
KextFuzz: Fuzzing macOS Kernel EXTensions on Apple Silicon
via Exploiting Mitigations

Tingting Yin1,3, Zicong Gao4, Zhenghang Xiao5, Zheyu Ma1, Min Zheng3, Chao Zhang1,2∗

1Tsinghua University 2Zhongguancun Laboratory 3Ant Group 5Hunan University
4State Key Laboratory of Mathematical Engineering and Advanced Computing

Abstract
macOS drivers, i.e., Kernel EXTensions (kext), are attrac-

tive attack targets for adversaries. However, automatically
discovering vulnerabilities in kexts is extremely challenging
because kexts are mostly closed-source, and the latest macOS
running on customized Apple Silicon has limited tool-chain
support. Most existing static analysis and dynamic testing
solutions cannot be applied to the latest macOS. In this paper,
we present the first smart fuzzing solution KextFuzz to detect
bugs in the latest macOS kexts running on Apple Silicon.
Unlike existing driver fuzzing solutions, KextFuzz does not
require source code, execution traces, hypervisors, or hard-
ware features (e.g., coverage tracing) and thus is universal
and practical. We note that macOS has deployed many miti-
gations, including pointer authentication, code signature, and
userspace kernel layer wrappers, to thwart potential attacks.
These mitigations can provide extra knowledge and resources
for us to enable kernel fuzzing. KextFuzz exploits these miti-
gation schemes to instrument the binary for coverage tracking,
test privileged kext code that is guarded and infrequently ac-
cessed, and infer the type and semantic information of the
kext interfaces. KextFuzz has found 48 unique kernel bugs in
the macOS kexts and got five CVEs. Some bugs could cause
severe consequences like non-recoverable denial-of-service
or damages.

1 Introduction

macOS is one of the most widely used operating systems
and has become a high-value and tempting attack target for
adversaries. The drivers in macOS, which are also known as
Kernel EXTensions (kext), introduce a large attack surface.
There are hundreds of kexts loaded in macOS, accounting for
half of the kernel code. Attackers can exploit vulnerabilities
in the kexts to crash the system, bypass deployed security
mechanisms, or even execute arbitrary code with kernel privi-
leges. The vulnerabilities in macOS kexts can also affect other

∗Corresponding author: chaoz@tsinghua.edu.cn

Apple-family operating systems such as iOS and iPadOS [2].
Therefore, discovering vulnerabilities in kexts is crucial.

Greybox fuzzing is one of the most effective ways to detect
kernel (or driver) vulnerabilities, but they are not applica-
ble to kexts in the latest macOS running on Apple Silicon.
First of all, most of the existing greybox fuzzing solutions
for kernels rely on source code, but kexts, in general, are
closed-sourced. For instance, kernel fuzzers, including Moon-
shine [37], HFL [29], DIFUZE [23], and PeriScope [43] all
need source code to extract knowledge (e.g., input formats of
the interfaces) or monitor the execution (e.g., function hook-
ing) of the targets under test. Kernel fuzzers that utilize the
commonly used mechanisms KCOV [8] and KASAN [9] to
track code coverage and catch runtime security violations also
require source code too.

Second, existing fuzzing solutions for closed-source ker-
nels also need various support from architectures or operating
systems. For instance, kAFL [41] relies on a special CPU fea-
ture, i.e., Intel Processor Trace (Intel-PT), to collect the code
coverage information. Digtool [38] leverages a customized
virtualization layer to monitor the kernel execution based on
Intel VT [6]. LLDBFuzzer [11] and SyzGen [21] intercept the
kernel execution with kernel debuggers to collect coverage
feedback and generate inputs. However, the latest macOS run-
ning on Apple Silicon does not have these supports, i.e., no
CPU features like Intel-PT, poor virtualization support, and
no active kernel debugging support [10].

Third, it is hard to infer interfaces of closed-source kexts.
Both IMF [28] and SyzGen [21] use kext invocation traces
to infer the interface dependencies. However, how to collect
enough runtime driver invocation traces is still an open prob-
lem, so they can only deal with a small number of kexts. For
instance, SyzGen can only collect useful traces for nine kext
clients out of 25 clients they tested and only five of them
contain useful information. Besides, IMF is only aware of the
argument type of the top-level I/O Kit APIs with header files.
SyzGen [21] uses dynamic symbolic execution to infer the
argument types of interfaces and can cover primitive types
like integer, string, and pointers, but cannot deal with complex

input formats commonly used in kexts.
Lastly, macOS has deployed many mitigations to defeat

potential attacks and make it difficult for dynamic testing. For
instance, a majority of kexts use entitlement checks to guar-
antee that only userspace binaries signed by Apple or other
specific developers could invoke their interfaces. According
to our evaluation in Section 6.2, the ratio of such kexts could
reach up to 61%, which is too large to ignore.

In this paper, we present the first smart fuzzing solution
KextFuzz to detect bugs in the latest macOS kexts running
on Apple Silicon and address the aforementioned challenges.
Given that there are no source code and architecture sup-
port, KextFuzz tests real devices and utilizes binary rewriting
to collect coverage information. However, it is not easy to
rewrite kernel binaries in macOS because the kernel has a
high requirement for stability. Analyzing the interface struc-
ture of closed-source targets is also challenging. Fortunately,
we note that mitigations deployed in macOS also provide
extra resources and knowledge of the kernel, which enables
us to conduct fuzzing.

First, the latest macOS has used ARM Pointer Authenti-
cation Code (PAC) [31] to check the integrity of pointers
(e.g., return addresses) at runtime and mitigate threats like
control-flow hijackings. This mechanism will add instruc-
tions to initialize and verify pointers in basic blocks. How-
ever, these instructions can be neglected in the scenario of
fuzzing. Firstly, we do not need to protect the system during
fuzzing. Secondly, a pointer corrupted by random fuzzing is
likely to trigger the system crash when it is dereferenced no
matter whether it is protected by PAC. Therefore, we propose
a novel static binary rewriting scheme by replacing ARM PA
instructions in binaries. This scheme enables the fuzzer to
alter or introspect the execution of the kexts, e.g., tracking
code coverage. It does not break the structure of binaries (e.g.,
adding new code sections), and most importantly, does not
import pointer dereference ambiguities, making the system
running stable in kernel fuzzing. This method is also applica-
ble to binaries with other extra instructions (e.g. Canary or
Intel CET).

Second, a majority of the kexts perform entitlement checks
during execution. Such mitigation could stop malicious
userspace binaries from invoking privileged kext interfaces,
and greatly improve system reliability, but meanwhile, it may
cause blind spots to the system, as the protected kexts are
not invoked and tested thoroughly. Therefore, we propose
an automatic solution to disable such entitlement checks and
test these kexts too. Specifically, it hooks and disables certain
critical checker functions through static binary rewriting.

Third, macOS has provided userspace abstract layers (e.g.,
frameworks and daemons) for the kernel to avoid direct inter-
action between the user applications and the kernel. The ab-
stract layer wraps complex kext invocations into well-defined
functionalities. It leaves a chance for us to extract the knowl-
edge of the kext interfaces from these wrappers, such as the

type and values of the arguments. Therefore, we propose to
analyze the binary code of kexts and their userspace libraries,
to understand how arguments are used and generated and
then infer the structures and semantics of the arguments. To
better infer the semantics, we also propose a taint analysis
scheme based on the emulation execution of target binaries.
Compared to IMF [28] and SyzGen [21], this solution is more
universal and practical.

We have implemented a prototype of KextFuzz based on
Syzkaller [18] and evaluated it on macOS 11.5.2 with real
Mac devices. With the novel static binary rewriting method,
KextFuzz can track code coverage and find 6X more crashes
than a black-box baseline fuzzing solution. KextFuzz can
test all kexts that have entitlement checks and find bugs in
them. The input templates generated by KextFuzz also leads
to higher basic block coverage in fuzzing when compared with
the state-of-the-art interface-aware kext fuzzer SyzGen. With
the ability to collect coverage information, bypass entitlement
checks, and generate high-quality testcases, KextFuzz finds
48 unique kernel bugs in a four-month fuzzing campaign,
including out-of-bounds, use-after-free vulnerabilities.

In summary, we make the following contributions:
• We propose the first smart fuzzing solution KextFuzz to

discover bugs in macOS kexts running on Apple Silicon,
without relying on source code, execution traces, hypervi-
sors, or hardware features.

• We leverage the mitigation instructions to present a novel
static binary instrumentation scheme, which can alter and in-
trospect kexts’ execution. Specifically, it enables KextFuzz
to track code coverage.

• We present a lightweight taint analysis solution based on
emulation execution to infer interfaces of kexts by leverag-
ing kernel isolation layers.

• We have developed a prototype of KextFuzz 1, deployed it
on real devices, and found 48 unique kernel bugs.

2 Background

2.1 Kernel Extensions in macOS
MacOS kernel has two parts: the XNU kernel and kernel ex-
tensions (kexts). The XNU provides low level functionalities
for the whole system, such as virtual memory management,
low-level inter-process communication (IPC) mechanisms,
and TCP/IP stack. Kexts extend the XNU to provide abstract
kernel functionalities or interact with special hardware. Kexts
can be viewed as drivers in Linux. Both of them are relatively
independent kernel modules, but kexts are usually larger and
more complex, which account for half of the kernel code.

Most of the kexts are developed based on the I/O Kit, an
object-oriented macOS framework. In this framework, each
kext may contain multiple services. Services are C++ classes

1https://github.com/vul337/KextFuzz

that ultimately inherit from the I/O Kit IOService class. They
provide the core functionalities of a kext, such as life cycle
control, device management, and interrupt control.

The services use user clients (subclasses inherit from
IOUserClient) to manage the connection from the userspace
processes. The clients provide interfaces that can be called
from userspace via IPC (mach_msg system call) or I/O Kit
userspace APIs. Each interface is numbered by a uint32 vari-
able, which is also known as the function selector.

