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Abstract
Searchable symmetric encryption enables private queries over
an encrypted database, but it can also result in information
leakages. Adversaries can exploit these leakages to launch in-
jection attacks (Zhang et al., USENIX Security’16) to recover
the underlying keywords from queries. The performance of
the existing injection attacks is strongly dependent on the
amount of leaked information or injection. In this work, we
propose two new injection attacks, namely BVA and BVMA,
by leveraging a binary volumetric approach. We enable ad-
versaries to inject fewer files than the existing volumetric
attacks by using the known keywords and reveal the queries
by observing the volume of the query results. Our attacks can
thwart well-studied defenses (e.g., threshold countermeasure,
padding) without exploiting the distribution of target queries
and client databases. We evaluate the proposed attacks empiri-
cally in real-world datasets with practical queries. The results
show that our attacks can obtain a high recovery rate (> 80%)
in the best-case scenario and a roughly 60% recovery even
under a large-scale dataset with a small number of injections
(< 20 files).

1 Introduction

Song et al. [42] proposed the notion of searchable symmetric
encryption (SSE) that enables secure search over an encrypted
database. Following the notion, researchers have presented
various SSE schemes to balance practicability and security
[6,9,21,27,36,45]. In a standard SSE scheme, a search query
is a series of interactions between a client and a server. The
server can perform matching operations for the query, such
as paring a search token given by the client with ciphertexts,
and return the query results. Unfortunately, the statistics on
the responses leak some patterns of the encrypted database.
These patterns seem natural and harmless to data privacy, as
they do not directly reveal the files’ contents. Adversaries can
still exploit them to recover the client’s query. Leakage abuse
attacks (LAA) [7, 25, 31, 34, 35, 39], a classic type of passive

attacks on SSE, enable adversaries to observe the leakage
patterns for a continuous query period and then combine the
obtained information with prior knowledge to recover the
target queries.

Unlike passive attacks, injection attacks [3,7,38,51] enable
adversaries to actively inject files into the encrypted database.
An adversary can generate a certain number of injected files
containing known keywords for the client who packs these en-
crypted files and sends them to the server. It can then recover
the keywords with a high probability by observing the leakage
patterns of the target queries. Surprisingly, many real-world
applications are incapable of preventing file injection [38].

Cash et al. [7] introduced a seminal active attack against
property-preserving encryption [1, 4], allowing the adver-
sary to “implant" files into the client’s database and then
reconstruct partial plaintexts. Following a similar philosophy,
Zhang et al. [51] proposed a concrete file injection attack
(ZKP) to SSE. The attack enables the adversary to generate
and inject files F1, ...,Flogn by using n known keywords, such
that each keyword is in a unique subset of the files. After the
client has made queries, the adversary must identify the exact
set of the returned injected files so as to reveal the queries.
The adversary must know the access injection pattern, i.e., the
set of injected files matching the queries.

The SSE schemes protecting the access (injection) pattern,
such as those built on ORAM [15, 19], can successfully resist
ZKP [51] and other access pattern based attacks [7, 25, 34].
However, they still leak the volume pattern (vp) from the
search results. We say that the vp includes (1) the number
of response files, referred to as the response length pattern
(rlp), and (2) the word count of returned files, referred to as
the response size pattern (rsp). In this work, we will exploit
these patterns in volumetric injection attacks (VIAs)1.

Poddar et al. [38] proposed injection-based multiple-round
and single-round attacks by only exploiting the rlp. In each
round of the multiple-round attack, the adversary divides the
candidate keywords into k partitions and generates the same

1Note recent VIAs naturally leverage either the rlp or rsp.



Table 1: Comparison with leakage abuse (passive) and injection attacks. #W is the number of the known keywords. We use k
(k ≥ 2) to represent the count of keyword partitions for the multiple-round attack, and m (m≥ 1) refers to the injection constant
of the single-round attack. We denote offset,γ (generally, offset≫ #W and γ≥ #W/2) as the basic size of the injected files for
the decoding attack and BVA, respectively. The last column shows the minimum rounds required to restore all the observed
queries. Other notions and definitions are given in Table 5, Appendix A.

Attack Leakage Type Injection volume
Round2

Passive Injection Length Size
IKK [25] ap ✓ × – – –
Count [7] ap,rlp ✓ × – – –
SelVolAn, Subgraph [3] ap,vp ✓ × – – –
LEAP [34] ap ✓ × – – –
SAP [35] sp,rlp ✓ × – – –
ZKP [51] aip × ✓ O(log#W ) O(#W log#W ) 1
Multiple-round1[38] rlp × ✓ O(k#W logk #W ) O(k#W 2) #W logk #W
Single-round [38] rlp × ✓ O(m#W ) O(m#W 2) 1
Decoding [3] rsp × ✓ O(#W ) O(offset ·#W 2) 1
Search1[3] rsp × ✓ O(#W log#W ) O(#W 2) #W log#W
BVA rsp × ✓ O(log#W ) O(γ#W ) 1
BVMA vp, sp3 × ✓ O(log#W ) O(#W log#W ) 1

1 Unlike those schemes easily restoring multiple queries, search [3] and multiple-round [38] attacks can only recover a keyword at a time by running many
attack rounds. This means that the client should make many queries, and the queries must include the target query at each attack round. The multiple-round
is a strategy that depends on query replay, requiring the adversary to evoke the same query repeatedly by controlling the client. These two attacks commit
more rounds and injected files (than others in the table) to recover multiple queries.

2 We here say that an attack round consists of (1) an active and complete injection and then (2) an observation within a specific period. We will present a
formal definition in Appendix C.

