
Improving Real-world Password Guessing Attacks via Bi-directional
Transformers

Ming Xu1, Jitao Yu1, Xinyi Zhang2, Chuanwang Wang1, Shenghao Zhang1, Haoqi Wu1, and Weili Han1

1Laboratory for Data Analytics and Security, Fudan University
2Applied AI Research, Facebook

Abstract
Password guessing attacks, prevalent issues in the real

world, can be conceptualized as efforts to approximate the
probability distribution of text tokens. Techniques in the natu-
ral language processing (NLP) field naturally lend themselves
to password guessing. Among them, bi-directional transform-
ers stand out with their ability to utilize bi-directional contexts
to capture the nuances in texts.

To further improve password guessing attacks, we propose
a bi-directional-transformer-based guessing framework, re-
ferred to as PassBERT, which applies the pre-training / fine-
tuning paradigm to password guessing attacks. We first pre-
pare a pre-trained password model, which contains the knowl-
edge of the general password distribution. Then, we design
three attack-specific fine-tuning approaches to tailor the pre-
trained password model to the following real-world attack
scenarios: (1) conditional password guessing, which recovers
the complete password given a partial password; (2) targeted
password guessing, which compromises the password(s) of
a specific user using their personal information; (3) adap-
tive rule-based password guessing, which selects adaptive
mangling rules for a word (i.e., base password) to generate
rule-transformed password candidates. The experimental re-
sults show that our fine-tuned models can outperform the
state-of-the-art models by 14.53%, 21.82% and 4.86% in the
three attacks, respectively, demonstrating the effectiveness
of bi-directional transformers on downstream guessing at-
tacks. Finally, we propose a hybrid password strength meter
to mitigate the risks from the three attacks.

1 Introduction

Textual passwords remain a dominant access control mech-
anism in the foreseeable future due to their sound usabil-
ity [5, 6, 61]. Accompanying passwords’ ubiquity, decades
of research have been conducted on password guessing
attacks [20, 26, 32, 57], where data-driven models (e.g.,
Markov [28, 32]) and rule-based tools (e.g., Hashcat [17])
were used to efficiently crack passwords offline.

While most research focuses on general guessing attacks
with no prior information on target passwords, hackers of-
ten collect extra scenario-specific knowledge (e.g., personal
information) to further expand attack opportunities (e.g., side-
channel attacks [29, 63]). Such attacks, referred to as real-
world guessing attacks in this paper, are increasingly com-
mon. Typical examples include targeted password guessing
(TPG) [10, 35, 45, 55], which compromises password(s) of a
specific user using his/her personal information. Due to the
prevalence of personal information leakage, TPG is becoming
an increasing security concern in public.

Other real-world guessing attacks like conditional pass-
word guessing (CPG) and adaptive rule-based password guess-
ing (ARPG) have also started receiving attention. In 2021,
Pasquini et al. [37, 38] proposed two models for CPG and
ARPG. Here, CPG recovers complete passwords given a par-
tial password (e.g., “p ∗ ∗ ∗w0rd ∗ ∗ ∗ ”). CPG is practical
when attackers somehow collect a partial password (through
malicious monitoring in a surveillance camera or shoulder-
surfing). ARPG refers to automatically select adaptive rules
for a word (i.e., base password) to generate rule-transformed
password candidates. These real-world guessing attacks also
threaten password-based authentications.

Bi-directional transformers have received significant atten-
tion in the natural language processing (NLP) field [12,27,51].
Due to the ability to capture bi-directional context information
and high transferability [51], transformers have been effec-
tive at multiple language tasks (e.g., text classifications [59],
grammatical correction [34]). All password guessing attacks,
whether they are general or real-world-based, can be concep-
tualized as efforts to approximate the probability distribution
of passwords (i.e., texts), suggesting a natural fit for a bi-
directional-transformer-based guessing framework.

Effectively transferring bi-directional transformers to pass-
word guessing attacks is still a considerable challenge. Prior
works trivially applied transformers from NLP to general
guessing attacks [22] and to ARPG [37], none were able to
outperform their state-of-the-art counterparts. This shows that
successfully applying transformers to guessing attacks is not

straightforward, and case-specific design is required. As an
example, while existing TPG model (i.e., the state-of-the-art
Pass2Path [35]) utilizes the sequence-to-sequence mecha-
nism, our design employs the sequence labeling mechanism,
in which a categorical label is assigned to each element of the
text sequence.

In this paper, we propose a character-level bi-directional-
transformer-based guessing framework, referred to as Pass-
BERT, which applies the paradigm of pre-training and fine-
tuning to real-world password guessing attacks. First, we pre-
train a general password model using the unlabeled passwords.
Then, we design attack-specific fine-tuning approaches to tai-
lor the pre-trained password model to three attack models of
CPG, TPG and ARPG. The fine-tuning approaches generally
involve modifying model architecture to fit the attack-specific
input and output/label format, and re-training the model with
the respective objective functions.

Our experimental results show that our fine-tuned models
can outperform the state-of-the-art models by an average of
14.53%, 21.82% and 4.86% in CPG, TPG and ARPG attacks,
respectively, demonstrating the effectiveness of bi-directional
transformers on downstream password guessing attacks. Fur-
ther, we also analyze the effect of pre-training with ablation
experiments, where the attack model is initialized with the
pre-trained natural language model or random variables. We
find that both pre-trained models (trained on either passwords
or natural language) can provide notable gains in untargeted
attack scenarios (i.e., CPG and ARPG) with the aid of pri-
ori knowledge, while exhibiting marginal gains in targeted
attacks (i.e., TPG) due to the task-relevant objective. We also
find that, in general, the pre-trained password model can yield
better guessing performance than the pre-trained natural lan-
guage model, showcasing the effectiveness of pre-training on
password-specific corpus.

We also introduce a hybrid password strength meter
(HPSM) (open sourced 1) with sub-second latency to miti-
gate risks from CPG, TPG and ARPG attacks. With HPSM,
we show each character’s strength so that users can modify
the vulnerable one(s) with more security gains. Also, HPSM
alerts users to the risks of targeted guessing attacks when their
passwords can be cracked by our TPG model in small number
of guesses. Furthermore, HPSM highlights the base words for
the input password (e.g., given an input of “p@ssw0rd123”,
the base word of “p@ssw0rd” can be inferred). HPSM can
be combined with the password leakage checkup [23, 47] to
detect whether the input is publicly leaked, and once leaked,
then the input suffers from ARPG attacks.

We summarize our main contributions as follows:

• We propose a bi-directional-transformer-based guessing
framework, which uses the pre-training and fine-tuning
paradigm. We demonstrate the effectiveness of the pre-
trained password model and share it to the community.

1https://github.com/snow0011/PassBertStrengthMeter.

• With our framework, we design three attack-specific fine-
tuning models for CPG, TPG and ARPG, all of which
outperform the state-of-the-art models.

• We introduce a hybrid password strength meter (HPSM)
with sub-second latency to mitigate these risks.

2 Background and Related Works

2.1 Password Guessing Attacks
General password guessing attacks. Password guessing at-
tacks can date back to 1979 [31, 33, 61], when brute force
exhaustion and dictionary-based attacks have been proposed.
Later on, researchers presented several guessing attacks,
which are mainly divided into data-driven models [30, 32, 57]
and rule-based guessing tools [17, 26], to effectively crack
generic passwords within larger guesses (e.g., 1014) in offline
scenarios [53, 54, 60]. While online guessing assumes that
service providers may take protective measures to limit the
number of attacks, and consequently, the goal is to crack pass-
words within smaller guesses. Most of the online guessing
works are therefore doing targeted guessing [10, 24, 55].

Data-driven guessing models generally train the probabilis-
tic models based on the observed passwords to enable an
educated exploration of candidate passwords. Many model
designs have been developed or adapted for this purpose,
including Markov [28, 32], Probabilistic Context-free Gram-
mars (PCFG) [24,52,56,57,60], neural-network-based models
(FLA) [30] and generative adversarial networks (GAN) [39].
These models usually aim to estimate the strength via the ef-
fort of cracking (i.e., the number of guesses) [11]. Rule-based
guessing tools are another threat available in hacking/pen-
testing tools like Hashcat [17, 26, 62]. As the name suggests,
rule-based tools apply the mangling rules (e.g., “delete the
last three character”) to a word to produce rule-transformed
password candidates. Rule-based tools [17, 26] are widely
used by actual hackers, and are highly sensitive to their initial
configurations [3, 21, 26] (e.g., the order of rules), which are
usually customized by the expert knowledge.

collect

partial
passwords

histortical
passwords

widely-used
mangling rules

CPG

TPG

ARPG

guess complete
passwords

guess
password(s) of a
specific user
guess
rule-transformed
passwords early on

Figure 1: Three real-world attack examples, where hackers
collect attack-relevant information to launch attacks.

Real-world attack variants with extra information. Real-
world attackers rarely fall into the scenario described in stan-
dard guessing developed in academia, while hackers usually
collect attack-relevant information to launch pragmatic at-

https://github.com/snow0011/PassBertStrengthMeter.

tacks [35, 37, 38] (e.g., side-channel attacks [29, 63]). These
attacks are usually practical in real-world scenarios, narrow-
ing down the search space and reducing economic costs [4].
We show three real-world attack examples in Figure 1, and
illustrate them as follows.

CPG [38, 39] cracks complete passwords given a partial
password (like “p ∗ ∗ ∗w0rd ∗ ∗ ∗ ” or “rockyou ∗ ∗ ∗ ∗ ∗ ”).
When hackers can somehow get a partial password (through
malicious recording in a surveillance camera or shoulder-
surfing) or might want to crack a password containing a web-
site name or other sub-string, they can launch the pragmatic
attacks of CPG. Furthermore, users can leverage CPG to evalu-
ate each character’s impact to final security. A simple solution
for CPG is to apply data-driven models (e.g., Markov) to pro-
duce a large number of candidate passwords, and then filter
out those noise passwords, which is inefficient and storage-
demanding. In 2021, Pasquini et al [38, 39] proposed a state-
of-the-art approach for CPG based on Wasserstein Autoen-
coder [48]. They refer to the final model as CWAE (Context
Wasserstein Autoencoder) that consists of an encoder em-
bedding a partial password into latent representations, and a
decoder converting the latent representations of the partial
password into passwords.

TPG [35, 55] describes that attackers have collected per-
sonal information (e.g., historical passwords) to compromise
password(s) of a specific user. Given the unending password
breaches with Emails [7, 9], the limit of failed login attempts,
and the estimated higher reuse rate (e.g., 15− 60%) across
users’ passwords [45], TPG attacks are becoming a growing
security concern. Besides, a legitimate user can be interested
in recovering his/her forgotten passwords. Das et al. [10]
proposed the first academic work on targeted attacks. Subse-
quent works [24,35,55] investigated several improved targeted
guessing approaches like Personal PCFG [24], TarGuess I
∼ IV [55] and Pass2path [35]. Among them, Pass2path, pro-
posed by Pal et al. [35] in 2019, is the latest and most effective
targeted guessing model. They proposed credential tweaking
that cracks variants (tweaks) of a user’s historical password.

