
Forming Faster Firmware Fuzzers

Lukas Seidel1, Dominik Maier2, and Marius Muench3

1Qwiet AI, jlseidel@qwiet.ai
2TU Berlin, dmaier@sect.tu-berlin.de

3VU Amsterdam and University of Birmingham, m.muench@bham.ac.uk

Abstract
A recent trend for assessing the security of an embedded

system’s firmware is rehosting, the art of running the firmware
in a virtualized environment, rather than on the original hard-
ware platform. One significant use case for firmware rehosting
is fuzzing to dynamically uncover security vulnerabilities.

However, state-of-the-art implementations suffer from high
emulator-induced overhead, leading to less-than-optimal exe-
cution speeds. Instead of emulation, we propose near-native
rehosting: running embedded firmware as a Linux userspace
process on a high-performance system that shares the instruc-
tion set family with the targeted device. We implement this
approach with SAFIREFUZZ, a throughput-optimized rehost-
ing and fuzzing framework for ARM Cortex-M firmware.
SAFIREFUZZ takes monolithic binary-only firmware images
and uses high-level emulation (HLE) and dynamic binary
rewriting to run them on far more powerful hardware with
low overhead. By replicating experiments of HALucinator,
the state-of-the-art HLE-based rehosting system for binary
firmware, we show that SAFIREFUZZ can provide a 690x
throughput increase on average during 24-hour fuzzing cam-
paigns while covering up to 30% more basic blocks.

1 Introduction

Embedded systems have become ubiquitous. These special-
purpose computing devices are employed in all areas of every-
day life, such as automotive systems, networking equipment,
healthcare machines, smart-home devices, and more. Since
they become evermore connected, protecting their confiden-
tiality, integrity and availability gets increasingly important.
In contrast to traditional computers, embedded devices of-
ten do not run a full-fledged operating system, but a mono-
lithic software stack that handles every aspect of the system:
memory management, interrupts, processing of user data, and
hardware interactions. This so-called device firmware of-
ten exposes a lot of complex functionality, such as drivers
and custom parsers, to external sources that may be attacker-
controlled, for example via wireless data over the air, or even

from TCP packets. Given the importance of embedded sys-
tems and the extended attack surface, testing their firmware’s
security is essential.

A common approach for security analysis is fuzzing, an
automated process in which a fuzzer feeds semi-random, po-
tentially malformed input to the target, to find buggy corner
cases. Due to its effectiveness, the field has become an increas-
ingly popular research topic [41]. The recent field of rehosting
commonly enables fuzzing of an embedded device’s firmware
by creating virtual execution environments [24, 47]. To au-
tomatically generate inputs that are accepted by the target,
modern fuzzers use feedback about the target’s last execu-
tion to choose which inputs to mutate further. As the inputs
gradually cover a larger amount of the target’s code for each
execution, throughput naturally decreases. Since every test-
case spends more time in the target, the fuzzer can execute
fewer testcases per second, which slows down further explo-
ration of the state space. Hence, one angle to further increase
fuzzing efficacy is to vastly increase execution speed. Testing
the program against the same inputs in less time gives the
fuzzer more time to explore the target further.

In this paper, we propose SAFIREFUZZ, a new and perfor-
mant rehosting and fuzzing approach for embedded binary-
only ARM firmware. Instead of rehosting target firmware
using a general-purpose emulator, as done by prior work
(e.g., [20,33,35,46,50]), we deploy a technique which we term
near-native rehosting. The core insight behind our approach
is that powerful server and desktop ARM computing devices
provide execution modes and instruction sets sufficiently sim-
ilar to the ones present on embedded systems. Based on this
observation, we create a dynamic binary rewriting engine to
run firmware directly on a more powerful system, while insert-
ing fuzzing instrumentation on-the-fly. To deal with hardware
interactions, we follow the High-Level Emulation (HLE) ap-
proach proposed by HALucinator [20] and replace hardware
interactions with HAL-based hooks.

As we will show, our approach significantly improves ex-
ecution speed when compared with recent rehosting frame-
works, leading to improved fuzzing efficacy and the discov-

ery of previously undetected bugs. In particular, we evaluate
SAFIREFUZZ against HALucinator [20], the state-of-the-art
HLE rehosting approach, and Fuzzware, a recent peripheral-
modeling-based rehosting approach. Our evaluation shows
that SAFIREFUZZ can provide an up to 690x speedup com-
pared to HALucinator and up to 147x compared to Fuzzware,
resulting in the additional discovery of up to 30% additional
basic blocks during 24-hour fuzzing runs.

In summary, we make the following contributions:

• We propose SAFIREFUZZ: a high-performance near-
native rehosting framework for interactive execution of
embedded ARM firmware.

• We prove its applicability for highly efficient fuzzing of
ARMv7-M binary firmware images. For this, we tightly
integrate in-process fuzzing with dynamic binary rewrit-
ing techniques, in conjunction with Hardware Abstrac-
tion Layer (HAL) function hooking.

• We evaluate SAFIREFUZZ by implementing fuzzing har-
nesses for 12 firmware samples from the HALucinator
test suite and compare its performance against recent
rehosting approaches. We also rehost two new samples
from scratch. Our evaluation shows that near-native re-
hosting outperforms rehosting approaches built on top
of general-purpose emulators.

2 Background

2.1 Embedded Systems & Firmware

Embedded systems are characterized by their use of firmware,
which is responsible for driving the device’s hardware and
offering higher-level functionalities at the same time. For
interacting with the hardware, the firmware typically uses one
of the following channels.

Memory-Mapped Input/Output (MMIO) assigns a range in
the physical memory to each peripheral. Each of these ranges
is divided into MMIO registers. Accessing these registers
allows the firmware to directly interact with its peripherals,
for instance, to read data from an external source or to turn on
a LED. Port-Mapped Input/Output (PMIO) behaves similarly
to MMIO, with the difference that specialized instructions
enable the interaction via IO ports. Direct Memory Access
(DMA) allows firmware to bypass the CPU when transfer-
ring data between peripherals and main memory. Instead of
blocking the CPU for the whole duration of the slow memory
transfer, the CPU only needs to initiate the process by interact-
ing with a specialized DMA controller peripheral. Peripherals
indicate the occurrence of specific events (e.g., the arrival
of new data) via Interrupts. Based on the configuration of
the device’s interrupt controller, the firmware then resumes
execution at a designated Interrupt Service Routine (ISR).

2.2 ARM Cortex-A/M
ARM is one of the most popular instruction set architecture
families for embedded systems [12]. In particular, the 32-bit
ARMv7-M and ARMv7-A variants are widely used, due to
their low cost and energy efficiency. ARMv7-A, targeting
more complex embedded systems, features two different exe-
cution modes: In ARM mode, the processor executes instruc-
tions with a fixed size of four bytes at a four-byte alignment.
In Thumb mode, instructions consist either of two or four
bytes, and the resulting two-byte alignment allows for much
denser packing of code [3] which is favorable for resource-
constrained embedded systems. These modes are switchable
on the fly via the—otherwise unused—least significant bit for
branch targets, whereas a 1 indicates execution in thumb-, and
0 execution in ARM mode at the target location. ARMv7-M,
on the other hand, specifically targets microcontrollers and
only implements the Thumb-v2 instruction set.

Beyond that, the more recent instruction set families
ARMv8-A and ARMv9-A added the AArch64 extension,
which provides a 64-bit instruction set. While CPUs imple-
menting these families usually target mobile and desktop
devices, the extension provides support for executing in 32-
bit mode on lower exception levels (i.e., EL1 and EL2) while
using a 64-bit OS or hypervisor.

2.3 Fuzzing
Fuzzing is a popular approach for automatic vulnerability dis-
covery, able to uncover a multitude of different vulnerabilities.
These include, but are not limited to, memory corruption bugs,
such as buffer overflows, double frees and use-after-frees, and
logic bugs, such as integer overflows, infinite loops and even
race conditions. In coverage-guided fuzzing, the fuzzer uses
execution feedback to determine interesting inputs. For this,
the fuzzer adds instrumentation to the target program, either at
compile-time, if source code is available, or later on a binary
level. This instrumentation reports coverage information back
to the fuzzing engine, e.g., by tracking executed branches in
a bit map. When an input generates unique coverage, it is
added to the fuzzing corpus to be subsequently mutated for
the generation of new test cases.

3 Motivation

Rehosting, the automated creation of virtual execution en-
vironments of embedded firmware, combines multiple ap-
proaches to overcome the challenges associated with emulat-
ing the (potentially unknown) peripherals of an embedded
system [24]. While early work relied on hardware-in-the-
loop emulation to offload unknown accesses to a physical de-
vice [35,37,48], hardware-less rehosting became the de-facto
standard to enable coverage-guided fuzzing of embedded sys-
tems [20, 25, 31, 33, 40, 45, 46, 51].

Rehosting System Approach Emulator Binary
PRETENDER [31] Pattern-based QEMU y
HALucinator [20] HAL-based Unicorn y
PartEmu [32] Pattern-based QEMU y
P2IM [25] Pattern-based QEMU y
Frankenstein [45] HAL-based QEMU y
Para-Rehosting [38] HAL-based N/A n
JetSet [34] Symbolic Execution QEMU y
uEmu [51] Symbolic Execution S2E y
FirmWire [33] Pattern-based Panda y
FUZZWARE [46] Symbolic Execution Unicorn y
SEmu [52] Specification-guided QEMU y*

* Requires access to device documentation.

Table 1: Survey of recent firmware rehosting solutions.

