passwords or cryptocurrencies in the extensions.
Alarmingly, extensions are used by more than half and a
third of Chrome and Firefox users, respectively. Furthermore,
many extensions in which vulnerabilities are found are ex-
tremely popular and have more than 10 million users.

To address the security limitations of the current exten-
sion architecture, we present FISTBUMP, a new extension
architecture to strengthen PoLP enforcement. FISTBUMP
employs strong process isolation between the webpage and
content script; thus, the aforementioned security requirements
are satisfied by design, thereby eliminating all the identified
vulnerabilities. Moreover, FISTBUMP’s design maintains the
backward compatibility of the extensions; therefore, the ex-
tensions can run with FISTBUMP without modification.

1 Introduction

Web browsers are arguably the most attractive attack targets,
primarily owing to their role as a gateway connecting people

to cyberspace through websites and web applications. Since
the COVID-19 pandemic, work and education have shifted to
the Internet in home computers. Consequently, if the attacker
can trick the user into visiting their malicious site (the web
attacker), they can exploit vulnerabilities in browsers and
steal security-critical and private-sensitive data from users
(such as online banking or social network credentials) [31].

In response to such security threats, browser vendors have
made tremendous efforts to secure their end users. In particu-
lar, the architecture of web browsers has evolved to strictly
enforce the principle of least privilege (PoLP) [50]. A browser
instance is divided into multiple functional components, each
of which is granted only the privileges necessary to execute a
given task. To implement this, modern browsers employ two
techniques: (i) a multiprocess architecture [4, 48, 62, 64] and
(ii) site isolation [24, 49].

The multiprocess architecture separates the browser into
two types of processes: a renderer process, which processes
remote content, and a browser process, which coordinates the
renderer processes and interacts with the user. Given these
processes, the browser restricts the privileges of the renderer
process, essentially granting minimal privileges required to
fulfill its task. Contrarily, the browser process is privileged
because it requires accessing system resources to manage the
renderer processes and interact with the user [7, 34].

Site isolation, recently adopted by Chrome and Firefox,
further strengthens PoLP on the renderer processes. Site iso-
lation enforces the fundamental browser security principle—
the same-origin policy (SOP)—at the process level. Under
site isolation, each renderer process is dedicated to a single
website. Thus, two different websites are processed using two
different renderer processes. Consequently, the two websites
are isolated using the process boundary [49].

These PoLP security techniques have made it difficult for
web attackers to successfully compromise web browsers. Be-
cause an attacker can only manipulate what the renderer pro-
cess processes, an attack should begin in the renderer to com-
promise the browser. However, exploiting the renderer pro-
cess alone does not grant considerable privilege to attackers

because of PoLP. First, the renderer process is sandboxed
using a multiprocess architecture. Thus, attackers’ access
to security-sensitive system resources (e.g., invoking system
calls to access local files) is severely limited [7].

Furthermore, through site isolation, the renderer process
handles only the data associated with the attacker-controlled
website. Therefore, an attacker cannot steal user data from
other websites (e.g., online baking sites or social networks).
Accordingly, an attacker must find another vulnerability to
bypass these enforcements and escape the sandbox [49].

In this paper, we analyze the security aspects of browser
extensions from the perspective of PoLP. Extensions are
third-party programs that extend browser features to enrich
the browsing experience [58]. For instance, users install an
ad-blocker extension to block online advertising or a word
dictionary extension to quickly search for a word definition.
According to Chrome [60], the Chrome Web Store has more
than 180,000 extensions, and nearly half of desktop users
actively use extensions. According to Firefox [19, 20], ap-
proximately one-third of users have installed an extension or
theme, and installations increased by 21 % after the COVID-
19 lockdown began.

From a security perspective, extensions have two unique
characteristics. First, extensions have access to privileged
APIs (application programming interfaces) provided by the
browser process, that ordinary web pages do not have. Be-
cause the key purpose of an extension is to extend browsing
features, extensions are allowed to access various features,
such as cookie jars, bookmarks, and browsing history, as
well as intercept a network request [58]. Second, extensions
handle security-critical data relevant to not only the website
currently browsed but also other sites and users. For instance,
a password manager extension stores the login credentials for
any website, and a cryptocurrency wallet extension stores the
user’s private key [65].

Considering these security characteristics, the extension
architecture is also designed to follow PoLP. Each extension
is partitioned into two components: a content script and ex-
tension page. The content script interacts with a potentially
malicious webpage in the renderer process and is, thus, low-
privileged. Conversely, the extension page is a separate page
that can be browsed or run in the background. The extension
page is high-privileged and has access to privileged APIs.
The extension page runs in a separate process known as the
extension process. The content script and extension page ex-
change messages, which the content script can use to request
privileged operations [3].

However, in this paper, we show that current browsers
(including major browsers such as Chrome, Firefox, and Sa-
fari) have critical security limitations in enforcing PoLP for
extensions. Particularly, the security architecture of exten-
sions demands third-party extension developers to comply
with strict security requirements. These security requirements
include: (i) communication between extension components

should be authenticated, and (ii) extension data management
should not violate the same-origin policy (SOP). Unfortu-
nately, we found 59 vulnerabilities in 40 extensions (the full
list is provided in Table 1) where such security requirements
are violated. By exploiting these vulnerabilities, attackers can
circumvent PoLP enforcements and launch privilege escala-
tion attacks (e.g., perform UXSS [43] or steal passwords and
cryptocurrency).

In an attempt to elucidate why these requirements are of-
ten violated, we find that the current browser architecture
is not a security-by-default architecture; instead, it depends
on the extension developers to meet these security require-
ments. However, extension developers are often not experts
in browser architecture and thus may not know how to meet
these requirements.

To address the security limitations of the current extension
architecture, we present FISTBUMP, a new browser extension
architecture to strengthen PoLP. FISTBUMP redesigns the ex-
tension architecture such that content scripts are isolated from
the renderer process using strong process isolation. As a re-
sult, FISTBUMP satisfies all security requirements by design
and mitigates all vulnerabilities. In particular, FISTBUMP im-
plements a transparent proxy to delegate all requests between
the content script and webpage, preserving the backward
compatibility of extensions; thus, extensions can run with
FISTBUMP without any modification. Moreover, FISTBUMP
integrates a batch-request model to optimize the runtime per-
formance of the transparent proxy. According to our per-
formance evaluation, FISTBUMP shows up to 13 % runtime
overhead in execution time.

To summarize, this paper makes the following contribu-
tions:

• Analysis: Security Limitation of Extension Architec-
ture. We identified and analyzed the security limitation
of the extension architecture, particularly when the ren-
derer process is compromised. We discovered that the
current extension architecture imposes security respon-
sibilities on extension developers; thus, the security of
extensions relies on their developers (§3).

• Practical Results: Privilege Escalation Vulnerabili-
ties. We found 59 privilege escalation vulnerabilities
in various extensions in modern browsers, including
Chrome, Firefox, and Safari. These vulnerabilities are
caused by violations of the aforementioned security re-
sponsibilities and allow critical privilege escalation at-
tacks (§4).

• Design and Implementation: New Secure Exten-
sion Architecture. We designed and implemented
FISTBUMP, a novel secure extension architecture
that fundamentally thwarts the aforementioned attacks.
FISTBUMP enforces strong process isolation for exten-
sions, resulting in a secure-by-default architecture that
eliminates all the vulnerabilities by design (§5 and §6).

2 Background

This section describes background information on the web
browser security (§2.1) and the extension architecture (§2.2).

2.1 Web Browser Security
Modern web browsers follow the principle of the least privi-
lege (PoLP) and separates its functionality into multiple pro-
cesses, where each process is guarded using a strong isolation
boundary provided the operating system (OS) [34].
Multi-Process Architecture. Browsers are partitioned into
two types of processes, a browser process and renderer pro-
cesses. The renderer process renders untrusted, potentially
malicious, web contents. Therefore, the renderer process is
unprivileged and cannot make a system call or access other
processes’ memory directly.

On the other hand, the browser process is the privileged pro-
cess through which the renderer process accesses resources.
The browser process also enables the communication between
renderer processes, acting as an intermediary for the inter-
process communication (IPC). This limits the damage to the
user’s machine if the renderer process is compromised, i.e.,
a vulnerability in the rendering engine is exploited [48]. In
other words, even one renderer process is compromised, the
privileged browser process as well as other renderer processes
are still secure.
Threats against Renderer Processes. Despite the rendering
itself is sandboxed by the multi-process architecture, it is
possible for different sites1 to be rendered in the same sandbox
(renderer process) under certain circumstances. Each origin
is logically isolated on the software level, but however, this
boundary alone is not strong enough against recent threats
posed by web attackers [49].

Specifically, consider attackers who have gained the capa-
bility to read or write to the address space of the renderer
process. Since different sites are rendered in the same ren-
derer process, these attackers can access data of all websites
in the process, violating the fundamental principle of the web
security, the same-origin policy (SOP) [40]. Hereafter, we
denote these attackers as AttackerRW and AttackerR.

First, AttackerRW is the attacker who gained the memory
read and write capability to the renderer process. This ca-
pability can be achieved by exploiting a memory corruption
bug in the rendering engine, which allows AttackerRW to exe-
cute arbitrary code and perform universal cross-site scripting
(UXSS) attacks. Such bugs are highly common due to the
complexity of the rendering engine. In fact, Chromium devel-
opers stated “[we] assume that determined attackers will be
able to find a way to compromise a renderer process” [59].

1A site is defined as the effective top-level domain (eTLD) + 1, which
is broader than an origin. For instance, https://example.com:8443 and
https://sub.example.com are the same site. The site isolation, explained
later, uses the site boundary instead of origin due to backward compatibility.

Second, AttackerR is the attacker who gained the memory
read capability to the renderer process. This can be achieved
by exploiting a micro-architectural side-channel vulnerability
against CPU transient execution, such as Meltdown [37] and
Spectre [33]. The unique aspect of these attacks is that they
rely on vulnerabilities in the microarchitecture rather than the
browser, and thus they are difficult to mitigate [47].
Site Isolation. These attacks motivated Chrome and Firefox
to employ strong isolation between sites, called Site Isola-
tion in Chrome [49] and Fission in Firefox [24]. The site
isolation ensures that each unique site is loaded in a dif-
ferent renderer process, and filters cross-site data from the
network request. For example, example.org embedded in
example.com is loaded in a separate process from the ren-
derer process hosting example.com, and attempts to request
the data of example.org will be blocked by the browser pro-
cess. The site isolation limits the reach of the compromised
renderer process to the very site which the render was host-
ing, preventing AttackerRW and AttackerR from violating the
SOP [49].