ARPG [37] illustrates that attackers automatically select
adaptive rules for each word in a dictionary, where each word
only associates to the selected (i.e., adaptive) rules to pro-
duce rule-transformed password candidates. The mangling
rules in rule-based guessing tools are not necessarily effective
and have a conditional nature that should be accounted to
seek optimal configurations. The adaptive rules are expected
to interact well with the given word. Consequently, ARPG
aims to hit the target passwords early on compared with the
standard rule-based guessing tools. Further, ARPG can re-
duce the bias of configuring the order of rules by experts.
Attackers can collect widely-used rules to build a model cap-
turing the adaptive relationship between words and rules. In
2021, Pasquini et al. [37] proposed the first adaptive rule-
based guessing framework called ADaMs (Adaptive Dynamic
Mangling Rules Attack), which builds a CNN (convolutional

neural networks) model to select adaptive rules for each word.
Baseline attack models. We use the state-of-the-art models
of CWAE, Pass2path and ADaMs as our baseline for CPG,
TPG and ARPG attacks, respectively, since these models has
the highest guessing performance with a full comparison with
other models. For example, CWAE has been proven to be
better than PCFG, Markov and neural-network-based models.
We therefore do not check comparison with other models.

2.2 Bi-directional Transformers

Bi-directional transformers are first proposed by Google
Brain [51] based on the self-attention mechanisms (i.e.,
connecting the given token with all textual environment),
gaining popularity in NLP community due to the ability
of capturing deep text features. BERT (Bi-directional En-
coder Representation from Transformers) [12,27] is a popular
transformer-based architecture, and has achieved the state-
of-the-art results on 11 individual NLP tasks. We consider
to extend the BERT architecture to efficiently improve the
password guessing tasks, because BERT can well capture bi-
directional representations. Although many works improved
BERT (e.g., RoBERTa [27] pre-trained upon more training
texts; UniLM [14] combined the GPT model [40]), these
variant architectures seem not to make a huge difference in
capturing bi-directional text features.

BERT is pre-trained on two objectives, which are MLM
(Masked Language Modeling) and NSP (Next Sentence Pre-
dictions), to build a pre-trained language model based on a
large amount of unlabeled web corpus. For the MLM objec-
tive, BERT trains the model such that it should be able to
predict the correct tokens at the masked positions. Due to
the natural-language characteristics, BERT is in large part de-
signed to predict the masked words. The NSP objective is to
take a sentence pair A and B, and to predict whether B is the
actual next sentence that comes after A. BERT [12] presented
two secondary-training approaches: fine-tuning and feature-
based. In the fine-tuning approach, all parameters are up-
dated during the downsteam tasks. While in the feature-based
approach, fixed features are extracted from the pre-trained
parameters by freezing some general pre-trained layers. Gen-
erally, the fine-tuning approach yields better results with more
training time [12]. In this paper, we choose the fine-tuning
approach that all parameters are learnable.

3 Preliminaries

3.1 Workflow of Three Attacks

Supervised learning. Supervised learning is a widely-used
machine learning task defined by its use of supervision sig-
nals (i.e., the labeled sets of input-output samples) to learn a
mapping relationship from the input to its output. We denote
the supervision signals as a set of data X with its correspond-

ing set of labels Y , and then train a supervised model with
the objective of mapping each x ∈ X to its label/class y ∈ Y .
During training, the model gradually updates its parameters
(i.e., weights) so that its output becomes as close as possible
to the label y given an instance x. This is achieved by mini-
mizing loss that measures the distance between the predicted
and expected output, where we mainly use the cross-entropy
loss function.

In this paper, we empirically evaluate three real-world
guessing attacks of CPG, TPG and ARPG. Generally, the
workflow of these attack models is to train a supervised model
based on the supervision signals. We summarize their super-
vision signals in Table 1. Specifically, the supervision signals
of CPG are partial passwords with their complete passwords.
CPG aims to train the model such that it should predict the
correct passwords given a partial password. The outputs of
CPG directly serve as the password candidates.

The supervision signals of TPG are passwords with the
shorest edit paths calculated by algorithm of dynamic pro-
gramming (implemented in [35]). The edit path is a sequence
of atom edit operations (pre-defined in our attack designs)
like (delete,8), (delete, 9), (delete, 10) that can transform a
password to its variants. Given a leaked password, the TPG
model can output multiple edit paths with varying confidence.
We then apply the edit paths to the leaked password to ob-
tain its variants as password candidates, which are used by
attackers to compromise other passwords from the same user.

The supervision signals of ARPG are words with the hit
rules (i.e., a subset of rules-set) like delete the last three char-
acters based on the hit information between two hypothetical
datasets. The ARPG model outputs adaptive rules, which are
in turn applied to the word to obtain the password candidates.
The adaptive rules are usually more compatible to the word,
making it possible to produce hits early on. The mangling
rules used in ARPG are defined in Hashcat. Generally, most
of mangling rules can be a combination of common atom
rules (e.g., “deleting last three characters” is a combination
of three atom rules of “deleting last characters”), and can nat-
urally simulate the scenarios of applying more than one rules
sequentially to the base word.

3.2 Threat Model

In our study, we primarily model the case of real-world guess-
ing attacks [35, 37, 38], launched widely by hackers, aiming
to maximize the guessed passwords given a limited budget
of guesses. Attackers collect attack-specific information (e.g.,
partial passwords, historical passwords, or widely-used man-
gling rules), and usually resort to supervised learning to learn
the function between a set of inputs and an associated set
of outputs. We assume that attackers can choose pre-trained
natural-language and password-specific parameters (as a pri-
ori knowledge) or random variables to initialize their attack
models.

3.3 Password Breach Datasets

To date, a large scale of breach accidents has leaked user
credentials, which are publicly available online. We select
several datasets used in prior works [16, 21, 37, 38, 43, 54, 60]
in our experiments. The datasets used for targeted guessing
have Emails, whereas datasets used for untargeted guessing
attacks are plain-text passwords.

The password pre-training, CPG and ARPG use the datasets
consisting of plain-text passwords as follows.

• Rockyou-2009, 000Webhost, Neopets, Cit0day,
Rockyou-2021: These datasets are all with English users
and widely-used in various works. Rockyou-2009 [41] is
an old dataset including around 32 million passwords from
the gaming-related Rockyou websites leaked in 2009. Both
000Webhost [2] and Neopets [1] are leaked in 2016 from
the respective two websites. The 000Webhost website sup-
ports free websites hosting solutions, and the Neopets website
provides pet information. Cit0day [8] is a newer data breach
including up to 226 million usernames and passwords leaked
recently in 2020. Here, we remove the username information
in Cit0day. The Rockyou-2021 and Rockyou-2009 [42] are
different datasets, where Rockyou-2021 represents the latest
and biggest datasets from the breach happened in 2021.

For TPG attacks, we select the following two datasets con-
taining Emails and summarize basic information in Table 2.

• BreachCompilation (4iQ): The data breaches in-
clude a collection of several well-known websites of LinkedIn,
Yahoo, MySpace, Twitter, Neopets, etc. The data breaches
were first reported by 4iQ in 2017 [7].
• Collection#1: The data breaches are a credential
database containing delimiter-separated Emails with the cor-
responding passwords that are leaked in 2019 [9].

Joining accounts. To find the password list belonging to the
same user, we merge the accounts (users) based on the same
Email address [35]. This heuristic strategy would merge sev-
eral passwords belonging to the same user in most cases,
since the same user usually registers with the same Emails.
We calculate the statistics in Table 2, where we find most of
users (above 97.1%) have no more than 10 passwords. The
datasets’ reuse rate (i.e., the user adopts the same passwords
across multiple websites) is much lower than the reported re-
sults [10,45] (i.e., around 15−60%). The reason could be that
hackers have already removed duplicate passwords from the
same user as claimed in [35]. Note that this would not impact
our evaluation, because, for the purpose of evaluating targeted
guessing attacks, we focus on compromising non-duplicate
passwords from the same user.
Dataset cleaning. We adopt commonly used cleanup strate-
gies [16, 35, 37, 60] to filter out the hashed passwords, non-
ASCII passwords and abnormally long passwords with more
than 32 characters in original datasets.

Table 1: Summary of labeled datasets used in three real-world attacks, where all attack models’ objective is to predict its labels
(Y) given the input (X) as accurately as possible.

Attacks Labeled sets Example Explanations of labels Ya set of data X with its set of labels Y (x−→ y) with (x ∈ X ,y ∈ Y)

CPG partial passwords with complete passwords p***w0rd*** −→ p@ssw0rd123 complete passwords are those matching partial
contexts

TPG passwords with minimal edit paths p@ssw0rd123 −→ [(delete, 8), (delete,
9), (delete, 10)]; We can change it to
“p@ssw0rd”, where the [(delete,8)] refers to
delete the character 1 in the eight position.

the minimal edit path (i.e., the shortest sequence
of edit operations) refers to the shortest path to
change the current password to another pass-
word from the same user.

ARPG words with hit rules p@ssw0rd123 −→ [delete last three charac-
ters, duplicate the last character once]

hit rules are a subset of rules-set that is pre-
processed the word and rule mappings upon
two hypothetical datasets

Table 2: Summary of password datasets with personal infor-
mation, whose raw format contains Emails with the corre-
sponding several passwords.

BreachCompilation (4iQ) Collection#1

Accounts / Users 147,284,401 109,191,685

Passwords 373,820,141 365,336,365

Passwords per user ≤ 10 99.3% 97.1%
>10 0.7% 2.9%

Password reuse rate 4.2% 0

Edit distance ≤ 4 21.8% 28.1%
>4 78.2% 71.9%

Ethical claim. Our work only presents the statistical infor-
mation for the requirement of ethical practice. While we use
real-world datasets that include Emails, we do not identify
the exact user of the leaked passwords. Instead, we focus on
the whole feature collection of many user’s passwords in a
breached dataset. Further, we believe that our work is ethi-
cal based on the following features in the literature [46]: (1)
public data (i.e., we only use the publicly available datasets
and do not share them with others). (2) necessary data (i.e.,
this research cannot be conducted without these datasets). (3)
no additional harm (i.e., our research does not identify any
personal information with data being managed 2 securely).