Scharnowski et al. [46] classify the approaches to overcome
unknown peripheral behavior deployed by hardware-less re-
hosting approaches in three categories: (1) high-level emula-
tion, (2) pattern-based MMIO modeling, and (3) symbolic-
execution-based approaches. The first category aims to elimi-
nate hardware accesses of virtualized firmware by hooking
library functions of the hardware-abstraction layer. The sec-
ond approach uses heuristics to categorize MMIO registers
and then uses pre-defined models to respond to accesses. The
third approach aims to resolve values advancing firmware
execution on-the-fly via symbolic execution. Additionally,
recent work [52] proposes specification-guided emulation in
which MMIO peripheral models are derived from datasheets
and device documentation.

We survey recent rehosting systems in Table 1 and note
that all approaches have been used to implement fuzzing cam-
paigns for firmware. However, we also observe that, except
for Para-Rehosting [38] which requires source code access,
all surveyed rehosting systems rely on already existing em-
ulators to virtualize the firmware. We hypothesize that this
is a hindrance to fuzzing, as readily available emulators are
general-purpose tools and were never designed with fuzzing
in mind.

A pathway to faster firmware fuzzing. Closer inspection
of Table 1 yields another detail: All surveyed emulation-based
rehosting systems either extend QEMU directly or build on
top of a QEMU-based emulator. This raises QEMU’s emula-
tion approach to the de-facto standard for firmware rehosting.
While QEMU offers huge extensibility and support for var-
ious ISAs, we believe that relying solely on its emulation
capabilities leads to trade-offs for fuzzing efficacy. In par-
ticular, when inspecting the state of the art, we observe the
following commonly accepted performance roadblocks:

[R1] Binary Lifting & Recompilation. QEMU lifts guest
code to TinyCode, its internal intermediate representa-
tion, before applying instrumentation and Just-In-Time
(JIT) compiles each block to the host architecture. While
this results in support for various instruction sets, most

rehosting work focuses solely on the ARM architec-
ture. Hence, we argue that a high-throughput firmware
fuzzer may consider alternative strategies for additional
performance, such as direct binary translation or binary
rewriting.

[R2] Expensive Dispatch of Memory Accesses. Mono-
lithic firmware usually resides in a single flat address
space. However, QEMU was developed for more com-
plex systems deploying an MMU. To emulate this across
all systems, its so-called SoftMMU dispatches memory
accesses. This leads to significant performance over-
head [17]. Being able to directly access the guest mem-
ory without indirection would greatly benefit guest exe-
cution speed, and hence, fuzzing.

[R3] Basic Block Caching & Chaining. One of the core per-
formance optimizations of QEMU is the ability to cache
already translated blocks and chain the execution of mul-
tiple blocks together. However, this optimization was
not available in early adaptations of AFL-QEMU [11].
While mainlined in AFL++ [26] and resulting, we ob-
serve that various rehosting solutions were developed on
top of legacy versions and the resulting lack of adoption
severely hinders fuzzing performance.

[R4] Lack of In-Process Fuzzing. Up to now, rehosting
solutions run their fuzzing engine in a separate process.
However, this leads to unnecessary kernel interaction
and context switches compared to a solution that embeds
the fuzzer in the same process.

We note that some roadblocks were partially addressed by
prior work. For instance, FirmWire [33] deploys the basic
block caching & chaining optimizations and Frankstein [45]
uses QEMU’s user mode which eliminates the need for a
SoftMMU. However, to the best of our knowledge, no prior
work systematically tackled all roadblocks and explored the
possibility of a highly performant firmware fuzzer.

4 Design

4.1 Overview
SAFIREFUZZ acts as a highly-efficient rehosting and execu-
tion engine for firmware fuzzing by overcoming the road-
blocks described in Section 3. At the core of our proposed ap-
proach stands a technique we term near-native rehosting. In-
stead of emulating the firmware through lifting and recompila-
tion, (R1), we exploit the fact that certain ARMv8-A cores pro-
vide userspace compatibility with the AArch32 and Thumb
instruction set variants. Hence, we can directly execute large
parts of the firmware code on powerful cores through binary
instrumentation. As we mirror the memory layout of the em-
bedded device in userspace, rewritten instructions do not need

additional logic to dispatch memory accesses, circumventing
(R2). Additionally, our rewriting approach is optimized to
cache already instrumented blocks, minimizing engine over-
head (R3). Lastly, we embed the fuzzing logic in the same
process space as the engine and the rewritten firmware to
minimize the required interactions with the host operating
system (R4).

In the following, we will describe SAFIREFUZZ’s core en-
gine, our dynamic rewriting approach, as well as our solution
to rehosting challenges.

4.2 Rehosting & Rewriting Engine
SAFIREFUZZ’s engine is responsible for executing the tar-
get firmware, handling rehosting aspects, rewriting instruc-
tions, and insertion of fuzzing instrumentation. For dealing
with unknown hardware peripherals, we loosely follow the
High-Level Emulation approach by Clements et al. [20], as
hooking corresponding HAL embeds easily into our rewriting
approach. Hence, the engine uses a firmware-specific harness.
This harness initializes memory ranges and registers HAL
hooks before target execution is started by rewriting the first
basic block at the specified entry point.

The engine is responsible for translating basic blocks on
demand while adding instrumentation for fuzzing, transfer-
ring execution to registered hooks where required, and de-
ploying interrupt approximation mechanisms. While all of
these tasks are crucial, we note that as little time as possible
should be spent inside the engine’s code or in the operating
system. Hence, the engine only rewrites basic blocks when
their immediate predecessor gets executed for the first time,
and keeps a cache of already instrumented blocks. During
the initial rewriting and execution of a block, multiple jumps
to the engine may be required. After an emitted basic block
has been executed completely for the first time, the engine
eliminates all, now unnecessary, jumps from this block back
to itself. This way, rewrites of successive blocks and branch
resolution have to happen only once. The instrumentation
overhead is constant for one engine run.

4.3 Basic Block Rewriting
The simplest approach to dynamic rewriting is the in-place
replacement of instructions. While solutions following this
approach exist to replace single instructions [22], we argue
that this is not possible in the general case, and especially not
for ARMv7-M, as replaced instructions may be larger than
the original ones. On top, we need to insert additional instruc-
tions for instrumentation and hooking. This shifts the relative
position of instructions to each other. As many instructions
on ARM operate in a PC-relative fashion and jump targets
cannot be guaranteed to be preserved. While calculating tar-
gets of dynamic branches and the required alterations are
possible with control-flow recovery heuristics [44], inferring

Algorithm 1 Binary Rewriting in SAFIREFUZZ.

for curr_addr in basic_block do
if curr_addr in registered_hooks then

insert(jump_to_hook)
break

end if
insn = disas(curr_addr)
if requires_rewriting(insn) then

insert(patch(insn))
else

insert(insn)
end if
if is_delimiter(insn) then

insert(branch_to(rewrite_successors))
insert(branch_to(resolve_branch_target))
break

end if
end for
copy(∗execution_code_site, rewritten_basic_block)

the register contents statically is non-trivial. Consequently,
we instrument the binary dynamically at runtime. As any ba-
sic block is never rewritten more than once, the approach’s
one-time overhead is negligible. We describe the rewriting
process in Algorithm 1 and further illustrate the rewriting
process on a basic block level in Figure 1. One upside of
our near-native rehosting approach is that a majority of all
instructions require no rewriting at all, as there is no mismatch
between the AArch32 execution state on the Cortex-A core
we are utilizing and the Cortex-M the firmware was built for.
Cortex-M processors make use of Thumb-v2 instructions, of
which most can be executed natively and without divergence
on an ARMv8-A target platform with AArch32 mode sup-
port1. PC-modifying instructions and PC-relative memory
accesses are the two only classes of instructions that require
rewriting. This stands in contrast to the usually deployed
processor-emulation-based rehosting techniques, where in-
structions for one architecture are executed on another and all
instructions require translation.

4.4 Function Hooking

While rewriting a new basic block, the engine checks whether
a hook is registered for the current address. A user can supply
such a function, written in a high-level programming lan-
guage. The engine emits a jump to the user-supplied code
that will then execute at block execution time. The hooking
locations in SAFIREFUZZ are restricted to function hooks
by design. As all (register) state we alter is shared between

1Exceptions are low-level system instructions like svc, swi, or mrc/mcr.
However, due to our HAL-based rehosting approach, functions including
them are never executed.

Original Basic Block
Rewritten Basic Block
after first Execution

Rewritten Basic Block

0x10000: movs r0, #0
0x10002: movs r1, #0
0x10004:

ldr r3, [pc, #0x30]
0x10006: cmp r3, #1
0x10008: beq #0x20e

movs r0, #0
movs r1, #0
movt r3, #0x1
movw r3, #0x34
ldr r3, [r3]
cmp r3, #1
push {r0-r12, lr}
mov r0, #SUCC_0_ADDR
blx rewrite_bb
mov r0, #SUCC_1_ADDR
blx rewrite_bb
blx resolve_branch
pop {r0-r12, lr}
nop

{
movs r0, #0
movs r1, #0
movt r3, #0x1
movw r3, #0x33
ldr r3, [r3]
cmp r3, #1
b #12
mov r0, #SUCC_0_ADDR
blx rewrite_bb
mov r0, #SUCC_1_ADDR
blx rewrite_bb
blx resolve_branch
pop {r0-r12, lr}
beq #RESOLVED_ADDR

PC-relative:

rewrite to
load from
absolute
address

Figure 1: Example of SAFIREFUZZ rewriting a basic block. The new block resides somewhere in the rewritten code site (cf.
Fig. 2). Jumps into the engine are simplified and require setting up the branch target registers in reality. After the first slow-path
execution, jumps back into the engine are skipped on subsequent hot-path executions. Context save and restore are also simplified
and usually involve the preservation of processor condition flags.

the executed firmware and user code, writing hooks on a per-
instruction base would be more complex when harnessing a
new target. Also, we found that function hooks are in all cases
sufficient to stub out hardware interactions for HLE rehost-
ing. This restriction allows us to gain runtime performance,
as we can make certain assumptions in our state save and
restore routines, as long as the firmware respects common
ARM calling conventions. Our approach’s introduced over-
head is minimal: The context save and restore, including the
jump into the hook, comprises five instructions. Such hooks,
also called handlers, are designed to model the behavior of a
part of the firmware. They replace calls to functions on the
Hardware Abstraction Layer during execution and thereby
mask peripheral accesses in the firmware. This procedure is
the core of peripheral management in HLE-based systems
and our near-native approach introduces no intrinsic draw-
backs. Commonly implemented functionalities are simulation
and handling of interrupts, accepting external data during
fuzzing and making it available to the firmware, or replacing
the memory allocator with a sanitizing one to increase the
observability of security violations. As we model functions on
the HAL in our approach, cross-firmware reuse is facilitated.
Firmware images using the same system libraries or being
developed for the same microcontroller often share common
hardware abstractions. Which firmware functions are hooked
with which handler is determined by the user within a harness
(cf. 5.3). A firmware’s harness can be seen as a specification
of domain knowledge in code. They are highly specific to a
certain processor or microcontroller model and have to take
care of handling a firmware’s characteristics, from setting an
entry point to providing correctly mapped memory.