All the services in I/O Kit kernel extensions are managed
by the I/O registry. The I/O registry is a dynamically updated
database that records the currently registered I/O Kit objects
and the relationship between them [7].

2.2 macOS Mitigations

Strict security mitigations in macOS make exploitation and
dynamic testing difficult but also provide us with extra infor-
mation and resources to find bugs automatically.

2.2.1 Pointer Authentication

ARM Pointer authentication (PA) is one of the advanced se-
curity mechanisms macOS adopts, introduced in the arm64e
architecture. When running programs with Pointer authentica-
tion Code (PAC), pointer authentication would add a crypto-
graphic signature to unused high-order bits of a pointer before
storing the pointer while removing and authenticating the
signature after reading the pointer from memory [14]. Any
unexpected modification on the stored pointer value would
invalidate the internal signature. When a signature is broken,
the process would crash and no longer execute.

To enable PA, the compiler adds PA instructions before and
after pointer access. Kexts on Apple Silicon-based macOS
are compiled with these instructions. Kexts use PA to protect
multiple types of pointers, including C++ V-Table, function
return address, Objective-C method cache, computed goto
labels, etc [12]. These PA instructions are distributed through-
out the program, leaving spaces for us to modify the kext
binary file. Not only the kexts, many other kinds of binaries
also have instructions that can be replaced. The ELF binaries
compiled with Canary or Intel CET instructions are examples.

2.2.2 Entitlement Checks

Entitlements are rights that can grant executable particular
capabilities [1]. An application can have multiple entitle-
ments at the same time, while different entitlements grant
different capabilities. All the entitlements are embedded in
executable binary file code signatures as key-value pairs. The
kexts can check the entitlements to verify whether a userspace
executable has permission to invoke the privileged code. In
this way, entitlements restrict regular users from accessing
the kexts. However, at the same time, the codes protected by

entitlements are rarely called and not fully tested, making
these codes popular attack targets.

2.2.3 Multi-Layered Operating System

To reduce direct interactive access from users to the kernel,
many systems including macOS are designed to be a multi-
layered operating system. From the lower to the upper layer,
macOS includes the kernel layer, Core OS layer, Core Ser-
vices layer, etc. The upper layers provide abstractions to the
underlying kext behaviors. They include frameworks that
wrap the complex kext interfaces into simpler APIs and dae-
mons that can forward userspace requests to the kernel. This
layered structure reduces the risk the kernel faces when deal-
ing with non-standard user inputs because userspace processes
usually do not have to interact with the kext directly.

The userspace abstract layers interact with the kernel in the
most standard ways to ensure the stability of the system. They
are updated and developed together with the XNU kernel
and kexts. This leaves a possibility for us to learn the kext
interface information from them.

3 Challenges

Due to the strict system security restrictions, special hardware
environment, and closed development ecosystem, fuzzing ma-
cOS kexts on Apple Silicon faces additional challenges com-
pared with other kernel fuzzing works. We classify the chal-
lenges into the following three aspects: lack of coverage feed-
back, strict runtime restriction, and complex input validation.

3.1 Coverage Feedback

Coverage feedback can guide the fuzzer to dig into untrig-
gered code. One of the most common ways to collect coverage
information is source-code level instrumentation. Fuzzers tar-
geting binaries (e.g. kAFL [41] and AFL-qemu [5]) can trace
the program with hardware mechanisms or virtualization. De-
velopers can also set breakpoints on basic blocks and collect
coverage in the debugger as lldb-fuzzer [11] and SyzGen [21].

However, these methods are not available on the latest
macOS. Apple Silicon does not provide hardware monitors
like Intel-PT. Virtualization support is also limited due to the
unique hardware devices and customized instruction set. Even
if the system can boot in a virtual machine, many kexts can not
work [17]. According to our analysis, even in x86_64 version
macOS which has mature virtualization support, there are still
half of the kext services not available in the virtual machine 2.
Active debugging is also not supported either as declared
in the macOS kernel debugging kit [10]. Not only macOS,
operating systems running on other dedicated hardware, like
embedded systems, are facing a similar situation.

2macOS 11, VM Fusion virtual machine and Intel MacBook pro 16 inches

Without hardware and sound virtualization supports, static
binary rewriting is the most efficient way to collect the cover-
age information. However, existing methods have fundamen-
tal limitations when applied to macOS kexts. Firstly, kexts
have high requirements for stability because they work in
kernel mode. Any errors in kexts will let the system crash
and reboot, which is time-wasting and limits the fuzzer to
test deep code. However, as discussed by STOCHFUZZ [47]
and RetroWrite [25], existing static rewriting methods gener-
ally introduce reference ambiguities [4, 25], which causes
crashes easily. Solutions based on IR lifters [33, 35] are
also facing similar challenges in identifying and recover-
ing references. Secondly, some solutions are not practical
when applied to the kernel, especially the macOS kernel.
STOCHFUZZ [47] works through trial and error. It needs
to crash and re-instrument the targets many times before de-
termining the final rewriting solution, which means rebooting
the system and re-install the kernel repeatedly in the kernel
fuzzing scenario. e9patch [26] only supports x86_64 binaries
and uses a complex virtual memory layout. In summary, we
need a rewriting solution that works stably, does not need
complex toolchain support, and is easy to be implemented.

3.2 Strict Runtime Restriction

Runtime restrictions in kexts are hardly discussed in the pre-
vious work. Kexts in macOS only allow specific userspace
executables to invoke privileged code via "Entitlement" check-
ing. The entitlements are rights or privileges that grant an
executable particular capabilities [1]. Executables store enti-
tlements as key-value pairs embedded in their code signatures.

Most of the Entitlements are private or semi-private. Only
the executables developed by Apple and a few specific com-
panies [24] can use them. Programs like fuzzers developed
by third parties can not access code protected by entitlements
without spoofing signature checking. The method of spoofing
entitlements checks varies with the macOS versions, and the
entitlement value meets the requirement of kexts that need to
be found via reverse engineering.

However, the kext protected by private entitlements are
still attractive attack surfaces. Attackers can exploit them by
building exploit chains. A common method is to compromise
a system process with the entitlements to call the privileged
code [15]. However, building an exploit chain is non-trivial
manual work. To detect bugs nested in these kexts, the fuzzer
needs to bypass the entitlement check automatically.

3.3 Complex Input Format

The kext interface structures can be complex. Listing 1 is
a simplified example of vulnerable kext interfaces and their
bug POC. To trigger the vulnerability in set_device, the
fuzzer needs to call create_device first to get a valid device
id. The create_device function takes in an XML string

1 / / kex t i n t e r f a c e s
2 int create_device(void * input, void * output) {

3 v0 = OSUnserializeXML(input, ...);

4 v2 = TypeCast(v0,OSDictionary::metaClass);
5 if(!v2) { return ERROR; }
6 device = gen_device(v2);
7 if(!device) { return ERROR; }
8 / / wr i te the device id to the output
9 *((int *)output) = device->id;

10 return 0;
11 }
12 int set_device(void * input, void * output) {
13 / / read the device id from input
14 id = ((int *)input)[0];

15 v0 = get_device(id);
16 if(!v0) { return ERROR; }
17 / / vulnerable_code () ;
18 return 0;
19 }
20 / / POC
21 input = IOCFSerialize(cfdict, 0);
22 / / input="<dic t >
23 / / <key>IOSurfaceClass </key><str ing >XX</ s t r ing >
24 / / <key>IOSurfaceHeight </key><in t >0x40</ in t >
25 / / </ d ic t >";
26 create_device(input, output);
27 id = ((int *)output)[0];
28 set_device(&id, output);

Listing 1: vulnerable kext interfaces and the POC.

variable input and deserializes it to create a dictionary object
following the Apple CoreFoundation development standard.
The CoreFoundation is a wildly used framework in macOS,
which uses serialized objects to pass data among programs.
A valid input example is shown in the list. If the input
provides proper data in the correct format, create_device
will generate a device object and write its id to the output.
Then, the attacker or the fuzzer can call set_device with a
valid id to trigger the bug.

This example shows that an effective testcase should meet
interface requirements in two aspects: value and type. In terms
of value, KextFuzz needs to assign arguments like id accord-
ing to the context. In terms of type, it not only needs to deal
with primitive types like pointers or integers but also complex
types like CoreFoundation serialized object expressions.

However, kext binaries provide little interface information
and are hard to be analyzed. Firstly, kexts do not explicitly
declare the value dependencies (e.g., id) between interfaces.
All the interfaces are exported equally and independently.
Secondly, kexts declare all arguments as void* pointers with
no type information and parse them on need. The intuitive
approach that identifies the argument type by analyzing their
parsing process may need complex inter-procedural analy-
sis. For example, the input argument is deserialized in the
create_device but parsed in gen_device. We need to an-
alyze the gen_device to know the expected elements of
input. In real cases, parsing processes can be nested deeper.

kext

① Coverage Collector ② Entitlement Filter

Fuzzer
interface

specification

kext’’

binary rewrite

③ Interface Analyzer

userspace
binary

binary rewrite

taint

kext’

Figure 1: Workflow of KextFuzz.

4 Design

To address the aforementioned challenges, KextFuzz designs
three components: the coverage collector, the entitlement fil-
ter, and the interface analyzer. Rather than succumbing to
the strict system mitigations and using compromising testing
solutions, KextFuzz exploits mitigations to enable smart fuzz.
At a high level, it leverages resources reserved for mitiga-
tions to introspect the kext execution and extracts additional
knowledge from mitigations to guide fuzzing.

The workflow of KextFuzz is shown in Figure 1. Kext-
Fuzz preprocesses the kexts before fuzzing them through the
coverage collector and the entitlement filter. Then, it uses
the interface analyzer to extract interface specifications from
userspace libraries and daemons calling the kext interfaces.