3.4 Password Bi-directionality

As a text, the password also exhibits bi-directionality. As
shown in Figure 2, we visualize the bi-directionality by show-
ing the self-attentions of a character with its context. The
colors ranging from light to dark correspond to the connec-
tions from weak to strong. Different from the uni-directional
representations that each character only associates with the
previous characters, we find that characters connect differ-
ently with other characters given bi-directional contexts. We
conclude the following password bi-directional characteris-
tics: Sequentiality: characters are generally more relevant

2Although the leak is publicly available on Internet, we do not want to
publicize it and process the datasets by a computer not connected to internet.

with their adjacent characters, which can also be a manifesta-
tion of uni-directionality. Aggregation: The inner sequence
of relevant characters (e.g., “p@ssw0rd” and “123” in “pass-
word123”; “199730” in “mike199730”) has more connected
lines. Our hypothesis is that capturing bi-directional repre-
sentation can enable better password candidates, boosting
password guessing efficiencies.

(a) “p@ssw0rd123” (b) “mike199730” (c) “1q2w3e4r”

Figure 2: Password bi-directionality: every character connects
other characters with different weights (colors ranging from
light to dark correspond to the weak and strong weighted
connections).

4 PassBERT Guessing Framework
In this section, we describe PassBERT guessing framework,
which applies the paradigm of combining pre-training and
fine-tuning to password guessing attacks.

4.1 Password Pre-training
We mainly present the password-specific design decisions that
are necessary to transfer transformers to password modeling,
ranging from the model architectures and the pre-training
processes.
Pre-trained model architectures. We tokenize a password
as a sequence of characters (in the bottom part of Figure 3)
with additional symbols denoting the beginning ([CLS]) and
ending ([SEP]), since passwords are usually shorter than sen-
tences and without a preset common dictionary like the words
in natural language. Unlike BERT, which generally tokenizes
a text in token-level whose tokens are primarily words and

clips each sentence to 512 tokens. We consider the maximum
password length to 32 characters, and consider a total of 99
valid characters including 95 ASCII characters (denoted as
∑) and 4 additional symbols of starting, ending, placeholder,
and unknown characters.

The embedding layer would convert the tokenized input
into its input embedding (i.e., high-dimensional representa-
tions without contextual information) by summing up its char-
acter and position embedding (in the middle part of Figure 3).
We remove the sentence embedding in BERT. We show the
pre-trained password model architectures in Table 9 (in Ap-
pendix B).

Password pre-training process. Multiple transformer
blocks process the input embedding for feature extraction
with the only objective of MLM to train the pre-trained pass-
word model (in the top part of Figure 3). We remove the NSP
objective since there is nothing equivalent to the next sentence
in the password domain.

Position
Embedding

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

Character
Embedding

E[CLS] Ep E@ Es Es Ew E0 Er Ed E1 E2 E3 E[SEP]

p @ s s w 0 r d 1 2 3 [SEP]Input

Trans-
formers

Pre-train (Objective: MLM)
Pre-trained password
parameters (contextualized
embedding)

[CLS]

Specific attack modelsPassBERT

Figure 3: Overview of PassBERT.

To pre-train the password model with the MLM objective
(i.e., predict the masked characters behind the masked po-
sitions), we pre-process each password in the training sets
(Dtraining) to the form of the partial passwords (denoted as
pivot) with the associate complete passwords (denoted as
pwd).

We follow the same masking proportions in BERT [12]:
we randomly choose 15% of the characters in a password
and then replace the selected characters with the masked
symbols, random characters and unchanged characters with
80%, 10%, and 10% probability, respectively. The random and
unchanged characters can prevent the model remembering the
masked characters. A password can be pre-processed to many
pivots, of which we set up 20 pivots in this paper. We set the
pre-training task that finds the parameters θ to maximize the
following likelihood:

argmax
θ

1
|Dtraining| ∑

(pivot,pwd)∈Dtraining

logP(pivot→ pwd|θ)

Pre-training datasets. We use the Rockyou-2021 as our pre-
training dataset, which is extremely large. To strike a balance

between training time and model performance, we randomly
sample 60 million passwords from Rockyou-2021.
Computational performance. Our work is performed on
one Ubuntu 20.04 machine equipped with Nvidia GeForce
RTX 2080 Ti, and takes around 2 days to complete pre-
training. It takes 8.9 MB to store the pre-trained model.

4.2 Password Fine-tuning
Through a dedicated design of the task-specific layers and
objective function, we can tailor the pre-trained model to
specific attack scenarios. Our fine-tuning approach generally
includes architecture modifications and model re-training.
During architecture modification, we usually modify task-
specific layers (the fully connected layer and the output layer
in Table 9) of the pre-trained model architecture, and keep the
pre-trained layers including the top input layer, the embedding
layer and several transformer blocks. Then, we re-train the
downstream models with specific supervision signals to learn
the task-specific features (e.g., password-rule compatibility).
Note that all parameters (of the pre-trained layers and the
task-specific layers) are updated in our fine-tuning approach.

The pre-trained model mainly captures the contextual-
ized embedding of an input password, which is the high-
dimensional representations with contextual information for
each character in a password. The contextualized embedding
is the output of the pre-trained layers (i.e., the last transformer
blocks). To illustrate, the contextualized embedding of “s”
in “p@ssw0rd123” and “test123456” is different given the
varying contexts, although both “s” share the same input em-
bedding. Then, the contextualized embedding of the same
input is transferred to the task-specific layers and can align
with the downstream models. When we train the specific
models with pre-training, the pre-trained layers of specific
models are initialized with parameters of the contextualized
embedding from the pre-trained models. When we train the
specific models without pre-training, the pre-trained layers
are initialized with random variables.

5 PassBERT for Real-world Attack Models

In this section, we present the fine-tuning designs of three
real-world attacks along with their empirical evaluation.

We make ablation experiments that train the attack model
in the same way, except that the attack model is initialized
with the pre-trained parameters from natural language and
random variables. We use the term PassBERT, Vanilla BERT
and ?PassBERT to refer to the approaches, where we train
the attack model with the pre-trained password model, the
pre-trained natural language model of BERT 3, and random

3We choose the open-sourced pre-trained BERT model (https://gith
ub.com/google-research/bert) with same number of transformer layers
of PassBERT. Specifically, we employ the BERT-Mini with 4 transformer
blocks of 256 dimensions.

https://github.com/google-research/bert
https://github.com/google-research/bert

variables. Vanilla BERT can tokenize a text (i.e., password) in
word-level, subword-level and character-level, while we only
tokenize a password as a sequence of characters based on the
vocabulary. As the vocabulary of our Vanilla BERT only has
the lowercase letters, we expand the vocabulary to cover all
valid characters in ∑ (via replacing the unused tokens).

5.1 Conditional Password Guessing

CPG recovers passwords given a partial password, which
is denoted as a pivot (e.g., “p ∗ ∗ ∗w0rd ∗ ∗ ∗ ”). We model
CPG as a masked language model task (e.g., cloze test [13,
27]) that aims to predict the missing characters’ conditional
probabilities of a pivot. The pivot in CPG is created with the
same strategies as CWAE [38, 39] as follows.

We randomly replace each character at a certain percent-
age (i.e., 50%) with a masked symbol denoting the missing
characters. Then, we keep only those of the produced pivots
containing at least four observable characters and at least five
masked symbols. These constraints guarantee that brute force
has a search space of around 7.7×109 (|∑ |5, |∑ |= 95).

5.1.1 Fine-tuning

Attack design. We mainly modify the masking mechanisms
based on the consistency of CPG pivot-creation policies for
model training as follows:

We increase the masking proportion from 15% to a larger
value (i.e., 50%) in a password and always replace the selected
character position with a masked symbol, because CPG has
the only objective of predicting the correct characters behind
the masked symbols.

We also try the default masking mechanisms of the pre-
trained model, while yielding unsatisfactory results. Then
we adapt the masking mechanisms to fit the CPG used case,
which enables transformers to outperform CWAE.
Model architecture. The model architecture is shown in Ta-
ble 10 (in Appendix B), where CPG keeps the task-specific
layers as the pre-trained model. With the CPG-specific mask-
ing mechanisms, we re-train the model to predict the correct
passwords given a pivot.
Model re-training. Same as CWAE, we re-train the CPG
model using Rockyou-2009, from which we extract valid
pivots with the correct passwords for model re-training. We
denote maski as the i-th masked position, ci as the characters
behind the maski. Then CPG predicts the probability of the
correct password (pwds) given a pivot:

P(pwd | pivot) = ∏
ci∈pwd, maski∈pivot

P(ci | maski,pivot)

We supplement the hyper-parameters of the model re-
training in Table 13 (in Appendix B).

5.1.2 Evaluation

Experimental settings. We infer our CPG models and the
open-sourced CWAE model 4 with the same evaluation piv-
ots. Same as CWAE, we generate 107 candidate passwords
per evaluation pivot, and classify the evaluation pivots into
four classes by the number of passwords satisfying the pivot
(Npivots): (1) common if Npivots ∈ [1000,1500]; (2) uncom-
mon if Npivots ∈ [50,150]; (3) rare if Npivots ∈ [10,15]; (4)
super-rare if Npivots ∈ [1,5]. These four classes can better dif-
ferentiate the guessing performance of pivots with varying
frequencies. Samples of evaluation pivots and their respective
cracked passwords by PassBERT are showed in Table 4.

We use Neopets and Cit0day as evaluation sets due to
their large space. CWAE only generates 30 evaluation pivots
for each pivot class, possibly inducing bias. We extract a total
of 120 evaluation pivots for each class from evaluation sets
for robust and convincing results.

The overlap ratio (i.e., the pivots and labeled passwords
are the same between training and evaluation datasets) is
small. We empirically count that only 0.27% (0.01%), 0.14%
(0.01%), 0.27% (0.01%), 0% (0%) in respective common,
uncommon, rare and super-rare pivot class, between fine-
tuning (pre-training) datasets and evaluation sets of Cit0day.
We believe that such a small overlap is neglectable that cannot
bias the conclusion. Another evidence is that our models
achieve significant improvement in super-rare pivots without
overlap.
Evaluation metrics. The evaluation metrics is the average
cracking rates among 120 evaluation pivots in each pivot
class. The cracking rate for each evaluation pivot is Nintersection

Npivots
,

where the Nintersection is the intersection between the 107 can-
didate passwords and the passwords satisfying the pivot in a
evaluation set.
Experimental results. As shown in Table 3, our three CPG
models outperform than CWAE. PassBERT maintains the
highest guessing performance. Regarding the four pivot
classes together, PassBERT improves cracking rates by
18.53% (from 61.64% to 73.06%) in Cit0day. Similarly,
PassBERT improves by 10.54% in Neopets. We calculate
that PassBERT improves by an average of 14.53% than CWAE
based on the two evaluation sets. We also find that the crack-
ing rates are higher as the Npivots increases (from super-rare
to common), indicating that our models can produce more
confident passwords given more common pivots.
Pre-training effect. We find that both the pre-trained mod-
els (trained on either password or natural language provide
notable gains, where our pre-trained password model has
a higher performance, demonstrating the effectiveness of
pre-training upon password-specific corpus in CPG. More-
over, pre-training can be more beneficial when pivots become
scarcer. E.g., PassBERT achieves more improvements than
?PassBERT in super-rare pivots. This is because the Npivots

4https://github.com/pasquini-dario/PLR.

https://github.com/pasquini-dario/PLR.