4.5 Interrupt Approximation

Many embedded devices rely on interrupts for signal deliv-
ery and the processing of asynchronous, external events. The
SysTick timer, for instance, is present in many ARM micro-
controllers. Monolithic Real-Time OSs (RTOS) use it to poll
MMIO registers and schedule new tasks. Therefore, our re-
hosting solution requires a way of simulating interrupts in
order to accurately execute such firmware.
For this purpose, we implement tick-based interrupts. Al-
though it would be theoretically possible to translate inter-
rupts and let the Cortex-A host system handle them in our
near-native scenario, interrupts on embedded devices are com-
monly triggered by external peripherals and their ISRs will
try to access them via MMIO, hence requiring a rewrite in
any case. Previous rehosting work has shown that interrupt
approximation is sufficient to model firmware behavior [25]
and we see it as beneficial for fuzzing: our tick-based counter
leads to higher determinism, thus resulting in reproducible
and analyzable program traces. Improving on HALucinator,
which uses a similar approach with basic-block-level counters
to trigger a timer, our approach uses indirect call-level coun-
ters and manual clock-update hooks. We update timers and
trigger interrupts at specific points in the execution. Hook-
ing every single basic block would introduce unnecessary
performance overhead.

5 Implementation

5.1 Engine Internals

We implemented SAFIREFUZZ using the Rust programming
language. The engine core consists of 1481 source lines of
code. Another 1716 make up the entirety of implemented

HAL handlers, the harnesses for the 14 evaluated targets
add up to 2360 lines. Disassembling is performed with Cap-
stone [4]. For the assembly of modified or new instructions to
be emitted, we use Keystone [7].

The engine handles all tasks to allow the execution of
firmware in a foreign environment. Hence, it performs many
tasks an emulator has to take care of as well.

Branch Resolution. When the engine rewrites a basic block
that closes with a static branch, it emits a call back into the
engine. On the first execution of the basic block, this jump into
the engine, also called slow path, gets replaced with a static
branch, resolving the original firmware address to the new
location of the rewritten basic block. As such branch target
calculations only need to be performed once, the removal of
the jump into the engine reduces the overhead on forthcoming
executions. Executing all these slow path functions exactly
once per basic block and skipping them afterward is a major
performance optimization.

If instructions directly modify the PC in a not statically-
resolvable way, i.e., using register contents, the engine needs
to resolve the target at runtime. These include BX, BLX and
MOV instructions with PC as the target register. The routine
resolving the correct address of the target basic block in the
rewritten code range performs the following steps: If the
target address resides in our rewritten code range, we assume
a tailcall. We then simply OR the address with 1 to make
sure that we stay in Thumb mode and return this address.
Otherwise, a cache lookup is performed. The engine rewrites
the new basic block if it is not already cached. Subsequently,
the real address of the rewritten block is returned.

The branch resolution function is also one of the anchors
for our engine’s interrupt approximation. Interrupts can be
registered as execute-every-nth-tick, where a tick is a BLX
jump or the execution of a manually placed hook. Every time
we resolve a dynamic jump, a branch counter is increased. If
interrupts are globally enabled, and any interrupt handlers are
registered, the engine triggers the interrupt if enough ticks
have passed.

Jump tables are commonly compiled as loads of a fixed
value from the data segment directly into the PC. When the
engine encounters such LDR PC, [...] instructions upon
rewriting, it emits a jump back into the engine. This han-
dler function checks whether the specific load was already
resolved and cached.In the case of the first invocation, the new
basic block gets rewritten, and the memory location the load
reads from is overwritten with the new address. On return
from the engine, the original instruction is executed and reads
the adjusted value, correctly adjusting the PC. ARMv7-M
additionally features Table Branches, causing a PC-relative
branch using an offset table. Again, execution is redirected
back to the engine where it performs the table lookup and
calculates the corresponding offset. With this information, the
target basic block is instrumented and lifted, if it is not already

cached. Finally, the address of the branch target is returned in
r0. In the new basic block, we overwrite the register-specific
offset on the stack with the returned value, giving us control
over the register content after restoring the execution con-
text. We provide additional details on how we handle further
control-flow modifying instructions in Appendix A.2.

Context Switching. All jumps back into the engine require
a context save and restore. In case of a jump into user-defined
hooks, the routine is minimal: The engine pushes r1 to r11
on the stack and pops them again upon the hook finishing.
Finally, the engine branches back to the Link Register (LR).
This approach only induces negligible overhead. Furthermore,
it allows access to function parameters and the returning
of values in a more natural way than in emulators such as
Unicorn. While in Unicorn a hook has to use API calls to
read and write register contents, our framework exposes the
natural Application Binary Interface (ABI). Before resolving
branch targets in the engine, a full context save is required.
This includes all 13 general-purpose registers, the LR, as well
as condition flags in the Application Program Status Register
(APSR).

Memory Accesses. After branches, PC-relative memory ac-
cesses are the second-largest class of instructions the engine
needs to modify when rewriting basic blocks to another loca-
tion. In ARMv7-M, small chunks of data are often co-located
with the basic blocks that load from them, using a PC-relative
LDR. As it is non-trivial to infer how large the data segment
behind a basic block will be, copying the data during basic
block rewriting is non-trivial. We therefore statically resolve
the address and replace the PC-relative load with an absolute
one from the original code site. Figure 2 shows the engine’s
memory layout.

Caching. To minimize time spent inside the engine during
hot-path execution, we cache various data points.
Reassembling instructions with Capstone and Keystone is
very expensive. Consequently, we cache and reuse blocks
wherever possible. One example are wide branches (B.W)
emitted when replacing branches referring to locations in the
original code site with branches targeting rewritten blocks.
As the machine code instruction encodes an offset and not an
absolute address, it has a high potential for reuse. We insert the
assembled bytes into a fixed-size array and perform the lookup
by the required offset. Dynamic branching instructions such as
BLX have to get resolved every time because register contents
and hence the jump target might change. This requires a
lookup, using the original address in the firmware to retrieve
the equivalent basic block’s location in the new code site. As
our map key in both cases is a value in a linear address space
with a well-defined upper bound, we can use a simple array as

0x0 0xffffffff0xff000000

variable-size
malloc arena
for custom
allocator

0x20000000 0x20014000

firmware RAM
incl.

data segment
and
stack

code_len

firmware
image

0x30000000 0x30000000
+

code_len*10

rewritten
code site ...

(b) (c)(a)

Figure 2: Example Memory Layout of SAFIREFUZZ highlighting rehosting-specific regions. The rewritten code site contains the
new basic blocks after processing through the engine. Firmware execution happens here. Regions in parentheses include usual
process data: (a) contains the normal code segment, (b) contains shared libraries, (c) contains the program’s stack.

the data structure. Here, the i-th element contains the address
of the rewritten basic block for the original address i. This
allows us to do lookups in one instruction. We store such a
mapping not only for targets of BLX instructions but for every
address for which the engine emitted a new block.

Processor Cache Maintenance. As our engine not only
emits new instructions once but also modifies already-emitted
basic blocks, we have to deal with the ARMv7-A core’s non-
unified cache architecture. Such cores have separate, non-
coherent caches for instruction and data accesses, potentially
leading to problems and heavy inconsistencies when it comes
to self-modifying code. While it is possible to overwrite in-
structions in memory at runtime, the processor might still
execute old or invalid instructions due to missing coherence.
After every instruction rewrite, i.e., overwriting an instruction
in memory that was already executed at least once, we need to
invalidate both caches for the corresponding memory range.
The next fetch on these instructions will then cache-miss and
the processor will correctly load the new version from mem-
ory. Cache flushes as well as cache misses are the exception.
They are strictly necessary to guarantee the coherence of our
rewriting approach, and the observed overhead during testing
was negligible.

5.2 The Fuzzer
A core building block of our implementation is the fuzzer.
LibAFL [27] provides the mutation backend. We chose its
on-disk corpus to store the input queue as well as found ob-
jectives. The harness acts as the entry point to our engine and
defines the firmware from the fuzzer’s point of view. First, it
retrieves the fuzzing input from LibAFL and then kicks off a
single execution. As feedback mechanisms, we use a combi-
nation of a map observer, tracking the state of the coverage
map, which is updated on every conditional branch, as well as
the execution time and timeouts. For scheduling, we employ
a strategy favoring small test cases. Mutations are performed
following AFL’s havoc approach, as implemented in LibAFL.
The method involves bit flips, integer overwrites, block dele-
tion and block duplication. Our framework also exposes the

option to specify a token file the fuzzer will use to mutate new
inputs. Tokens in AFL are domain-specific byte sequences,
such as tags in HTML or XML, facilitating the fuzzer’s job
to generate meaningful input. LibAFL’s Launcher compo-
nent combines all these pieces and handles the launching and
restarting of fuzzing processes.