4.1 Coverage Collector
Coverage feedback is essential for greybox fuzzing. It helps
the fuzzer find high-quality seeds that can reach deeper code
paths. However, as introduced in Section 3.1, common ways
of collecting coverage like source code level instrumentation,
hardware tracers, and traditional binary rewriting solutions
can not be applied to macOS kexts.

KextFuzz implements a novel binary-level instrumentation
solution to solve this challenge via instruction substitution.
It leverages the code space used by PA instructions and re-
places them with coverage collection instructions. In this way,
KextFuzz can add instructions to collect coverage without
importing pointer dereference ambiguity or breaking Mach-O
file structure. As a result, it works stably and is available for
all of the kexts. The PA instructions are designed to guard
kexts against malicious pointer modifications in real-world at-
tacks. However, they can be neglected in the fuzzing scenario.
Firstly, we do not need to protect the system from attacks dur-
ing fuzzing. Secondly, the pointer corrupted by the random
fuzzing inputs can usually crash the system itself without PA
protection. Therefore, KextFuzz removes the PA instructions
in kext binaries and instruments new instructions into the
leaving interspace.

Figure 2 is an example of the instruction substitution. In
this case, the kext uses PA instructions to authenticate the
vtable address stored in [x0]. The kext authenticates the ad-
dress in lines 1-6 and checks the result in line 7. If the check

ldr x16, [x0] ldr x16, [x0]
mov x17, x0 mov x17, x0
mov x17, #0xcda1,lsl#48 mov x17, #0xcda1,lsl#48
autda x16, x17 autda x16, x17
mov x17, x16 mov x17, x16
xpacd x17 nop ;(or push lr)
cmp x16, x17 bl _COVPC
b.eq LOC_10 nop ;(or pop lr)
brk #0xc472 ŏ
ŏ // LOC_10

1
2
3
4
5
6
7
8
9

10

Before rewriting After rewriting

bl _COVPC

bl _COVPC

…
func _COVPC

util.kextbasic blocksAfter rewriting:

…

Figure 2: KextFuzz replaces PAC instructions to call coverage
collection function _COVPC.

is passed, the control flow continues to line 10. Otherwise,
the program considers the vtable address has been modified
by an attacker and breaks the execution at line 9. With this au-
thentication, the system can protect the kernel from a control
flow hijacking attack. KextFuzz replaces the PA instructions
to call the coverage collector function _COVPC in lines 6 to
9 via binary rewriting. After rewriting, the program will call
_COVPC function to record the current basic block address and
then return to the original program.

KextFuzz implements _COVPC function in an independent
kext. The instrumented bl instruction (line 7) records the
caller’s PC in the link register lr. _COVPC function records
the value of the lr register as coverage information. To avoid
destroying the register context, KextFuzz records the original
lr register on the stack if it is not stored yet. _COVPC further
records the other registers at its function entry and recovers
them before returning to the original control flow.

KextFuzz can instrument kexts at basic block granularity
roughly because the kexts are developed in C++ and widely
use PA instructions to protect return addresses and indirect
calls. In addition, the PA instructions distribute at different
points of the program. By sampling the signal of these instru-
mented points, the fuzzer can approximately know the depth
and breadth of the current triggered code.

4.2 Entitlement Filter

KextFuzz exploits the entitlement checker to test privileged
code. Entitlements protect sensitive functionalities from being
called by normal users but increase the difficulty of dynamic
testing, making these codes lack tests. KextFuzz bypasses
these checks like the attackers but does it automatically.

kext
invocation

Caller function (F) entry
Initial State

(Tainted memory & registers)
pointer

…

Output State

!

input1

input3
input2

kext invocation arguments
kext

invocation

① extract the code snipet λ ② emulation execution
③ parse interface

arguments recursively

…
… …

Figure 3: Interface structure identification process

Kexts invoke the checker functions to perform entitlement
checks. These functions are implemented by macOS XNU
and AMFI (AppleMobileFileIntegrity) kext. Kexts that need
entitlement checking have to call the checker functions as
external functions.

KextFuzz hooks the checker functions via binary rewrit-
ing to hijack entitlement checks. Firstly, KextFuzz exports a
fake checker function in a self-developed kext, which always
returns true for entitlement checks. Then, it rewrites the ex-
ternal function symbol table of the target kext and replaces
the symbol of the actual checker function with the fake one.
The fake checker function symbol will cheat the kernel bi-
nary linker (kernel management utility, kmutil) to link the
fake checker to the kext. Kmutil links all the kexts as a ker-
nel collection before loading it into the system. During the
link process, the kmutil creates trampolines for external func-
tions and redirects the function invocations to the trampoline
(function stub), including the entitlement checker function.
The function symbol is an identifier between the invocation
and the trampoline. If the kext uses a fake checker function
symbol, kmutil will redirect the entitlement check invocation
to the trampoline of the fake checker. More details about
rewriting the function symbol can be found in Section 5.2.

The whole process can be done automatically. Compared
with the solutions of adding entitlement to the fuzzer, Kext-
Fuzz does not have to recognize the required entitlement via
complex static analysis. With this method, KextFuzz can com-
pletely remove the entitlement checks from the kext and test
the privileged functions sufficiently.

4.3 Interface Analyzer

We notice that the kext userspace "wrappers" can provide
abundant interface information. To mitigate the potential risk
from non-standard user input, macOS provides abstract layers
for kernel services in userspace, which includes frameworks,
libraries, system daemons, etc. These components encapsu-
late complex kext invocations into well-defined services and
interact with kexts in standard ways. They call kext interfaces
in proper sequences and set arguments that meet the value and
type requirements. By analyzing these wrappers, KextFuzz
can infer the interface structures. However, the wrappers are
also closed-source, so we have to find a binary-only method

to extract interface information automatically.
KextFuzz designs a lightweight multi-tag static taint

method to analyze kext userspace wrappers. The overall pro-
cess of the taint analysis is shown in Figure 3. KextFuzz only
analyzes the kext invocation-related code snippets to save
time. It defines a group of taint sources that may provide inter-
face information, such as the output of kext invocations and
stack pointers. It extracts the related code snippets from the
wrappers, runs them in an emulator, and adds the taint tags
on registers and memory during the execution. The taint tags
will spread into the kext interface arguments after the execu-
tion. Therefore, KextFuzz can infer the argument attributes
by analyzing the taint tags.

More specifically, to get the kext invocation code snippets
from wrappers, KextFuzz builds control flow graphs (CFG) of
the functions (F) which invoke the kext interfaces (I). Then,
KextFuzz extracts the paths (λ) starting with F ’s function
entry and ending with I as analysis targets. The code in these
paths prepares and initializes the kext invocation arguments,
so KextFuzz can learn the argument information from them.
This process can be extended recursively to conduct inter-
procedural analysis. Given a function F ′ which invokes F ,
we could append λ with a prefix path, which starts from F ′

entry point to its invocation site of F . Note that, the λ always
starts with a function entry and end with a kext invocation.

Then, KextFuzz performs taint analysis on λ. It defines the
following types of taint sources:

• Kext interface output (s1). Some kext interfaces use the out-
puts of other interfaces as inputs. We refer to these outputs
and inputs as resource variables. Their values are context-
sensitive, which is hard to generate via mutation. This tag
can help KextFuzz to recognize them.

• Global variables (s2). Many developers store the values of
resource variables in global variables, so we also add tags on
global variables to identify resource variables heuristically.

• Object creation function return values (s3). As discussed in
Section 3.3, kexts use CoreFoundation style inputs, which
have complex formats. These variables are created by spe-
cific APIs, e.g., function CFArrayCreate is used for creat-
ing CFArray objects. We list these APIs manually and add
tags on their return values if they are invoked in λ.

• Stack and heap pointers (s4). KextFuzz adds taint tags on
stack frame registers (SP, X29 in arm64) and return values
of memory allocation functions (e.g. malloc) to recognize
pointer type arguments.

• Caller function arguments (s5). Binaries developed in C++
export external methods with mangled function symbols,
which have type information of the arguments. Therefore,
KextFuzz adds tags on the arguments of the caller function
F . If the I uses the arguments of F , KextFuzz can get their
type from the function symbols or decompilers.

KextFuzz adds taint tags on taint sources before and during

Syzkaller

util-kext

COVPC {…}

…

control-kext

testcases

commands

fake_entitle_checker{…}

COV_start{…}

COV_collect{…}

…

cmds

shared memory
(coverage)

ori kext

en
tit

lem
en

t fi
lte

r

patched kext’’
(fuzz target)

co
ve

ra
ge

 in
str

um
en

t

function call
(instrumented functions)

interface
specification

Figure 4: KextFuzz architecture

executing λ. After execution, some tags may spread into kext
invocation arguments. KextFuzz parses the tags in the argu-
ment registers to infer their format. One contiguous memory
block with the same taint tag will be grouped into one field.
If the argument is tainted as a pointer, KextFuzz will further
parse the memory it points to. Thus, KextFuzz can recognize
the structures and the pointers nested in structures. If the input
field has no tag, we suppose it is an int8 type array and feeds
them with random data during fuzzing. The implementation
of the taint system is further introduced in Section 5.3.

5 Implementation

5.1 Architecture
Figure 4 shows the overall workflow of KextFuzz. Kext-
Fuzz patches the target kext via static binary rewriting before
fuzzing it. Compared with the original kext, the patched kext
(the kext” in Figure 4) is instrumented with the coverage
collector function calls and has no entitlement restrictions.

KextFuzz uses two kexts (util-kext and control-kext)
to facilitate the greybox fuzzing. The util-kext exports the
coverage collector function and the fake entitlement checker
function. The fake entitlement checker ensures the fuzzer can
pass the entitlement check to access the privileged code. The
coverage collector function records its caller’s PC as cover-
age information. It only records the coverage of the fuzzer
thread to avoid noises. control-kext provides KCOV-like
interfaces. Thus, the system can be easily adapted to various
fuzzing frontend. We use Syzkaller in our implementation.