Table 3: Cracking rates of CPG. CE, ?PT VT and PT refers
to CWAE, ?PT, Vanilla BERT and PassBERT, respectively.

pivots Neopets (%) Cit0day (%)

CE ?PT VT PT CE ?PT VT PT

common 68.62 74.04 77.25 80.02 67.65 75.66 79.90 83.23
uncommon 77.35 73.88 79.40 83.51 69.30 72.80 76.18 80.06
rare 70.62 75.52 76.07 79.72 63.70 70.08 71.83 76.48
super-rare 69.86 59.51 62.25 73.41 45.90 46.11 47.86 52.50

average 71.61 70.73 73.74 79.16 61.64 66.16 68.94 73.06

of such pivots in the training sets is small, making it harder for
model convergence with only random parameters. The scarce
pivot cases (e.g., super-rare pivots) can be widely encountered
by hackers, e.g., when these hackers aim to compromise the
pivots with many customized restrictions (e.g., the domestic
or personal composition habits).

Improvement principles. Our models generate candidate
passwords by exhausting characters in a masked position
with descending probabilities, while CWAE translates a latent
representation (i.e., a point in high-dimensional space) to a
candidate password via decoders. Take “1997∗∗∗∗∗” as an
example. CWAE generates noise passwords (e.g., “1565s19i”
or “79571deS”) that are not satisfied with the pivot within
small guesses, while our PassBERT does not generate noise
passwords (shown in Table 4). Still, we can beat the guess-
ing performance even when removing the noise passwords
generated by CWAE (in Table 3).

Computational performance comparison. It takes around 2
days to train our CPG model (8.9 MB), and takes around a day
and a half to train CWAE (4.4 MB). Given an evaluation pivot,
we can infer candidate passwords much faster than CWAE.
We empirically calculate that the average inference speed is
4.54 and 0.08 passwords per second (pwds/s), respectively in
PassBERT and CWAE. The reason behind this phenomenon is
that PassBERT can generate all password candidates based on
the inferred conditional probabilities with a single inference,
whereas CWAE can only produce one candidate password
during each inference because CWAE needs to go through the
decoder network to every output password.

5.2 Targeted Password Guessing

TPG aims to compromise password(s) of a specific user using
historical passwords. Specifically, Given a historical pass-
word, TPG generates its variants. We train the TPG model
to output the edit paths given a leaked password. Here, the
produced edit paths are in turn applied to the input password
to produce candidate password variants, which are used by
attackers to compromise the other passwords from the same
user.

5.2.1 Fine-tuning

Attack design. The mainstream TPG model, Pass2path [35],
transforms a password to an edit path based on the sequence-
to-sequence mechanism of RNN model. We cannot simply
replace the RNN model with our transformer encoders, since
encoders do not support such mechanism. Instead, we use the
sequence labeling mechanism [44] that predicts one edit op-
eration for each character in a password, where a sequence of
edit operations makes the edit path. In the sequence labeling
mechanism, each character position can only output one edit
operation.

To adapt the sequence labeling mechanism, we pre-define
our new edit operations as follows:

keep (keep), delete (del), and replace (rep1, rep2)
Here, replace involves replacing with one (denoted as rep1)
or two characters (denoted as rep2).

Note that we do not adopt the design of add_before (after)
of one character, because the one-character design cannot
cover the transformations with both replace and insert op-
erations with one character. For example, the widely used
transformation case of “password → 1Password” can only
be captured in our design of rep2, since the position of “p”
can only output either replace or add_before.

Formally, we denote an edit operation as a binary-tuple
of (op,str), where op ∈ {keep, del, rep1, rep2} denotes an
operation and str ∈ ∑∪∑

2∪{EMPTY} denotes a string. str
is always an empty string (EMPTY) for keep and del, and
one or two characters to be replaced with for rep1 and rep2.
For example, when we separately perform the edit opera-
tion of (keep, EMPTY), (del, EMPTY), (rep1,b) and (rep2,b!)
on the last character of “p@ssw0rd123”, we transform it
into “p@ssw0rd123”, “p@ssw0rd12”, “p@ssw0rd12b” and
“p@ssw0rd12b!”, respectively. As we consider |∑ | as 95, the
total of edit operations is 9,122:

9122 = 1(keep)+1(del)+ |∑ |(rep1)+ |∑ |2(rep2)

To simulate the append operation, we also add three place-
holders in the end, since most of the password variants are
appended with no more than three characters in the end.
Limitations. Our design cannot capture some transfor-
mations like inserting three characters in a password
or two characters before a password like “password →
12password”, which are relatively rare in datasets (5.04%
in BreachCompilation).
Model architecture. We show the model architecture in Ta-
ble 11 (in Appendix B), where we change the task-specific
layers to learn probabilities of edit operations, e.g.,(op,str),
for each character in a password. The output layers are pro-
jected with 9,122 edit operations (i.e., our solution’s spaces).
We take the “p@ssw0rd123” as an example to explain the
process of inferring its variants. We first tokenize it as “[CLS]
p @ s s w 0 r d 1 2 3 _ _ _ [SEP]” by adding the starting,
ending symbol and three placeholders of “_” in the end. Then,
our TPG model outputs the top edit path in the form of “[CLS]

Table 4: Samples of pivots along with their respective top-5 cracked passwords by PassBERT in Neopets. E.g., we can recover
99.3% of the correct passwords given the pivot of “*e*sica***” in 107 guesses, in which the “jessical11” is the most possible
(top-1) password, carrying semantics of a common female name in English.

common uncommon rare super-rare

1997***** *e*sica*** b*****101 be*i*****7 j*ro****5 12c*****e ke***ten*** **p**mu**2 **ke**91** #***i***ir* **2*k**u*a ***l***s*y22
Rank 51.5 99.3 94.5 60.9 92.9 97.3 60.0 81.8 93.3 20.0 50.0 75.0

1 19971031a jessical11 barbee101 belinea007 jerome415 12charlie kerenteng11 supermua12 mike199130 #1chinagirl 1029kyouka hellonasty22
2 199710303 jessical12 babbie101 benita1107 jerome405 12cherrie kevinteng12 septimus12 mike109135 tillysassy22
3 19971230a jessicali1 benben101 betina2007 jerome245 12cherise keirsten101 septimus22 nike299100 hollycasey22
4 199703100 jessicale1 barbey101 benito2007 jerome815 12charrie keirsten123 septimus42 mike159157
5 199702313 jessical10 bobben101 belinha007 jerome345 12chelsie keersten123 septimus82 mike999175

1 1 1 1 1 1 1 1 10 1 1 9121 9122 _ [SEP]”, where each
numeric value indicates an edit operation (op,str) from 9,122
operations. We then obtain the probability of edit paths (i.e.,
the probability of variants) by multiplying the edit operations’
probabilities.
Model re-training. Following Pass2path [35], we ran-
domly sample 80% password pairs from the same user in
BreachCompilation and choose the qualifying password
pairs when their minimal edit distance is no more than 4, re-
sulting in the total of 85,269,455 password pairs. With the
minimal edit operation as edit labels, we aim to predict the
probability of (opi,stri) for every characters (ci):

P(variant | pwd) = P(edit_labels | pwd) = ∏
ci∈pwd

P[(opi,stri) | ci]

5.2.2 Evaluation

Evaluation settings. We re-train Pass2path [35] based on the
open-sourced codes 5 to guarantee the same training sets for
Pass2path and our TPG model. Note that we do not directly
use the open-sourced Pass2path model due to the conflict
of evaluation sets with training sets of Pass2path, which ran-
domly samples 80% quantifying password pairs. Furthermore,
for evaluation, we randomly sample Naccounts (105 in our set-
tings) users from the rest 20% of BreachCompilation and
Collection#1, where each user has several passwords.
Evaluation metrics. We pick one of the leaked passwords
from a specific user as an input, and then infer its variants
(limited to 1,000 guesses) based on the TPG models. Once the
produced variants are among the rest of the passwords from
the same user, the user’s account is cracked. We calculate the
cracking rate by Ncracked

Naccounts
given different guesses (i.e., 10, 100,

and 1,000).
Experimental results. As shown in Table 5, our three mod-
els significantly outperform Pass2path. PassBERT can im-
prove the cracking rates by an average of 21.82% (22.09%
in BreachCompilation and 21.56% in Collection#1),
demonstrating the transformers’ superiority in targeted guess-
ing. We note that the literature [35] of Pass2path reported

5https://github.com/Bijeeta/cretweak.

Table 5: Cracking rates of TPG.

Attack model BreachCompilation (%) Collection#1 (%)

10 100 1,000 10 100 1,000

Pass2path 6.42 11.52 14.71 4.37 10.84 14.98
?PassBERT 12.63 15.67 17.94 11.21 15.42 18.22
Vanilla BERT 12.72 15.79 18.01 11.35 15.45 18.23
PassBERT 12.68 15.71 17.96 11.24 15.47 18.21

slightly higher results in BreachCompilation (i.e., 9.9%,
13.1% and 15.8% in respective 10, 100 and 1,000 guesses).
This phenomenon is possibly due to the larger size of train-
ing password pairs in Pass2path, which adopts the keyboard-
sequence representation. For example, the case of “QWERTY
→ Qwerty” has five edit distances, which is removed for our
model training. While Pass2path regards the pairs with two
edit distances by the transformed pair of “<c>qwerty<c>→
<s>qwerty” (<c> and <s> refer to capitalization and shift).
Pre-training effect. The pre-trained password and natural
language models exhibit marginal gains in TPG. We also
down-sample a quarter of supervision signals (i.e., around
21 million) to repeat experiments, and find that the improve-
ment room of pre-training still remains small, showcasing the
weak role played by pre-training. This phenomenon can be
understood since the targeted attacks focus on personalized
password transformations, which are less relevant with the
global password distributions in the pre-trained model. The
contextualized embedding produced by both pre-trained mod-
els produce little effect in helping understand password trans-
formations. TPG tends to be task-dependent that forms their
model parameters mostly from the attack-specific datasets.
For example, the parameter size of TPG is around 82 MB,
while the parameter size of CPG is just around 8.9 MB. This
is because that the output layer in CPG only connects with
95 characters, while that in TPG connects with 9,122 edit
operations.