Coverage Tracking. In order to enable coverage-guided
fuzzing, the engine needs to track coverage and make
it observable by the fuzzing backend. We implement
non-colliding edge coverage tracking by setting values in a
static bit map whose address and size are known at compile
time. To track coverage, the engine inserts an additional
basic block after every conditional and table branch. For
every previously unseen edge, SAFIREFUZZ increases a
global counter, acting as a unique identifier and index into
the global bit map. The inserted instructions update the
corresponding entry upon execution. This approach, with the
new basic block consisting of seven instructions including
only a single memory access, minimizes the introduced
overhead while still providing the fuzzer with meaningful
insights. We opted for a boolean coverage map as opposed
to a hitcounts approach to further reduce overhead, as
experiments have shown that plain edge coverage in many
cases even outperforms AFL’s default hitcount metric [28].

Parallelism. The LibAFL Launcher allows scaling to an
arbitrary number of cores. Multiple fuzzing instances can be
started automatically in parallel and information such as the
coverage map is synchronized. Each core runs its own process
with an individual engine instance without shared caches.
This way we avoid executing expired or inconsistent views
of the rewritten code, potentially resulting from one instance
executing a basic block that is currently being rewritten by
another, without expensive cache coherence attestation.

5.3 Harnessing
Harnesses in SAFIREFUZZ are supplied at compile time and
are written in Rust, as is the rest of the framework. To allow

Firmware HAL # Hooked Functions
WYCINWYC STM32 25
NXP HTTP mcuxpresso 23
SAMR21 HTTP SAMR21 23
6LoWPAN Receiver Contiki 37
6LoWPAN Transmitter Contiki 29
P2IM Drone STM32 32
P2IM PLC STM32 32
STM PLC STM32 35
TCP Echo Client STM32 31
TCP Echo Server STM32 29
UDP Echo Client STM32 31
UDP Echo Server STM32 28

Table 2: Targets with their corresponding Hardware-
Abstraction Layer and the amount of hooked functions neces-
sary for successful rehosting.

flexible configuration while maintaining usability, the engine
exposes a set of interfaces a harness’ developer has to im-
plement, i.e., functions the engine can call to handle various
parts of the rehosting process. This includes but is not limited
to a setup function, called once at engine initialization, e.g.,
to set up memory segments and copy the firmware image to
the correct position, and a reset function handling memory
restoration and resetting timers and the custom allocator.

6 Evaluation

In our evaluation, we set out to answer the following three
research questions:

RQ1. How does SAFIREFUZZ compare to the state of the
art in firmware fuzzing?

RQ2. What are the core performance gains and remaining
roadblocks for SAFIREFUZZ?

RQ3. Can SAFIREFUZZ identify previously unknown or
undetected vulnerabilities?

To answer (RQ1), we select 12 firmware targets from previ-
ous research on firmware security and rehosting [20,25,30,31,
42, 51] and compare the SAFIREFUZZ’s fuzzing efficacy with
HALucinator [6] and Fuzzware [46] in different configura-
tions. Based on these results, we provide a detailed analysis of
SAFIREFUZZ’s performance (RQ2). Lastly, to answer (RQ3),
we first discuss previously undetected bugs in the 12 firmware
samples found by SAFIREFUZZ and then apply our approach
to two new targets.

Unless otherwise specified, we executed all experiments
on a HoneyComb LX2 ARM workstation running a 64-bit
Ubuntu 18.04. This system features 16 ARM Cortex-A72
cores with a clock rate of up to 2 GHz, 32 GB DDR4 memory
with a frequency of 3200 MT/s and a 128 GB m.2 SSD.

6.1 Experiment Setup

Target Selection. We selected targets based on their preva-
lence in prior research with a special focus on HALucina-
tor [20], as this is the most recent binary HAL-based rehosting
framework. All targets chosen for evaluation are compiled
for Cortex-M cores. The specific SAFIREFUZZ harnesses are
following the hooking and implementation of HALucinator
in order to ensure semantically identical behavior when be-
ing presented with the same input. We provide an overview
of the targets in Table 2 and detail hooked functions on the
Hardware Abstraction Layer for four exemplary targets in
Appendix A.3.

Fuzzer Setup. We compare SAFIREFUZZ against HALuci-
nator [20] and Fuzzware [46], the respective state-of-the-art
HLE-based and peripheral-modeling based fuzzer.

To compare with HALucinator, we use hal-fuzz, its fuzzing-
oriented open source version [6]. This version is based on
UnicornAFL [10] and uses legacy AFL [1] as fuzzing back-
end. To investigate the impact of a more modern fuzzer
and increase comparability with SAFIREFUZZ, we swap in a
libAFL-based backend as the mutation engine. We apply the
same configuration parameters and mutation strategies as the
ones used by SAFIREFUZZ and term this setup HALucinator -
libAFL. For Fuzzware, we use its AFL++ [26] fuzzing back-
end with AFL++v3.14c. Unfortunately, we encountered non-
trivial bugs when running Fuzzware on our ARM platform
which severely limited fuzzing performance. After consulting
with the Fuzzware authors, which confirmed that ARM hosts
are not supported, we resorted to running Fuzzware on an x86
host. We used a Ubuntu 18.04 VM with 64 cores and 196 GB
of RAM, hosted on an AMD EPYC 7662 server.

For each fuzzer and target, we conducted five 24-hour runs
with each fuzzing process pinned to one designated core.

Seed Selection. We use the seeds provided by HALucinator
for all setups except for Fuzzware, where we use empty seeds.
This is due to the different input semantics for the fuzzers: In
contrast to HAL-level abstractions, it is not possible to use
known file formats as seed inputs for Fuzzware, as its inputs
encode the interactions with the different MMIO registers.

Fidelity. Execution flow on the basic block level cannot be
guaranteed to be 100% identical for the different frameworks
due to their implementation differences. We ensured that the
simulated systems exposed functionally equivalent behavior
between HALucinator and SAFIREFUZZ by comparing mes-
sage logs and exit addresses.2 All sample inputs provided

2We enabled debug prints at various places for all firmware targets, log-
ging printable output to STDOUT and all interaction with HAL-I/O, e.g.,
packet contents when a simulated ethernet packet arrives. The produced logs
provide a detailed trace of the input processing of the firmware under test.

Firmware SAFIREFUZZ HALucinator HALucinator - libAFL Fuzzware
exec/s # basic blocks exec/s # basic blocks exec/s # basic blocks exec/s # basic blocks

6LoWPAN Receiver 581.4 2840 1.2 2354 2.5 2724 73.6 1812 / 1618
6LoWPAN Transmitter 1877.0 2563 1.8 2176 2.6 2307 66.4 2460 / 2101
NXP HTTP 5216.8 2341 4.8 1990 4.5 2209 22.5 447 / 337
SAMR21 HTTP 2894.6 1927 3.1 1581 1.7 1310 1018.4 52 / 26
P2IM PLC 772.1 202 19.5 228 6.3 249 24.5 87 / 70
P2IM Drone 7279.7 237 9.3 281 2.8 283 9.7 583 / 500
STM PLC 7193.8 748 10.8 654 2.0 776 15.5 732 / 381
WYCINWYC 3083.1 3263 9.4 1384 12.3 2795 41.0 3375 / 3166
TCP Echo Client 3401.3 2403 4.8 1679 4.0 2290 87.2 460 / 375
TCP Echo Server 2762.1 2177 5.0 1563 4.7 1710 88.4 459 / 229
UDP Echo Client 4485.3 1613 5.0 1188 4.7 1594 90.2 460 / 229
UDP Echo Server 4636.7 1450 5.9 1045 5.1 1485 85.1 460 / 229

Table 3: Results of fuzzing the targets over 24 hours. Reported numbers are median values from the five runs. For Fuzzware, we
report reached basic blocks both with and without considering HAL functions.

by the hal-fuzz repository were executed in both HALucina-
tor and SAFIREFUZZ and we asserted that the resulting logs
matched. Additionally, we generated such message logs for
various inputs from the fuzzing queue, selected at random, as
well as for crashing inputs and made sure that the traces and
exit addresses were equivalent.

Metrics. The metrics we use for comparative means are
(1) executions per second and (2) total coverage measured in
basic blocks.3 For (1) we count the total executions for each
fuzzing run and divide them by the 24-hour time budget. For
(2), we replay the test cases in the respective tools, except for
SAFIREFUZZ, where we replay found test cases in hal-fuzz
for better comparability. As both Fuzzware and hal-fuzz are
based on Unicorn, this allows us to collect translated blocks,
which we further filter for actual basic blocks as defined by
Ghidra’s [5] SimpleBlockModel.

For Fuzzware, we replay the testcases a second time, while
ignoring subtraces traversing HAL functions hooked by the
other frameworks. This allows us to identify the number of
basic blocks not executed by our HLE-based approach.

6.2 Comparison with the State of the Art

Table 3 shows an overview of the results of our experiments
and Figure 3 visualizes reached coverage over time. In the
following, we discuss SAFIREFUZZ’s performance in terms
of execution speed and reached basic blocks in comparison
to HALucinator and Fuzzware on our experimental platform.
For additional analysis of found crashes and a comparison to
other rehosting tools, we refer to Appendix A.1.