3 BVMA mainly investigates the vp to recover the queries. Thus, the sp is an optional and non-essential leakage for the attack (see Appendix E).

number of empty files. For a keyword in the ith partition, the
adversary adds the keyword to i files as injection. If there are
i more response files to the target query than before (i.e., a
previous round), the adversary can narrow the search space of
the candidate keyword to the ith partition. The adversary must
run logk n rounds of injections and observations to recover a
query, given n known keywords. The attack works properly
as long as the adversary can make the client constantly repeat
the same query. This restriction works in some scenarios, e.g.,
websites using HTTP/1.1 RFC [16]. The single-round attack
selects a specific m and enables the adversary to inject m ·n
files for n known keywords in which a keyword wi is included
in m · i files. Upon observing a query with a response of l files,
the adversary can recover the query as w⌊ l

m ⌋
. The m should be

much larger than the number of the client’s files containing
wi so that ⌊ l

m⌋ is equal to i and the adversary can recover
the query. Compared to the multiple-round technique, this
attack reduces the number of interactive rounds and recovers
multiple queries. But its injection amount is still substantial.

Blackstone et al. [3] leveraged the rsp to propose a decod-
ing attack and a search attack for multi-query and one query
recovery, respectively. For each keyword wi, the decoding at-
tack generates and injects a file with a size of i ·offset. Given
a query, if the difference of its response sizes before and af-
ter injection exceeds i · offset (i.e., observing i · offset more
after injection), the adversary can infer that the underlying

keyword is wi. A drawback of this attack is that the adversary
needs to consume a significant amount of resources in calcu-
lating offset and injections (which are linear w.r.t. the number
of keywords) to perform well in query recovery. The search
attack, recovering one keyword at a time, uses a binary search
method. The adversary can inject a file containing half of the
candidate keywords at an attack round. It can determine if
the injected file is associated with the target query by a sub-
sequent observation. Using this inject-and-observe approach
in the following rounds, the adversary can halve the list of
candidate keywords until there is only one keyword left. The
attack can only recover a single keyword through massive file
injections and attack rounds.

Existing VIAs are constrained by round complexity and
injection amount. An interesting question thus arises:

Could we propose practical injection attacks that achieve
a high recovery rate with fewer injections and can also cir-
cumvent commonly used defenses?
Our contributions. We present an affirmative answer to the
above question by proposing two new injection attacks for
dynamic SSE schemes and particular defense mechanisms
(e.g., ORAM and padding). Our attacks leverage a dynamic
binary injection approach that requires fewer injections than
prior works. We show a comparison of the attacks in Table 1.
The main contributions are summarized as follows.
• Practical binary volumetric attacks. We propose two practi-
cal injection attacks (see Section 3) that provide comparable



performances to prior attacks, e.g., [3, 38]. First, we present
the binary variable-parameter attack (BVA) by exploiting the
rsp. We use a dynamic injection parameter γ to balance a
trade-off between injection size and recovery rate. Second,
we develop the binary volumetric matching attack (BVMA),
which is the first injection attack combining the leakage of the
rlp and rsp. For any queries, the BVMA can filter incorrect
keywords, with a small amount of injection, by observing the
difference in the response volume before and after injection.
Note that we can leverage other leakage information (e.g.,
query frequency) to enhance the recovery. We also present a
generic method that can transform current VIAs ( [3, 38] and
ours) to counter the threshold countermeasure (TC)2 [51].
• Comprehensive evaluations. We compare our attacks with
BKM [3], PWLP [38], and ZKP [51] in three real-world
datasets (see Section 4). We generate queries by obtaining
keyword trends from Google trend [22] and the Pageviews
tool [33]. Experimental results show that our attacks can pro-
vide a comparable level of recovery rate (e.g., > 80% on aver-
age in Enron and Lucene) as the single-round (with m = #W )
and decoding attacks while requiring fewer injections (e.g.,
saving > 99% of injection costs given the keyword universe).
Our attacks can also practically apply to large-scale datasets
such as Wikipedia, with approximately 60% recovery.

We evaluate our attacks against various defenses (e.g., TC,
padding) and client’s active updates. Under TC, our attacks
require relatively “lightweight" injections (e.g., < 103 files
injected by the BVMA in Enron and Lucene). In contrast, the
single-round and decoding attacks require a significant num-
ber of injections, with injection sizes respectively over 104×
and 106× the cost of the BVMA (particularly in Wikipedia).
We demonstrate that the static padding cannot effectively re-
sist our attacks (with > 60% recovery rate on average against
SEAL [15]). For dynamic padding (ShieldDB [46]), we show
an optimization of our attacks that can yield a high recovery
rate against ShieldDB. For example, it can maintain > 80%
recovery by injecting around 600 files in Enron. We also
demonstrate that our modified attack from BVA can perform
well under client’s active updates. Even if the client commits
100% updates for the Enron dataset, the attack can achieve
> 50% recovery rate by increasing the injection size (e.g.,
O(32 ·#W )) while remaining an O(log#W ) injection length.

2 Model Definitions

A dynamic SSE scheme (see Appendix B) should not directly
leak any other information to adversaries except those that
can be inferred from setup leakage LSt , query leakage LQr,
and update leakage LU p, throughout interactions between the
client and the server. It captures the adaptive security if ad-
versaries can choose the target queries and the corresponding

2Note TC enables SSE schemes to constrain each (encrypted) file’s word-
count to a small threshold in order to defend against injection attacks.
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Figure 1: Attack model.

operations adaptively [11].

2.1 Leakage Model

The operations of a dynamic SSE scheme naturally yield
multiple leakage patterns. We denote an adaptive seman-
tic secure SSE scheme as SSE = (Setup : λ→ D, Query :
D×Q→ RF , U pdate : D×U → δ), in which D is the en-
crypted database, RF is the set of files matching the queries
Q, U is the set of updates containing op and (w, id), and δ

represents the state of the client after the update from U . We
define two types of patterns:

• the access pattern is the family of functions ap : D×Qt →
Rt such that for a sequence of queries Q = (q1, ..., qt), it out-
puts the response file identifiers R = (ids(q1), ..., ids(qt)).

• the access in jection pattern is the family of functions
aip : D× Qt → IRt such that for a sequence of queries
Q = (q1, ..., qt), it outputs the response injected file iden-
tifiers IR = (iids(q1), ..., iids(qt)).