These measures have shown to be effective mitigations
against these threats. In 2022, in Chrome, there were no
UXSS vulnerabilities reported and only eight sandbox escape
vulnerabilities (four of which require the victim to install
a malicious extension). There were only five vulnerabili-
ties that allow AttackerRW to escalate into a sandbox escape,
compared to 196 bugs that potentially grant read and write
capabilities [18].

2.2 Browser Extension Architecture
Browser extensions are third-party programs that users in-
stall to extend browser functionality. Extensions are con-
nected with the browser using an extension API. Most modern
browsers, including Chrome, Chromium-based browsers (e.g.,
Edge, Opera, Brave), Firefox, and Safari, support the Chrome
extension [58] or WebExtensions API [41], which is based
on web technologies such as HTML, JavaScript, and CSS.
Other plugin interfaces such as ActiveX [44], NPAPI [23, 52],
PPAPI [35], and XPCOM [46] have been deprecated and
removed, and remaining are Chrome/WebExtensions. It is
worth noting that Safari app extension [1] can also be con-
sidered as a plugin interface, but since it is a regular macOS
application, we do not consider it in this paper.

Following the general security principle of web
browsers (§2.1), the web extension architecture is also
designed with the PoLP. First, an extension is guarded using
the permission-based access control. Each extension should
declare the list of required permissions in the manifest.json
file, which should be confirmed by the user when installing
the extension. The permission includes the list of browser
APIs (e.g., history, cookies, bookmarks) that the extension
can access. The permission also includes the list of websites
the extension can be activated on. Since permissions are

https://example.com:8443
https://sub.example.com

D
O

M

Page Script

Content Script

Browser APIMessage PassingStorage

Renderer process Extension process

Browser process

Extension Page

Isolated World

Figure 1: Browser extension architecture. Extensions have two com-
ponents, an extension page in the extension process and a content
script in the renderer process. The browser process provides various
APIs for extensions: browser APIs (1), message passing (2), and
storage (3).

determined at the installation time and cannot be extended at
runtime, the impact of compromised extensions is limited to
pre-declared privileges [3].

Second, an extension architecture divides the extension
into two parts: high-privileged extension pages2, which run
on a dedicated extension process, and low-privileged content
scripts, which are injected to a renderer process for direct
interaction with web pages and thus at a higher risk [38].
Extension Pages. Extension pages have access to aforemen-
tioned browser APIs (shown as 1 in Figure 1) and can make
an HTTP request to any origin, as long as the permission is
declared in the manifest. To isolate from untrusted web con-
tents, the extension pages run on a dedicated process, which
is a special form of renderer process [38].

Moreover, an extension has its own unique ID, which we
denote as IDEXT. IDEXT is used as the origin of the certain
extension page, isolating the extension page from websites
and other extensions via the SOP and site isolation [49]. The
extension page may run in the background, monitoring and
taking action in response to events, e.g., when a message is
received, a tab is opened, or a web page is requested [39].
Content Script. Content scripts are unprivileged components
of an extension, which let the extension directly interact with
the untrusted web page. When a specific web page is loaded, a
content script is injected into the page and modifies the page’s
content via the Document Object Model (DOM). Because
content scripts need to access the page’s DOM, content scripts
run in the same renderer process running the page. As a result,
content scripts are at a higher risk of compromise, and thus it
is unprivileged [8].

In order to access the browser API, it should rely on the
extension pages through message passing, which we explain
later. In addition, the content script has the same origin as the
page and cannot request cross-origin data, enforcing the site
isolation [11].

To isolate the content script from untrusted page scripts

2For the sake of simplicity, we consider other contexts such as workers
as a page.

running in the same renderer process, the content script runs
within an isolated world, a software-based isolation mecha-
nism providing a private execution environment. An isolated
world has its own JavaScript heap and DOM wrapper. Con-
sequently, page scripts cannot access variables defined by
content scripts and even if a built-in object is modified by
page scripts, content scripts see its own version. This holds
true for the other way around. For example, even if the con-
tent script defines document.foo, the page script cannot see
document.foo defined, and vice-versa [3].

Extension Message. Since two extension components, ex-
tension page and content script, run on different processes,
the communication between is carried out using the message
passing (shown as 2 in Figure 1). By sending a message, the
unprivileged content script can request for privileged opera-
tions provided by the extension page [9].

An extension message is constructed by the component
sending the message, which contains three fields: sender,
recipient, and payload. The sender represents which com-
ponent sent the message, including IDEXT, URL, and origin
of the extension page or the content script (i.e., in the case
of the content script, the corresponding information of the
page is specified). The recipient represents the destination
component of the message, which includes component type
and IDEXT. The payload is the data to be passed, serialized
into a JavaScript Object Notation (JSON). The composed
message is then relayed through the browser process via IPC
and delivered to the specified recipient [21].

Extension Storage. Browsers support persistent data stor-
age for extensions, called the extension storage. Using this
storage, the extension is able to store various user data pre-
served even after the browser restarts. The storage resides in
the browser process and each given extension has a separate
dedicated storage, i.e., the storage is associated to IDEXT. As
a result, extension components cannot access another exten-
sion’s storage. Both extension page and content script can
access the storage by making a request to the browser process
(shown in 3 in Figure 1) [10].

Example: Password Manager Extension. Consider an
extension with IDext = E which saves credentials (which in-
cludes ID and password) for websites. As visiting any login
page, the extension provides an interface for the user to enter
the credential. Then such credentials are stored on the exten-
sion storage. When the user visits the login page later, the
extension automatically fills up the corresponding credential.

The extension also provides a special admin page, which
shows a full list of saved credentials. More specifically, when
the user visits the admin page, the content script (denoted as C)
is injected to the admin page, which requests the list of saved
credentials (shown as 1 in Figure 2). This request is done
through the extension message, indicating the followings: i)
it is sent by the content script C injected in the admin page;
ii) it is destined to the extension page of E; and iii) it requests

D
O

M

Page Script

Content Script

Extension Storage [Credentials]

Renderer process
Admin page Extension process

Browser process

Extension Page

From: C, admin page
To: E, extension page
Message: get creds

From: E, extension page
To: C, admin page
Message: [Credentials]

Page Script

Renderer process
Attacker's page

From: C, attacker's page
To: E, extension page
Message: get creds

Not checked!

[Credentials]

Figure 2: An example of password manager extension. The left-side
with admin page illustrates the benign workflows. The right-side
with attacker’s page illustrates two attacks against the extension.

Violated requirement

Extension
Storage

Content
Script

§4.1 Execute
Browser API

Extension
Page

§4.2/3 Write/Read
Sensitive Data

§3.1 Extension
Message Auth.

§3.2 Non-sensitive Data
in Extension Storage

AttackerRW

AttackerR

Message
Passing

§3.3 Non-sensitive
Data in Content Script

Figure 3: The flow of privilege escalation attacks through violated
security requirements.

for getting the credentials.
Once the extension page E receives the message, it retrieves

the list of credentials from the extension storage in the browser
process (2), and sends it back to the content script C (3).

3 Security Requirements to Protect Against
Renderer Attackers

This section analyzes the security requirement of extension
design to protect against recent threats of renderer attack-
ers. As the complexity of the rendering engine increases, the
number of vulnerabilities have risen up. Furthermore, various
defense and mitigation mechanisms such as site isolation have
been deployed, preventing the renderer attacker from gaining
additional capabilities. As a result, the extension security has
become the primary line of defense.

To be specific, the content script runs within the renderer
process, so AttackerR and AttackerRW gain capability to read
or write the content script, respectively. According to the
PoLP, gaining such capability over the content script alone
should not grant the attacker additional capability. This is
because the content script is an unprivileged component of an
extension, running on an unprivileged renderer process. Thus,
attackers still cannot access browser APIs provided to privi-
leged extension pages, neither can access system resources
provided by the browser process.

However, we found that the current PoLP enforcement over

extensions as secure as extension developers strictly keep a
certain set of security requirements in developing their ex-
tensions. If any of these security requirements is violated,
it would render PoLP useless, leading to privilege escala-
tions. Unfortunately, not all extension developers are security
experts, and they are less incentivized to write a secure ex-
tension. In the following of this section, we introduce three
security requirements that extension developers need to fol-
low as well as how each of those can be violated, leading to a
critical security vulnerability (illustrated in Figure 3).

3.1 Extension Message Authentication
An extension message can be sent by the content script to
request a privileged operation provided by the extension
page. In this case, the extension message is sent by the low-
privileged component (content script) and delivered to the
high-privileged component (extension page). Therefore, it
is important for the extension page to thoroughly check if
the sender content script is legitimate and can request such
operation. This is particularly important in the presence of
AttackerRW, because AttackerRW can forge IPC message for
exchanging extension messages.

Security Requirement 1 The extension page should authen-
ticate the extension message if the sender content script is
legitimate.

However, we found that extension developers often fail to
meet this security requirement. The full list of vulnerable
extensions are presented in Table 1. Such failures can be
categorized into the following two cases: 1) the extension
page does not authenticate the sender; and 2) the extension
page improperly authenticates the sender.

First, many extension pages do not authenticate the sender.
We suspect this is because many extension developers do not
consider the threat model of AttackerRW, i.e., the extension
message can be forged.

Second, many extension pages improperly authenticate the
sender, presumably because it is technically challenging to
do so correctly. A representative example would be authenti-
cating the sender using the URL, which is provided as part of
the sender information. The URL is tricky to parse, because
some URLs need special handling; the URL can be a special
URL such as about:blank, about:srcdoc, data:, blob:
and the origin can be opaque, i.e., null.

Another instance is the time-of-check time-of-use (TOC-
TOU) race condition. For instance, site A requests to run
script on the current tab. Since the current tab is showing site
A, the extension runs the script. However, site A can navigate
to site B and the script is executed in site B.

To make matters worse, the extension API does not provide
a straightforward method, e.g., isTrusted, to authenticate
the sender and has several implementation errors, which we
discuss further in §8.

about:blank
about:srcdoc
data:
blob:

1 // Vulnerable extension's background page
2 chrome.runtime.onMessage.addListener((message, sender, send) => {
3 // Improperly authenticates the URL
4 if (sender.url.startsWith("https://admin.com")
5 && message == "getCredentials")
6 sendResponse(credentials);
7 });
8

9 // AttackerRW on https://admin.com.attacker.com
10 chrome.runtime.sendMessage("getCredentials")

Listing 1: The vulnerable pattern and a PoC exploit.