The targeted attacks could benefit a little more from the pre-
trained natural language parameters. The reason can be that
users create their password variants based on the language
habits (e.g., “two→ 2”), as we observe that the widely used
web-corpus transformations (e.g., “twofast4u→ 2fast4u” or
“CMC-17-CMC→ CMC17CMC”) can be easily cracked by
Vanilla BERT.

https://github.com/Bijeeta/cretweak

Table 6: Statistics of edit distance distribution by PassBERT
within 1,000 guesses. For example, in BreachCompilation,
we can crack 12,102 (98.5%) passwords among the total
passwords with one edit operation.

Edit distance BreachCompilation (4iQ) Collection#1

1 12,102 (98.5%) 122,17 (96.7%)
2 16,316 (91.7%) 16,257 (88.6%)
3 17,552 (84.8%) 17,792 (81.5%)
4 17,923 (75.4%) 18,175 (72.8%)

>4 39 (0.05%) 39 (0.05%)

Improvement principles. Our TPG model focuses more on
local character information than Pass2path. Precisely, our
binary tuple of edit operations (op,str) can reduce the one-
dimension search space than that of triple-tuple operations
like (op,str,pos) used in Pass2path, where pos refers to the
position in a password. Our model architecture has already
encoded the position information, making it possible to learn
the binary tuple edit operations. Besides, we find that Pass-
BERT can easily crack position-relevant transformation cases
like del (e.g., “557gpss→ 17gpss”), which cannot be cracked
by Pass2path.
Insights. We find that the cracking rates can be reduced as
the edit distance increases (shown in Table 6), and almost
all the target passwords with one or two edit distances from
the leaked passwords can be easily cracked. When changing
passwords to meet requirements of password expiration [45,
55], we alert users not to adopt minor modified variants and
should create their variants that are significantly different
from a leaked password.
Computational performance comparison. It takes around
13.6 and 42 hours to train PassBERT (82 MB) and Pass2path
(166 MB). We empirically calculate that both models achieve
similar inference speed. PassBERT and Pass2path can infer
4.38 and 4.63 password pairs per second (pairs/s).

5.3 Adaptive Rule-based Password Guessing

During ARPG, each word in a dictionary only associates with
the selected adaptive mangling rules to generate guesses. [37]
has attempted to use default transformers, while achieving no
substantial improvement than ADaMs. In our work, through
the introduction of pre-training, our model is able to yield a
superior guessing performance.

5.3.1 Fine-tuning

Attack design. To capture the adaptive relationship between
words and rules, we build a classification model to output a
continuous value v ∈ [0,1] measuring the adaptability of a
rule r j on a word wi. The output value v close to 1 indicates
that r j is adaptive on wi and would possibly produce hits.
In contrast, the output value v close to 0 represents that real

scenarios would not apply r j on wi and possibly leads to failed
guesses.

We capture the adaptive relationship between a whole word
and a mangling rule in password-level since the mangling
rules ultimately apply to a word.

The supervision signals are words with labeled rules (i.e.,
hit rules) upon two hypothetical datasets. Formally, given a
chosen rules-set R , a wordlist-set W and a hypothetical target
set of passwords T , we preprocess a collection of (wi,Ri), in
which, for each wi ∈W , Ri is a rule-list, which contains the
rules r j indicating whether each rule is a hit as follows:

Ri = {r j : r j(wi) ∈ T , j = 1,2, ..., |R |},

where r j ∈R and r j(wi) refers to the guess when applying the
rule r j to the base word wi. Once r j(wi) hits the targets, the
position j in the list is labeled with “1”; otherwise it is labeled
as “0” in Ri. wi simultaneously participates with multiple
binary classes/rules R; The task can be described as multiple
binary classification tasks.

< P(w,r1 ∈ R),P(w,r2 ∈ R), ...,P(w,r|R | ∈ R)>

Model architecture. We show the architecture of ARPG in
Table 12 (in Appendix B), where ARPG changes the task-
specific layers to infer the adaptive probability between a man-
gling rule and a base word with focal loss function. ARPG
infers the adaptive rules in password-level. The output layers
of ARPG do not have seq-length (i.e., the number of charac-
ters in the password), while CPG and TPG infer the characters
and edit operations in character-level.
Model re-training. We train two ARPG models for two rules-
sets of PasswordPro (3,120 rules) and Generated (14,278
rules) in Hashcat. We use BreachCompilation with around
200 million target passwords (after removing Emails) as T to
describe the target space, and use 000Webhost with around
10 million unique words as W to represent the word space.
Note that the size of datasets for model training is smaller
than ADaMs. With the Ri as labels, we re-train the attack
model to obtain the adaptive score (i.e., given a password, the
possibility of a rule hitting the target) between the word w
and rules in a rules-set R .

The input word wi is first tokenized in character-level with a
starting symbol [CLS] and ending symbol [SEP]. Afterwards,
we follow standard classification practices [12] that use [CLS]
embedding to represent the entire word wi, and use the [CLS]
embedding in output layers to predict the adaptive probability
for each r j. Here, the proportion of 0 and 1 is extremely
unbalanced, i.e., more than 95% labels are 0. We therefore
apply the focal loss [25,37] with the same parameter strategies
as ADaMs to focus on the hard labels.

Given a word w as input, our ARPG model outputs a proba-
bility value v for each rule r in a chosen rules-set R . We infer
the adaptive rules for w when the v is larger than a threshold

(i.e., a real-value ranging from [0,1]), which implicitly deter-
mines the size of inferred adaptive rules. As the threshold
increases, the selection is strictly limited with highly adap-
tive rules for the word. When the value of threshold reaches
0, ARPG becomes standard rule-based guessing attacks that
unconditionally apply all rules to the word w.

5.3.2 Evaluation

Evaluation settings. We directly compare the publicly avail-
able ADaMs model 6, which has an optimized trick of dy-
namic settings that constantly add the cracked passwords to
the wordlists. We show the results of both static and dynamic
models for completeness.

We set the thresholds such that the adaptive rules selected
via our models are less than those by ADaMs to reduce the
impact of the size of adaptive rules (i.e., applying more rules
can lead to higher efficiencies). We focus on the relationship
modeling between words and rules, namely, we aim to select
more adaptive rules for a word to achieve higher guessing effi-
ciencies under the same guesses. We use the binary search to
settle down 19.3% and 19.4% rules for PasswordPro and Gen-
erated with the threshold of 0.100 and 0.150 in PassBERT,
while ADaMs chooses 20.1% and 19.7% for two rules-set
with the threshold of 0.275 and 0.415 7.

We use the wordlists of Rockyou-2009 with around 14
million unique words to crack Neopets (27 million unique
passwords) and Cit0day (40 million unique passwords). We
also evaluate the scenarios where the overlap between the
wordlists and evaluation passwords are removed from the
evaluation sets. We find that such scenarios achieve similar
results, except that the final cracking rates are lower than the
standard rule-based attack in Hashcat.
Evaluation metrics. We use the final cracking rates of mod-
els with dynamic strategies as evaluation metrics.
Experimental results. As shown in Figure 4, we can find
that both static models and dynamic models can outperform
ADaMs. We can also conclude as follows. (1) Dynamic Pass-
BERT achieves the highest cracking rates among these models
and manages to improve by an average of 4.86% than ADaMs
across the four experiments. For example, when cracking
Cit0day using PasswordPro, we increase the cracking rate
by 6.35% (i.e., from 34.20% to 36.37%). (2) The significant
earlier stop of static ARPG is because that each word only
associates with the adaptive rules, whose size is fewer than
all rules in standard rule-based attacks. The static model can
produce similar (i.e., around 80%) hits in early guesses (i.e.,
the top 20% guesses) compared with the standard attacks,
shortening the economic cost (guesses) [4]. Given that we
can achieve similar final cracking rates within the top 20%

6https://github.com/TheAdamProject/adams.
7Vanilla BERT chooses 20.7% and 21.7% for respective rules-set;

?PassBERT chooses 19.5% and 20.6%, respectively.

Table 7: Top-5 rules used in cracked passwords by PassBERT
in ARPG. We list descriptions of specific function in Table 8.

PasswordPro Generated

Neopets Cit0day Neopets Cit0day

1]] $1 $1
2 $1$2]] $0Z1 ’8
3 Z1 Z1 $2 c$1
4]] D2 @0Z1 c’8
5 $1$2$3 [$2Z1 ’7$1

guesses, standard attacks waste approximately large (e.g.,
80%) guesses on pursuing only a little performance boost.

Pre-training effect. Consistent with the previous observa-
tions in ADaMs [37], the default application of transform-
ers (?PassBERT) obtains no substantial improvement than
ADaMs. We find that password pre-training enables transform-
ers to outperform ADaMs, while natural language pre-training
seems not work in ARPG. The results demonstrate the ef-
fectiveness of password pre-training in ARPG. This could
be due to the less relevance between the ARPG’s objective
(password-rule compatibility) and the natural language habits.

Improvement principles. Password pre-training plays an im-
portant role for the improvement of ARPG. ARPG concep-
tually classifies the adaptive relationship between rules and
words, significantly benefiting from the global distributions.
The contextualized embedding of a password produced by the
pre-trained password model can help understand the specific
password structure. This can be analogous to other classifica-
tion tasks (e.g., emotional classification on a sentence), which
must fully understand the whole sentence.

Insights. We uncover the top vulnerable mangling rules to
alert their risks. We list the top-5 used rules across the cracked
passwords in Table 7, where we show the mangling rules by a
sequence of functions in Hashcat. Next, we show the explana-
tion of the function in Table 8 (we can see [18] for complete
function explanations). We find that the two mangling rules
of “deleting the last character” and “appending the charac-
ter 1 to the end” are significantly vulnerable, becoming an
underestimated risk.

Computational performance comparison. It takes around
two hours to train our ARPG model (Passwordpro: 46 MB;
Generated: 115 MB), while it takes around ten hours to train
ADaMs (Passwordpro: 44 MB; Generated: 132 MB).We
count that both PassBERT and ADaMs achieve similar in-
ference speed, inferring similar number of rules’ probabilities
per second (r/s) (shown in Table 14 in Appendix C). Although
self-attentions in transformers generally need quadratic time,
our models are lightweight (i.e., smaller size), resulting in
sound latency.

https://github.com/TheAdamProject/adams

PassBERT Vanilla BERT ADaMs ⋆ PassBERT Standard Rule-based Attack in Hashcat

0 0.9 1.8 2.7 3.6 4.5
Guesses (*1010)

0

20

40

60

Gu
es

se
d

(%
)

54.8653.5855.6

(a) Neopets (PasswordPro)

0 0.9 1.8 2.7 3.6 4.5
Guesses (*1010)

0

10

20

30

40

Gu
es

se
d

(%
)

31.6
34.236.37

(b) Cit0day (PasswordPro)

0 4 8 12 16 20
Guesses (*1010)

0

20

40

60

Gu
es

se
d

(%
)

59.99
53.59

58.65

(c) Neopets (Generated)

0 4 8 12 16 20
Guesses (*1010)

0

10

20

30

40

Gu
es

se
d

(%
) 40.5343.9

43.95

(d) Cit0day (Generated)

Figure 4: Cracking rates of ARPG, where we show the final cracking rates of dynamic models. The dotted line is the result with
the dynamic strategies in respective attack models.