We note that most of LAA schemes [7, 25, 34] rely on the
access pattern; while ZKP [51] exploits the access injection
pattern for injection attack. We also formally define the search
and volume patterns used in our attacks.

• the search pattern is the family of functions sp : D×Qt →
Mt×t where, for a sequence of queries Q = (q1, ..., qt), it out-
puts a binary t× t matrix M such that M[i, j] = 1 if qi = q j
and otherwise, M[i, j] = 0.

• the response length pattern is the family of functions rl p :
D×Qt → RLt where, for a sequence of queries Q, it outputs
the number of the response files RL = (#D(q1), ...,#D(qt)).

• the response size pattern is the family of functions
rsp : D×Qt → RSt where, for a sequence of queries Q,
it outputs the word count of the response files RS =
(∑ f∈D(q1) | f |w, ...,∑ f∈D(qt ) | f |w).



2.2 Attack Model

To capture a general injection attack model, we enable the
adversary to generate and inject files. We regard the adversary
as an honest-but-curious server who follows the protocols but
can still inject files into the client database3. We divide the
entire attack process into three stages (see Figure 1).

(1) In the baseline phase, the adversary observes the client’s
query leakage LP∗ as pre-knowledge (provided the client
sends queries to the server). This step is of importance for
injection attacks (except for ZKP [51] and single-round at-
tack [38]). This is because the adversary should obtain the
correlation between the keywords and response files from the
baseline’s observations. The idea is to compare the volume
difference between the response results before (baseline) and
after injection for query recovery.
(2) In the injection, the adversary should carefully generate
files F by using its known keywords W and the information
obtained from the baseline. Next, the client encrypts the files
and uploads them to the server.
(3) During the recovery phase, the adversary obtains the target
queries’ leakages LP and recovers them by combining all the
known information, namely W , LP∗, F , and LP.

We let Q denote the target query set observed by the adver-
sary and Qr denote the query recovery results. We refer to the
recovery rate as Rer : #CorrectPred(Qr)/#Q. We denote the
number of injected files as ILen : #F and the word count of
the injected files as ISize : |F |w, where F is the set of injected
files. The goal of injection attacks is to achieve a high Rer
and minimize ILen and ISize by exploiting the known keyword
universe and pre-injection leakage.

3 Practical Volumetric Injection Attacks

Given the keyword universe W , VIAs can recover the client’s
queries on the encrypted database D by observing the vp from
the response results. A well-design and practical injection
attack should limit the number and size of injected files. Our
first attack, BVA, uses a dynamic parameter γ to flexibly set
the size of files to adjust the recovery rate. With a slight loss of
recovery rate, it can significantly reduce the size of injection.
Unlike the decoding attack, it does not need to calculate γ fully
and accurately, reducing the computational cost. To further
optimize the injection size and boost the recovery rate in the
worst-case scenario (i.e., γ = #W/2), we propose the second
attack called BVMA by twisting both the volume pattern and
the search pattern. By carefully controlling the size of each
injected file, the BVMA can ensure that each known keyword
has a distinct injection volume. For any query, it can reveal
the underlying keyword according to the difference of the
response results before and after injection. We also provide

3Or one may regard the adversary as an active observer who can generate
injected files for the client and observe the query response.

Algorithm 1: BVA.
1 procedure Baseline(Q̃)

2 observe the response size R̃S = (r̃s1, ..., r̃sm) for query in
Q̃ = (q̃1, ..., q̃m);

3 return R̃S;
4 procedure Injection(W)
5 F ← /0;
6 select an injection parameter γ = {γ ∈ N∩ γ≥ #W/2};
7 for i = 1→ log⌈#W⌉ do
8 generate the files fi that contains the keywords w ∈W

whose ith bit is 1;
9 pad fi until its size = γ ·2i−1;

10 F = F ∪ fi;
11 return F ;
12 procedure Recovery(Q)
13 initialize an empty set Qr;
14 observe the response size that RS = (rs1, ...,rsn) for target

query in Q = (q1, ...,qn);
15 for i = 1→ #RS do
16 find u ∈ #W satisfying that rsi−u · γ = r̃s j for some

r̃s j ∈ R̃S;
17 add wu to Qr;
18 return Qr;

a generic transformation that enables VIAs (e.g., [3, 38] and
our attacks) to counter the TC.

3.1 Binary Variable-Parameter Attack

The BVA (see Algorithm 1) works as follows. In the baseline
phase, the adversary observes and records the response sizes
of unknown queries. During the injection phase, it generates
and injects files according to the injection parameter γ in
a binary way. In the last phase, the adversary observes an
additional sequence of the client’s queries Q = (q1, ...,qm)
as the attack targets with response size RS = (rs1, ...,rsm). It
aims to recover all the queries in Q.

BVA−Baseline. The adversary observes the response size
R̃S for a sequence of queries Q̃ (line 2).

BVA− In jection. The adversary identifies the keyword uni-
verse W with the set {0, ...,#W−1} and indicates the injected
files with the set F = { f1, ..., f⌈log#W⌉}. First, the adversary se-
lects the injection parameter γ satisfying γ ∈N and γ≥ #W/2
to ensure each file can accommodate half of the keywords
(line 6). Second, each file fi has a size of γ ·2i−1 and contains
keywords whose ith bit is equal to 1 so that when wi is queried,
the total response size of injected files is γ · i (lines 7-10).

Note an example (see Figure 11, Appendix D) shows the
differences between the decoding attack and ours in terms of
injection length and size.

BVA−Recovery. The adversary observes RS = (rs1, ...,rsn)
again for the target queries Q=(q1, ...,qn). For a query qi ∈Q
whose response size is rsi ∈ RS, it traverses R̃S (obtained from
the baseline phase) to get a u∈ [#W ], satisfying the condition:



rsi−u ·γ = r̃s j. The adversary then recovers the query qi with
wu (lines 15-17).