3Note that we deliberately refrain from reporting paths, as the metric
is not well-defined and considered obsolete. In particular, the definition of
unique input and the corresponding execution path differs widely across
different fuzzers. Furthermore, the number of paths and the achieved code
coverage do not necessarily correlate.

SAFIREFUZZ vs. HALucinator. On all targets except
the P2IM PLC firmware, our framework offers greatly in-
creased performance compared to HALucinator. Conducting
the Mann-Whitney U test on the execution speed and cov-
erage metrics confirmed statistically significant divergence
for p < 0.05 between SAFIREFUZZ and HALucinator for all
targets, with the exception of coverage for the P2IM PLC
target. We note that the fuzzing campaign against this target
is inefficient for all frameworks: the target exhibits extremely
easily triggerable crashes and, additionally, a significant part
of all inputs lead to an infinite loop and, thus, a timeout.

We achieve an up to 1000x increase in raw throughput
when running the frameworks in the same environment. When
considering reached basic blocks over time, we observe that
fuzzing with HALucinator offers higher consistency and more
reliable results. However, even in a worst-case comparison
our approach is able to offer improvements for most targets.

SAFIREFUZZ vs HALucinator-libAFL. When replacing
legacy AFL with LibAFL in HALucinator, achieved coverage
is greatly improved but still bested by our framework in nearly
all cases during 24-hour runs. Performing the Mann-Whitney
U test indicates statistical significance except for the coverage
for ST PLC, WYCINWYC and the UDP Echo Client samples.
In all of these cases, HALucinator-libAFL’s overall achieved
coverage is close, or better, than SAFIREFUZZ’s. As expected,
the differences in execution speed of HALucinator-libAFL
remain approximately the same compared to HALucinator.
Reached coverage over time, on the other hand, often follows
similar patterns as for SAFIREFUZZ, just significantly later
in time. Given that both frameworks use the same fuzzing
backend, this is unsurprising.

SAFIREFUZZ vs Fuzzware. SAFIREFUZZ outperforms
Fuzzware in terms of execution speed and uncovers more
basic blocks except for the WYCINWYC and P2IM Drone
samples. On 7 of the targets, Fuzzware performed signifi-

Figure 3: Coverage over time for SAFIREFUZZ, HALucinator, and Fuzzware in different configurations. Shown are the median
and 95% confidence intervals over five 24-hour runs for each target.

cantly worse than the other frameworks. We suspect that this
is due to the differences in automation: we used Fuzzware’s
genconfig functionality for harness creation. As such, the
auto-generated harnesses may encounter roadblocks early on
in emulation even before reaching the main logic of the tar-
get. These roadblocks are circumvented in HALucinator and
SAFIREFUZZ due to HLE-based hooking.

With the exception of the 6LoWPAN Receiver/Transmitter,
ST PLC, and WYCINWYC for coverage, and SAMR21 for
execution speed, the presented results show statistical signif-
icance under the Mann-Whitney U test. For the 6LoWPAN
samples, the experiments with Fuzzware consisted of single
runs which found a high number of uncovered basic blocks,
even exceeding the amount found with SAFIREFUZZ. In the
case of WYCINWYC, Fuzzware achieved similar coverage
to SAFIREFUZZ during the latter part of the 24-hour runs.

In terms of execution speed the Fuzzware barely reaches
any blocks in the SAMR21 sample, and, thus, terminates
execution early leading to very high throughput. However,
SAFIREFUZZ provides similar throughput while discovering
basic blocks and exercising large parts of the target.

SAFIREFUZZ vs Fuzzware (NoHal). When disregarding
basic blocks located in HAL functionality, the reached cov-
erage of Fuzzware decreases slightly. Unsurprisingly, other
aspects of this experiment follow the same patterns as for
Fuzzware without modifications.

However, one striking observation of this experiment is
that even when hooking large parts of the HAL to provide
firmware functionality, only a couple of hundred basic blocks
are actually cut off from the target. Consequently, HLE-based
approaches are losing less potential insight into the target than

one might expect. At the same time, in the cases Fuzzware
generates competitive coverage, a comparable amount of ba-
sic blocks is only found after a significant amount of time.
While this can be partially attributed to the different seeds, we
speculate that Fuzzware also spends a significant amount of
time blocked in HAL functionality before reaching the main
logic of a target.

6.3 Performance Analysis

Results of fuzzing the different firmware targets with our
framework show a strong correlation between execution speed
and found objectives (i.e., crashes and timeouts). For in-
stance, when fuzzing the 6LoWPAN Receiver target, four runs
achieved 559 executions per second with 18197 objectives
on average. The outlier run only produced 3666 objectives
and ran at 1536 executions per second. Similar results can be
observed for all tested targets, although other factors, such
as input length and validity correlating with path complexity,
influence performance, too.

Throughput drastically decreases once the fuzzer finds its
first crash. Every time our target process crashes or time-
outs, the process has to be restarted and the engine has to
perform all the heavy lifting again. Analysis and rewriting
of basic blocks, especially (dis-)assembling instructions, are
magnitudes more expensive than executing the firmware in
the hot path, where most time is spent in the target and not
in the engine. To estimate the performance penalty imposed
by restarts, we created a microbenchmark using the WYCIN-
WYC firmware. The first execution this firmware on a valid
XML input requires 1.06 seconds averaged over ten runs.
Subsequent runs on the same input execute at 6100 resets per
second, i.e., they require only 0.00016 seconds. While there
are multiple ways of addressing the problem of expensive,
recurring restarts (e.g., snapshotting), we do not consider it
to be a major problem since it is unusual for real-life fuzz
campaigns to contain hundreds of crashes.

Fuzzing experiments with our framework show a relatively
high variety in explored paths and executed basic blocks as
well as in objectives and hence number of executions. This
is presumably due to non-determinism in the used fuzzer
backend. The divergence decreases in targets with few or
no crashes. The partially drastic increase in covered basic
blocks compared to other frameworks can be explained by the
increased amount of tested inputs over 24 hours. That the in-
crease in coverage is not linear is expected, too, as uncovering
linearly more new parts of a program requires exponentially
more executions [14]. This makes new ways of enhancing
fuzzing performance, such as proposed with SAFIREFUZZ,
even more important.

Firmware Minimized Crashes
WYCINWYC 16
SAMR21 HTTP 2
6LoWPAN Receiver 93
6LoWPAN Transmitter 27
P2IM PLC 14
STM PLC 325
JPEG Decoder 2
STM32Sine 1

Table 4: Crashes found in targets under test. We minimized
crashes with AFL’s cmin.

6.4 Vulnerabilities
During our experiments, we collected the objectives found
with SAFIREFUZZ. Additionally, we created harnesses for
two new firmware samples. We report the minimized crashes
in Table 4 and highlight noteworthy crashes in the following.

WYCINWYC. This firmware is intended as a benchmark
for firmware fuzzing, assessing a fuzzer’s capability to reach
vulnerable code paths and, more importantly, to detect the
fault by incorporating artificial vulnerabilities. It exposes five
synthetically inserted memory corruptions within an XML
parser, each corresponding to a different vulnerability type.
SAFIREFUZZ found all five bug classes, demonstrating our
framework’s ability to detect various kinds of corruptions.
Our drop-in allocator replacement allowed us to find double
free by keeping track of used and freed memory pointers. By
making use of guard pages and relying on the host system’s
MMU, we can uncover segmentation faults and even heap
overflows more reliably. For on-system fuzzing setups, iden-
tifying such memory corruptions is often more difficult, as
many embedded devices do not have an MMU, and available
emulators commonly rely on overhead-inducing SoftMMUs.

6LoWPAN Receiver/Transmitter. We re-discovered mul-
tiple vulnerabilities in Contiki-NG [23] originally found by
HALucinator embedded in the 6LoWPAN Receiver target.
Most notably, an out-of-bounds write in the data subsection
that can be used for PC control, hence achieving Remote
Code Execution (CVE-2019-8359). Other bugs include an in-
teger overflow in the 6LoWPAN fragment processing, leading
to a buffer overflow and, in turn, access to unmapped mem-
ory, crashing the firmware (CVE-2019-9183). Remarkably, in
contrast to prior work, our approach also found a path trigger-
ing CVE-2019-8359 on the Transmitter. This demonstrates
that SAFIREFUZZ is capable of finding bugs not detected by
prior work that fuzzed the same firmware (HALucinator [20],
Fuzzware [46] and uEmu [51]).

JPEG Decoder. To test whether SAFIREFUZZ can find bugs
in additional firmware, we followed HALucinator’s approach
and compiled an example application. In particular, we target

an application using LibJPEG [8] to decode and visualize an
image embedded on an SD card inserted in the device.

Our fuzzing campaign found two previously unknown vul-
nerabilities. The first one is a segmentation fault caused by
a critical error routine that, instead of terminating the pro-
gram after beginning to parse a corrupted input image, falls
through silently. Subsequently, no checks are in place to avoid
accessing and dereferencing pointers in uninitialized structs
in memory. We traced back the second vulnerability to miss-
ing bounds checks in the color conversion function. Output
buffers have hard-coded sizes but the faulty routine uses the
decoded image’s width to iterate over scanlines and write to
the buffer, heavily exceeding the stack-located buffer’s limits.

STM32 Sine. The second additional target we test is open-
source firmware for electric motor inverters [9]. During our
fuzzing experiment, we explore a substantial part of the termi-
nal interface which parses and processes various commands
to change hardware-internal parameters via CAN bus com-
munication. SAFIREFUZZ finds a crash related to updating
certain parameter enumerations in the CAN configuration. An
interface ID is retrieved from memory and used as an offset
into memory. Corrupting this value leads to arbitrary memory
writes. However, at the time of writing, we could not confirm
whether this crash is a true positive, as part of its root cause
lies in the hardware configuration, which may be reported
wrongly by our HAL hooks.