5.2 Static Binary Rewrite
KextFuzz patches kexts via binary rewriting to collect cover-
age information and hooks entitlement checks. The instrumen-
tation process is simple and efficient because the lightweight
instrumentation method proposed by KextFuzz does not break
any references, increase binary size, nor need a special mem-
ory layout.

① replace
function symbol

basic blocks (bb)

__text

String Table

"_IOLog"

__stubs

BR _IOLog

String Table

"_COVPC"

BR _COVPC

__stubs

__text

BL offset_x
BL offset_y

BL offset_z

bb_1
bb_2

bb_n

② instrument
function call

kmutil

z y xoffset:

"_entitle_checker" "__fake__checker_"

…

Figure 5: Instrument a kext via static binary rewrite

As shown in Figure 5, KextFuzz uses two steps during
instrumentation. First, it replaces an existing function symbol
to _COVPC to reuse its stub entry. Then, KextFuzz replaces
the PA instructions with the instructions (BL offset) that
call the _COVPC stub. The BL instruction records the caller’s
PC in the link register lr. The _COVPC function records the
value of the lr register to an internal buffer as the coverage
information and maps it to shared memory when needed.

The _stub is a Mach-O file section that works as a tram-
poline to support external function calls. When an executable
needs to use an external method, it calls the corresponding
stub entry first. The stub will redirect the control flow to the
real function address, which is filled during the link stage. For
kexts, they call functions in other kexts as external methods.
KextFuzz reuses the existing function stub entries for _COVPC
function rather than adding a new one. Adding new stub
entries requires correcting the section size and relative refer-
ences according to the file structure, which changes while the
system updates. Reusing existing ones makes the implementa-
tion simplifier and improves compatibility. The replaced stub
entry should belong to a function that has no actual impact
on the data flow and control flow of kext execution. Log-
ging functions (IOLog, _os_log_internal, etc.) are good
choices. KextFuzz successfully instrumented all the kexts
we’ve tested so far without observable side effects by replac-
ing these two logging functions.

The process of hooking the entitlement checker function is
similar, but KextFuzz only needs to perform the first step, i.e.,
replace the symbol of the checker function with the symbol
of the fake checker function.

5.3 Taint via simulation execution
KextFuzz designs a lightweight taint method based on emu-
lation execution to analyze code snippets λ extracted in Sec-
tion 4.3. We use Triton [19] as the emulation execution engine.
KextFuzz has to overcome two challenges in this task. Firstly,
since KextFuzz only analyzes code snippets rather than the
whole program, how should it initialize registers and memory

0xA1 00 00 00 0xA2 00 00 00

0x00 00 00 00 0x00 00 00 00

0xA0 00 00 00

0xB0 00 10 00

0xB0 00 70 00

X0 (THIS)

X1 (ARG1)

X7 (ARG7)

SP, X29 (Stack Address)

…

0xC0 00 00 00

0 0 00 0 000

s1: kext invocation output: 0xE
s2: global variable: 0xA

s3: external function return value: 0xF
s4: stack pointer: 0xC heap pointer: 0xD

s5: caller function argument: 0xB function index: 0x01 - 0xFF

nested_level argument indexTaint Tag

Initial State

Example

…

…

…

Function Stack

0xC0 00 00 00

0xB1 00 10 00 0xB2 00 10 00 …

0xB1 00 70 00 0xB2 00 70 00 …

…

int64 input[2];
input[0] = 5;
str = CFStringCreate(…); // index 0x02
arr = CFArrayCreate(str); // index 0x01
input[1] = arr;
kext_invocation(…, input, …);

code snippet λ input value after execution

input = 0xC0000000

0x00 00 00
050xF1 00 01
00

00 00 00 05
F0 01 00 00

00 00 00 00

F0 01 00 00
F1 01 00 00
F1 01 00 00

F0 02 00 00

analysis result

input_struct{
 int8 arr[8];
 cfarr_cfstr* ptr;
}

CFString CFArray

unused

Figure 6: The taint tag encoding format, the initial state, and
a parsing example of KextFuzz Interface Analyzer.

before execution? Secondly, λ may call other functions dur-
ing execution. How should we emulate the behavior of these
functions, especially the functions creating CoreFoundation
objects which provide argument type information?

To answer the first question, KextFuzz uses special values
to initialize the program state and uses these values as taint
tags. Since λ always starts with function entries, KextFuzz
has to initialize the function arguments and function stack
pointers before execution, which corresponds to taint source
s4 and s5. Special values used in initialization are encoded
as shown in Figure 6. KextFuzz groups the registers and
memory into 32-bit units. In each unit, KextFuzz uses the
high bits to record the taint source and detailed information
(e.g. function and argument index). It also records the nested
level to recognize pointers. The nested level refers to the
dereference times needed for accessing the value. Pointers
use level zero. The memory chunks they point to use level one,
and further, level two and three. Before execution, KextFuzz
initializes the registers and memory as shown in Figure 6. The
arguments as well as the memory they point to are initialized
with s5 tags. Therefore, taint tags will not be lost during
pointer dereferences. The wrapper binaries in macOS are
mainly developed in C++, so KextFuzz supposes the first
argument of F stored in X0 is a THIS variable pointer, which
can be viewed as a global variable and needs the tag s2.

To answer the second question, KextFuzz creates a generic
function abstraction M for CoreFoundation object creation
functions. M follows a common pattern of these functions,
i.e., takes the value and size as inputs and returns a pointer
pointing to a memory chunk. It adds s3 tag on the returned
pointer and the memory chunk. The taint tags of the arguments
are recorded as the head of the memory chunk, in case the
object creation process is chained, e.g., creating a string object
first and then using it as an argument to create an array object.

In the example shown in Figure 6, the input of the kext

match = IOServiceMatching("service_name");

IOServiceGetMatchingServices(0, match, &iterator);

service = IOIteratorNext(iterator);

IOServiceOpen(service, ..., client_type, &conn);

IOConnectCallMethod(conn, func_sel1, in_ptr1, out_ptr1, ...);
IOConnectCallMethod(conn, func_sel2., in_ptr2, out_ptr2, ...);

Figure 7: An example of KextFuzz testcases.

invocation is an int64 array stored on the stack. λ assigns a
scalar variable 5 to input[0] and a CoreFoundation array’s
pointer to input[1]. After the execution, the input is tainted
with a stack pointer tag 0xC. The value stored in address
0xC0000000 is a variable with no tag and a pointer with
the s3 tag, which means it is returned by CFArrayCreate.
This pointer points to a memory chunk with another s3 tag
of CFStringCreate. Therefore, KextFuzz knows that the
input is a pointer of a struct that has a scalar variable and a
CoreFoundation array containing string-type items.

Using special values as taint tags makes KextFuzz taint
analysis lightweight. The taint tags are stored as registers and
memory values, so they can be spread automatically while
executing the code. Therefore, KextFuzz does not have to
write complex taint propagation rules. Secondly, these values
distinguish the heap space, stack space, and registers, making
the initialization state close to the real program state, so Kext-
Fuzz can only execute the code snippets rather than analyze
the whole program.

5.4 Test Cases Generation

As introduced in Section 2.1, a fuzzer has to get a kext client
connection before invoking their interfaces. An effective
testcase is shown in Figure 7. In addition to generating in-
puts according to the interface structures recognized in Sec-
tion 4.3, KextFuzz also needs a valid service_name and a
client_type to get the connection, and a function selector
func_sel corresponding to the targeted interface index.

KextFuzz gets valid values of these inputs by analyzing the
kext binaries statically. The service name is a string that equals
the class name of the kext service class. This type of class has
to inherit specific functions from their base class IOService,
so that KextFuzz can identify them according to function
symbols. The service class rewrites the newUserClient func-
tion of IOService to create clients according to the int32
type input client_type. KextFuzz builds a CFG for the
rewritten function and analyzes the compare expressions on
client_type argument to know its candidate value. The
client class implements a dispatch function to get the inter-
face function from a function table according to the index
variable func_sel. The function table also stores the size of
each parameter. KextFuzz gets the function table by analyzing
the objects that the dispatch function refers to. For the classes

that do not rewrite the above functions, KextFuzz further gets
inheritance information from the I/O registry [7] introduced
in Section 2.1 and uses their parent classes information for
them. With these information, KextFuzz can get the client
connection before calling the kext interfaces.

For the interface arguments, KextFuzz generates and mu-
tates them according to the interface formats. For string type
arguments, it uses the strings in the wrapper binaries as seeds.
For resource variables, KextFuzz uses the outputs of other
interfaces as their seeds.

5.5 Crash Data Collection
KextFuzz runs fuzz on real macOS devices. The sys-
tem can record the coredump and attempt to reboot
after a post-panic crash dump when setting the boot-
arg debug variable to DB_KERN_DUMP_ON_PANIC |
DB_REBOOT_POST_CORE. When the crash happens, de-
velopers can analyze crashes according to the backtrace and
then analyze the core dump manually to find the root causes.

6 Evaluation

We conducted experiments to answer the following questions:

• RQ1: How many basic blocks can the Coverage Collector
instrument? How much overhead does it cost? Can it help
KextFuzz find more bugs?

• RQ2: How many kexts have entitlement checks? Can Enti-
tlement Filter help KextFuzz bypass these checks?

• RQ3: How many valid services and clients can KextFuzz
identify?

• RQ4: How does the interface specification generated by
KextFuzz compare with the one from SyzGen? How much
do the different components of KextFuzz contribute to fuzz?

• RQ5: How many bugs can KextFuzz find in kexts?

Experiment Setup. We conduct our experiment on four
machines: two MacBook Pro and two Mac Mini devices with
Apple M1 chip. For each group of comparison experiments,
we run them on the same device. The macOS version we
tested is 11.5.2. To avoid unrecoverable damage to the device,
we remove risky-kexts from each experiment dataset, like
disk-related kexts, low-level hardware kexts, etc.