Let P be the probability distribution over the keyword uni-
verse and P(wu) be the probability that the client will query
the keyword wu. We use r̃swu to represent the response size
of wu observed in the baseline phase. We formalize the prob-
ability of incorrect recovery as follows.
Claim 1. For any query qwi and γ ≥ #W/2, the probability
that BVA−Recovery(qwi ) outputs an incorrect wu is

Pr(wu ̸= wi) = ∑
u∈[#W ],u̸=i,

rswi=r̃swu+u∗γ

P(wu)

Proof. Consider the client made a query qwu with probability
P(wu), and its response size r̃swu was observed in the baseline.
In the recovery phase, the adversary observed that the target
query qwi ’s response size is rswi after injection. We then have
three cases. (1) rswi < r̃swu . The response size (after injection)
must be > r̃swu (before injection). In this case, the adversary
will not guess any keywords. (2) rswi ≥ r̃swu but γ ∤ rswi −
r̃swu . The adversary will not output any guess according to
the recovery algorithm. (3) rswi ≥ r̃swu and γ | rswi − r̃swu .
The adversary will guess an incorrect wu so that u = (rswi −
r̃swu)/γ if u ̸= i; otherwise, it will reveal the correct keyword.
■

We see that only the third case can cause an incorrect
recovery, which implies that the recovery rate depends on
the selection of γ. A well-selected γ can greatly reduce the
occurrence of the third case and make the adversary achieve
the same recovery rate as the decoding attack. Even in the
worst case (i.e., γ= #W/2), the recovery rate can still maintain
> 70% in Enron and Lucene. We further state that the binary
injection approach can restrict the injection length to log#W ,
which outperforms prior schemes [3, 38]. Note more details
will be given in the experiments (see Section 4).
Claim 2. For the keyword universe W and the injection
parameter γ ≥ #W/2, the total injection size incurred by
BVA− In jection(W) is O(γ#W ).
Proof. Through the binary injection, the BVA requires log#W
files in total, and the size of each file is γ ·2i−1 for i∈ [log#W ].
Therefore, the total injection size during this phase is γ · (20 +
21 + ...+2log#W−1) = O(γ#W ). ■

The attack can recover multiple queries with a high recov-
ery rate (e.g., averagely 80% in Enron) and a small injection
volume by leveraging the rsp, even the file contents and co-
occurrences of keywords are hidden. It does not require any
knowledge of query and file distribution. The BVA is a more
practical VIA compared to prior attacks.

3.2 Binary Volumetric Matching Attack
Unlike the decoding attack relying on offset, the BVA adjusts
a proper γ for different datasets. This could affect the recovery
rate and injection size. For example, setting a small γ can

Algorithm 2: BVMA.
1 procedure Baseline(Q̃)

2 observe and record the baseline response size R̃S, the response
length R̃L, and the frequency F̃req for query in
Q̃ = (q̃1, ..., q̃m);

3 return (R̃S, R̃L, F̃req);
4 procedure Injection(W)
5 F ← /0;
6 for i = 1→ log⌈#W⌉ do
7 generate the file fi containing the keywords w in W whose

ith bit is 1;
8 pad Fi until its size = 2i−1 +#W/2;
9 F = F ∪ fi;

10 return F ;
11 procedure Recovery(Q)
12 initialize an empty set Qr;
13 gather the new observed response size RS, response length RL,

and frequency Freq for victim’s target queries Q;
14 for i = 1→ #Q do
15 CA← /0;
16 for r̃s j ∈ R̃S,u ∈ [#W ] do
17 add ( j,wu) to CA;
18 if rsi−# f ileu ·#W/2−u ̸= r̃s j then
19 remove ( j,wu) from CA;
20 if rli ̸= # f ileu + r̃l j then
21 remove ( j,wu) from CA;
22 find the minimum value of | f reqi− f̃ req j| for

( j,wu) ∈CA ; // non essential step
23 add wu to Qr;
24 return Qr;

decrease the injection size (compared with decoding) but
could fail to distinguish some queries. To refine the attack
performance, we introduce the BVMA, which is completely
independent of any offset or γ. The BVMA is the first injection
attack that combines the response length and size patterns (as
well as the sp). The combination can accurately filter known
candidate keywords with a smaller injection size. See the
BVMA in Algorithm 2.
BV MA−Baseline. This is similar to the BVA-Baseline; but
we get queries’ response length R̃L, response size R̃S, and
frequency from the sp after a period of observation (line 2).

BV MA− In jection. We inject files in a binary manner. Dif-
ferent from the BVA (where the size of injected files relies
on the γ), we set the size of file fi with size = 2i−1 +#W/2
for i ∈ [log#W ] containing the keywords whose ith bit is
1 (lines 6-9). For the keyword wu ∈W , we then record its
injection length as # f ileu and injection size as equal to
u + # f ileu · #W/2. Each keyword has a unique pair of in-
jection size and length and thus we can distinguish different
keywords with a relatively high probability.

BV MA−Recovery. We combine the leakage pattern LP ∈
{rl p, rsp, sp} to filter candidate keywords. For a target query
qi ∈ Q, we generate a candidate set CA by adding all ( j,wu)

to it for ∀ j ∈ [#R̃S],u ∈ [#W ] (line 13). In the beginning, we
exploit the rsp to remove ( j,wu) from CA such that the pair



does not satisfy rsi− # f ileu · #W/2− u = r̃s j (lines 18-19).
This condition means that r̃s j and wu are not the original re-
sponse size and underlying keyword of qi, respectively. In the
second filtering stage, we exclude those candidate keywords
that dissatisfy rli = # f ileu+ r̃l j for wu ∈CA by exploiting the
rlp (lines 20-21). If the condition does not hold, we confirm
that the r̃l j and wu are not the response length of qi before
injection and the correct recovery keyword, respectively. We
then remove the pair ( j,wu) from the candidate set. Finally,
we can use the sp to identify the closest frequency of the
queries between the baseline and recovery phases from the
remaining candidate keywords of CA (line 22). We note that
the sp moderately improves the recovery rate. Even without
using it, the BVMA can still achieve about 80% recovery, e.g.,
in Enron (see Appendix E).
Claim 3. For any target query qwi , the probability that
BV MA−Recovery(qwi ) outputs an incorrect wu is