For instance, recall the previous password manager exten-
sion example. The extension message requesting the list of
credentials should only come from the content script running
in the admin page. However, if the extension page does not
check (or does incorrectly check) the sender, the attacker who
does not have control of the admin page can also request for
credentials (shown as 1 in Figure 2). Listing 1 shows the
vulnerable pattern and a POC exploit. The background page
authenticates only the URL prefix, so AttackerRW can register
https://admin.com.attacker.com and send a message
requesting credentials.

3.2 Non-sensitive Data in Extension Storage
The extension storage is used to store the persistent data of the
extension, which is accessible by both extension pages and
content scripts. From the security perspective, the renderer
process that has been injected with content script should be ca-
pable of accessing the extension storage. Therefore, once the
renderer process is compromised, AttackerRW can read and
modify the extension storage, and only data that are safe for
websites to access should be stored on the extension storage.

Security Requirement 2 The extension should not store
security-critical, privacy-sensitive, or cross-site data on the
extension storage.

We found many cases that the security requirement on the
extension storage is not adhered. The full list of extensions
is presented in Table 1. We suspect this is because extension
developers consider that the extension storage can only be
accessed by the extension page and content script that they
have programmed. As a result, extension developers consider
the extension storage cannot be accessed by the attacker, and
thus store the sensitive data.

1 // Vulnerable extension's background page
2 // Stores credentials on the extension storage
3 chrome.storage.set("credentials", credentials);
4

5 // AttackerRW on any page
6 chrome.storage.get("credentials")

Listing 2: The vulnerable pattern and a PoC exploit.

For instance, recall the previous example password man-
ager extension. Credentials are stored on the extension

storage, allowing the attacker to illegally access creden-
tials (shown as 2 in Figure 2). Listing 2 shows the vulnerable
pattern and a POC exploit. The background page stores cre-
dentials on the extension storage, so AttackerRW can retrieve
them on any page.

3.3 Non-sensitive Data in Content Script
Content script runs on the renderer process, as it directly in-
teracts with DOM. In other words, the content script is in
the address space of renderer process, and AttackerR and
AttackerRW can read it. This is particularly alarming as
AttackerR does not depend on bugs in the browser and is
hard to mitigate.

Furthermore, Chrome and Firefox attempt to mitigate tim-
ing side-channel attacks by restricting availability of high-
granularity timers only to cross-origin isolated pages [45, 63].
However, the cross-origin isolation does not affect content
script injection, so a web page can perform attacks against
content scripts with high-granularity timers.

Therefore, the extension should not store any sensitive data
in the content script.

Security Requirement 3 The extension should not load
security-critical or privacy-sensitive data on the content
script.

1 // Vulnerable extension's background page
2 // Send sensitive data to the content script
3 chrome.tabs.sendMessage(tabId, sensitiveData);
4

5 // The message is enqueued in the renderer process’s message queue,
6 // so AttackerR can read the message
7 readMemory();

Listing 3: The vulnerable pattern and a PoC exploit.

However, we found several extensions do not follow this
security requirement (listed in Table 1), similar to the reason
of aforementioned cases—i.e., the extension developers do
not consider the threat model of AttackerR and AttackerRW.
In other words, the extension developers think the data placed
in the content script can only be accessed by the content
script itself. Listing 3 shows the vulnerable pattern and a
POC exploit. The background page sends sensitive data to
the content script, of which memory AttackerR can read.

4 Privilege Escalation Attacks via Extensions

Given security requirements imposed on extensions, we ana-
lyzed whether real-world extensions meet these requirements.
Unfortunately, we found that many extensions fail to meet
such requirements, resulting in privilege escalation attacks.

Based on our analysis, we devise three new privilege es-
calation attacks that allow to bypass SOP and execute script
on another site, i.e., universal cross-site scripting (UXSS).

https://admin.com.attacker.com

Extension Name Violation Attack Impact Status

Adblock Plus - free ad blocker 3.1, 3.2 4.2 UXSS (limited to predefined scriptlets)
AdBlock – best ad blocker 3.1, 3.2 4.2 UXSS (limited to predefined scriptlets) Fixed

AdGuard AdBlocker 3.1, 3.2 4.2 UXSS Fixed
uBlock Origin 3.1† 4.1 Fetch cross-origin resource, get or create tabs

3.1†, 3.2 4.2 UXSS Fixed

Ghostery – Privacy Ad Blocker 3.1 4.1 Fetch cross-origin resource, get or create tabs
3.2 4.2 UXSS Confirmed

Fair AdBlocker 3.1 4.1 UXSS
3.2 4.2 UXSS Confirmed

AdBlocker Ultimate 3.1 4.1 Get or create tabs
3.1, 3.2 4.2 UXSS

Based on
uBlock Origin

Honey 3.1 4.1 UXSS, read and modify cookies, get or create tabs
3.3 4.3 UXSS Fixed

Google Translate 3.2 4.2 UXSS Fixed
Tampermonkey 3.1† 4.1 Intercept network requests, read & modify cookies

3.1†, 3.2 4.2 UXSS Fixed

Adobe Acrobat 3.1, 3.3 4.3 Captured page Reported
Read&Write for Google Chrome 3.1 4.1 Fetch cross-origin resource Reported
ClassLink OneClick Extension 3.1 4.1 UXSS Reported
Cisco Webex Extension 3.1 4.1 Start Cisco Webex Meetings application Confirmed
Netflix Party is now Teleparty 3.1 4.1 UXSS (under special condition) Fixed
Amazon Assistant for Chrome 3.1 4.1 Read and modify cookies Confirmed
Windows Accounts
Office 3.1† 4.3 Windows Account and Azure Active Directory

account takeover Confirmed

LastPass: Password Manager 3.1 Fixed
Avira Password Manager 3.1, 3.2 4.3 Encryption key, saved passwords Confirmed
Keeper® Password Manager 3.1 Fixed
Dashlane - Password Manager 3.1†, 3.2 Fixed
Bitwarden - Password Manager 3.1, 3.2 4.3 Fixed
RoboForm Password Manager 3.1, 3.2

Encryption key (if persistent login is used), saved
passwords Confirmed

Norton Password Manager 3.1† Confirmed
1Password – Password Manager 3.1 4.3 Saved passwords Fixed
MetaMask 3.1, 3.2 Confirmed
Ronin Wallet 3.1 Reported
Binance Wallet 3.1 4.3 Confirmed
Keplr 3.1†

Sign a blockchain transaction, steal cryptocurrency

Confirmed
Phantom 3.1† Confirmed
TronLink 3.1 4.3 Wallet mnemonic and seed, steal cryptocurrency Confirmed
Kaikas 3.1, 3.2 Confirmed
Stormcrow (Opera) 3.1 4.1 Capture other sites
Background Worker (Opera) 3.1 4.1 Modify browser settings
Video Handler (Opera) 3.1 4.1 Modify browser settings Confirmed

8 Opera component extensions 3.1† 4.1 Modify browser settings
QuickSearch (Whale) 3.1 4.1
Image Translate (Whale) 3.1 4.1

Modify browser settings, access account
information, get or create tabs Fixed

Whale WebUI (Whale) 3.1† 4.1 Fetch cross-origin resource Confirmed
Naver Memo (Whale) 3.1† 4.1 Capture other sites Confirmed

Table 1: List of vulnerable extensions. Column Violation indicates which requirements are violated and lead to the vulnerability. † indicates
the attack requires browser bugs discussed in §8.

With UXSS, the attacker can bypass the SOP, exfiltrate data,
e.g., read victim’s email, and perform actions on behalf of the
victim, e.g., make a bank transfer. In the following, we de-
scribe these three attacks, namely executing privilege browser
APIs (§4.1), writing sensitive extension data (§4.2), and read-
ing sensitive extension data (§4.3), where the overall attack
flow is illustrated in Figure 3.
Methodology. We modified ExtensionCrawlerciteextension-
crawler to collect extensions from the Chrome Web Store and
Firefox Add-ons as of April 9, 2022. We excluded Chrome
Apps, which were deprecated in 2020, and themes, which
have no JavaScript component. We also excluded extensions
that are not available for download or are unlisted, i.e., do not
appear in the search results. We could not collect extensions
for Safari because it does not allow crawling and downloading
extensions.

Then, we selected the top 20 extensions with most users
in each browser. We also selected extensions bundled with
Chrome, Opera, Brave, and Whale. Firefox and Safari did not
have bundled extensions. The list of vulnerable extensions is
listed in Table, where the full list of analyzed extensions is in
Table.

We installed each extension, and examined what messages
are exchanged and what data is stored. We developed a Dev-
Tools extension to intercept extension messages and browse
the extension storage. We then manually inspected the source
code of the extension, focusing on how extension messages
are handled and how the stored data is used.

4.1 Execute Privileged Browser APIs

Since browser APIs can access another site’s data or mod-
ify browser behavior, extension messages that call browser
APIs should be authenticated (Security Req. 1 described
in §3.1). However, we found many extensions fail to meet
this requirement—i.e., they either do not authenticate or in-
correctly authenticate the extension messages. Specifically,
we found 23 extensions, including 15 component extensions,
allowing the attacker access privileged browser API without
restriction.
Case Study: Honey. The extension Honey allows unre-
stricted access to executeScript API, which then allows to
execute arbitrary JavaScript in opened tabs, resulting in UXSS.
It also broadcasts tab event to all content scripts, leaving other
tab information on the content script memory.
Case Study: Tampermonkey. This extension allows invok-
ing browser APIs, such as fetch, tabs, and cookies APIs,
thereby allowing to bypass the SOP and read cross-site data.
Case Study: ClassLink OneClick Extension. tabs and
executeScript API uses the tab ID to specify the tab. The
tab ID is unique per tab, not per site, i.e., even if the tab is
navigated to another site, the ID does not change. By sending
the request when the page is unloaded, API calls bound to the

current tab will be dispatched to the new site. The attacker
can exploit this race by sending the request on unload event
to execute the script, and the script will be executed on the
new site, leading to UXSS.
Case Study: Opera Component Extensions. Opera ex-
poses the settingsPrivate API to content script, allowing
attackers to modify browser settings. DNS/proxy settings
can be manipulated to perform a man-in-the-middle (MITM)
attack. Furthermore, some settings have been used to perform
UXSS or escape the sandbox.