7 Discussion

Performance of Initial Run. Our approach is very fast dur-
ing fuzzing, once all blocks have been translated dynamically.
However, most of the firmware’s basic blocks are unknown
during the first few executions, the fuzzer spends a majority of
time inside the engine, reassembling and caching. Early exe-
cutions hence run orders of magnitude slower than subsequent
executions. Since each restart resets SAFIREFUZZ’s caches,
a further performance improvement would be to not exit on
timeouts, or to write the cache to shared memory or disk.
When receiving a SIGALRM signal, instead of restarting the
whole process, the engine could just report a timeout exit code
to LibAFL and manually reset the execution state. Resuming
on a crash, e.g., a SIGSEGV, in a similar fashion is not easily
possible. The run may have tampered with and corrupted our
in-process state, as firmware execution happens in the same
process space of the engine. Thus, any undefined behavior
could also influence the engine’s state or code. To tackle this
issue, the caches could be tracked outside the current process,
similar to the implementation of qemuafl [26]. Moving to a
fully static rewriting is another option that, however, won’t
necessarily benefit fuzzing performance: the reassembly time
is merely moved to the beginning, the resulting binary should
not be faster overall, assuming we use the same techniques.

On top, we lose valuable runtime information available during
dynamic instrumentation.

Snapshotting. Since we target embedded firmware, we did
not implement memory snapshots. The technique nowadays
is increasingly applied in fuzzing. For it, a memory snapshot
might be taken after a firmware’s boot-up process, which
would allow the engine to skip this part, and fast resets could
be used instead of full restarts. For our use-case, boot-up rou-
tines of the firmwares investigated in the course of this work
consisted of only a couple of hundred instructions. Since this
is a very small amount of code, we decided that the additional
overhead of snapshotting and memory resets would simply
not be worth it. However, it could be interesting to evaluate
in the future, as it allows for stateful fuzzing [39] and could
allow faster resets upon crash.

Manual Effort. While our tool imposes the same restric-
tions as other HLE-based rehosting engines when it comes to
adapting a new target to the system, the barrier to entry de-
creases over time as the potential reusability of user-provided
hooks in this ecosystem is enormous. Many common and pop-
ular embedded platforms share their HALs and hooks for them
need to be implemented only once: In the case of firmware tar-
geting STM32 boards, we implemented a total of 18 generic
HAL functions, whereas no function was used in less than
two targets, and typical targets use up to 10 of these func-
tions. Moreover, due to the plethora of existing HLE-based
systems, readily available HAL stubs already exist. In terms
of peripheral management and function-hooking capabilities,
our engine offers functionalities compatible with many other
HLE-based systems. For our experiments, we ported multiple
HAL-emulating hooks from HALucinator’s Python imple-
mentation to Rust without much effort. The authors of HALu-
cinator [20] also argue that, while this method requires some
manual effort, this allows HLE-based approaches to handle
firmware automated systems such as P2IM [25] cannot.
In this work, we mainly focussed on improving execution
speeds. In the future, reducing the required manual effort to
adapt a new target to our fuzzer could be a worthwhile goal.
Automatically identifying and hooking HAL functions would
facilitate the analysis of a broader spectrum of firmware. Pair-
ing our near-native rehosting approach for high performance
with Scharnowski et al.’s MMIO-modeling technique [46] for
increased generality seems extremely promising.

Hardware Platforms. Many emulation-specific techniques
we employed for increased performance during fuzzing are
adaptable to other domains or even CPUs architectures. Sup-
porting additional ISAs, such as RISC-V, is mostly an en-
gineering effort by extending the dynamic rewriting part of
the engine with new translation passes. Yet, one of the core
concepts of our approach is fundamental to the ARM environ-
ment: We exploit the fact that on the one hand, a large portion
of the world’s embedded software offering large and interest-
ing attack surface runs on MCUs with ARMv7-M cores, and
on the other hand, high-power commodity ARMv8 CPUs are

widely available implementing the ARMv7-A instruction set
as part of the AArch32 execution mode. Natively executing
large portions of instructions of software compiled for very
low-powered devices on vastly more powerful CPUs is to this
extent unique to ARM. Running our framework on even more
potent ARM cores is the logical next step. Development and
testing were conducted on comparatively low-performance
CPUs. Apple recently made powerful AArch64-based cores
widely available and popular by introducing the M1 line [2].
However, in our experiments, we confirmed that 32-bit ARM
support is not available in M1 chips and ARMv8 implemen-
tations generally seem to increasingly discontinue support.
32-bit support is, however, still supported on a wide range of
products, from cheap development boards (e.g., the Cortex-
A72 cores embedded on a Raspberry Pi 44) over high-end
consumer products (e.g., the Cortex-X1 cores used in 2022
Thinkpad X13s) and modern server-grade CPUs such as Am-
pere eMAG processors.

8 Related Work

Dynamic Binary Rewriting. Using dynamic binary rewriting
to create a virtual execution environment for other software
is a well-known concept. For instance, the original VMWare
Workstation implementation [15] provided virtualization ca-
pabilities for x86 systems via system-level x86-to-x86 trans-
lation and a trap-and-emulate approach for sensitive opera-
tions. Similarly, QEMU [13] allows the emulation of different
hardware platforms via dynamic binary translation. However,
none of these approaches is tailored toward enabling low-
level firmware fuzzing. Minor trade-offs in performance are
accepted by design, and hardware accesses from the guest may
require complex emulation back-ends. In contrast, SAFIRE-
FUZZ’s near-native rehosting approach enables running of
code targeting an embedded ISA variant on a more powerful
host with a different ISA variant, as long both variants belong
to the same family (e.g., ARMv6-M and ARMv8-A).

Nonetheless, various frameworks explored binary rewriting
for fuzzing, such as F RIDA’s Stalker mode [29] or AFL++’s
Qemu- and Unicorn mode [26]. While these frameworks
aim to provide optimized rewriting techniques to lower the
runtime overhead, none of them considered the possibility of
near-native rehosting. AFL++’s Qemu- and Unicorn lift the
binary code to TCG, its intermediate representation, before
applying instrumentation, and Frida requires that the ISA of
the fuzzed target matches the one of the host.

Static Binary Rewriting. Recently, different static rewriting
approaches for fuzzing have been proposed. Frameworks like
retrowrite [21], StochFuzz [49], or ZAFL [43] move large
parts of the one-time rewriting cost to a static offline phase.
As a result, rewriting during run time is kept to a minimum

4During the development of SAFIREFUZZ, we confirmed that the frame-
work runs on a Raspberry Pi 4 and achieves highly competitive performance.

or eliminated completely. While these approaches reach com-
petitive performance compared to fuzzing via source-based
instrumentation, none of these frameworks enable firmware
fuzzing at the time of writing. All of them focus on either
the x86 or AArch64 ISA, and have strong assumptions on the
layout of the target binary, such as a clear distinction between
code and data sections or position-independent code. We note
that these assumptions which enable efficient static rewriting
are rarely applicable to binary firmware, which is why we
adopted a dynamic rewriting approach for SAFIREFUZZ.

Rehosting. In recent years, rehosting [24,47] enabled fuzzing
for various types of embedded systems, ranging from Linux-
based IoT devices [36, 50] over wireless chipsets [33, 40, 45]
to deeply-embedded devices with monolithic firmware [16,
20, 25, 31, 38, 46, 51]. SAFIREFUZZ draws direct inspiration
from these frameworks and prototypes, especially from HAL-
based rehosting approaches such as HALucinator [20] and
Para-Rehosting [38]. However, in comparison to SAFIRE-
FUZZ, most prior rehosting approaches focus on the creation
of emulation environments for target firmware, rather than in-
vestigating possibilities for highly-efficient fuzzing solutions.

The most notable exceptions are FirmAFL and Fuzzware.
FirmAFL aims to improve fuzzing efficacy for Linux-based
firmware, by fuzzing single applications with QEMU’s user
mode emulator while selectively using full-system emulation
to provide additional runtime context when needed. Fuzzware,
on the other hand, targets monolithic firmware and integrates
the fuzzer into the peripheral-modeling process while using
local dynamic symbolic execution to narrow down the pos-
sible input space. While both solutions provide additions to
firmware fuzzing, they both rely on a QEMU-based emulation
engine and, unlike SAFIREFUZZ, do not explore an alternative
low-overhead binary rewriting approach.

Concurrent to our work, MetaEmu [18] and ICICLE [19]
aim to advance the state-of-the-art by broadening the range
of rehostable architectures. As opposed to SAFIREFUZZ’s
near-native rewriting, both frameworks make use of Ghidra’s
processor and instruction set definitions to automatically de-
rive virtualized execution environments. MetaEmu can also
simultaneously rehost and analyze multiple connected targets.
Although they do focus on performance and implement mul-
tiple IR optimization passes, they did not benchmark their
approach against real-world targets from previous work. Un-
like SAFIREFUZZ, they only show that they slightly outper-
form Unicorn on a few micro benchmarks. While ICICLE
puts the focus on fuzzing, their main contribution is effective
architecture-agnostic instrumentation. In contrast to SAFIRE-
FUZZ, their framework - based on just-in-time compiled P-
Code and a SoftMMU - does not fundamentally rethink emu-
lation and achieves performance on par to Unicorn.

9 Conclusion

In this work, we investigated the possibility of improving
recent approaches for binary firmware fuzzing. Our engine,
termed SAFIREFUZZ, leverages HAL-level hooking and dy-
namic binary rewriting for rehosting low-level ARM Cortex-
M firmware onto more powerful ARM Cortex-A systems.