Pr(wu ̸= wi)≤ ∑
u∈[#W ],u̸=i,

rswi−r̃swu=u+# f ileu·#W/2,
rlwi−r̃lwu=# f ileu

P(wu)

Proof. Assume that the adversary observed the response size
r̃swu and length r̃lwu of a query qwu with probability P(wu)
during the baseline. In the recovery phase, the adversary ob-
served the target query qi, whose response length is rlwi and
response size is rswi (after injection). If it determines wu as
the underlying keyword, that means the difference of the rsp
before (r̃swu) and after (rswi) injection is equal to the total
injection size (u+ # f ileu · #W/2) and the difference on rlp
before and after injection is the injection length (# f ileu). The
adversary chooses wu as an incorrect recovery only when the
above two conditions (for response length and size) and u ̸= i
are satisfied. The probability is no more than ∑P(wu) as we
can use other leakages (e.g., the frequency exploited by using
the sp) to further eliminate those incorrect keywords. ■

We also provide a claim and its proof for the injection size.
Claim 4. For the keyword universe W, the total size output by
the BV MA− In jection(W) is O(#W log#W ).

Proof. The attack requires log#W files with size of 2i−1 +
#W/2 for i ∈ [log#W ]. Thus, the total injection size is (20 +
21 + ...+2log#W−1)+#W · log#W/2 = O(#W log#W ). ■

We see that the BVMA inherits the advantages of the BVA
(except the usage of γ) and provides an improvement on injec-
tion size, for example, the BVMA outperforms the best case’s
BVA in Enron dataset (i.e., when γ = #W/2, see Figure 5).

3.3 Attacks against Threshold Countermea-
sure

Threshold countermeasure (TC) [51] can prevent large-size
files (e.g., #word > the threshold T ) from being injected into
the database. The T could be set relatively small in practice

Algorithm 3: Injection Attacks against TC.
1 procedure Injection_shard(T,Basic_F)
2 Shard_F ← /0;
3 // Note | f |w is the word count of file f
4 for f ∈ Basic_F do
5 if | f |w > T then
6 // Cutting
7 extract keyword set C_W from f ;
8 cut f into ⌈#C_W/T⌉ smaller files Cut_F with each

size of T , and each contains different keywords
from C_W ;

9 add Cut_F to Shard_F ;
10 // Refilling.
11 for c_ f ∈Cut_F do
12 generate ⌈| f |w/T⌉−2 files Re f _F1 with each

size of T and each containing all keywords
from c_ f ;

13 generate as fewer files Re f _F2 as possible
containing all keywords from c_ f , and each
size is | f |w− (⌈| f |w/T⌉−1) ·T ;

14 add Re f _F1 and Re f _F2 to Shard_F ;
15 else
16 add f to Shard_F ;
17 return Shard_F ;

to counter injection attacks, without seriously affecting the
functionality of dynamic SSE. For example, only 3% of the
files in Enron (#W = 3,000) contain more than 500 words.
If employing TC with T = 500, we could skip these 3% of
files from indexing. Under this setting, a dynamic SSE can
effectively resist prior attacks (e.g., [3, 38] and ours). This is
because each injected file must contain a considerably large
number of words (e.g., ≥ #W/2 words), in particular, the
single-round [38] and decoding [3] attacks force an injected
file to contain O(m#W ) and O(offset ·#W ) words.

We design a generic transformation method to “protect”
VIAs from TC (see Algorithm 3). The transformation takes
the threshold T and the set of large files Basic_F as input and
runs the cutting and refilling, where Basic_F is the output of
a concrete VIA algorithm, e.g., BVA. In Algorithm 3, we cut
large files (with #word>T ) into smaller ones to satisfy the
threshold. To eliminate the impact of file cutting on recovery
rate, we keep the injection length # f ileu or size | f ileu|w of
each keyword wu ∈W consistent before and after Algorithm
3. For example, in the single-round attack [38], for any key-
word wu, we keep its injection length # f ileu unchanged (after
cutting) to avoid bringing any impact to the recovery phase.
In the decoding [3] and our attacks, we maintain a consistent
injection size for the keywords (by refilling).

During the cutting phase (lines 7-9), for each f ∈ Basic_F ,
we extract all keywords C_W from f . We then generate
⌈#C_W/T⌉ files for Cut_F by following 1) the size (word
count) of each file is T ; and 2) each file contains up to T
distinct (non-overlapped) keywords from C_W so that each
keyword wu’s injection length # f ileu is 1 (note the number
remains the same before and after cutting). We finally have
sets of small-size files to bypass TC while maintaining the



consistency of the keywords’ injection length.
In the refilling phase (lines 11-14), for each file c_ f ∈

Cut_F , we generate two file sets Re f _F1 and Re f _F2. Re f _F1
is constructed by refilling | f |w/T −2 files, in which each file
is with size of T and it contains all the keywords in c_ f .
Next, we generate as few files as possible (for Re f _F2) to
accommodate all the keywords in c_ f , with each file having a
size of | f |w− (⌈| f |w/T⌉−1) ·T . We ensure that the injection
size of keywords in c_ f is still | f |w after the refilling.

Claim 5. For a large-size file set Basic_F output
by In jection(W) and a threshold T , the injection
size of each keyword wu output by the algorithm
In jection_shard(T,Basic_F) is the same as that of
In jection(W), where In jection(W) is the injection phase of
a VIA (e.g., [3, 38], BVA, BVMA).
Proof. During the cutting phase, for a file f from the set
Basic_F , we produce multiple small files Cut_F containing
different keywords with size T , so the injection size of each
keyword is T . In the re f illing phase, we generate ⌈| f |w/T⌉−
2 files, in which each file is with size T and contains all the
keywords in a small file c_ f ∈Cut_F . For each keyword wu,
we generate another file with size of | f |w−(⌈| f |w/T⌉−1) ·T
to include the keyword. After the above steps, the injection
size of each keyword is size= T +(⌈| f |w/T⌉−2) ·T + | f |w−
(⌈| f |w/T⌉−1) ·T = | f |w, which is the same as the amount
before the transformation. ■

We say that the injection length strongly relies on the word
count of each file f and the number of files in Basic_F . Our
attacks, requiring fewer injected files than others, can naturally
provide a practical performance against TC. This is proved by
the experiments (see Figure 7). For example, in Enron with
#W = 3,000, setting T = 500, γ = #W/2 for the BVA, and
m = #W/2 for the single-round attack, we see that the lower
bounds of the injected files for our attacks are approximately
105 and 103 which are at least 102× less than that of the
single-round (107) and decoding (109) attacks.