4.2 Write Sensitive Extension Data

As the extension pages have higher privileges than content
scripts, configurations that affect the extension pages behavior
should not be modifiable by content scripts. Therefore, they
should not be modifiable via extension messages from content
scripts (according to Security Req. 1) or should not be stored
on the extension storage (according to Security Req. 2).

However, we found many extensions allow modification
via extension messages (breaking Security Req. 1) or store
sensitive configurations on the extension storage (breaking
Security Req. 2), allowing the attacker to manipulate the
extension behavior. We focus on configurations that affect
injected script on the extension storage, eventually leading to
UXSS.
Case Study: Ad Blockers. Ad blockers allow the user to add
a custom rule and some rules allow to inject a script to remove
dynamically injected ads (with Adblock Plus and AdBlock,
only predefined scriptlets can be injected). For example, a fil-
ter rule example.com#%#alert(document.domain) executes
alert(document.domain) on example.com.

In six ad blockers, the attacker could spoof a request for
adding a custom rule and run arbitrary code on web sites. Six
ad blockers also stored custom rules on the extension storage,
which the attacker could modify.
Case Study: Tampermonkey. Userscript managers Tam-
permonkey allow to user to add a script, called userscript,
that runs on specific pages, just like a content script. In Tam-
permonkey, the attacker could spoof a request for adding a
userscript and run arbitrary userscript on web sites. Tam-
permonkey also stored userscripts on the extension storage,
which the attacker could modify.

Furthermore, userscript can access extension APIs by mak-
ing a request to the background page via the content script.
The attacker could spoof the request and call extension APIs.
Case Study: Google Translate. Google Translate extension
translates the page by injecting a script to the page. The user
can choose which language to translate to from a list and
this configuration is stored on the extension storage. Since
the configuration can be only one of predetermined values,
the extension injected the value, without validating it first.
The attacker could modify a value to an arbitrary value, e.g.,

scripts, and execute script on translated pages (XSS).

4.3 Read Sensitive Extension Data

When handling the security sensitive data, extensions should
carefully store and safely control the access to those. There-
fore, in order to prevent the renderer attackers from accessing
the data, sensitive data should not be accessible via extension
messages (Security Req. 1), or it should not be stored either
on the extension storage (Security Req. 2) or on the content
script memory (Security Req. 3). However, we found 19 ex-
tensions fail to meet these requirements, exposing sensitive
data to the attacker.

Case Study: Windows Account and Office. Windows Ac-
count and Office extension allows the user to sign in with
Windows or Azure Active Directory (AAD) accounts on Win-
dows. When the user visits the login page, the content script
requests the background page to retrieve the token from the
OS. By spoofing the URL as the login page, the attacker
could steal the token and takeover the account.

Case Study: Password Managers. Password managers
store credentials for web sites. When the user visits the login
page, the content script requests the extension page for the
saved credential. In LastPass and Bitwarden password man-
ager, by spoofing the URL as the target site, the attacker could
steal credentials for that site. Both password managers also
stored the encryption key on the extension storage, which the
attacker could access.

We performed additional analysis on six more password
managers, and found in all password managers, the attacker
could steal credentials. In four password managers, the at-
tacker could access the encryption key.

Case Study: Cryptocurrency Wallets. Cryptocurrency wal-
lets store private keys to sign transactions on the blockchain.
When the page requests to sign a transaction, the content
script forwards the request to the background page and the
background page shows a notification to the user to confirm
the transaction. If the user confirms the transaction, the notifi-
cation sends a request to sign the transaction. In MetaMask,
the attacker could spoof the confirmation message, signing
an arbitrary transaction. MetaMask also stored transaction
queue on the extension storage, to which the attacker could
add an arbitrary transaction.

We performed additional analysis on seven more cryptocur-
rency wallets, and found in four wallets, the attacker could
sign an arbitrary transaction.

Furthermore, the user can view the mnemonic and pri-
vate key in the popup. When the user requests to view the
mnemonic and private key, the popup requests the background
page to send them. In Phantom, TronLink, and Kaikas, the
attacker could spoof the request and retrieve the mnemonic
and/or private key.

D
O

M

Page Script

Browser APIStorage

Renderer process Extension process

Browser process

Isolated World

Content
Script

DOM
Proxy

Extension
Page

New or modified
components

Message
Passing

Figure 4: FISTBUMP architecture.

5 Design of FISTBUMP

In the presence of renderer attackers (AttackerRW and
AttackerR), the current extension architecture demands exten-
sion developers to comply with three security requirements
presented in §3. However, it is challenging for extension de-
velopers to properly separate privileges between extension
pages and content scripts, and such security requirements are
often violated, leading to critical privilege escalation attacks.

For these reasons, we present FISTBUMP, a new extension
architecture which protects content scripts from the renderer
attacker using the strong process isolation. To this end, instead
of running content scripts in the renderer process, FISTBUMP
redesigns the extension architecture to run content scripts
in the extension process. As a result, the process running
content scripts is isolated from the renderer process, utilizing
the process as a protection domain to prevent attackers from
gaining the content script capabilities. In other words, the
attacker cannot forge an extension message or access the
extension storage.

Therefore, by design FISTBUMP satisfies three security
requirements and eliminates vulnerabilities presented in §4.
From the perspective of the extension developer, FISTBUMP
shifts the challenging burden of meeting the security require-
ments to the browser and the OS.
Design Overview. The overall architecture of FISTBUMP
is illustrated in Figure 4. In order to enforce the strong
process isolation, FISTBUMP moves content script to the
extension process (§5.1). To maintain the functionality
and compatibility of content scripts, FISTBUMP introduces
DOMProxy (§5.2). Furthermore, in order to optimize the per-
formance of DOMProxy, FISTBUMP further develops tailored
memory management as well as batch processing (§5.3). We
note that FISTBUMP can be adopted by extensions as well as
browsers, which is further discussed in §8.

5.1 Strong Process Isolation for Content Script
Design Goal 1 Strongly isolate content scripts from the ren-
derer process.

The root cause of the privilege escalation attack in §3 is
due to the fact that the current isolation mechanism between
content scripts and the renderer is not sufficient to thwart

AttackerRW and AttackerR. To this end, FISTBUMP employs
a stronger notion of isolation mechanism, namely based on
the process isolation. As such, a process running the content
script should be different from the renderer process, thereby
preventing access to the content script by the renderer.

Specifically, FISTBUMP moves the content script to the
extension process, where the extension pages are running on.
Within the extension process, FISTBUMP runs each content
scripts using a dedicated worker thread, so as to preserve
the execution characteristics of modern browsers. The mod-
ern browsers implement an independent browser tab, so the
execution contexts of renderer processes and its associated
extensions are independent to each other. The lifecycle of a
content script is as follows. First, when a content script is
to be injected (e.g., a page is loaded by a renderer process),
FISTBUMP a worker and runs the content script in the worker
within an extension process. If the page is unloaded later, then
FISTBUMP accordingly terminates the content script worker.

The content script worker also runs in an isolated world,
a private execution environment, of which privileges are re-
stricted to the same level of the original content script. The
content security policy (CSP) is set to prevent the content
script worker from executing remote code, e.g., code that is
not included in the extension.

As a result, the content script data is kept out of the renderer
process, protecting it from AttackerR and AttackerRW by the
design.

In addition, the renderer no longer needs privileges of the
content script, such as sending extension messages or access-
ing the extension storage. Following the PoLP, FISTBUMP
removes these privileges from the renderer process, so a com-
promised renderer no longer impersonate a content script.

5.2 Transparent Isolation with DOM Proxy
Design Goal 2 Provide a transparent isolation of content
scripts with backward compatibility.

It is natural that adding a strong isolation mechanism may
entail radical changes in the software architecture, non-trivial
engineering costs. For instance, in order to enforce site isola-
tion (which also employed process isolation), browser vendors
have invested non-trivial engineering costs [49]. In order to
minimize the engineering costs, FISTBUMP aims at providing
transparent isolation mechanism with backward compatibil-
ity. More precisely, the isolation mechanism of FISTBUMP
should not interfere any functional feature of web extensions,
and it should be able to run existing browser extensions with-
out manual modification.
Transparent Proxy for DOM with Delegation. The main
feature of the content script is to interact with the page’s
DOM. This raises an issue for FISTBUMP, which requires
new mechanism to connect between content scripts and DOM.
Specifically, the current browser architecture has all these

Content Script Worker
CallExpression

alert(document.domain)

Identifier
Name: alert

Arguments

(MemberExpression)

Identifier
Name: document

Identifier
Name: domain

.

GET("alert")

CALL(#1, "example.com")

window

document

alert #1

#2

domain
example.com

DOM DOMProxy

#1

Figure 5: Content Script Execution with DOMProxy.

components (i.e., content scripts, DOM, and page scripts) in
the same renderer process, the content scripts can directly
access DOM. However, FISTBUMP moves the content script
from the renderer process to the extension process. Thus, the
content scripts have separate virtual address space and cannot
directly access DOM.

To address this issue, FISTBUMP proxies DOM access
with delegation. Instead of injecting the content script to
the renderer process, FISTBUMP inserts the proxy to interact
with the DOM, which we call DOMProxy. The content script
worker and DOMProxy communicate using IPC. They exchange
JSON-serialized message containing purely DOM operation
or event data.

When a DOM object is accessed by the content script in
the extension process, the content script worker forwards the
operation to DOMProxy. Then DOMProxy performs the operation
as requested, then returns either i) a resulting value or ii) a
reference to the resulting object. If a reference is returned,
the content script worker creates a delegate object for the
given reference, and all operations on the delegate object is
intercepted and forwarded to DOMProxy.

The content script can also register listener for DOM events.
If an event listener is registered by the content script, DOMProxy
registers a corresponding proxy event listener. If the event
is fired in the renderer process, the event is forwarded to the
content script worker by DOMProxy. Then content script worker
raises the delegate event (i.e., a clone of an original event),
which will finally be dispatched to the destined event listener
in the content script.
Example: Content Script Execution. To clearly show
how DOMProxy operates, we provide an example how DOMProxy
executes the content script code, alert(document.domain).
The abstract syntax tree (AST) is shown on the right side of
Figure 5.

First, JavaScript evaluates alert, which is looking up the
identifier named alert. The content script worker intercepts
and forwards GET("alert") request to DOMProxy. Since alert
is a function, DOMProxy creates a reference, REFalert and re-
turns the ID (#1) back to the content script worker. Upon
receiving the reference, the content script worker creates a
delegate function, DELalert.