Table 8: Explanations of the functions in Table 7. The output
is the result when applying the example rule on “password”.

Permutation
functions Descriptions Example Output

] Delete the last character] passwor
$x Append the character x to the end $1 password1
Zn Duplicate last character n times Z2 passworddd
@x Purge all instances of x @s paword
’n Truncate word at position n ’6 passwo

6 Hybrid Password Strength Meters

Password strength meters. Password strength meters
(PSMs) [30, 35, 36, 58, 60] show the strength of passwords to
help users change a weak password to a strong one, since
users’ perception of password security is generally error-
prone [49]. Recently, massive works [30, 36, 58, 60] proposed
explainable meters to provide suggestions of nudging the
weak passwords to become strong. Typical explainable me-
ters include zxcvbn [58], CKL_PSM [60], or the meter [36]
proposed in 2020, showcasing the weak elements based on
one attack model. However, the changed password may also
suffer from other attacks. Suppose that CKL_PSM shows that
the substring of “123” in “p@ssw0rd123” is a weak element,
users are possible to make minor modifications [10, 15, 50]
like “p@ssw0rd12b”, which still suffers from targeted attacks.
Hybrid password strength meters. These issues give rise
to a hybrid password strength meter (HPSM), where the hy-
brid idea can be a promising direction for PSMs. The litera-
ture [19] has already proposed Hybritus as a robust measure-
ment for different websites’ policies from multiple perspec-
tives. To our knowledge, the hybrid password meter has not
been defined before, even though the motivation is similar
to [19]. Our HPSM is to mitigate risks from CPG, TPG and
ARPG, and can be combined with the existing meters.

Specifically, we apply the CPG model to estimate the sin-
gle character strength [36], which tells users the impact that
a single character contributes to the final security. Users can
directionally modify those labeled weak characters with more
security gains. To this end, we mask a character in the pass-
word each time and estimate their respective strength given
the rest of password contexts. Then we label those characters

character strength level: 3w 0 r d 1 2s@ sp

potential risks from target
guessing attacks:

The input of “p@ssw0rd123” can be cracked
when trying 825 guesses given the leaked
“p@ssw0rd”; make it more complex!

Figure 5: Client-side interface of HPSM. Users can improve
their passwords by modifying the labeled red characters with
the highest security gains and get hints of TPG attacks.

with higher predicted probabilities as the weak one.
To alert TPG risks, we use the TPG model to estimate the

number of guesses of cracking the input password given the
leaked passwords, and alert users when the guesses are smaller
(i.e., less than 1,000). The leaked passwords can either from
the user’s customized passwords entered by themselves or the
default settings of the leaked top-20 passwords. 8

Finally, we apply the reversed ARPG model to infer the
base words, e.g., given an input password of “p@ssw0rd123”,
we can infer the base word of “p@ssw0rd”. The base
words can be potentially checked via a password leak-
age checkup [47] in a privacy-preserving manner to detect
whether the base words have been leaked. Once the inferred
base words are publicly leaked, the input password (no matter
how complicated it looks) is vulnerable to ARPG attacks. To
infer the base words, we re-train a reverse ARPG model by
the reverse supervision signals (detailed in Section 5.3) to cap-
ture the adaptive rules from target passwords to base words.
For example, we obtain the adaptive rules used to produce
the target of “p@ssw0rd123” by “p@ssw0rd”. Then, we can
apply the inverse rules to the target passwords to obtain the
base words. We develop a rule-inversion module to convert
the rules, e.g., the rule “append the character 1 to the end”
is converted to “delete the last character”. When some rules
(e.g., “delete the last character”) cannot be directly inverse
due to the unknown character for “append”, we use a wildcard
placeholder (e.g., “*”) in the inferred words and predict the
characters behind wildcard placeholder positions based on
the probability distributions. Based on our empirical evalua-
tion, we can achieve at least 51.1% inferred accuracy of based
words (see Appendix E for details).
Deployment. We deploy the CPG and TPG models in the

8https://www.fox29.com/news/the-20-most-common-password
s-leaked-from-data-breaches-did-yours-make-the-list.

https://www.fox29.com/news/the-20-most-common-passwords-leaked-from-data-breaches-did-yours-make-the-list.
https://www.fox29.com/news/the-20-most-common-passwords-leaked-from-data-breaches-did-yours-make-the-list.

client-side, and the reversed ARPG model in the backend
based on their varying usage. For CPG and TPG, we convert
the models to browser-usable json-format model via tensor-
flow.js, whose model size is 9.4 MB and 28 MB, respectively.
We count that the average inference time is 31.2 ms and
109.95 ms per password for the respective client-side CPG
and TPG models. We count the average inference time is 1.25
ms per password in the reversed ARPG model on backend.
We only deploy the reversed ARPG in the server side with
python-based interface, since the reversed ARPG should be
combined with a password leakage checkup [23, 47].

As shown in Figure 5, HPSM can serve as defense measures,
where users can improve their passwords by changing the
labeled weak characters (red) with the highest security gains,
check against TPG attacks and ARPG attacks (in server-side).

7 Discussion

Password bi-directionality. Bi-directional transformers
work better in extracting text features than leading approaches
like autoencoders (CWAE), RNNs (Pass2path) or CNNs
(ADaMs), which are typically used in real-world guessing
attacks. We reasonably conclude that a big part of the success
goes from the ability of capturing bi-directional passwords
based on the self-attention mechanism. The prior work [22]
has already set uni-directional transformers, and showed the
superiority of the bi-directional training mechanisms in gen-
eral guessing tasks. As visualized in Figure 2, passwords ex-
hibit the bi-directionality that weights characters differently.

Besides, pre-training can play an important role in improv-
ing the guessing efficiencies. A deep learning model is gener-
ally composed of general pre-trained layers and task-specific
layers, where the contextualized embedding layers from the
pre-trained layers can provide more contextual information
for task-relevant layers.
Suitable guessing scenarios of pre-training. The pre-
trained models (trained on either natural language or pass-
words) can easily improve the guessing performance in untar-
geted guessing scenarios (e.g., CPG or ARPG) with the aid of
priori knowledge. While both pre-trained models can only pro-
vide marginal gains for targeted attacks (e.g., TPG). We can
directly use ?PassBERT for TPG. Targeted guessing scenar-
ios always have their own highly task-relevant objective that
learns less informative feature from the general pre-trained
parameters. Untargeted guessing scenarios are usually more
relevant with general password features that are implicitly
encoded in the pre-trained parameters. Further, pre-training
can play a much larger role when the relevant supervision
signals are hard to obtain (super-rare pivots in CPG).
Effect of the pre-trained natural language and pass-
word models. Compared with the pre-trained natural lan-
guage model (Vanilla BERT), pre-trained password model
(PassBERT) generally plays a larger role in untargeted guess-
ing scenarios, and a similar role in targeted attacks, show-

casing the effectiveness of pre-training on password-specific
corpus. The pre-trained natural language model is also ben-
eficial to partial password guessing attacks. This is because
that passwords can serve as a specific natural language, as the
prior study [53] also showed that both natural language and
passwords follow the Zipf distribution. Besides, the recent
work [60] explored the semantic difference between pass-
words and natural language.
Practical takeaways. This paper offers the following take-
aways: (1) We demonstrate the potential threat from real-
world guessing attacks (e.g., CPG, TPG and ARPG), which
can significantly threaten password-based authentications. (2)
Bi-directional transformers can significantly improve real-
world password attacks, with the potential of generalizing
more guessing attacks. (3) We explain that pre-training on an
unsupervised task (e.g., MLM), either upon the web corpus
or the passwords, are generally beneficial to other guessing
attacks in the password domain. We show the roles played by
pre-training in the password domain, although pre-training
has been widely shown effective in NLP. (4) The advanced
attacks lead to valuable ideas in the design of PSMs, and push
PSM towards comprehensive strength evaluation like HPSM.
Future work. In future, we aim to explore more potential of
the natural language techniques in a broad range of guessing
attacks (e.g., general attacks and more real-world guessing
attacks). Particularly, we also consider i) combine Vanilla
BERT and PassBERT in guessing attacks, ii) explore a larger
pre-trained guessing framework. We believe that this line of
exploration would be promising in the password domain.

8 Conclusions

In this paper, we propose a bi-directional-transformer-based
password guessing framework, referred to as PassBERT, to
improve real-world guessing attacks. We provide an off-the-
shelf pre-trained password model, and design task-specific
fine-tuning approaches to tailor the pre-trained password
model to three specific models of CPG, TPG and ARPG. The
experimental results show that the three fine-tuned models
can outperform previous best-reported models by 14.53%,
21.82% and 4.86%, respectively, demonstrating the effective-
ness of bi-directional transformers on real-world guessing
attacks. Finally, we propose a hybrid password strength meter
with sub-second latency to mitigate the risks from the three
real-world guessing attacks.

Acknowledgement

We thank Mr. Luwei Cheng, the anonymous shepherd and all
anonymous reviewers for their insightful comments. This pa-
per is supported by NSFC (Grant NO.: U1836207, 62172100)
and STCSM Key Projects (Grant NO.: 21DZ1201400). The
corresponding author is Weili Han.

References

[1] Neopets. https://www.neopets.com/, 2011.

[2] 000webhost. https://www.000webhost.com/, 2015.

[3] Anatomy of a hack: How crackers ransack passwords
like “qeadzcwrsfxv1331”, 2013. https://tinyurl.
com/y9jw4va6.

[4] J. Blocki, B. Harsha, and S. Zhou. On the economics
of offline password cracking. In Proceedings of 2018
IEEE Symposium on Security and Privacy (SP 2018),
San Francisco, California, USA, pages 853–871. IEEE
Computer Society, 2018.

[5] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano.
The quest to replace passwords: A framework for com-
parative evaluation of web authentication schemes. In
Proceedings of 2012 IEEE Symposium on Security and
Privacy (SP 2012), pages 553–567, 2012.

[6] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano.
Passwords and the evolution of imperfect authentication.
Commun. ACM, 58(7):78–87, 2015.

[7] J. Casal. 1.4 billion cleartext credentials discovered in a
single database., 2017.