4 Evaluation

We compared our attacks with the multiple-round and single-
round attacks [38], the search and decoding attacks [3], and
ZKP [51], under various metrics in the real-world datasets.
We also evaluated our attacks against well-studied defenses
(e.g., TC, padding) and client’s active update. We used Python
3.5 to implement the experiments and run the codes in Ubuntu
16.04 of 64-bit mode with 16 cores of an Intel(R) Xeon(R)
Gold 5120 CPU(2.20GHz) and 64 GB RAM. Our codes are
publicly available in https://github.com/Kskfte/BVA-BVMA.

4.1 Experimental Setup

Datasets. We used three real-world datasets with different
scales. The first one is the Enron email corpus [48] be-

Table 2: Descriptions on datasets
Enron Lucene Wikipedia

#Keyword 3,000 5,000 100,000
#File 30,109 113,201 6,154,345
QI GTrend [22] GTrend Pageview [33]
Coverage 260 weeks 260 weeks 75 months

tween 2000-2002, which contains 30,109 emails. The sec-
ond one is the Lucene mailing list between 2001-2020, with
about 113,201 emails from Apache Foundation [17]. The last
dataset is from Wikipedia [18]. We extracted the contents of
Wikipedia (in 2020) into a subset with 6,154,345 files by us-
ing an extraction algorithm in [41]. We also applied Python’s
NLTK corpus [44] to obtain a list of all English words without
stopwords and then selected the most frequent words to build
the keywords set. We set the total extracted keyword universe
W for Enron, Lucene, and Wikipedia as 3,000, 5,000, and
100,000, respectively.

We used Google Trends [22] of 260 weeks trends between
October 2016 and October 2021 to simulate the query trends
for Enron and Lucene. We applied the Pageviews, Toolforge
[33] containing 75 months of page views from July 2015 to
September 2021 to generate query trends for Wikipedia. We
assumed that the client performs 1,000 queries weekly for
Enron (Lucene) and 5,000 queries monthly for Wikipedia. We
regarded the client’s queries (within ten weeks/months) as the
target in the recovery phase. The dataset information is given
in Table 2, where QI represents the source of query trends,
and “coverage" is the time interval of QI.

In the experiments, we made 30 runs for each test and fur-
ther output the average result. We measured the query recov-
ery rate for the compared attacks, in which the rate represents
how much percentage of the client’s queries the attacks could
recover correctly.
Keyword leakages. We used keywords (Kws) leakage per-
centage to measure the prior knowledge of the adversary. We
say that the keyword universe could be easily and partially
obtained for several reasons: (1) a tiny amount of files could
contain a large number of keywords; (2) a public database
known by the adversary, which shares similar distribution with
the target database, could contain partial target keywords [12];
(3) some expired or spam emails could leak keywords. To test
our statements, we present the number of known keywords
with file leakage in Figure 2. We assume that Enron is the
client database and Lucene (rather than Wikipedia) is the pub-
lic database known by the adversary. We state that Enron and
Lucene are both email datasets and thus, they have similar
keyword distributions; and also, they share similar keyword
universes. In Enron, 0.5% leakage files can lead to the expo-
sure of half of the keyword universe; while obtaining 10% of
the leakage files, the adversary can reveal the entire universe.
Given Lucene as the similar database, the adversary easily

https://github.com/Kskfte/BVA-BVMA


reveals > 80% keywords from Enron.
Observation periods. The observation periods may vary de-
pending on the datasets. For Enron and Lucene, which contain
several thousand keywords, we only used a few weeks to ob-
serve queries to obtain the statistical information of most key-
words. We spent more time (dozens of months) on Wikipedia
than others to collect sufficient leakage information. To help
the reader to understand the relationship between the occur-
rence of new queries and observation period, we show some
examples in Figure 3. We observed 1,000 queries per week
for Enron and Lucene, and 5,000 per month for Wikipedia.
The number of new queries in Figure 3 decreases dramati-
cally with the extension of observation period under different
datasets and query distributions. In particular, there are < 10%
new queries per week for Enron (resp. Lucene) after the ob-
servation lasts > 8 (resp. 16) weeks. We say that 8 (resp.
16) weeks are sufficient for the adversary to observe queries
leakage from these datasets. Even for Wikipedia, a 32-month
observation is practical to obtain statistics information. Note
we also see that the occurrence probability of new queries
performs similarly under different query distributions (i.e.,
real-world and uniform). We set the observation period to
8 weeks, 16 weeks and 32 months respectively for Enron,
Lucene and Wikipedia. We further randomly selected the start
period for the observation from the coverage given in Table 2.

4.2 Comparison with Other Attacks
We compared our attacks with prior injection attacks in three
real-world datasets. Note we do not consider padding strate-
gies in this section but will test the attacks against them later.
We tested the performance of the BVA and decoding attack
under different parameters since they exploit the rsp with
similar recovery approaches. We also performed empirically
evaluations on the BVA, the BVMA and other attacks. Note
that we did not put ZKP into further comparisons (except
in Figure 7 against TC). The crucial difference between our
attacks and ZKP is on the leakage pattern. Our attacks exploit
the vp while ZKP focuses on the aip. There are both pros
and cons for the attacking strategies. For example, our attacks
could bypass ORAM (around 60% against both static padding
and ORAM on average, see Figure 8), while ZKP cannot; but
ZKP requires less injection size than ours (see Figure 7).