6.1 Evaluation of Coverage Collector (RQ1)
KextFuzz uses a novel strategy to instrument the kexts at
the binary level without breaking the offset between original
instructions or destroying the Mach-O file structure. In this
section, we test KextFuzz on different kinds of kexts shown
in Table 1 to evaluate the effectiveness and efficiency of the
Coverage Collector. The tested kexts are all fundamental or
frequently used kext of different system functionalities.

Table 1: The instrument basic block rate and the overhead of
the Coverage Collector

kext instrumented cov-aware overhead
IOSurface 26.86% 32.09% 3.23x

IOMobileGraphicsFamily-DCP 24.09% 30.10% 3.74x
AppleH13CameraInterface 35.81% 38.63% 4.74x

AUC 28.36% 35.45% 3.76x
IONetworkingFamily 31.88% 37.35% 1.40x

AppleBCMWLANCore 16.19% 18.98% 1.02x
AppleIPAppender 33.80% 41.59% 2.29x

IOUSBHostFamily 33.20% 35.88% 2.24x
IOUSBDeviceFamily 32.70% 37.62% 2.57x

IOAudioFamily 37.81% 41.65% 1.17x
IOAVBFamily 75.26% 78.95% -

AppleAOPVoiceTrigger 49.91% 55.22% 0.96x
AppleMultitouchDriver 37.74% 41.98% 2.78x

IOHIDFamily 34.84% 39.42% 1.37x
EndpointSecurity 18.44% 25.44% 1.07x

AppleBluetoothDebug 38.80% 43.82% 0.85x
AppleBluetoothModule 22.66% 28.05% 0.97x

IOBluetoothFamily 31.89% 34.99% 0.76x
IOReportFamily 49.23% 51.69% 1.62x

Average 34.71% 39.42% 2.03x

Effectiveness. To evaluate the effectiveness of KextFuzz,
we count the instrumented basic block rate and compare Kext-
Fuzz with a black-box fuzzing baseline in terms of bug de-
tection. Firstly, we count the proportion of the instrumented
basic blocks and coverage-aware basic blocks in the instru-
mented kexts. Coverage-aware basic blocks include the instru-
mented basic blocks, the full dominator that all of its successor
nodes are instrumented (or all its successors have an instru-
mented post dominator), and the full post dominator that all
of its predecessor nodes are instrumented (or all its predeces-
sors have an instrumented dominator). As shown in Table 1,
KextFuzz can instrument about 34.71% of basic blocks and
make 39.42% of basic blocks coverage-aware. Functions like
_IOLog redirected to _COVPC could collect coverage too,
which enables instrumentation 4.15% of blocks.

This instrumented rate can still be improved with engineer-
ing efforts but has already shown great effectiveness in bug
detection. To verify the ability of the coverage collector to
help the fuzzer discover bugs, we run KextFuzz for 24 hours
with and without the coverage collector in the same environ-
ment. KextFuzz finds six unique bugs with coverage feedback.
However, without coverage feedback, KextFuzz can only find
one bug. We repeated this evaluation three times. KextFuzz
with coverage collector finds six or seven bugs in each round,
while KextFuzz without coverage feedback can only find one.

Efficiency. We run KextFuzz on kexts with and without
coverage instrumentation to evaluate the overhead introduced
by the coverage collector. We fuzz each kext for one hour and
record the throughput (i.e., testcases executed during fuzzing).
As shown in Table 1, the average overhead is 2.03x. One
kext does not have overhead data because KextFuzz detected
bugs in it during the testing. The bug make the device reboot
frequently, which is time-consuming and makes it difficult to
calculate the real throughput. We also find that some kexts

run slightly faster with the coverage instrumentation. This
is probably because KextFuzz hooks the logger functions,
saving the time of logging during fuzzing, and these kexts
invoke logging functions frequently.

Stability. We have run KextFuzz on four real macOS de-
vices for months, and the system has not crashed due to the
coverage instrumentation yet.

In summary, the coverage collector of KextFuzz can collect
adequate coverage feedback with great efficiency. Based on
the insight of KextFuzz, The instrumented rate can be fur-
ther improved with extra engineering effort because we only
replace two kinds of PA instruction in our prototype.

6.2 Effectiveness of Entitlement Filter (RQ2)
As introduced in Section 4.2, some kexts use entitlement
checks to restrict the userspace processes from accessing
privileged code. KextFuzz hooks the entitlement check via
static binary rewrite to test privileged kexts.

To evaluate the effectiveness of the entitlement filter, we
first count the kexts with entitlement check functions by ana-
lyzing their external function symbols. There are 229 kexts
loaded on our device (Mac mini, M1 2020). 93 of them have
clients that can be connected from the userspace. Among the
kexts that have clients, 57 kexts have entitlement checks.

Entitlement Filter enables KextFuzz to find bugs in less
tested and privileged kexts. Among the 57 kexts that have
entitlement checks, eight of them are security-related (e.g.,
BootPolicy, EndpointSecurity), nine of them are system
management related (e.g., system tracing framework, hard-
ware monitor, and controller), and the others of them are the
fundamental frameworks for key services like disk, graphic,
network, firmware, etc. These kexts work as the cornerstone
of the operating system but are hardly being tested because
of the entitlement checks.

KextFuzz bypasses the entitlement checks successfully
with the entitlement filter and finds 18 more bugs with it.
The entitlement filter expands the range of the code that Kext-
Fuzz can test. It hooks the entitlement check statically and
does not have extra runtime overhead. As for stability, we do
not find negative effects introduced by the entitlement filter
during the long-time fuzzing.

6.3 Effectiveness of Interface Analyzer (RQ3)
To demonstrate the effectiveness of KextFuzz in identifying
interfaces, we evaluate the number of valid services, clients,
and functions found by KextFuzz in kexts and compare it with
the state-of-the-art fuzzing tool SyzGen [21].

We run KextFuzz on Mac Mini (M1, 2020). SyzGen can
only support Intel-based macOS, so we run it with the same
environment setting in its paper: a VMFusion virtual machine
on an Intel MacBook Pro device. The operating system is ma-
cOS 11.5.2 with both ARM and x86_64 versions. Part of the

kexts in this version are cross-compiled with the same source
code. To avoid the differences caused by the environment, we
filter out the common services that exist in both environment
for comparison. A service or client is considered valid if it
can be matched or connected to the system.

The result shows that KextFuzz finds 70 valid services and
97 clients, while SyzGen finds 43 services and 43 clients
in total. Among the services existing in both environments,
KextFuzz finds all the services and clients that are found by
SyzGen. We evaluate the quality of interface specifications
found by KextFuzz and SyzGen during fuzzing in Section 6.4.

6.4 Fuzzing with KextFuzz (RQ4)

Experiment Setup. We run KextFuzz with different config-
urations to figure out the contribution of each component and
compare the interface specifications generated by KextFuzz
and SyzGen. We annotate the configurations as follows:

• KF-K. Fuzz kexts with interface information extracted from
the kext binaries only (§5.4). The interface information
includes service name, client type, function selector, and
the argument sizes.

• KF-En-K. Fuzz kexts patched by the entitlement filter with
interface information extracted from the kext binaries. Com-
pared with KF-K, KF-En-K can test privileged codes pro-
tected by entitlement checks.

• KF-En-K&U. Fuzz kexts patched by the entitlement filter
with interface information extracted from both userspace
binaries and kexts. In this configuration, the fuzzer can
generate inputs according to the grammar and semantic
information from kext userspace libraries or wrappers, so
KextFuzz can recognize arguments with resource variables
and complex structures (e.g., CoreFoundation arguments).

• KF-En-SyzGen. Fuzz kexts patched by entitlement filter
with templates generated by running SyzGen’s concolic
symbolic execution engine. In this configuration, we can
compare the quality of interface specifications generated by
KextFuzz and SyzGen.

We run SyzGen to generate templates in the same environ-
ments mentioned in Section 6.3. To make the experiment fair,
we manually find the kexts cross-compiled from the same
source code as the fuzzing targets. These kexts have the same
interfaces in two architectures. Therefore, we can run Syz-
Gen on x86_64 macOS to generate the templates and use
them in fuzzing. We conducted the experiment on the kexts
clients both KextFuzz and SyzGen identified in Section 6.3
and removed the risky clients (e.g., disk-related) from them
to avoid causing damage to the system during the long time
evaluation. As a result, the remaining targets can be grouped
into five classes: USB-related, Graphic-related, Audio-related,
HID-related, and Network-related, as shown in Table 2. We
run each configuration for 24 hours on each group of kexts
and repeat the experiment three times.

Table 2: Fuzzing targets in Section 6.4

type clients

Audio IOAudioEngineUserClient
IOAVBNubUserClient

Network IOUserEthernetResourceUserClient
IONetworkUserClient

Graphic IOSurfaceRootUserClient

USB

AppleUSBHostInterfaceUserClient
AppleUSBHostFrameworkInterfaceClient

AppleUSBHostDeviceUserClient
AppleUSBHostFrameworkDeviceClient

HID
IOHIDEventServiceUserClient

IOHIDEventServiceFastPathUserClient
IOHIDResourceDeviceUserClient

Table 3: Special arguments recognized by KextFuzz

variable type true positive false positive
corefoundation variable 7 0

resource variable 26 3
pointer 19 9

Figure 8 shows the coverage of each configuration. The
solid line is the average coverage of three rounds and the
shadow shows the value range. We follow the fuzzing testing
suggestions [30, 36] to calculate the statistical significance
with the Mann Whitney U-test p-value. Overall, the result
shows that KextFuzz gets the best performance when enabling
all its components (i.e., the KF-En-K&U). Each component
has its contribution to fuzzing.