Second, JavaScript evaluates document. Likewise, as

document is an object, DOMProxy creates a reference,
REFdocument and returns the ID (#2). The content script worker
creates a delegate object, DELdocument.

Then, JavaScript evaluates DELdocument.domain. This
is a member expression, retrieving the property named
domain. The content script worker intercepts and forwards
GET(#2, "domain") request to DOMProxy. DOMProxy retrieves
the object corresponding to #2, document, and looks up the
property named domain to be "example.com". Since its type
is a string primitive, DOMProxy sends it as is.

Finally, JavaScript evaluates DELalert("example.com"),
which is calling DELalert with the argument
"example.com". The content script worker forwards
CALL(#1, "example.com") request to DOMProxy and DOMProxy
retrieves the function corresponding to #1, alert DOMProxy
evaluates alert("example.com"), which is equivalent of
running alert(document.domain) in the content script.
Forwarding Extension API Calls. Another feature of the
content script is to call extension APIs. As described in §2, the
current browser architecture implements extension API calls
with IPC message passing between two different processes.
However, because FISTBUMP places a content scripts and a
background page in the same process, it no longer requires the
IPC message passing. Thus, FISTBUMP implements an in-
process extension API call mechanism, which is forwarded by
the content script worker. Specifically, all the extension API
calls by the content script is first intercepted by the content
script worker. Then the content script worker forwards the
call to the background page.

5.3 Optimizing Performance of DOM Proxy
Design Goal 3 Provide an isolation with reasonable perfor-
mance overhead.

Since FISTBUMP proxies all DOM accesses of content
scripts, it complicates execution behaviors of content scripts,
which negatively impacts the performances in terms of mem-
ory management and execution speed.
Memory Management. One problem of DOMProxy is that
references to objects and functions in DOMProxy accumulate,
even if they are no longer used in the content script worker,
causing memory leaks. DOMProxy solves this by deleting the
reference if the delegate object gets garbage-collected in the
content script worker.
Batch Processing and Cache. To reduce the amount of
inter-process communication, the content script maintains a
queue of proxied operations without side effects, and send
them in batch. The content script worker maintains a virtual
DOM representation and operations not dependent on the
document, e.g., operations on orphan nodes are executed in
the content script worker. The content script worker also
caches properties that are invariant or of which validity can
easily be checked.

6 Implementation

We implemented FISTBUMP to be compatible with the latest
Chromium browser (Chromium 105 at the time of writing).
FISTBUMP consists of two parts: an extension wrapper writ-
ten in about 3k lines of JavaScript and Chromium-side modifi-
cation written in about 100 lines of C++. The extension wrap-
per is implemented around the extension API, i.e., DOMProxy is
implemented as a content script and the content script worker
is implemented in the background page. They communicate
using the extension messaging. The extension wrapper uses
standard Web APIs and JavaScript (ECMAScript) features,
so it is compatible with the latest Firefox and Safari. The
extension wrapper can also be easily applied to existing ex-
tensions which do not use "document_start" content script,
so extension developers can also adopt FISTBUMP.

In order to handle "document_start" content script, modi-
fication on the browser side is necessary. Nevertheless, the
modification is small, and we expect modification needed in
other browsers to be similarly small.

FISTBUMP and related toolchains will be open sourced
and available at https://github.com/compsec-snu/
exthand.

7 Evaluation

In this section, we evaluate various aspects of FISTBUMP, par-
ticularly focusing on its security (§7.1), compatibility (§7.2),
and performance (§7.3).
Experimental Setting. We tested our implementation on a
machine with Intel i7-10700K and 32 GB RAM. We built
the Chromium browser based on the tag 101.0.4951.41. For
comparison, we prepared two sets of browsers, with and with-
out FISTBUMP. We used a DOM Fuzzer, Domato [26] for
generating test HTML and used html.txt grammar provided
by Domato.

7.1 Security

The foremost goal of FISTBUMP is to strengthen the PoLP
of the current extension architecture. Thus, we evaluate the
security aspect of FISTBUMP in this subsection.
Security Analysis. As described in §3, the current extension
architecture demands from extension developers to keep three
security requirements. This in fact motivated FISTBUMP,
which attempts to satisfy all such security requirements by de-
sign. In the following, we describe and reason about how the
design of FISTBUMP indeed meets each security requirement.

First, extension messages under FISTBUMP cannot be sent
by the renderer process, because the content script is moved to
the extension process in FISTBUMP. Therefore, the message
can only come from the extension process (which is secure
against AttackerRW), and thus all sender information can be

https://github.com/compsec-snu/exthand
https://github.com/compsec-snu/exthand

trusted. Thus, FISTBUMP does not impose the responsibility
of Security Req. 1 on extension developers, and accordingly
eliminate all the corresponding vulnerabilities.

Second, the extension storage cannot be accessed by the
renderer process under FISTBUMP, because the extension
storage is only accessible from the extension process. There-
fore, all the data saved in the extension storage is secure
against AttackerRW, eliminating all the vulnerabilities corre-
sponds to Security Req. 2.

Lastly, the memory footprints of content scripts cannot
be accessed by the renderer process, because the content
script runs in separate virtual address space in FISTBUMP.
Therefore, AttackerR and AttackerRW cannot fetch any data
from the content script, and thus FISTBUMP does not impose
Security Req. 3 and mitigate all corresponding vulnerabilities.

Moving the content script to the extension process may
expose additional attack surfaces. AttackerRW can spoof a
message from DOMProxy, but messages between DOMProxy and
content script worker use existing extension message imple-
mentation and contain purely structured data. They do not
exchange JavaScript code or pointer and DOMProxy cannot di-
rectly alter the control flow of content script worker.

Furthermore, the content script worker runs with content
script privileges and cannot run remote code, e.g., code pro-
vided by the attacker. Therefore, for the attacker to exploit
the extension process, they need to find either:

• an arbitrary code execution vulnerability in the content
script and a CSP-bypass vulnerability, or

• a gadget in content script to trigger and a gadget to ex-
ploit a memory corruption.

We believe these vulnerabilities are difficult to be found,
and if found, they would allow more serious attacks with-
out the need of the extension. There were no CSP bypass
vulnerabilities reported in 2022 and all memory corruption
bugs required passing invalid argument or specific user in-
teractions [18], which are highly unlikely in normal content
scripts.

Exploit Mitigation. In order to check if FISTBUMP stops
the concrete attacks that we demonstrated in §4, we tried to
reproduce the attack while running the Chromium browser
with FISTBUMP. For each extension, we first installed it in
FISTBUMP-enabled Chrome, and then launched a renderer
remote code execution (RCE) attack based on a type confu-
sion vulnerability CVE-2022-1134 [42]. Then we executed
privilege escalation attacks PoC we created in §4. The re-
sult showed that the same privilege escalation attack against
all tested extensions are no longer working, indicating that
the security design and its implementation of FISTBUMP is
effective as expected.

do
m
.r
ea
d

do
m
.w
ri
te

do
m
.in
se
rt

ap
i.m
et
ad
at
a

m
es
sa
ge
.c
s

m
es
sa
ge
.e
p

st
or
ag
e.
ge
t

st
or
ag
e.
se
t

0

100

200

300

400

R
u
n
ti
m
e
[n
s]

Baseline

FistBump

(n
or
m
al
iz
ed
)

Figure 6: Mean runtime of each operation in original Chrome
(baseline) and FISTBUMP-enabled Chrome. Runtime of dom.insert
is normalized to a unit operation. Error bars represent one standard
deviation.

7.2 Backward Compatibility

Unit Test. We ran a Chromium unit test suite, which includes
75 unit test on the content script API [17]. We found all 75
unit tests passed, showing the content script implementation
of FISTBUMP is correct and backward compatible.
Limitation. JavaScript uses an event loop, which waits and
processes a message on a message queue. Each message
is a function call and runs to completion, i.e., is processed
completely before processing the next message. In other
word, the message processing blocks the runtime. However,
with DOMProxy, each expression or statement is evaluated in
separate messages. This allows other message such as an
event handler to be processed in the middle of running a code
block and cause inconsistency.

We tested all analyzed extensions how this limitation af-
fect their operation. We installed the extension on both
FISTBUMP-enabled browser and original browser and com-
pared their behavior, while performing their functionality. For
example, with a password manager extension, we saved a
password and checked that it gets successfully filled onto the
login form.

We did not find instances where this limitation alters the
extension behavior. Nonetheless, to ensure consistency,
DOMProxy can be implemented synchronously to block the
event loop until the content script worker runs to completion.

7.3 Performance
The runtime performance of browsers is always critical, as
it significantly impacts user experiences. Because the con-
tent script worker uses the same JavaScript engine, there is
no additional overhead running pure JavaScript. However,

since FISTBUMP introduces non-trivial changes in the exten-
sion architecture, we measured the performance overhead
of DOM operations and extension API calls in FISTBUMP.
Figure 6 shows mean runtime of each operation compared to
the original browser.

The IPC overhead between DOMProxy and content script
introduces approximately 235 ns latency in a single DOM
operation such as reading a content (dom.read) or setting
the value of an element (dom.write). However, common
DOM operations such as inserting elements (dom.insert)
consist of multiple operation without side effects. With batch
processing, these operations can be processed with a single
IPC, effectively reducing the overhead to approximately 7 ns
(13 %).

We saw approximately 28 % performance improvement
in calls to basic extension APIs such as retrieving metadata
(api.metadata), as the extension process can process the
request directly. We also observed approximately 87 % im-
provement in extension messaging (message.cs/ep) as it is
processed in the extension process rather than via IPC. How-
ever, there is approximately 9 % overhead in storage access
(storage.get/set), presumably because the content script
worker has to go through the background page to access the
extension storage.

As a result, FISTBUMP shows up to 13 % runtime over-
head in extensions with heavy DOM or storage operations
and may show performance improvement in message-heavy
extensions.
Memory. To measure the memory overhead, we took a
snapshot of memory using Chrome DevTools. DOMProxy and
a content script worker add approximately 3.4 MB memory
overhead with additional 1.2 KB each time the delegate object
and the corresponding reference is created. We observed
references of delegate objects that are no longer used are
successfully garbage-collected, when the memory pressure is
high.