Injection Parameter for BVA and Decoding. Recall that
the BVA uses γ to flexibly control the injection volume. We
evaluated the recovery rate and injection size while γ varies
from #W/2 to the offset (see Figure 4). Like the setting in
the decoding attack [3], we assume that all queried keywords
fall in the adversary’s known keyword universe. As the γ in-
creases, the recovery rate of the BVA abruptly rises to the
maximum (providing the same recovery as the decoding at-
tack) and meanwhile, the injection size performs steady. One
can observe that even in the worst case, where γ = #W/2,
the BVA can still achieve practical recovery rates (> 70% in
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Figure 2: The no. of Enron keywords corresponding to the file
leakage. We refer Enron as the client database and Lucene as
the public database with similar distributions.

Enron and Lucene, > 60% in the large-scale Wikipedia). It
shows 20% decline on average in Enron and Lucene (note
28% in Wikipedia) at the recovery in this case, as compared
to the decoding attack. But its injection size is approximately
five orders of magnitude less than that of the decoding attack.
We also see that setting γ = offset/4 can sufficiently ensure
the BVA to achieve the similar recovery rate (< 5% gap) as
the decoding attack. A further increase on γ could not pro-
duce significant improvement on the recovery rate. Based on
the results, we confirm that a small but reasonable γ (e.g.,
γ = #W/2) can guarantee a practical recovery rate (> 60%)
with a relatively small injection size (around 108 in Enron
and Lucene, 1011 in Wikipedia) as compared to the decoding
attack (> 1012 in Enron and Lucene, 1017 in Wikipedia).

Overall Comparison with Decoding and Single-round. We
compared our attacks with the single-round [38] and decod-
ing [3] attacks. We tested the recovery rate Rer, the injection
length ILen, and the injection size ISize under different key-
word leakage ratios in the fixed observation period. We evalu-
ated the BVA with error bars by varying γ ∈ [#W/2,offset/4].
We simulated the single-round attack with two specific cases
where m = 1 and m = #W . The recovery rate is presented in
Figure 5 (and Figure 13, 14 in Appendix G) and the running
time is listed in Table 6, Appendix G.

Table 6 shows the time cost of restoring 10×1,000 queries
in Enron Dataset (provided that the adversary knows the key-
word universe). Most of the attacks take < 3s, while the
BVMA is slower than others (about 19s). This is because
it merges multiple leakages for keyword filtering, which natu-
rally increases the time complexity.

Figure 5 illustrates that as the number of leaked keywords
increases, Rer, ILen and ISize present an upward trend. More
concretely, Rer delivers a quasi-linear growth, while the in-
cline of ILen and ISize gradually flattens. From the recovery
rate, we see that the single-round attack with m = 1 can only
restore < 1% queries, which performs the worst. The BVA
and BVMA share a small gap (e.g., < 10% on average in
Enron) with the decoding and the single-round (m = #W ) at-
tacks. We also notice that the BVMA surpasses the minimum
recovery rate of the BVA (see the error bar in Figure 5(a)) by
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Figure 3: The occurrence probability of new queries as the observation period increases.
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Figure 4: Comparison between the decoding attack and BVA under γ.

Table 3: offset with different sizes of keyword universe. As-
sume the adversary can observe the response of all keywords.

#W 30 300 1,000 3,000 100,000
offset 157 6,615 48,447 207,015 > 107

almost 10% when the keyword leakage reaches 100%. This is
reasonable as the BVMA combines different leakage patterns
(e.g., rlp and rsp) to filter candidate keywords, which can
bring advantage on recovery rate.

The results of ILen (see Figure 5(b)) show that both BVA
and BVMA (only injecting < 20 files) require much fewer
injections (at least 50×) than the decoding attack. The single-
round attack with m = 1 takes the same injection length as the
decoding attack but with a poor recovery rate (see Figure 5(a)).
We note one may set m = #W to produce a practical recovery
in the single-round attack. But this requires a massive amount
of injected files (> 106 files).

As for the metric ISize, the decoding attack gives the worst
performance. This is because the attack strongly relies on
offset. Table 3 illustrates that offset grows abruptly with the
expansion of keyword universe. When #W = 3,000, each
injected file fi must contain 207,015× i words (where i ∈
[#W ]), which is extremely impractical in reality. Similarly, the
performance of the single-round attack is restricted by m. To
achieve a > 80% recovery, the attack (with m = #W ) requires
a relatively large injection size, around 1010 in Enron.

Fortunately, the BVA and BVMA are independent of the

offset (and m) and require fewer injections. For example, in
Enron (resp. Lucene) with 3,000 (resp. 5,000) keywords (see
Figure 5, 13), they achieve > 80% recovery rate on average
by only taking nearly 108 and 104 injection size, respectively.
The costs are multiple orders of magnitude less than those of
the decoding attack (1012) and single-round attack with m =
#W (1010). In Wikipedia (see Figure 14) including 100,000
keywords, the injections of the BVA and BVMA are only
1010 and 106 with approx. 60% recovery rate. To maintain the
same level of recovery, the single-round and decoding attacks
must take respectively 104× and 106× costs.

We conclude that our attacks can provide: 1) practical re-
covery rate, and 2) much fewer injections (length and size)
than other attacks. Our attacks (the BVA in particular) can be
also applicable to the large-scale dataset (see Appendix G).

Comparison for Single Query. The multiple-round [38] and
search attacks [3] only recover one query at a time. In Figure
6, we show how the average injection size (per query) varies
with the increasing number of target queries. We did not
consider the recovery rate in the experiments, because the
performances of the BVA and BVMA with a single query are
comparable to those shown in Figure 5(a) (and Figure 13(a),
14(a) in Appendix G). We note the multiple-round and search
attacks can provide 100% recovery rate by taking sufficiently
large (e.g., #W log#W ) injection volumes and attack rounds.