The entitlement filter has a decisive impact on the range of
the code that can be tested. There is a clear gap between the
max coverage reached by KF-K and KF-En-K. This is because
kexts patched by the entitlement filter treat KextFuzz as a
privileged process and allow it to invoke sensitive functions.
The Audio-related and HID-related group results show that
code protected by entitlements can occupy a high proportion
of the driver. This part of the code is hardly tested previously,
leaving security risks for the system. The Graphic-group does
not have coverage improvement when entitlement checks are
removed because calling the privileged interfaces in this group
not only needs the entitlements but also interface information.

The ability to extract interface knowledge from user space
libraries makes KextFuzz can generate high-quality test cases
and show greater potential when fuzzing complex interfaces.
Compared with KF-En-K, KF-En-K&U reaches more code.
This is because KF-En-K only knows the arguments’ size
while KF-En-K&U is aware of their types and semantics. An
example of the interface specification generated by KextFuzz
is in Appendix Listing 3. We manually verified the special
variables recognized by KF-EN-K&U. The result is shown in
Table 3. The false positive rate of the pointer type is relatively
high because KextFuzz supposes the unknown external func-
tion return value are pointers. We also manually verified the
result of KextFuzz interface analyzer with the open-sourced
kexts. Among 89 arguments from 68 interfaces exported by
nine open-sourced kext clients, KextFuzz infers 86 argument
types correctly.

SyzGen also underperforms KF-EN-K&U. One of the rea-

KF-K:
 - kext: original kext binary
 - template: interface knownledge from kext
KF-En-K:
 - kext: kext patched by Entitlement Filter
 - template: interface knownledge from kext
KF-En-K&U:
 - kext: kext patched by Entitlement Filter
 - template: interface knownledge from kext & userspace client
KF-En-SyzGen:
 - kext: kext patched by Entitlement Filter
 - template: from SyzGen

*Coverage Signal:
The number of the instrumented points have been triggered

*Mann Whitney U-Test:
P: K < En-K P’: En-K < En-K&U P’’: En-SyzGen < En-K&U

Figure 8: Coverage of KF-K, KF-En-K, KF-En-K&U, and
KF-En-SyzGen

sons is that it determines the value range and types of some
variables incorrectly, e.g., inferring an int32 variable as a
const value. SyzGen infers interface information with dy-
namic symbolic execution. It takes a system snapshot before
starting symbolic execution. The constant state in the snap-
shot imports extra constraints and makes it difficult to analyze
all possible situations. As a result, SyzGen makes overstrict
assumptions about the value ranges of some variables.

6.5 Bug Finding (RQ5)
The KextFuzz has found 48 unique macOS kernel bugs, in-
cluding out-of-bounds and use-after-free vulnerabilities with
serious impact. We follow the responsible disclosure process
and report all the bugs to Apple. Five of the bugs have been
fixed and assigned CVEs. Multiple of them have been commit-
ted to being fixed and assigned CVEs in upcoming security
updates. One of them can prevent the device from reboot-
ing without writing the firmware back to the device, which
needs a physical connection. Table 5 in Appendix B shows
the types and potential impacts of these bugs. For security
considerations, some detailed information is hidden.

Each component of KextFuzz has contributed to bug find-
ing. The experiment in Section 6.1 has already proved the
Coverage Collector significantly improves the efficiency of
bug detection. There are 18 bugs that can only be found with
the Entitlement Filter. Two bugs can only be found and two
bugs can be found faster with the Interface Analyzer.

Listing 2 shows a simplified example of a bug found by

KextFuzz. The kext client interface createController uses
a CoreFoundation style dictionary input to create the ker-
nel object controller. The vulnerable interface setMask
can only work after the controller has been created. Kext-
Fuzz analyzes the client userspace wrappers and successfully
found the input is a pointer pointing to a serialized Core-
Foundation object. Therefore, it can create the controller
during fuzzing. In another two cases, the vulnerable inter-
face needs a structure-type argument that has a pointer-type
member. KextFuzz recognizes the nested pointer type field
successfully. Although the fuzzer can trigger the bug by using
pointers as input heuristically, KextFuzz finds the bugs faster
by implicitly declaring the pointer in the interface template.

1 client::createController(client* this, void* input){
2 if (this−>controller){ return ERROR; }
3 v0 = OSUnserializeXML(input, ...);
4 properties = TypeCast(v0, OSDictionary::metaClass);
5 con = create_controller(properties);

6 if (con){ this->controller = con; }

7 }
8 client::setMask(client* this, void* input){

9 if (!this->controller) { /* vulnerable code */ }

10 }

Listing 2: An example of the bug found by KextFuzz

The bug finding result also demonstrates that fuzzing on
Apple Silicon devices is necessary. Although macOS cross-
compile some kexts into both x86_64 and arm versions, there
are still Apple Silicon specific kexts, like GPU and BUS
drivers. The cross-compiled kext binaries use the Fat Mach-O
file structure, which packages the x86_64 and arm binary into
one file. The others use the Mach-O file structure which has
only a single version binary. We count the kexts distributed in
macOS 11. There are 282 arm-only kext binaries, 115 x86_64-
only binaries, and 313 binaries that have both architectures.
KextFuzz finds thirteen bugs in arm-only kexts, which can not
be found by fuzzing tools on x86_64 macOS. One of them
is from an Apple SoC related driver. With this bug, attackers
can corrupt the macOS secure boot firmware which stores in
the SoC. In addition, iOS and iPadOS share more kexts with
Apple Silicon macOS. The vulnerabilities have been assigned
with CVEs also these two operating systems.

7 Generality Discussion

Although KextFuzz is developed for fuzzing macOS kexts, its
method can be used in many other cases. The challenges faced
by Apple Silicon kernel fuzzing are representative. Other se-
curity research, especially the studies targeting Commercial
Off-The-Shelf (COTS) binaries, are facing a similar situa-
tion: closed-source code, strict runtime restrictions, and poor
toolchain support. KextFuzz finds ways to solve them with
minimized resource dependencies and deployment efforts.

The method of instrumentation based on instruction re-

placement works for binaries compiled with extra instructions.
In fuzzing, the instructions used for mitigations (e.g. PAC,
Canary, and Intel CET) can be replaced with instructions to
collect coverage. Applicable targets include macOS kernel
and userspace binaries, iOS applications, Android applica-
tions with PA, and most of the Linux binaries which generally
adopt the Canary and CET. More generally, repeated instruc-
tion snippets can also be replaced. For example, function pro-
logues and epilogues (e.g. push rbp, mov rbp, rsp) can
be replaced to call an instrumented function and be executed
later in the function, thus, avoiding using large trampolines.

We implemented a prototype to instrument Linux userspace
binaries by replacing Canary and CET instructions. Since
these instructions are usually used at the beginning or the end
of the functions, we can do function-level instrumentation by
replacing them. The instrumentation rate of our prototype is
shown in Table 4. This is a POC experiment. The rate can be
further increased with engineering efforts.

Table 4: Function instrumentation rates of replacing canary
and cet instructions.

file replacing canary replacing cet
ls 21.15% 1.23%

bash 19.03% 8.61%
ssh 43.44% 5.05%
tar 32.72% 4.93%

watch 18.75% 7.69%
echo 20.00% 0.00%
diff 32.69% 1.94%
tnftp 35.79% 10.94%

dmesg 53.12% 9.38%
curl 37.86% 1.94%

The key idea of the Interface Analyzer in KextFuzz is to col-
lect interface information from the userspace binaries rather
than kext binaries. This idea also works for other closed-
source targets with clients calling their interface, e.g., dy-
namic libraries and their executables, network services and
their clients, hypervisors’ virtual devices, and the guest OS
drivers. The taint strategy of KextFuzz is also easy to be
implemented or be migrated.

The entitlement check is a macOS / iOS customized miti-
gation, but we hope KextFuzz can inspire other works to dig
into privilege checks (e.g., SELinux) to test deep code.

8 Related Work
8.1 Kernel Fuzzing
The kernel is an attractive target for both attackers and se-
curity researchers. Syzkaller [18] is one of the most famous
kernel fuzzing tools. It generates system sequences based on
system call templates. kAFL [41] utilizes Intel-PT to perform
coverage-guided fuzzing. HFL [29] enables hybrid fuzzing
on the Linux kernel. Digtool [38] detects Windows kernel
bugs with a customized virtualization monitor. SyzGen [21]
and IMF [28] can fuzz macOS with interface specifications

on intel macOS based on kext invocation traces. Our work
further enables greybox and interface-aware fuzzing on Ap-
ple Silicon macOS, which is a more demanding and harsher
environment for dynamic testing.

8.2 Coverage Collection
Code coverage feedback is an essential component of greybox
fuzzing because it can guide the fuzzer to explore deeper paths.
For open-sourced programs, source code level instrumentation
is the most convenient choice. However, for closed-source
softwares, it is not easy to get coverage feedback. Researchers
have proposed some solutions, including utilizing hardware
features, dynamic binary instrumentation, binary rewriting,
and others. Intel introduced a hardware feature named Intel
Processor Trace (Intel-PT). Many fuzzers [39–42] use it to
collect coverage. However, the latest macOS on Apple Silicon
and many systems running on customized hardware (e.g. em-
bedded systems) do not provide similar features. Dynamic bi-
nary instrumentation can modify instructions in memory dur-
ing execution. Representative work includes DynamoRIO [3],
Pin [32] and Valgrind [34]. This method monitors the code ex-
ecution and instrument executables at runtime, which makes
them work soundly but suffer from high overhead.

Binary rewriting is also a useful method. However, ex-
isting tools are not stable enough or not practical when ap-
plied to the kernel. RetroWrite [25] recovers the relative
offset after instrumentation with relocation information of
position-independent code (PIC). However, it does not sup-
port C++ programs [16]. Existing works [27, 47] also point
out it can not recover all the offsets correctly, which leads
to crashes. STOCHFUZZ [47] uses an incremental rewriting
method, which has to crash and re-instrument the program
many times before determining the final strategy, which is
time-consuming and needs significant manual effort when
applying to the kernel. e9patch [26] uses a clever method to
instrument the binaries with trampolines, but it only supports
x86_64 binaries and needs a complex memory layout.