8 Discussion

Extension Vulnerabilities due to Browser Implementa-
tions. During our research, we found several vulnerabilities
on the browser extension implementation. For example, in
Chrome, Firefox, and Safari, AttackerRW could spoof a mes-
sage from or access the storage of extension that has not
injected a content script. This was an independently known
issue in Chrome, and they have deployed the ContentScript-
Tracker in Chrome 103 for message passing and 105 for stor-
age [13, 15]. Safari has confirmed and fixed the issue, and
assigned CVE-2022-32784 [2]. The issue is confirmed by
Firefox but not yet fixed.

In Chrome, Firefox, and Safari, AttackerRW could also
spoof the URL or origin of the sender. This was also an in-
dependently known issue in Chrome but not yet fixed. The

issue has been confirmed by Firefox but not yet fixed. Fire-
fox also does not provide the origin of the sender, and we
submitted a patch to add support for the origin. The issue
has been confirmed and fixed by Safari, and assigned with
CVE-2022-32784 [2].

In Chrome and Firefox, there are several instances
AttackerRW could send message to other extension compo-
nents which content scripts normally cannot send message
to. Finally, we found several bugs where the sender infor-
mation is not available or incorrect (some bugs were known
issues) [12, 14, 16].

Responsible Disclosure and Vendor Response. We re-
sponsibly disclosed our findings to extension developers and
browser vendors through the vulnerability reporting process
or email. However, many extension developers did not ac-
knowledge or fix the issue. In these cases, we reported the
issue to Chrome Web Store. Furthermore, some cases were
impossible to fix, and we learned that most extension devel-
opers do not have (or do not need) deep understanding of
the browser security architecture. This supports our analysis
in §3 and rationalizes our approach to redesign the extension
architecture in §5, which satisfies the security requirements
by design.

Motivated by our findings, the Chromium team is dis-
cussing to limit the access to extension storage from content
scripts in their next extension API version. We note that
compared to FISTBUMP, this approach only mitigates the
vulnerabilities due to Security Req. 2.

Large-Scale Analysis. We find that 18,432 (about 15 %) out
of collected extensions insert a content script to all pages and
use the messaging or storage API. We could not automate the
analysis as JavaScript supports dynamic function invocation,
and files are usually bundled and minimized, making static
code analysis difficult. Furthermore, understanding high-level
functionality is needed to properly identify vulnerabilities.
We believe a large-scale analysis would help identify more
vulnerabilities and leave it for future work.

Potential Bypass Attacks against FISTBUMP. FISTBUMP
relies on the process isolation boundary provided by the
browser and operating system. Such cross-process or ker-
nel attacks are out of scope of this paper, and FISTBUMP
must be combined with mitigation on the hardware and OS
level.

Improving Performance of FISTBUMP JavaScript engine
and rendering engine have multiple optimizations for DOM
operations. However, FISTBUMP separates DOM code from
where the operations actually happen, reducing opportunities
for optimizations. Making JavaScript engine and rendering
engine aware of DOMProxy and optimizing them for DOMProxy
may improve performance.

9 Related work

The security of browser plugins and extensions has been ma-
jor concern in web security. Research works can be classified
into categories: (i) protecting browser from malicious exten-
sion and (ii) protecting browser from web pages exploiting
benign-but-buggy extensions. Both goals are orthogonal, but
protecting from malicious extension may also help protecting
from benign-but-buggy extensions, as if what the extension
can do is limited in the first place, the compromised extension
is also limited.

Earlier works focused on execution monitoring. Janus [25]
proposed a sandbox environment for browser helper appli-
cations. Louw et al. [57] proposed code integrity check and
runtime policy monitoring for Firefox add-ons. Many re-
search prototype browsers including OP [27], Gazelle [61],
IBOS [56], and OP2 [28] also proposed isolating web princi-
pals using the OS process domain.

Barth et al. [3] found most Firefox extensions request ex-
cess permissions and designed the Chrome extension archi-
tecture with the PoLP and privilege separation. However, Felt
et al. [22], Guha et. al [29], and Carlini et al. [6] showed
many extensions still request excess permissions, rendering
privilege separation useless and increasing the attack surface.
They concluded that privilege separation is rarely needed (but
effective) and developers accidentally or intentionally make
privilege separation ineffective, which supports our finding.

Guha et. al [29] proposed IBEX, a static verification and
fine-grained access control using Datalog for provably secure
extension.

Calzavara et al. [5] performed a formal analysis on privi-
lege escalation via message passing interface. Some [54] and
Fass et al. [21] performed data-flow analysis to detect mes-
sage flows that attackers can exploit to elevate their privilege.
However, they focused messaging interfaces which normal
web page can access, not considering renderer attacker. To
the best of our knowledge, our work is the first to compre-
hensively analyze threats against real-world extensions by
renderer attackers.

Furthermore, since the extension storage was introduced
fairly recently in 2014, to the best of our knowledge, our work
is the first to analyze the security implication of the extension
storage.
Extension Fingerprinting. There are also several works on
fingerprinting, i.e., identifying which extensions are installed.
Sjösten et al. [53], Sanchez-Rola et al. [51], and Gulyás et
al. [30] used web accessible resources (WAR) to detect the
presence of specific browser extensions. XHOUND [55] and
Laperdrix et al. [36] proposed using DOM modifications and
stylesheets injected by extension, respectively. Carnus [32]
suggested a behavior-based fingerprinting by monitoring com-
munication patterns.

Identifying which extensions are installed would help
launch the attack described in our paper, as it allows targeted

attacks.
Principle of Least Privilege. PoLP and privilege separa-
tion are fundamental principle in software engineering [50].
The web browser is analogous to operating system where the
browser process is kernel, web pages are normal application
and extensions are privileged application or kernel extensions.

10 Conclusion

This paper identified the design issues of the current extension
architecture, which imposes strict security requirements from
extension developers. We further demonstrated the criticality
of these issues through analyzing popular extensions, which
discovered 59 vulnerabilities from 40 extensions. Recogniz-
ing the pressing security needs on this problem, we further
present FISTBUMP, the new extension architecture to elimi-
nate all such vulnerabilities by design.

Acknowledgments

The authors would like to thank our anonymous reviewers
and shepherd for their insightful and valuable feedback. This
work was supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the
Korean government (MSIT) (No.2020-0-01840, Analysis on
technique of accessing and acquiring user data in smartphone).
This work was supported by National Research Foundation of
Korea (NRF) grant funded by the Korean government (MSIT)
(NRF-2019R1C1C1006095). The Institute of Engineering
Research (IOER) and Automation and Systems Research In-
stitute (ASRI) at Seoul National University provided research
facilities for this work.

References
[1] Apple Developer Documentation. Safari app extensions.

URL https://developer.apple.com/documentation/
safariservices/safari_app_extensions.

[2] Apple Support. About the security content of safari 15.6, 2022. URL
https://support.apple.com/en-us/HT213341.

[3] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Pro-
tecting browsers from extension vulnerabilities. In NDSS,
2010. URL https://www.ndss-symposium.org/ndss2010/
protecting-browsers-extension-vulnerabilities/.

[4] D. Callahan. The “why” of electrolysis, 2016. URL
https://blog.mozilla.org/addons/2016/04/11/the-why-
of-electrolysis/.

[5] S. Calzavara, M. Bugliesi, S. Crafa, and E. Steffinlongo. Fine-grained
detection of privilege escalation attacks on browser extensions. In
J. Vitek, editor, Programming Languages and Systems, pages 510–
534, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN
978-3-662-46669-8.

[6] N. Carlini, A. P. Felt, and D. Wagner. An evaluation of the google
chrome extension security architecture. In 21st USENIX Security
Symposium (USENIX Security 12), pages 97–111, Bellevue, WA,
Aug. 2012. USENIX Association. ISBN 978-931971-95-9. URL

https://developer.apple.com/documentation/safariservices/safari_app_extensions
https://developer.apple.com/documentation/safariservices/safari_app_extensions
https://support.apple.com/en-us/HT213341
https://www.ndss-symposium.org/ndss2010/protecting-browsers-extension-vulnerabilities/
https://www.ndss-symposium.org/ndss2010/protecting-browsers-extension-vulnerabilities/
https://blog.mozilla.org/addons/2016/04/11/the-why-of-electrolysis/
https://blog.mozilla.org/addons/2016/04/11/the-why-of-electrolysis/

https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/carlini.

[7] Chrome Developers. Sandbox, . URL https://chromium.
googlesource.com/chromium/src/+/master/docs/design/
sandbox.md.

[8] Chrome Developers. Content scripts, . URL https://developer.
chrome.com/docs/extensions/mv3/content_scripts/.

[9] Chrome Developers. Message passing, . URL https://developer.
chrome.com/docs/extensions/mv3/messaging/.

[10] Chrome Developers. chrome.storage, . URL https://developer.
chrome.com/docs/extensions/reference/storage/.

[11] Chrome Developers. Cross-origin xmlhttprequest, . URL https:
//developer.chrome.com/docs/extensions/mv3/xhr/.

[12] Chromium Bug Tracker. Issue 626926: sender.url is undefined when
tabs.sendmessage sends to an extension page, 2016. URL https:
//crbug.com/626926.

[13] Chromium Bug Tracker. Issue 982361: Compromised web renderer
should be unable to spoof messagesender.id if it never run a content
script from the given extension, 2019. URL https://crbug.com/
982361.

[14] Chromium Bug Tracker. Issue 1050254: Messagesender.origin might
not be available in messages from service workers, 2020. URL https:
//crbug.com/1050254.

[15] Chromium Bug Tracker. Issue 1183604: Compromised web renderer
that *hasn’t* run any content scripts can spoof chrome.storage (and
other api calls) for any extension, 2021. URL https://crbug.com/
1183604.

[16] Chromium Bug Tracker. Issue 1197803: Messages sent from an
extension context have an incorrect ‘"null"‘ origin, 2021. URL https:
//crbug.com/1197803.

[17] Chromium Contributors. chrome/browser/extensions/content_-
script_apitest.cc. URL https://source.chromium.org/
chromium/chromium/src/+/refs/tags/101.0.4951.41:
chrome/browser/extensions/content_script_apitest.cc.

[18] cvedetails.com. Google chrome : Security vulnerabilities
published in 2022, 2022. URL https://www.cvedetails.
com/vulnerability-list/vendor_id-1224/product_id-
15031/year-2022/Google-Chrome.html.

[19] S. DeVaney. Firefox’s most popular and innovative browser extensions
of 2021, 2021. URL https://addons.mozilla.org/blog/
firefoxs-most-popular-innovative-browser-extensions-
of-2021/.