We evaluated SAFIREFUZZ by implementing fuzzing har-
nesses for the state-of-the-art firmware suite for HAL-based
rehosting approaches. Our performance analysis shows that
SAFIREFUZZ can provide a 690x throughput increase on
average and a 30% improvement of basic block coverage
compared to the state of the art over 24h fuzzing campaigns.

Overall, SAFIREFUZZ demonstrates that emulation effi-
ciency is an important factor when designing rehosting sys-
tems with the ultimate goal to fuzz test embedded device
firmware. We hope that the insights of our work will form the
basis for faster firmware fuzzers in the future.

Availability

The source code of SAFIREFUZZ, as well as all evalua-
tion harnesses and experiment code, is publicly available at:
https://github.com/pr0me/SAFIREFUZZ.

Coordinated Disclosure

We disclosed the previously unknown vulnerabilities dis-
cussed in Section 6.4 to the maintainer of the STM32 Sine
project and to the ST’s Product Security Incident Response
Team (ST PSIRT).

Acknowledgements

This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under project
TESTABLE, grant agreement No. 101019206, the Dutch Min-
istry of Economic Affairs and Climate through the AVR pro-
gram (Memo project) and the Dutch Science Organization
NWO through projects Theseus and NWA ORC Intersect.

References

[1] American Fuzzy Lop Fuzzer. https://github.com/
google/AFL. Last Accessed: 07.02.2022.

[2] Apple M1 Chip. https://www.apple.com/
newsroom/2020/11/apple-unleashes-m1/. Last
Accessed: 21.02.2022.

[3] ARM7TDMI Technical Reference Manual: The Thumb
instruction set. https://developer.arm.com/
documentation/ddi0210/c/CACBCAAE. Last Ac-
cessed: 21.02.2022.

[4] Capstone: Disassembler Framework. https://www.
capstone-engine.org/. Last Accessed: 17.02.2022.

[5] Ghidra: Reverse Engineering Suite. https://
ghidra-sre.org/. Last Accessed: 7.02.2023.

[6] hal-fuzz Github Repository. https://github.com/
ucsb-seclab/hal-fuzz. Last Accessed: 06.02.2022.

[7] Keystone: Assembler Framework. https://www.
keystone-engine.org/. Last Accessed: 17.02.2022.

[8] LibJPEG Decoder Firmware. https://github.com/
STMicroelectronics/STM32CubeF4/tree/master/
Projects/STM324x9I_EVAL/Applications/
LibJPEG/LibJPEG_Decoding. Last Accessed:
07.02.2023.

[9] OpenInverter Firmware: stm32-sine. https://
github.com/jsphuebner/stm32-sine. Last Ac-
cessed: 07.02.2023.

[10] UnicornAFL: A Bridge between AFL++ and the Uni-
corn Emulator. https://github.com/AFLplusplus/
unicornafl. Last Accessed: 10.02.2022.

[11] Improving afl’s qemu mode perfor-
mance. https://abiondo.me/2018/09/21/
improving-afl-qemu-mode/, 2018. Last Accessed:
13.12.2022.

[12] Aspencore. Embedded systems market study, 2019.

[13] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
2005.

[14] Marcel Böhme and Brandon Falk. Fuzzing: On the
exponential cost of vulnerability discovery. In ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, 2020.

[15] Edouard Bugnion, Scott Devine, Mendel Rosenblum,
Jeremy Sugerman, and Edward Y Wang. Bringing
virtualization to the x86 architecture with the original
vmware workstation. ACM Transactions on Computer
Systems (TOCS), 2012.

[16] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
agnostic firmware execution is possible: A concolic ex-
ecution approach for peripheral emulation. In Annual
Computer Security Applications Conference (ACSAC),
2020.

[17] Chao-Jui Chang, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, and Pen-Chung Yew. Efficient memory
virtualization for cross-isa system mode emulation. In
ACM Conference on Virtual Execution Environments
(VEE), 2014.

https://github.com/pr0me/SAFIREFUZZ
https://github.com/google/AFL
https://github.com/google/AFL
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://developer.arm.com/documentation/ddi0210/c/CACBCAAE
https://developer.arm.com/documentation/ddi0210/c/CACBCAAE
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://github.com/ucsb-seclab/hal-fuzz
https://github.com/ucsb-seclab/hal-fuzz
https://www.keystone-engine.org/
https://www.keystone-engine.org/
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM324x9I_EVAL/Applications/LibJPEG/LibJPEG_Decoding
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM324x9I_EVAL/Applications/LibJPEG/LibJPEG_Decoding
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM324x9I_EVAL/Applications/LibJPEG/LibJPEG_Decoding
https://github.com/STMicroelectronics/STM32CubeF4/tree/master/Projects/STM324x9I_EVAL/Applications/LibJPEG/LibJPEG_Decoding
https://github.com/jsphuebner/stm32-sine
https://github.com/jsphuebner/stm32-sine
https://github.com/AFLplusplus/unicornafl
https://github.com/AFLplusplus/unicornafl
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/

[18] Zitai Chen, Sam L Thomas, and Flavio D Garcia.
Metaemu: An architecture agnostic rehosting frame-
work for automotive firmware. In ACM Conference on
Computer and Communications Security (CCS), 2022.

[19] Michael Chesser, Surya Nepal, and Damith C. Ranas-
inghe. Icicle: A re-designed emulator for grey-box
firmware fuzzing. In International Symposium on
Software Testing and Analysis (ISSTA), 2023.

[20] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware re-hosting through
abstraction layer emulation. In USENIX Security
Symposium, 2020.

[21] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting cots bina-
ries for fuzzing and sanitization. In IEEE Symposium
on Security and Privacy (S&P), 2020.

[22] Gregory J. Duck, Xiang Gao, and Abhik Roychoud-
hury. Binary rewriting without control flow recov-
ery. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2020.

[23] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In IEEE International Conference on
Local Computer Networks, 2004.

[24] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, et al. Sok: Enabling security analyses of embed-
ded systems via rehosting. In ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2021.

[25] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via
automatic peripheral interface modeling. In USENIX
Security Symposium, 2020.

[26] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining incremental steps of
fuzzing research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[27] Andrea Fioraldi, Dominik Christian Maier, Dongjia
Zhang, and Davide Balzarotti. Libafl: A frame-
work to build modular and reusable fuzzers. In
ACM Conference on Computer and Communications
Security (CCS), 2022.

[28] Andrea Fioralldi, Alessandro Mantovani, Dominik
Maier, and Davide Balzarotti. Registered report: Dis-
secting american fuzzy lop - a fuzzbench evaluation. In
1st International Fuzzing Workshop (FUZZING), 2022.

[29] Frida. Stalker. https://frida.re/docs/stalker/,
2020. Last Accessed: 13.12.2022.

[30] Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas
Dresel, Nilo Redini, Christopher Kruegel, and Giovanni
Vigna. HEAPSTER: Analyzing the Security of Dynamic
Allocators for Monolithic Firmware Images. In IEEE
Symposium on Security and Privacy (S&P), 2022.

[31] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, and Giovanni Vigna. Toward
the analysis of embedded firmware through automated
re-hosting. In Symposium on Recent Advances in
Intrusion Detection (RAID), 2019.

[32] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, and Michael Grace. PARTEMU: Enabling
dynamic analysis of Real-World TrustZone software us-
ing emulation. In USENIX Security Symposium, 2020.

[33] Grant Hernandez, Marius Muench, Dominik Maier,
Alyssa Milburn, Shinjo Park, Tobias Scharnowski,
Tyler Tucker, Patrick Traynor, and Kevin R. B. Butler.
FirmWire: Transparent Dynamic Analysis for Cellular
Baseband Firmware. In Symposium on Network and
Distributed System Security (NDSS), 2022.

[34] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In USENIX Security Symposium,
2021.

[35] Markus Kammerstetter, Christian Platzer, and Wolf-
gang Kastner. Prospect: Peripheral proxying sup-
ported embedded code testing. In ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2014.

[36] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon
Kim, Yeongjin Jang, and Yongdae Kim. Firmae: To-
wards large-scale emulation of iot firmware for dynamic
analysis. In Annual Computer Security Applications
Conference (ACSAC), 2020.

[37] Karl Koscher, Tadayoshi Kohno, and David Molnar.
{SURROGATES}: Enabling {Near-Real-Time} dy-
namic analyses of embedded systems. In USENIX
Workshop on Offensive Technologies (WOOT), 2015.

https://frida.re/docs/stalker/

[38] Wenqiang Li, Le Guan, Jingqiang Lin, Jiameng Shi, and
Fengjun Li. From library portability to para-rehosting:
Natively executing open-source microcontroller oss on
commodity hardware. In Symposium on Network and
Distributed System Security (NDSS), 2021.

[39] Dominik Maier, Otto Bittner, Marc Munier, and Julian
Beier. Fitm: Binary-only coverage-guided fuzzing for
stateful network protocols. In Workshop on Binary
Analysis Research (BAR), 2022.

[40] Dominik Maier, Lukas Seidel, and Shinjo Park.
Basesafe: Baseband sanitized fuzzing through emula-
tion. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec), 2020.

[41] Valentin J. M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47, 2021.

[42] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt is
not what you crash: Challenges in fuzzing embedded
devices. In Symposium on Network and Distributed
System Security (NDSS), 2018.

[43] Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser,
Jack W. Davidson, and Matthew Hicks. Breaking
through binaries: Compiler-quality instrumentation for
better binary-only fuzzing. In USENIX Security
Symposium, 2021.

[44] Tobias Pfeffer, Paula Herber, Lucas Druschke, and
Sabine Glesner. Efficient and safe control flow recov-
ery using a restricted intermediate language. In IEEE
Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2018.