8.3 Interface-aware Fuzzing
Being aware of the system call interfaces is essential for ker-
nel fuzzing. DIFUZE [23] performs static analysis on the
source code of the Linux drivers to extract information about
driver interfaces. KSG [44] improves the accuracy of driver
interfaces analysis by taking the driver modules’ dynamic
registration information into consideration. Moonshine [37]
and HFL [29] analyzed the relationship and dependencies
between syscalls by analyzing the common variables read
and written by them. These works provide abundant ideas of
interface analysis but all of them rely on the source code.

For the Windows kernel, NTFuzz [22] collects type infor-
mation from the Windows SDK header files and then performs
static analysis on the SDK binaries to infer the type informa-
tion of system calls. However, it does not support identifying

driver interfaces that are nested behind system calls and are
usually more complicated.

On macOS, IMF [28] and SyzGen [21] infer the dependen-
cies of kext interfaces by analyzing the kext invocation logs.
IMF hooks the userspace applications by dynamic library
injection. SyzGen further uses dynamic symbolic execution
to infer the argument type. LLDBFuzzer [11] does not infer
the interface structure directly but tries to generate valid input
by hooking fuzzing (or passive fuzzing), i.e., hook and mutate
the kext invocation raised by real applications. These works
use system runtime kext interactions to facilitate testcases
generation. However, kext invocations raised by applications
are limited, especially for the infrequently used kexts.

8.4 Apple Security

Except for kext fuzzing, there are other iOS and macOS secu-
rity research works in recent years. p-joker [13] uses heuristic
methods to extract useful information from kernel binaries to
facilitate binary analysis. iDEA [20] summarizes the patterns
of some kext vulnerabilities and can find them automatically
based on their static method. In userspace, Inter Process Com-
munication (IPC) is a large attack surface as well as a focus of
research. Kun et al. [46] combined static and dynamic anal-
ysis to construct high-quality IPC messages for fuzzing IPC
services without source code. Kobold [24] and iService [45]
can identify confused deputy problems in AppleOS IPC.

9 Conclusion

macOS is an attractive target for adversaries. However, it is
more challenging to discover vulnerabilities in macOS (es-
pecially for the one running on Apple Silicon) than in other
systems, e.g., Linux or Windows, due to its closed-source na-
ture and customized hardware environment, as well as widely
deployed mitigations. In this paper, we showed that the miti-
gations deployed by macOS can be leveraged to (1) rewrite
kernel binaries to track code coverage or disable mitigations,
(2) test kexts that are accessed infrequently, and (3) infer the
input format. Based on this insight, we propose a solution
KextFuzz to automatically discover vulnerabilities in macOS
kernel extensions. Our prototype has found dozens of vulnera-
bilities in the latest macOS, showing this solution is effective.

Acknowledgements

We would like to sincerely thank all the anonymous review-
ers and our shepherd for their valuable feedback that greatly
helped us to improve this paper. This work was supported in
part by the National Key Research and Development Program
of China (2021YFB2701000), National Natural Science Foun-
dation of China (61972224), and Beijing National Research
Center for Information Science and Technology (BNRist)
under Grant BNR2022RC01006.

References

[1] Apple document. entitlements. https://developer.appl
e.com/documentation/bundleresources/entitlements.
Accessed: 2022-05-11.

[2] Cve-2022-22675. https://cve.mitre.org/cgi-bin/cve
name.cgi?name=CVE-2022-22675. Accessed: 2022-06-02.

[3] Dynamorio: Dynamic instrumentation tool platform. https:
//github.com/DynamoRIO/dynamorio. Accessed: 2022-05-
22.

[4] Dyninstapi: Tools for binary instrumentation, analysis, and
modification. https://github.com/dyninst/dyninst.
Accessed: 2022-05-22.

[5] High-performance binary-only instrumentation for afl-fuzz.
https://github.com/mirrorer/afl/blob/master/qemu
_mode/README.qemu. Accessed: 2022-05-12.

[6] Intel® 64 and ia-32 architectures software developer manu-
als. https://www.intel.com/content/www/us/en/deve
loper/articles/technical/intel-sdm.html. Accessed:
2022-11-06.

[7] The i/o registry | apple documentation archive.
https://developer.apple.com/library/archive/
documentation/DeviceDrivers/Conceptual/IOKitFund
amentals/TheRegistry/TheRegistry.html. Accessed:
2022-06-07.

[8] kcov: code coverage for fuzzing. https://www.kernel.o
rg/doc/html/latest/dev-tools/kcov.html. Accessed:
2022-05-14.

[9] The kernel address sanitizer (kasan). https://www.ke
rnel.org/doc/html/v4.14/dev-tools/kasan.html. Ac-
cessed: 2022-05-14.

[10] Kernel debug kit 12.5 build 21g5027d. https://develope
r.apple.com/download/all/. Accessed: 2022-05-20.

[11] Lldbfuzzer: Debugging and fuzzing the apple kernel.
https://www.trendmicro.com/en_us/research/19/h/
lldbfuzzer-debugging-and-fuzzing-the-apple-ker
nel-with-lldb-script.html. Accessed: 2022-05-12.

[12] Operating system integrity | apple developer documenta-
tion. https://support.apple.com/zh-cn/guide/secu
rity/sec8b776536b/web. Accessed: 2022-06-06.

[13] p-joker: ios/macos kernelcache/kexts analysis tool. https:
//github.com/lilang-wu/p-joker. Accessed: 2022-05-
20.

[14] Preparing your app to work with pointer authentication |
apple developer documentation. https://developer.ap
ple.com/documentation/security/preparing_your_ap
p_to_work_with_pointer_authentication. Accessed:
2022-06-06.

[15] Process injection: Breaking all macos security layers with a
single vulnerability. https://sector7.computest.nl/p
ost/2022-08-process-injection-breaking-all-mac
os-security-layers-with-a-single-vulnerability/.
Accessed: 2022-12-06.

[16] Retrowrite. https://github.com/HexHive/retrowrite.
Accessed: 2022-11-06.

[17] Strong arming with macos: Adventures in cross-platform
emulation. https://blogs.blackberry.com/en/2021/
05/strong-arming-with-macos-adventures-in-cross
-platform-emulation. Accessed: 2022-06-06.

[18] syzkaller: an unsupervised coverage-guided kernel fuzzer. ht
tps://github.com/google/syzkaller. Accessed: 2022-
05-14.

[19] Triton: a dynamic binary analysis library. https://github
.com/JonathanSalwan/Triton. Accessed: 2022-11-06.

[20] Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. idea:
Static analysis on the security of apple kernel drivers. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 1185–1202, 2020.

[21] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. Syz-
gen: Automated generation of syscall specification of closed-
source macos drivers. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 749–763, 2021.

[22] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha.
Ntfuzz: Enabling type-aware kernel fuzzing on windows with
static binary analysis. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 677–693. IEEE, 2021.

[23] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshi-
taishvili, Shuang Hao, Christopher Kruegel, and Giovanni Vi-
gna. Difuze: Interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2123–2138, 2017.

[24] Luke Deshotels, Costin Carabas, Jordan Beichler, Răzvan Dea-
conescu, and William Enck. Kobold: Evaluating decentralized
access control for remote nsxpc methods on ios. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1056–1070.
IEEE, 2020.

[25] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias
Payer. Retrowrite: Statically instrumenting cots binaries for
fuzzing and sanitization. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1497–1511. IEEE, 2020.

[26] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary
rewriting without control flow recovery. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 151–163, 2020.

[27] Antonio Flores-Montoya and Eric Schulte. Datalog disassem-
bly. In 29th USENIX Security Symposium (USENIX Security
20), pages 1075–1092, 2020.

[28] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based
fuzzer. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2345–2358,
2017.

[29] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin
Jang, Insik Shin, and Byoungyoung Lee. Hfl: Hybrid fuzzing
on the linux kernel. In NDSS, 2020.

[30] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and
Michael Hicks. Evaluating fuzz testing. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2123–2138, 2018.

https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22675
https://github.com/DynamoRIO/dynamorio
https://github.com/DynamoRIO/dynamorio
https://github.com/dyninst/dyninst
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://www.kernel.org/doc/html/latest/dev-tools/kcov.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://developer.apple.com/download/all/
https://developer.apple.com/download/all/
https://www.trendmicro.com/en_us/research/19/h/lldbfuzzer-debugging-and-fuzzing-the-apple-kernel-with-lldb-script.html
https://www.trendmicro.com/en_us/research/19/h/lldbfuzzer-debugging-and-fuzzing-the-apple-kernel-with-lldb-script.html
https://www.trendmicro.com/en_us/research/19/h/lldbfuzzer-debugging-and-fuzzing-the-apple-kernel-with-lldb-script.html
https://www.trendmicro.com/en_us/research/19/h/lldbfuzzer-debugging-and-fuzzing-the-apple-kernel-with-lldb-script.html
https://support.apple.com/zh-cn/guide/security/sec8b776536b/web
https://support.apple.com/zh-cn/guide/security/sec8b776536b/web
https://github.com/lilang-wu/p-joker
https://github.com/lilang-wu/p-joker
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/
https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/
https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/
https://github.com/HexHive/retrowrite
https://blogs.blackberry.com/en/2021/05/strong-arming-with-macos-adventures-in-cross-platform-emulation
https://blogs.blackberry.com/en/2021/05/strong-arming-with-macos-adventures-in-cross-platform-emulation
https://blogs.blackberry.com/en/2021/05/strong-arming-with-macos-adventures-in-cross-platform-emulation
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/JonathanSalwan/Triton
https://github.com/JonathanSalwan/Triton

[31] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea
Perez, Jan-Erik Ekberg, and N Asokan. PAC it up: Towards
pointer integrity using ARM pointer authentication. In 28th
USENIX Security Symposium (USENIX Security 19), pages
177–194, 2019.