[8] Cit0day data breach. https://www.bitdefender.co
m/, 2020.

[9] Collection#1 data breach. https://www.troyhunt.c
om/the-773-million-record-collection-1-dat
a-reach/, 2019.

[10] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang.
The tangled web of password reuse. In Proceedings of
NDSS, 2014.

[11] M. Dell’Amico and M. Filippone. Monte carlo strength
evaluation: Fast and reliable password checking. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS’15), Denver,
CO, USA, October 12-16, 2015, pages 158–169.

[12] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019), Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186.

[13] M. Ding, M. Chen, W. Chen, and L. Cai. English cloze
test based on BERT. In Proceedings of 14th Interna-
tional Conference of Knowledge Science, Engineering

and Management (KSEM 2021), Part II, Tokyo, Japan,
August 14-16, 2021, volume 12816 of Lecture Notes in
Computer Science, pages 41–51.

[14] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang,
J. Gao, M. Zhou, and H. Hon. Unified language model
pre-training for natural language understanding and gen-
eration. In Proceedings of Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on
Neural Information Processing Systems (NeurIPS 2019),
December 8-14, 2019, Vancouver, BC, Canada, pages
13042–13054.

[15] W. Han, Z. Li, M. Ni, G. Gu, and W. Xu. Shadow at-
tacks based on password reuses: A quantitative empir-
ical analysis. IEEE Trans. Dependable Sec. Comput.,
15(2):309–320, 2018.

[16] W. Han, M. Xu, J. Zhang, C. Wang, K. Zhang, and X. S.
Wang. Transpcfg: Transferring the grammars from short
passwords to guess long passwords effectively. IEEE
Trans. Inf. Forensics Secur., 16:451–465, 2021.

[17] Jens, Steube Hashcat. https://hashcat.net/hash
cat/,2009-., 2009-.

[18] The details of the permutation functions in hash-
cat. https://hashcat.net/wiki/doku.php?id=r
ule_based_attack, 2022.

[19] Y. He, E. E. Alem, and W. Wang. Hybritus: a pass-
word strength checker by ensemble learning from the
query feedbacks of websites. Frontiers Comput. Sci.,
14(3):143802, 2020.

[20] B. Hitaj, P. Gasti, G. Ateniese, and F. Pérez-Cruz. Pass-
gan: A deep learning approach for password guessing.
In Proceedings of 17th International Conference of Ap-
plied Cryptography and Network Security (ACNS 2019),
Bogota, Colombia, June 5-7, 2019, volume 11464 of
Lecture Notes in Computer Science, pages 217–237.

[21] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay,
T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and
J. López. Guess again (and again and again): Measur-
ing password strength by simulating password-cracking
algorithms. In Proceedings of IEEE Symposium on Se-
curity and Privacy (SP 2012), 21-23 May 2012, San
Francisco, California, USA, pages 523–537.

[22] H. Li, M. Chen, S. Yan, C. Jia, and Z. Li. Password
guessing via neural language modeling. In Proceedings
of Machine Learning for Cyber Security - Second In-
ternational Conference, (ML4CS 2019), Xi’an, China,
September 19-21, 2019, volume 11806 of Lecture Notes
in Computer Science, pages 78–93.

https: //tinyurl.com/y9jw4va6.
https: //tinyurl.com/y9jw4va6.
https://www.bitdefender.com/
https://www.bitdefender.com/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://hashcat.net/hashcat/, 2009-.
https://hashcat.net/hashcat/, 2009-.
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack

[23] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and
T. Ristenpart. Protocols for checking compromised cre-
dentials. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security
(CCS’19), London, UK, November 11-15, 2019, pages
1387–1403.

[24] Y. Li, H. Wang, and K. Sun. A study of personal in-
formation in human-chosen passwords and its security
implications. In Proceedings of 35th Annual IEEE In-
ternational Conference on Computer Communications
(INFOCOM 2016), San Francisco, CA, USA, April 10-
14, 2016, pages 1–9.

[25] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár.
Focal loss for dense object detection. In Proceedings
of IEEE International Conference on Computer Vision
(ICCV 2017), Venice, Italy, October 22-29, 2017, pages
2999–3007.

[26] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur. Rea-
soning analytically about password-cracking software.
In Proceedings of 2019 IEEE Symposium on Security
and Privacy (SP 2019), San Francisco, CA, USA, May
19-23, 2019, pages 380–397.

[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692, 2019.

[28] J. Ma, W. Yang, M. Luo, and N. Li. A study of prob-
abilistic password models. In 2014 IEEE Symposium
on Security and Privacy (SP 2014), Berkeley, CA, USA,
May 18-21, 2014, pages 689–704.

[29] P. Marquardt, A. Verma, H. Carter, and P. Traynor.
(sp)iphone: decoding vibrations from nearby keyboards
using mobile phone accelerometers. In Proceedings
of the 18th ACM Conference on Computer and Com-
munications Security (CCS’11), Chicago, Illinois, USA,
October 17-21, 2011, pages 551–562.

[30] W. Melicher, B. Ur, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Pro-
ceedings of 2017 USENIX Annual Technical Conference
(USENIX ATC 2017), Santa Clara, CA, USA, July 12-14,
2017.

[31] R. Morris and K. Thompson. Password security: A case
history. Communications of the ACM, 22(11):594–597,
1979.

[32] A. Narayanan and V. Shmatikov. Fast dictionary attacks
on passwords using time-space tradeoff. In Proceedings

of the 12th ACM Conference on Computer and Commu-
nications Security (CCS’05), pages 364–372, New York,
NY, USA, 2005. ACM.

[33] P. Oechslin. Making a faster cryptanalytic time-memory
trade-off. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Com-
puter Science, pages 617–630. Springer, 2003.

[34] K. Omelianchuk, V. Atrasevych, A. N. Chernodub, and
O. Skurzhanskyi. Gector - grammatical error correc-
tion: Tag, not rewrite. In Proceedings of the Fifteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, BEA@ACL 2020, Online, July
10, 2020, pages 163–170.

[35] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart. Be-
yond credential stuffing: Password similarity models
using neural networks. In Proceedings of 2019 IEEE
Symposium on Security and Privacy (SP 2019), San
Francisco, CA, USA, May 19-23, 2019, pages 417–434.

[36] D. Pasquini, G. Ateniese, and M. Bernaschi. Inter-
pretable probabilistic password strength meters via deep
learning. In Proceedings of 25th European Symposium
on Research in Computer Security (ESORICS 2020),
Part I, Guildford, UK, September 14-18, 2020, volume
12308 of Lecture Notes in Computer Science, pages 502–
522.

[37] D. Pasquini, M. Cianfriglia, G. Ateniese, and
M. Bernaschi. Reducing bias in modeling real-world
password strength via deep learning and dynamic
dictionaries. In Proceedings of 30th USENIX Security
Symposium (USENIX Security 2021), August 11-13,
2021, pages 821–838.

[38] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi,
and M. Conti. Improving password guessing via repre-
sentation learning. In Proceedings of 42nd IEEE Sympo-
sium on Security and Privacy (SP 2021), San Francisco,
CA, USA, 24-27 May 2021, pages 1382–1399.

[39] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi,
and M. Conti. Improving password guessing via rep-
resentation learning. IACR Cryptol. ePrint Arch.,
2019:1188, 2019.

[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever. Language models are
unsupervised multitask learners. https:
//d4mucfpksywv.cloudfront.net/better
-language-models/language-models.pdf,
2018.

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

[41] Rockyou. https://www.rockyou.com/, 2009.

[42] Rockyou2021. https://www.securedyou.com/rockyou-
txt-rockyou2021-download/. https://www.secure
dyou.com/rockyou-txt-rockyou2021-download/,
2021.

[43] S. Security. 2017 credential spill report. http://
info.shapesecurity.com/rs/935-ZAM-778/imag
es/Shape-2017-Credential-Spill-Report.pdf/,
2017.

[44] Y. Shen, X. Ma, Z. Tan, S. Zhang, W. Wang, and W. Lu.
Locate and label: A two-stage identifier for nested
named entity recognition. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference
on Natural Language Processing (ACL/IJCNLP 2021),
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 2782–2794.

[45] What you need to know about targeted online guessing.
https://www.itproportal.com/features/what-
you-need-to-know-about-targeted-online-gue
ssing/, 2017.

[46] D. R. Thomas, S. Pastrana, A. Hutchings, R. Clayton,
and A. R. Beresford. Ethical issues in research using
datasets of illicit origin. In Proceedings of the 2017
Internet Measurement Conference (IMC 2017), London,
United Kingdom, November 1-3, 2017, pages 445–462.

[47] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G.
Kelley, L. Invernizzi, B. Benko, T. Pietraszek, S. Patel,
D. Boneh, and E. Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In
28th USENIX Security Symposium (USENIX Security
2019), Santa Clara, CA, USA, August 14-16, 2019, pages
1556–1571.

[48] I. O. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf.
Wasserstein auto-encoders. CoRR, abs/1711.01558,
2017.

[49] B. Ur, J. Bees, S. M. Segreti, L. Bauer, N. Christin, and
L. F. Cranor. Do users’ perceptions of password se-
curity match reality? In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI 2016), San Jose, CA, USA, May 7-12, 2016, pages
3748–3760.

[50] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer,
N. Christin, and L. F. Cranor. "i added ’!’ at the end
to make it secure": Observing password creation in the
lab. In Proceedings of Eleventh Symposium On Usable
Privacy and Security (SOUPS 2015), pages 123–140,
Ottawa, 2015.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems (NerIPS 2017),
December 4-9, 2017, Long Beach, CA, USA, pages 5998–
6008.

[52] R. Veras, C. Collins, and J. Thorpe. On semantic patterns
of passwords and their security impact. In 21st Annual
Network and Distributed System Security Symposium
(NDSS 2014), San Diego, California, USA, February
23-26, 2014.

[53] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian.
Zipf’s law in passwords. IEEE Trans. Information
Forensics and Security, 12(11):2776–2791, 2017.

[54] D. Wang, P. Wang, D. He, and Y. Tian. Birthday, name
and bifacial-security: Understanding passwords of chi-
nese web users. In Proceedings of 28th USENIX Secu-
rity Symposium (USENIX Security 2019), Santa Clara,
CA, USA, August 14-16, 2019, pages 1537–1555.

[55] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang.
Targeted online password guessing: An underestimated
threat. In Proceedings of 2016 ACM SIGSAC Con-
ference on Computer and Communications Security
(CCS’16), Vienna, Austria, October 24-28, 2016, pages
1242–1254.

[56] M. Weir. The version of 4.1 for pcfg models, 2019.
https://github.com/lakiw/pcfg_cracker.

[57] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In Proceedings of the 2009 30th IEEE Sym-
posium on Security and Privacy (SP 2019), pages 391–
405, Washington, DC, USA.