[45] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In
USENIX Security Symposium, 2020.

[46] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using precise MMIO modeling for effective firmware
fuzzing. In USENIX Security Symposium, 2022.

[47] Christopher Wright, William A Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A Clements.
Challenges in firmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys (CSUR), 2021.

[48] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Da-
vide Balzarotti, et al. Avatar: A framework to sup-
port dynamic security analysis of embedded systems’
firmwares. In Symposium on Network and Distributed
System Security (NDSS), 2014.

[49] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer,
Xuwei Liu, and Xiangyu Zhang. Stochfuzz: Sound and
cost-effective fuzzing of stripped binaries by incremen-
tal and stochastic rewriting. In IEEE Symposium on
Security and Privacy (S&P), 2021.

[50] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. FIRM-AFL:
High-Throughput greybox fuzzing of IoT firmware via
augmented process emulation. In USENIX Security
Symposium, 2019.

[51] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic firmware emulation through invalidity-guided
knowledge inference. In USENIX Security Symposium,
2021.

[52] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What your firmware tells you is not how you
should emulate it: A specification-guided approach for
firmware emulation. In ACM Conference on Computer
and Communications Security (CCS), 2022.

A Appendix

A.1 Comparison to other Papers

Firmware SAFIREFUZZ HALucinator - Paper Para-Rehosting
exec/s Time Crashes exec/s Time Crashes exec/s Time Crashes

WYCINWYC 3083.1 24h 16 17.92 24h 5 647.86 11h:43m 909
SAMR21 HTTP 2894.6 24h 2 22.92 19d:04h 273 902.95 12h:33m 219
NXP HTTP 5216.8 24h 0 154.5 14d:0h 0 1443.22 12h:39m 0
6LoWPAN RX 581.4 24h 93 18.84 1d:10h 3 – – –
6LoWPAN TX 1877.0 24h 27 15.3 1d:10h 0 – – –
P2IM Drone 7279.7 24h 0 11.8 9d:01h 0 – – –
P2IM PLC 772.1 24h 14 215 9d:01h 634 – – –
ST-PLC 7193.8 24h 325 3.73 1d:10h 27 2552.8 12h:15m 41
STM32 TCP Client 3401.3 24h 0 58.0 3d:08h 0 1092.4 12h:00m 58
STM32 TCP Server 2762.1 24h 0 56.7 3d:08h 0 1466.7 12h:00m 129
STM32 UDP Client 4636.7 24h 0 44.1 3d:08h 0 1245.0 12h:00m 65
STM32 UDP Server 3803.2 24h 0 66.7 3d:08h 0 902.3 12h:00m 16

Table 5: Throughput Comparison with experiments reported in HALucinator [20] and Para-Rehosting [38]. For SAFIREFUZZ,
we report values of the median run based on the number of executions. We minimized Crashes with AFL’s cmin for our own
experiments, for the other numbers it is not known whether or which minimization the authors applied.

In addition to our re-evaluation of different approaches, we
also compare our approach to experiments described in other
papers.

HALucinator. When compared to the numbers reported
in HALucinator [20], gathered on a stronger CPU, we still
achieve more than 200x on average (cf. Table 5). Conse-
quently, we explore the targets much faster. The authors
report that they found exactly five crashes in 612 paths.
The divergence from our experiments, where HALucinator
did not find a single crash, could be due to potentially less
coverage, as we fuzzed the program on a weaker CPU and
achieved fewer executions. During their 24-hour fuzzing
campaign, the target was executed about 1.5 million times
on a 12-core Xeon server. It is not stated whether the results
were achieved by using a single or multiple cores per fuzz run.

Para-Rehosting. In this work, the proposed framework
executed WYCINWYC about 27 million times within 12
hours. The authors report 3166 paths and 909 crashes, no
absolute number of covered basic blocks is given. The
median of crashes found with SAFIREFUZZ on WYCINWYC
is 25,653 before minimization. While the achieved speedup
compared to Para-Rehosting is existent but not extreme, the
approach is no direct competitor as it requires compilable
source code of the firmware. This often is a non-given in
embedded security analysis. A comparison of execution
speed can be found in Table 5.

P2IM. SAFIREFUZZ offers a substantial speed-up over the
P2IM technique on the tested firmware: Feng et al. report
32.7 and 17.2 executions per second for the PLC and Drone
targets respectively, where we observe 772 and 7279 in the
median case [25].

A.2 Special Control-Flow modifying Functions
Sometimes it is necessary to call unmodified functions in the
firmware from within user-defined hooks, e.g., when we write
an interrupt handler that resolves a callback. In emulators
such as Unicorn, such behavior is handled by modifying the
Program Counter in the emulation state. Returning from
the user-defined hook will then resume execution at the
specified address. Such modifications are not as trivial in our
engine as there is no differentiation between firmware- and
engine-PC. We handle this case by calling a dedicated naked
function, Rust itself exposes no tailcall functionality. Naked
functions do not incorporate any Rust-intrinsic function pro-
or epilogues after compilation but consist of a single, pure
assembly block. An example of such a function can be seen
in Listing 1. The target function expects two parameters, the
third one is used to supply the address of the target function.
Upon finishing, it returns directly to the user-defined hook
and Rust can perform its normal clear-up, dropping variables
and correctly adjusting the stack frame.
Another case where special handling was necessary, are
the GCC-specific thumb switch cases. They expose normal
switch-case or table branch functionality but they work on
making assumptions about the Link Register and directly
modifying it. Naturally, this cannot work in our rewritten
code site, where instructions are shifted by non-deducible
amounts from their original addresses. As we expect this
not to be the only time when a function might require
knowledge of the LR, we introduced a saving mechanism. On
every BLX, the address of the original callsite is stored at a
globally-known memory location which then can be accessed
by the callee. For the GCC switch-case functions, we simply
hook and replace the original functions with naked functions,
performing the same set of arithmetic modifications to
calculate the new target address on the stored LR instead of
using the register content.

1 #[naked]
2 unsafe extern "aapcs" fn _call_netif_input(
3 _rx_pbuf_ptr: u32,
4 _ethernet_netif_ptr: u32,
5 _netif_input_cb_addr: u32,
6) -> u32 {
7 asm!("mov pc, r2", options(noreturn));
8 }

Listing 1: Example of naked function used for tailcalls from
within user hooks.

A.3 Functions hooked at HAL-level

Function Name System Used in
WYCINWYC SAMR21 HTTP 6LoWPAN P2IM PLC

malloc general ✓ ✓ ✓ ✓

realloc general ✓ ✓ ✗ ✗

free general ✓ ✓ ✓ ✓

puts general ✓ ✗ ✗ ✓

HAL_GetTick STM32 ✓ ✗ ✗ ✗

HAL_RTC_GetDate STM32 ✓ ✗ ✗ ✗

HAL_RTC_GetTime STM32 ✓ ✗ ✗ ✗

serial_putc STM32 ✓ ✗ ✗ ✗

serial_getc STM32 ✓ ✗ ✗ ✗

mbed::Stream::write STM32 ✓ ✗ ✗ ✗

mbed::Stream::read STM32 ✓ ✗ ✗ ✗

rtc_write STM32 ✓ ✗ ✗ ✗

rtc_read STM32 ✓ ✗ ✗ ✗

HAL_SYSTICK_Config STM32 ✗ ✗ ✗ ✓

HAL_UART_Receive_IT STM32 ✗ ✗ ✗ ✓

HAL_UART_Transmit STM32 ✗ ✗ ✗ ✓

HAL_UART_IRQHandler STM32 ✗ ✗ ✗ ✓

millis Arduino ✗ ✗ ✗ ✓

HardwareSerial::read Arduino ✗ ✗ ✗ ✓

HardwareSerial::write Arduino ✗ ✗ ✗ ✓

HardwareSerial::available Arduino ✗ ✗ ✗ ✓

usart_write_wait SAM R21 ✗ ✓ ✓ ✗

ethernetif_input SAM R21 ✗ ✓ ✗ ✗

ksz8851snl_low_level_output SAM R21 ✗ ✓ ✗ ✗

uip_tcpchksum RF233 ✗ ✗ ✓ ✗

uip_udpchksum RF233 ✗ ✗ ✓ ✗

rf233_on RF233 ✗ ✗ ✓ ✗

rf233_off RF233 ✗ ✗ ✓ ✗

i2c_master_read_packet_wait RF233 ✗ ✗ ✓ ✗

trx_sram_read RF233 ✗ ✗ ✓ ✗

trx_frame_read RF233 ✗ ✗ ✓ ✗

trx_frame_write RF233 ✗ ✗ ✓ ✗

trx_reg_read RF233 ✗ ✗ ✓ ✗

trx_reg_write RF233 ✗ ✗ ✓ ✗

clock_init Contiki-OS ✗ ✗ ✓ ✗

clock_time Contiki-OS ✗ ✗ ✓ ✗

clock_seconds Contiki-OS ✗ ✗ ✓ ✗

Table 6: Functions hooked at HAL-level for four exemplary
targets.

	Introduction
	Background
	Embedded Systems & Firmware
	ARM Cortex-A/M
	Fuzzing

	Motivation
	Design
	Overview
	Rehosting & Rewriting Engine
	Basic Block Rewriting
	Function Hooking
	Interrupt Approximation

	Implementation
	Engine Internals
	The Fuzzer
	Harnessing

	Evaluation
	Experiment Setup
	Comparison with the State of the Art
	Performance Analysis
	Vulnerabilities

	Discussion
	Related Work
	Conclusion
	Appendix
	Comparison to other Papers
	Special Control-Flow modifying Functions
	Functions hooked at HAL-level