[20] S. DeVaney. The pandemic changed everything – even
the way we use browser extensions, 2022. URL https:
//addons.mozilla.org/blog/the-pandemic-changed-
everything-even-the-way-we-use-browser-extensions/.

[21] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically
detecting vulnerable data flows in browser extensions at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, pages 1789–1804, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN
9781450384544. doi: 10.1145/3460120.3484745. URL https:
//doi.org/10.1145/3460120.3484745.

[22] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of applica-
tion permissions. In 2nd USENIX Conference on Web Application De-
velopment (WebApps 11), Portland, OR, June 2011. USENIX Associ-
ation. URL https://www.usenix.org/conference/webapps11/
effectiveness-application-permissions.

[23] Firefox Site Compatibility. Plug-in support has been dropped
other than flash. URL https://www.fxsitecompat.com/en-
CA/docs/2016/plug-in-support-has-been-dropped-other-
than-flash/.

[24] A. Gakhokidze. Introducing firefox’s new site isolation security
architecture, 2021. URL https://hacks.mozilla.org/2021/
05/introducing-firefox-new-site-isolation-security-
architecture/.

[25] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure
environment for untrusted helper applications confining the wily hacker.
In Proceedings of the 6th Conference on USENIX Security Symposium,
Focusing on Applications of Cryptography - Volume 6, SSYM’96,
page 1, USA, 1996. USENIX Association.

[26] Google Inc. Domato, 2017. URL https://github.com/
googleprojectzero/domato.

[27] C. Grier, S. Tang, and S. T. King. Secure web browsing with the op
web browser. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 402–416, 2008. doi: 10.1109/SP.2008.19.

[28] C. Grier, S. Tang, and S. T. King. Designing and implementing
the op and op2 web browsers. ACM Trans. Web, 5(2), may 2011.
ISSN 1559-1131. doi: 10.1145/1961659.1961665. URL https:
//doi.org/10.1145/1961659.1961665.

[29] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security
for browser extensions. In 2011 IEEE Symposium on Security and
Privacy, pages 115–130, 2011. doi: 10.1109/SP.2011.36. URL
https://ieeexplore.ieee.org/document/5958025.

[30] G. G. Gulyas, D. F. Some, N. Bielova, and C. Castelluccia. To
extend or not to extend: On the uniqueness of browser extensions and
web logins. In Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, WPES’18, pages 14–27, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450359894.
doi: 10.1145/3267323.3268959. URL https://doi.org/10.1145/
3267323.3268959.

[31] J. Jang-Jaccard and S. Nepal. A survey of emerging threats in cy-
bersecurity. Journal of Computer and System Sciences, 80(5):973–
993, 2014. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.
2014.02.005. URL https://www.sciencedirect.com/science/
article/pii/S0022000014000178. Special Issue on Dependable
and Secure Computing.

[32] S. Karami, P. Ilia, K. Solomos, and J. Polakis. Carnus: Exploring the
privacy threats of browser extension fingerprinting. In NDSS, 2020.
URL https://www.ndss-symposium.org/ndss-paper/carnus-
exploring-the-privacy-threats-of-browser-extension-
fingerprinting/.

[33] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19, 2019. doi:
10.1109/SP.2019.00002. URL https://ieeexplore.ieee.org/
document/8835233.

[34] M. Kosaka. Inside look at modern web browser (part 1), 2018.
URL https://developer.chrome.com/blog/inside-browser-
part1/.

[35] A. Laforge. Moving forward from chrome apps. URL
https://blog.chromium.org/2020/01/moving-forward-
from-chrome-apps.html.

[36] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis.
Fingerprinting in style: Detecting browser extensions via injected style
sheets. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2507–2524. USENIX Association, Aug. 2021. ISBN 978-
1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/laperdrix.

[37] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg. Meltdown: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18), pages 973–990,
Baltimore, MD, Aug. 2018. USENIX Association. ISBN 978-
1-939133-04-5. URL https://www.usenix.org/conference/

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/mv3/xhr/
https://developer.chrome.com/docs/extensions/mv3/xhr/
https://crbug.com/626926
https://crbug.com/626926
https://crbug.com/982361
https://crbug.com/982361
https://crbug.com/1050254
https://crbug.com/1050254
https://crbug.com/1183604
https://crbug.com/1183604
https://crbug.com/1197803
https://crbug.com/1197803
https://source.chromium.org/chromium/chromium/src/+/refs/tags/101.0.4951.41:chrome/browser/extensions/content_script_apitest.cc
https://source.chromium.org/chromium/chromium/src/+/refs/tags/101.0.4951.41:chrome/browser/extensions/content_script_apitest.cc
https://source.chromium.org/chromium/chromium/src/+/refs/tags/101.0.4951.41:chrome/browser/extensions/content_script_apitest.cc
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-15031/year-2022/Google-Chrome.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-15031/year-2022/Google-Chrome.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-15031/year-2022/Google-Chrome.html
https://addons.mozilla.org/blog/firefoxs-most-popular-innovative-browser-extensions-of-2021/
https://addons.mozilla.org/blog/firefoxs-most-popular-innovative-browser-extensions-of-2021/
https://addons.mozilla.org/blog/firefoxs-most-popular-innovative-browser-extensions-of-2021/
https://addons.mozilla.org/blog/the-pandemic-changed-everything-even-the-way-we-use-browser-extensions/
https://addons.mozilla.org/blog/the-pandemic-changed-everything-even-the-way-we-use-browser-extensions/
https://addons.mozilla.org/blog/the-pandemic-changed-everything-even-the-way-we-use-browser-extensions/
https://doi.org/10.1145/3460120.3484745
https://doi.org/10.1145/3460120.3484745
https://www.usenix.org/conference/webapps11/effectiveness-application-permissions
https://www.usenix.org/conference/webapps11/effectiveness-application-permissions
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://hacks.mozilla.org/2021/05/introducing-firefox-new-site-isolation-security-architecture/
https://hacks.mozilla.org/2021/05/introducing-firefox-new-site-isolation-security-architecture/
https://hacks.mozilla.org/2021/05/introducing-firefox-new-site-isolation-security-architecture/
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://doi.org/10.1145/1961659.1961665
https://doi.org/10.1145/1961659.1961665
https://ieeexplore.ieee.org/document/5958025
https://doi.org/10.1145/3267323.3268959
https://doi.org/10.1145/3267323.3268959
https://www.sciencedirect.com/science/article/pii/S0022000014000178
https://www.sciencedirect.com/science/article/pii/S0022000014000178
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/
https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://developer.chrome.com/blog/inside-browser-part1/
https://developer.chrome.com/blog/inside-browser-part1/
https://blog.chromium.org/2020/01/moving-forward-from-chrome-apps.html
https://blog.chromium.org/2020/01/moving-forward-from-chrome-apps.html
https://www.usenix.org/conference/usenixsecurity21/presentation/laperdrix
https://www.usenix.org/conference/usenixsecurity21/presentation/laperdrix
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

usenixsecurity18/presentation/lipp.

[38] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome extensions:
Threat analysis and countermeasures. In NDSS, 2012. URL
https://www.ndss-symposium.org/ndss2012/ndss-2012-
programme/chrome-extensions-threat-analysis-and-
countermeasures/.

[39] MDN Web Doc. Background scripts, . URL https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/Background_scripts.

[40] MDN Web Doc. Same-origin policy, . URL https:
//developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy.

[41] MDN Web Doc. Webextensions. Technical report,
. URL https://developer.mozilla.org/ko/docs/Mozilla/
Add-ons/WebExtensions.

[42] M. Y. Mo. The chromium super (inline cache) type confusion,
2022. URL https://github.blog/2022-06-29-the-chromium-
super-inline-cache-type-confusion/.

[43] M. Moroz and S. Glazunov. Analysis of uxss exploits and mitigations
in chromium. Technical report, 2019.

[44] C. Morris and J. Rossi. A break from the past, part 2:
Saying goodbye to activex, vbscript, attachevent... URL
https://blogs.windows.com/msedgedev/2015/05/06/a-
break-from-the-past-part-2-saying-goodbye-to-
activex-vbscript-attachevent/.

[45] Mozilla Security Blog. Mitigations landing for new class of timing
attack. URL https://blog.mozilla.org/security/2018/01/
03/mitigations-landing-new-class-timing-attack/.

[46] K. Needham. The future of developing firefox add-
ons. URL https://blog.mozilla.org/addons/2015/08/21/
the-future-of-developing-firefox-add-ons/.

[47] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis.
The spy in the sandbox: Practical cache attacks in javascript and their
implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, page 1406–1418,
New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450338325. doi: 10.1145/2810103.2813708. URL https:
//doi.org/10.1145/2810103.2813708.

[48] C. Reis. Multi-process architecture, 2008. URL https://blog.
chromium.org/2008/09/multi-process-architecture.html.

[49] C. Reis, A. Moshchuk, and N. Oskov. Site isolation: Process
separation for web sites within the browser. In 28th USENIX Se-
curity Symposium (USENIX Security 19), pages 1661–1678, Santa
Clara, CA, Aug. 2019. USENIX Association. ISBN 978-
1-939133-06-9. URL https://www.usenix.org/conference/
usenixsecurity19/presentation/reis.

[50] J. Saltzer and M. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. doi:
10.1109/PROC.1975.9939.

[51] I. Sanchez-Rola, I. Santos, and D. Balzarotti. Extension break-
down: Security analysis of browsers extension resources con-
trol policies. In 26th USENIX Security Symposium (USENIX
Security 17), pages 679–694, Vancouver, BC, Aug. 2017.
USENIX Association. ISBN 978-1-931971-40-9. URL
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/sanchez-rola.

[52] J. Schuh. Saying goodbye to our old friend npapi. URL
https://blog.chromium.org/2013/09/saying-goodbye-to-
our-old-friend-npapi.html.

[53] A. Sjösten, S. Van Acker, and A. Sabelfeld. Discovering browser
extensions via web accessible resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy,
CODASPY ’17, pages 329–336, New York, NY, USA, 2017. As-

sociation for Computing Machinery. ISBN 9781450345231. doi:
10.1145/3029806.3029820. URL https://doi.org/10.1145/
3029806.3029820.

[54] D. F. Somé. Empoweb: Empowering web applications with browser
extensions. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 227–245, 2019. doi: 10.1109/SP.2019.00058. URL https:
//ieeexplore.ieee.org/document/8835286.