[58] D. L. Wheeler. zxcvbn: Low-budget password strength
estimation. In Proceedings of 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 157–173,
Austin, TX, 2016.

[59] A. Williams, N. Nangia, and S. R. Bowman. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT 2018), New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1, pages 1112–1122.

[60] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han.
Chunk-level password guessing: Towards modeling re-
fined password composition representations. In Proceed-
ings of 2021 ACM SIGSAC Conference on Computer

https://www.rockyou.com/
https://www.securedyou.com/rockyou-txt-rockyou2021-download/
https://www.securedyou.com/rockyou-txt-rockyou2021-download/
http://info.shapesecurity.com/rs/935-ZAM-778/images/Shape-2017-Credential-Spill-Report.pdf/
http://info.shapesecurity.com/rs/935-ZAM-778/images/Shape-2017-Credential-Spill-Report.pdf/
http://info.shapesecurity.com/rs/935-ZAM-778/images/Shape-2017-Credential-Spill-Report.pdf/
https://www.itproportal.com/features/what-you-need-to-know-about-targeted-online-guessing/
https://www.itproportal.com/features/what-you-need-to-know-about-targeted-online-guessing/
https://www.itproportal.com/features/what-you-need-to-know-about-targeted-online-guessing/
https://github.com/lakiw/pcfg_cracker

and Communications Security (CCS’21), Virtual Event,
Republic of Korea, November 15 - 19, 2021, pages 5–20.

[61] J. J. Yan, A. F. Blackwell, R. J. Anderson, and A. Grant.
Password memorability and security: empirical results.
IEEE Security Privacy, 2(5):25–31, 2004.

[62] H. Zhang, C. Wang, W. Ruan, J. Zhang, M. Xu, and
W. Han. Digit semantics based optimization for practical
password cracking tools. In ACSAC ’21: Annual Com-
puter Security Applications Conference, Virtual Event,
USA, December 6 - 10, 2021, pages 513–527. ACM,
2021.

[63] Y. Zhang, Y. Mao, M. Xu, F. Xu, and S. Zhong. To-
wards thwarting template side-channel attacks in secure
cloud deduplications. IEEE Trans. Dependable Secur.
Comput., 18(3):1008–1018, 2021.

A Details of Input Embeddings

The character embedding layer will convert each character
into a multi-dimensional (e.g., 256) vector representation via
its lookup-table, e.g., a (99×256) lookup vector expression.
Similarly, the position embedding layer converts the order
into a multi-dimensional vector, which learns the sequence’s
order information via its lookup-table of a (34×256) vector
expression. Finally, we sum up its character and position
embedding as the final input embedding. which results in that
the same characters in different positions can have different
embeddings due to position embeddings.

B Supplemented Model Architecture Details

We show the architecture of our pre-trained model in Ta-
ble 9, where includes the pre-trained layers and task-specific
layers with the output shape of each layer. The size of our
pre-trained password model’s parameters is 2,332,259. In
the output shape column, batch-size refers to the number of
passwords processed per iteration and seq-length denotes the
maximum number of characters in a sequence. Since we con-
sider the longest passwords to 32 characters, the seq-length
is thus 34 with the starting and ending symbols. Consistent
with BERT [27, 51], we only adopt the encoder mechanism
to learn general password features by masking mechanism.
Since passwords are more short than natural language, we use
4 transformer blocks with dimensions of 256.

The CPG model architecture is shown in Table 10, which
is the same with the pre-trained model. We show the TPG and
ARPG architecture in Table 11 and 12, respectively. The TPG
model produces edit operations in character-level, i.e., each
character produces a operation among 9,122 edit operations
given a password. The ARPG model predicts the adaptive

Table 9: Architecture of the pre-trained password model, in-
cluding pre-trained layers and task-specific layers. Pre-trained
layers consist of the input and embedding layers and all trans-
former blocks. Task-specific layers consist of a full connected
layer and the output layer.

Transformer encoder (2,332,259)

Layers output shape

Input layer [batch-size, seq-length]
Embedding layer [batch-size, seq-length, 256]

Transformer block [batch-size, seq-length, 256]
Transformer block [batch-size, seq-length, 256]
Transformer block [batch-size, seq-length, 256]
Transformer block [batch-size, seq-length, 256]

FullyConnected [batch-size, seq-length, 256]
Output layer [batch-size, seq-length, 99]

Table 10: Architecture of the CPG attack model.
CPG model (2,332,259)

Layers output shape

Pre-trained layers [batch-size, seq-length, 256]

FullyConnected [batch-size, seq-length, 256]
Output layer [batch-size, seq-length, 99]

rules in password-level, i.e., the model selects adaptive rules
given a password. Moreover, we list the hyper-parameters that
we used in training the pre-trained model, CPG model, TPG
model and ARPG model in Table 13.

C Computational Performance in ARPG

We calculate the number of rules’ score per second calcu-
lated by PassBERT and ADaMs in the same machine. We
make these experiments three times with the randomly sam-
pled 107 words in Rockyou-2009 to guarantee the stability
of testing time. We show the results in Table 14, from which
we can observe that the two models have similar inference
speed in PasswordPro, while our models are slightly faster
in Generated. This is because our ARPG models are light-
weight, i.e., the network size is 3,998,000 (PasswordPro) and
9,952,904 (Generated), compared with ADaMs of 12,625,920
(PasswordPro) and 23,026,688 (Generated). Although trans-
formers tend to be slower than CNNs due to the quadratic
time/memory cost of self-attention in general case, result-
ing the sound latency. Given that our ARPG models are just
slightly faster than ADaMs, and can improve the guessing effi-

Table 11: Architecture of the TPG attack model.
TPG model (7,077,026)

Layers output shape

Pre-trained layers [batch-size, seq-length, 256]

FullyConnected [batch-size, seq-length, 256]
Output layer [batch-size, seq-length, 9122]

Table 12: Architecture of the ARPG attack model. We train
two networks for two rules-set of PasswordPro and Generated,
whose size of neural networks is 3,998,000 and 9,952,904.

ARPG model (3,998,000; 9,952,904)

Layers output shape

Pre-trained layers [batch-size, seq-length, 256]

FullyConnected [batch-size, seq-length, 256]
Output Layer [batch-size, rules-set-size]

Table 13: Hyper-parameters used in training our models.
Hyperparameter Value

Pre-trained model CPG TPG ARPG
Attention heads 2 2 2 2
Learning rate 0.002 2×10−5 10−5 10−5

Optimizer Adam Adam Adam Adam
Dropout 0.1 0.1 0.1 0.1
Seq-length 32 32 32 32
batch-size 256 512 128 256
Epoch 2,625 125 3 4
batch-size 256 256 256 256
seq-length 34 34 34 34

ciencies, PassBERT can become a better model in real-world
attack practice. We also supplement the implementation of
our ARPG attacks in the following part.
Implementation of ARPG. We modify the code to scan all
dictionary words with the selected rules being applied. We use
the batch processing technique to improve throughout, i.e.,
we give read a batch of words from the dictionary and take
them as input to our neural network, and then, for each word
in the batch, we apply only the rules whose values are greater
than the threshold (V). In the dynamic version, we add the
cracked passwords on the tail of the dictionary with the same
batch strategies. Same as ADaMs, we use the batch-size of
4,096 dictionary words.

D Evaluation of Smaller Guesses in CPG and
TPG

We show the guessing performance under comprehensive
guesses in Figure 6 for CPG and TPG, from which we can ob-
serve that CPG performs better when guesses become larger,
while TPG achieves significant improvement when guesses
are smaller. We believe that current evaluation metrics (same
as CWAE and Pass2path) can be more appropriate since CPG
and TPG generally fall into different guessing scenarios, i.e.,

Table 14: Number of rules for a base word computed per
second (r/s) for different networks. The values are obtained
under the same computation power.

PassBERT ADaMs

PasswordPro Generated PasswordPro Generated
15.4 million r/s 55.5 million r/s 15.5 million r/s 44.1 million r/s

CPG cares about cracking more associated passwords that
satisfy the pivot (perhaps obtained from malicious monitor-
ing in a surveillance camera), while TPG focuses on targeted
online guessing scenarios limited to smaller guesses. We ob-
serve that CPG cracks less passwords in smaller guesses (e.g.,
around 10% cracking rates in 1,000 guesses), we argue that it
can be more suitable to compare the efficiency improvements
when both models can reach their higher cracking rates (e.g.,
around 50% cracking rates).

10 102 103 104 105 106 107

Guesses
0

20

40

60

80

Gu
es

se
d

(%
)

Common (PT)
Common (CE)
Uncommon (PT)
Uncommon (CE)
Rare (PT)
Rare (CE)
Super-rare (PT)
Super-rare (CE)

(a) CPG (Cit0day)

5 10 50 100 500 1000
Guesses

5.0

7.5

10.0

12.5

15.0

17.5

Gu
es

se
d

(%
)

PassBERT
Pass2path

(b) TPG (Collection#1)

Figure 6: Evaluation of more guesses in CPG and TPG. PT
refers to PassBERT, and CE denotes CWAE.

E Accuracy of Reversed ARPG in HPSM

We evaluate the inferred accuracy of base words given an
input password. We sample n words in the dictionary of
Rockyou-2009 to crack the target dataset of Neopets, then
we collect all the cracked passwords as a set T . For each pass-
word in T , we infer its possible top k words, and compared
with n wordlists to finally calculate the inferred accuracy by
|T |∗k

n (the n and k are 10,000 and 100 in our experiments, re-
spectively). The results show that we can achieve an inferred
accuracy of 51.1%, the maximum theoretical inferred accu-
racy of 75.9% where we assume that all rules can be inversed
correctly. When we assume that all these inferred wordlists
with wildcard placeholders can be correctly recovered (possi-
bly via the CPG models), we can achieve the inferring accu-
racy of 67.3%.

	Introduction
	Background and Related Works
	Password Guessing Attacks
	Bi-directional Transformers

	Preliminaries
	Workflow of Three Attacks
	Threat Model
	Password Breach Datasets
	Password Bi-directionality

	PassBERT Guessing Framework
	Password Pre-training
	Password Fine-tuning

	PassBERT for Real-world Attack Models
	Conditional Password Guessing
	Fine-tuning
	Evaluation

	Targeted Password Guessing
	Fine-tuning
	Evaluation

	Adaptive Rule-based Password Guessing
	Fine-tuning
	Evaluation

	Hybrid Password Strength Meters
	Discussion
	Conclusions
	Details of Input Embeddings
	Supplemented Model Architecture Details
	Computational Performance in ARPG
	Evaluation of Smaller Guesses in CPG and TPG
	Accuracy of Reversed ARPG in HPSM