[32] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: building customized program analy-
sis tools with dynamic instrumentation. Acm sigplan notices,
40(6):190–200, 2005.

[33] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W
Davidson, and Matthew Hicks. Breaking through bina-
ries: Compiler-quality instrumentation for better binary-only
fuzzing. In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 1683–1700, 2021.

[34] Nicholas Nethercote and Julian Seward. Valgrind: a frame-
work for heavyweight dynamic binary instrumentation. ACM
Sigplan notices, 42(6):89–100, 2007.

[35] Pádraig O’sullivan, Kapil Anand, Aparna Kotha, Matthew
Smithson, Rajeev Barua, and Angelos D Keromytis.
Retrofitting security in cots software with binary rewriting. In
IFIP International Information Security Conference, pages
154–172. Springer, 2011.

[36] David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas
Davi. My fuzzer beats them all! developing a framework
for fair evaluation and comparison of fuzzers. In European
Symposium on Research in Computer Security, pages 173–193.
Springer, 2021.

[37] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine:
Optimizing OS fuzzer seed selection with trace distillation.
In 27th USENIX Security Symposium (USENIX Security 18),
pages 729–743, 2018.

[38] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. Digtool: A
Virtualization-Based framework for detecting kernel vulnera-
bilities. In 26th USENIX Security Symposium (USENIX Secu-
rity 17), pages 149–165, 2017.

[39] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon
Wör-ner, and Thorsten Holz. Nyx: Greybox hypervisor fuzzing
using fast snapshots and affine types. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[40] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Si-
mon Wörner, and Thorsten Holz. HYPER-CUBE: High-
Dimensional Hypervisor Fuzzing. 2020.

[41] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Se-
bastian Schinzel, and Thorsten Holz. kAFL:hardware-assisted
feedback fuzzing for OS kernels. In 26th USENIX Security
Symposium (USENIX Security 17), pages 167–182, 2017.

[42] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali
Abbasi, and Thorsten Holz. Nyx-net: Network fuzzing with
incremental snapshots, 2021.

[43] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spen-
sky, Yeoul Na, Stijn Volckaert, Giovanni Vigna, Christopher
Kruegel, Jean-Pierre Seifert, and Michael Franz. Periscope: An
effective probing and fuzzing framework for the hardware-os
boundary. In 2019 Network and Distributed Systems Security
Symposium (NDSS), pages 1–15. Internet Society, 2019.

[44] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang.
KSG: Augmenting kernel fuzzing with system call specifica-
tion generation. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 351–366, 2022.

[45] Yizhuo Wang, Yikun Hu, Xuangan Xiao, and Dawu Gu. iser-
vice: Detecting and evaluating the impact of confused deputy
problem in appleos. In Proceedings of the 38th Annual Com-
puter Security Applications Conference, pages 964–977, 2022.

[46] Kun Yang, Hanqing Zhao, Chao Zhang, Jianwei Zhuge, and
Haixin Duan. Fuzzing ipc with knowledge inference. In
2019 38th Symposium on Reliable Distributed Systems (SRDS),
pages 11–1109. IEEE, 2019.

[47] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei
Liu, and Xiangyu Zhang. Stochfuzz: Sound and cost-effective
fuzzing of stripped binaries by incremental and stochastic
rewriting. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 659–676. IEEE, 2021.

A Interface Specification Case Study

1 //code in userspace binary

2 v11 = CFArrayCreate(0, (const void **)&cfstr, ...);
3 if (v11) {
4 v13 = IOCFSerialize(v12, 1);
5 if (v13) {
6 len = CFDataGetLength(v13);
7 input = malloc(Len + 8);
8 / / a resource var iable
9 *((int *)input) = *(this + 112);

10 BytePtr = CFDataGetBytePtr(v13);
11 / / a cfarray var iable
12 memcpy(input + 2, BytePtr, v15);
13 IOConnectCallMethod(v6, 9, input, len+8, ...);
14 }
15 }
16

17 //the interface specification generated by KextFuzz

18 resource key_global0[int32]
19
20 IOConnectCallMethod$sel9_v0(..., sel const[9], ...,
21 input ptr[in, sel9_v0_istr], ...)
22 sel9_v0_istr {
23 key_global0_0 key_global0
24 align_1 const[0, int32]
25 cfvar_2 sel9_v0_istr2
26 } [packed]
27 sel9_v0_istr2 {
28 prefix stringnoz["<array >"]
29 entry array[cfstring]
30 suffix string[" </ array >"]
31 } [packed]
32 cfstring {
33 prefix stringnoz["<s t r ing >"]
34 value stringnoz[IOSurfaceRootUserClient_strs]
35 suffix stringnoz[" </ s t r ing >"]
36 } [packed]
37
38 IOSurfaceRootUserClient_strs = "aSDb","aS0d","dSpd",
39 " dSld ","P^UdS", "dS \ d","aSTk"," fS<k","NhS\ l "," fSDl",
40 "aS (d","aS \0 ","gSpf","gSXg"," IOSurfaceHeight ",
41 " IOSurfaceBytesPerRow"," IOSurfaceBytesPerElement ",
42 " IOSurfaceElementWidth "," IOSurfaceElementHeight ",
43 " IOSurfaceOffset "," IOSurfacePlaneInfo ",
44 " IOSurfacePlaneHeight "," IOSurfacePlaneBytesPerRow ",
45 " IOSurfacePlaneOffset "," IOSurfacePlaneSize ",
46 ...

Listing 3: An example of the interface specification generated
by KextFuzz

Line 17 to line 46 in Listing 3 shows an example of the
kext interface specification generated by KextFuzz. KextFuzz
performs taint analysis on the userspace binary code snippet
from line 1 to line 15 and finds the input argument for this
interface is a struct with three fields: a int32 type resource
variable, an align field and a CoreFoundtion style array ex-
pression. For the string elements in the array, KextFuzz uses
the strings extracted from the userspace binary as their seed
(line 38 - line 46).

B Bug Finding Result

Table 5: KextFuzz finds 48 unique kernel bugs macOS kexts.
Some detailed information is hidden due to security consider-
ations.

Panic Reason Kext Impact Status
Firmware Destruction *** Exploitable To be fixed
Firmware Destruction *** Exploitable To be fixed
Memcpy Check Failed *** DoS CVE-2022-32829

IOMemory Error IOUserEthernet DoS Reported
IOMemory Error AppleMobileFileIntegrity DoS Confirmed
IOMemory Error IOUSBHostFamily DoS Reported
IOMemory Error IOUSBHostFamily DoS Reported

Null Pointer IOUSBHostFamily DoS Reported
DMA Error IOUSBHostFamily DoS Confirmed
DMA Error IOUSBHostFamily DoS Confirmed
Null Pointer IOUSBHostFamily DoS Reported

IOMemory Error AppleSystemPolicy DoS Reported
IOMemory Error AppleSystemPolicy DoS Reported
IOMemory Error AppleSystemPolicy DoS Reported
IOMemory Error AppleSystemPolicy DoS Reported

Assert Failure (misc) IOSlaveProcessor DoS Reported
Assert Failure (misc) IOMobileGraphicsFamily DoS Reported
Assert Failure (misc) AppleSPU DoS Confirmed
Overflow Detected *** Likely Exploitable Reported

Null Pointer IOHIDFamily DoS Reported
IOMemory Error IOHIDFamily DoS Reported
IOMemory Error IOUSBDeviceFamily DoS Reported
IOMemory Error IOUSBDeviceFamily DoS Reported

UAF *** Exploitable CVE-2022-42806
Null Pointer IOAVBFamily DoS Reported

LLC Bus Error AppleH13CameraInterface DoS Confirmed
OOB Read *** Exploitable CVE-2022-32949

UAF *** Exploitable CVE-2023-28181
DMA Error AppleUSBUserHCI DoS Reported
Null Pointer IOUSBHostFamily DoS Confirmed

Refcount Error? *** Likely Exploitable Reported
DMA Error IONVMeFamily DoS Reported
Null Pointer IOgPTPPlugin DoS Reported

LLC Bus Error IOMobileGraphicsFamily DoS Reported
Assert Failure (misc) AppleSEPManager DoS Reported
Assert Failure (misc) AppleSEPManager DoS Reported
Assert Failure (misc) AppleSEPManager DoS Reported

Data Corruption *** Exploitable Reported
Data Corruption *** Exploitable Reported

Null Pointer RTBuddy DoS Reported
Null Pointer AppleSPU DoS Reported

Assert Failure (misc) ApplePMP DoS Reported
IOMemory Error AppleSSE DoS Reported

Null Pointer IOHIDFamily DoS Confirmed
IOMemory Error IOHIDFamily DoS Reported

Null Pointer IOUserEthernet DoS Reported
OOB Read *** Exploitable Reported
OOB Write *** Exploitable CVE-2023-27936

	Introduction
	Background
	Kernel Extensions in macOS
	macOS Mitigations
	Pointer Authentication
	Entitlement Checks
	Multi-Layered Operating System

	Challenges
	Coverage Feedback
	Strict Runtime Restriction
	Complex Input Format

	Design
	Coverage Collector
	Entitlement Filter
	Interface Analyzer

	Implementation
	Architecture
	Static Binary Rewrite
	Taint via simulation execution
	Test Cases Generation
	Crash Data Collection

	Evaluation
	Evaluation of Coverage Collector (RQ1)
	Effectiveness of Entitlement Filter (RQ2)
	Effectiveness of Interface Analyzer (RQ3)
	Fuzzing with KextFuzz (RQ4)
	Bug Finding (RQ5)

	Generality Discussion
	Related Work
	Kernel Fuzzing
	Coverage Collection
	Interface-aware Fuzzing
	Apple Security

	Conclusion
	Interface Specification Case Study
	Bug Finding Result