[55] O. Starov and N. Nikiforakis. Xhound: Quantifying the fingerprintabil-
ity of browser extensions. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 941–956, 2017. doi: 10.1109/SP.2017.18. URL
https://ieeexplore.ieee.org/document/7958618.

[56] S. Tang, H. Mai, and S. T. King. Trust and protection in the illinois
browser operating system. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’10,
page 17–31, USA, 2010. USENIX Association.

[57] M. Ter Louw, J. S. Lim, and V. N. Venkatakrishnan. Extensible web
browser security. In Proceedings of the 4th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
DIMVA ’07, page 1–19, Berlin, Heidelberg, 2007. Springer-Verlag.
ISBN 9783540736134. doi: 10.1007/978-3-540-73614-1_1. URL
https://doi.org/10.1007/978-3-540-73614-1_1.

[58] The Chromium Authors. What are extensions?, 2013. URL https:
//developer.chrome.com/docs/extensions/mv3/overview/.

[59] The Chromium Projects. Site isolation. URL https:
//sites.google.com/a/chromium.org/dev/Home/chromium-
security/site-isolation.

[60] J. Wagner. Trustworthy chrome extensions, by default, 2018. URL
https://blog.chromium.org/2018/10/trustworthy-chrome-
extensions-by-default.html.

[61] H. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,
H. Venter, and S. King. The multi-principal os construction
of the gazelle web browser. Technical Report MSR-TR-2009-
16, February 2009. URL https://www.microsoft.com/en-
us/research/publication/the-multi-principal-os-
construction-of-the-gazelle-web-browser/. MSR
Technical Report.

[62] S. Weinig, M. Stachowiak, D. Bates, S. Fraser, A. Roben, A. Kling,
and C. A. L. Perez. Webkit2, 2010. URL https://trac.webkit.
org/wiki/WebKit2.

[63] Y. Weiss and E. Kitamura. Aligning timers with cross origin isola-
tion restrictions. URL https://developer.chrome.com/blog/
cross-origin-isolated-hr-timers/.

[64] A. Zeigler. IE8 and loosely-coupled IE (LCIE), 2008.
URL https://learn.microsoft.com/en-us/archive/blogs/
ie/ie8-and-loosely-coupled-ie-lcie.

[65] R. Zhao, C. Yue, and Q. Yi. Automatic detection of information leakage
vulnerabilities in browser extensions. In Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, pages 1384–
1394, Republic and Canton of Geneva, CHE, 2015. International World
Wide Web Conferences Steering Committee. ISBN 9781450334693.
doi: 10.1145/2736277.2741134. URL https://doi.org/10.1145/
2736277.2741134.

A List of Analyzed Extensions

Table 2 lists analyzed extensions on Chrome Web Store.

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/chrome-extensions-threat-analysis-and-countermeasures/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/chrome-extensions-threat-analysis-and-countermeasures/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/chrome-extensions-threat-analysis-and-countermeasures/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Background_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Background_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Background_scripts
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/ko/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/ko/docs/Mozilla/Add-ons/WebExtensions
https://github.blog/2022-06-29-the-chromium-super-inline-cache-type-confusion/
https://github.blog/2022-06-29-the-chromium-super-inline-cache-type-confusion/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://blog.chromium.org/2008/09/multi-process-architecture.html
https://blog.chromium.org/2008/09/multi-process-architecture.html
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1145/3029806.3029820
https://ieeexplore.ieee.org/document/8835286
https://ieeexplore.ieee.org/document/8835286
https://ieeexplore.ieee.org/document/7958618
https://doi.org/10.1007/978-3-540-73614-1_1
https://developer.chrome.com/docs/extensions/mv3/overview/
https://developer.chrome.com/docs/extensions/mv3/overview/
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/site-isolation
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/site-isolation
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/site-isolation
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://www.microsoft.com/en-us/research/publication/the-multi-principal-os-construction-of-the-gazelle-web-browser/
https://www.microsoft.com/en-us/research/publication/the-multi-principal-os-construction-of-the-gazelle-web-browser/
https://www.microsoft.com/en-us/research/publication/the-multi-principal-os-construction-of-the-gazelle-web-browser/
https://trac.webkit.org/wiki/WebKit2
https://trac.webkit.org/wiki/WebKit2
https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/
https://developer.chrome.com/blog/cross-origin-isolated-hr-timers/
https://learn.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie
https://learn.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie
https://doi.org/10.1145/2736277.2741134
https://doi.org/10.1145/2736277.2741134

Extension ID Name Version Users

aapbdbdomjkkjkaonfhkkikfgjllcleb Google Translate 2.0.12 10M+
bgnkhhnnamicmpeenaelnjfhikgbkllg AdGuard AdBlocker 4.0.161 10M+
bmnlcjabgnpnenekpadlanbbkooimhnj Honey 14.8.0 10M+
cfhdojbkjhnklbpkdaibdccddilifddb Adblock Plus - free ad blocker 3.12 10M+
cjpalhdlnbpafiamejdnhcphjbkeiagm uBlock Origin 1.42.4 10M+
cmedhionkhpnakcndndgjdbohmhepckk Adblock for Youtube™ 5.1.7 10M+
dhdgffkkebhmkfjojejmpbldmpobfkfo Tampermonkey 4.16 10M+
ecnphlgnajanjnkcmbpancdjoidceilk Kami for Google Chrome™ 2.0.15049 10M+
efaidnbmnnnibpcajpcglclefindmkaj Adobe Acrobat: PDF edit & convert & sign tools 15.1.3.10 10M+
gighmmpiobklfepjocnamgkkbiglidom AdBlock – best ad blocker 4.44.0 10M+
hdokiejnpimakedhajhdlcegeplioahd LastPass: Free Password Manager 4.92.0.1 10M+
inoeonmfapjbbkmdafoankkfajkcphgd Read&Write for Google Chrome™ 2.0.1 10M+
inomeogfingihgjfjlpeplalcfajhgai Chrome Remote Desktop 1.5 10M+
jgfbgkjjlonelmpenhpfeeljjlcgnkpe ClassLink OneClick Extension 10.6 10M+
jlhmfgmfgeifomenelglieieghnjghma Cisco Webex Extension 1.17.0 10M+
kbfnbcaeplbcioakkpcpgfkobkghlhen Grammarly for Chrome 14.1056.0 10M+
mmeijimgabbpbgpdklnllpncmdofkcpn Screencastify - Screen Video Recorder 2.67.0.4291 10M+
nkbihfbeogaeaoehlefnkodbefgpgknn MetaMask 10.12.4 10M+
nopfnnpnopgmcnkjchnlpomggcdjfepo Clever 1.17.1 10M+
oocalimimngaihdkbihfgmpkcpnmlaoa Netflix Party is now Teleparty 3.4.0 10M+
ppnbnpeolgkicgegkbkbjmhlideopiji Windows Accounts 1.0.6 10M+
pbjikboenpfhbbejgkoklgkhjpfogcam Amazon Assistant for Chrome 10.2107.7.11654 8M+
caljgklbbfbcjjanaijlacgncafpegll Avira Password Manager 2.18.5.3877 5M+
fdjamakpfbbddfjaooikfcpapjohcfmg Dashlane - Password Manager 6.2212.2 5M+
admmjipmmciaobhojoghlmleefbicajg Norton Password Manager 7.5.1.48 4M+
ndjpnladcallmjemlbaebfadecfhkepb Office 2.2.9 4M+
aeblfdkhhhdcdjpifhhbdiojplfjncoa 1Password – Password Manager 2.3.2 2M+
bfnaelmomeimhlpmgjnjophhpkkoljpa Phantom 22.3.29 2M+
fnjhmkhhmkbjkkabndcnnogagogbneec Ronin Wallet 1.7.0 2M+
hnmpcagpplmpfojmgmnngilcnanddlhb Windscribe - Free Proxy and Ad Blocker 3.4.0 2M+
mlomiejdfkolichcflejclcbmpeaniij Ghostery – Privacy Ad Blocker 8.6.3 2M+
nngceckbapebfimnlniiiahkandclblb Bitwarden - Free Password Manager 1.57.0 2M+
fhbohimaelbohpjbbldcngcnapndodjp Binance Wallet 2.12.2 1M+
hnfanknocfeofbddgcijnmhnfnkdnaad Coinbase Wallet extension 2.12.2 1M+
kacljcbejojnapnmiifgckbafkojcncf Ad-Blocker 1.5 1M+
lgblnfidahcdcjddiepkckcfdhpknnjh Fair AdBlocker 1.524 1M+
pkehgijcmpdhfbdbbnkijodmdjhbjlgp Privacy Badger 2021.11.23.1 1M+
ohahllgiabjaoigichmmfljhkcfikeof AdBlocker Ultimate 3.7.16 0.9M+
aiifbnbfobpmeekipheeijimdpnlpgpp Terra Station Wallet 2.7.0 0.7M+
pnlccmojcmeohlpggmfnbbiapkmbliob RoboForm Password Manager 9.3.2.0 0.6M+
bfogiafebfohielmmehodmfbbebbbpei Keeper® Password Manager & Digital Vault 16.4.0 0.5M+
dmkamcknogkgcdfhhbddcghachkejeap Keplr 0.10.0 0.5M+
ibnejdfjmmkpcnlpebklmnkoeoihofec TronLink 3.26.4 0.5M+
ffnbelfdoeiohenkjibnmadjiehjhajb Yoroi 4.11.500 0.4M+
fhmfendgdocmcbmfikdcogofphimnkno Sollet 0.3.1 0.2M+
jblndlipeogpafnldhgmapagcccfchpi Kaikas 1.10.1 0.2M+

Table 2: List of analyzed extensions on Chrome Web Store.

	Introduction
	Background
	Web Browser Security
	Browser Extension Architecture

	Security Requirements to Protect Against Renderer Attackers
	Extension Message Authentication
	Non-sensitive Data in Extension Storage
	Non-sensitive Data in Content Script

	Privilege Escalation Attacks via Extensions
	Execute Privileged Browser APIs
	Write Sensitive Extension Data
	Read Sensitive Extension Data

	Design of FistBump
	Strong Process Isolation for Content Script
	Transparent Isolation with DOM Proxy
	Optimizing Performance of DOM Proxy

	Implementation
	Evaluation
	Security
	Backward Compatibility
	Performance

	Discussion
	Related work
	Conclusion
	List of Analyzed Extensions