With the increase in the target queries, the multiple-round
and search attacks give constant straight lines on injection
size, while our attacks provide a sharp decline. The cause of



0.00 0.25 0.50 0.75 1.00
Kws leakage rate

0.0

0.2

0.4

0.6

0.8

R
ec

ov
er

y
ra

te

Single-round:m=1 
Single-round:m=#W 

Decoding

BVA
BVMA

(a) Recovery accuracy

0.00 0.25 0.50 0.75 1.00
Kws leakage rate

102

104

106

In
je

ct
io

n
le

ng
th

(b) Injection length

0.00 0.25 0.50 0.75 1.00
Kws leakage rate

103

106

109

1012

In
je

ct
io

n
si

ze

(c) Injection size

Figure 5: Comparison on the recovery rate, injection length, and injection size with different keywords (Kws) leakages in Enron.

the drop is that we can reuse injections on the previous queries
to recover the following queries. At the beginning, when no.
of queries is 10, the cost of the BVMA (e.g., slightly > 104)
is close to that of the multiple-round and search attacks. After
100 queries, the BVMA outperforms others. In Enron and
Lucene, the BVA yields the similar results as the multiple-
round and search attacks, around 104, when no. of queries is
up to 2,000. But its cost is roughly 102× larger than that of
the BVMA. Our attacks do show a noticeable advantage on
injection size with the increase of query number.

Comparison against TC. To circumvent TC, we proposed a
transformation Algorithm 3 (see Section 3.3). We note there
is also a variant for the ZKP [51] that can counter TC. We
evaluated the number of injected files caused by the Algorithm
3 and the ZKP variant with different thresholds T (see Figure
7). We limited T to be no more than the total number of
keywords (i.e., #W ) in the experiments, because 1) when T
reaches to #W , the number of injected files approaches to
stable, in particular, for the ZKP and BVMA; and 2) the word
count of a file (in a real-world dataset) is normally less than
the total number of keywords.

In Figure 7, increasing T leads to the decline of the injec-
tion length. The ZKP variant requires the least number of
injection. This is because it uses a unique approach (instead
of just the volume information) to recognize the injected files.
In contrast, other attacks leverage injections to increase the
differences in the volume of each keyword. There is a small
gap on injection between the BVMA and the ZKP variant.
The injection amount of the former drops fast and ultimately
approaches to that of the latter. Given a small and reasonable
T (e.g.,T = 500), the injection length of the BVMA is around
103 in Enron and Lucene, which is still practical. Under a
large threshold (e.g., T = 2,000), the single-round and de-
coding attacks take >106 injected files in Enron and Lucene
which are at least 103× and 105× larger than our costs, re-
spectively. In Wikipedia (under T > 25,000), they require at
least 104× and 107× more injections than ours.

Our attacks (especially the BVMA) outperform most of
existing VIAs against TC in terms of injection length. The
BVMA and the ZKP variant deliver similar results under a
proper T (e.g., < 102 injected files in Enron with T = 2,000).

The former is more applicable than the latter if the adversary
prefers to exploit the vp.

4.3 Attacks against Padding
Padding [5,7,10,15,37,46,49] can protect the volume pattern.
One may apply static padding [5,10,15,37] upon establishing
a database or use dynamic padding [2, 46, 49, 52] for both
setup and update stages. Efficient padding strategies usually
leverage keyword clustering to balance security and padding
overhead. This technique clusters keywords so that those in a
cluster share the same or computationally indistinguishable
volume after padding.

We tested our attacks against both static and dynamic
keyword clustering padding strategies in Enron. We used
SEAL [15] as the static padding solution because it requires
less query bandwidth overhead than [10, 37] and can miti-
gate well-known attacks (e.g., [7, 25]). As for the dynamic
padding, we chose ShieldDB [46] (which is a more prac-
tical encrypted database than [2, 52]) supporting keyword
search with a dynamic countermeasure against query re-
covery attacks. In our experiments, we assumed that each
dummy file employed dummy keywords not present in the
database, utilizing the padding modules of ShieldDB and
SEAL for random file padding to ensure that the file’s size is
within [min_ f ile_size,max_ f ile_size] for obfuscation, where
min_ f ile_size (resp., max_ f ile_size) is the smallest (resp.,
largest) file size in the original client database. Note when us-
ing the ORAM module in SEAL, we assumed that the system
uses blocks with the same size for filling (instead of dummy
files with random sizes). We measured the padding overhead
of SEAL besides the recovery rate. We defined the padding
overhead as Npadding/Nno−padding−1, which reflects a ratio
between the extra overhead (i.e., number of files) of padding
and “no padding". We calculated the storage overhead from
setup (Setup&Fill) and injection&fill (In j&Fill), and the
bandwidth overhead from queries-after-setup (S-Query) and
queries-after-In j&Fill (I-Query).

Static Padding by SEAL. SEAL [15] has two core modules.
One is the quantized ORAM module [43] hiding the ap and sp,
and the other is the parameterized padding module concealing
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Figure 6: Average injection size with number of queries (we set the keyword partition k = 2 for multiple-round).
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Figure 7: The number of injected files against TC (we set m and γ to #W/2 for the single-round attack and BVA).

the vp. We assume the response is Dq for a query q, where D
is the encrypted database stored in the form of ORAM blocks.
Note each block in ORAM shares the same size (e.g., with
B keywords). The number of blocks rlp for a query q is #Dq,
and the total response size rsp is #Dq ·B. In this case, the rsp
and rlp are somewhat “mixed", which indicates that the rlp
can be derived from rsp and vice versa, so that the BVMA
“degenerates" to the BVA only relying on the rsp. We thus
only evaluated the BVA against SEAL (with both padding
and ORAM, see Figure 8(b)).

In the ORAM module, for a file f , if its size is smaller
than the block size B (i.e., | f |w < B), the system will pad the
file to size B and then store the resulting file in a random
block; if | f |w > B, the system will split and store the file in
⌈| f |w/B⌉ blocks. Due to ORAM, each query will obliviously
access to the related blocks. In the padding module, the system
can add dummy blocks with the underlying keyword of q
until the query’s response length #D̃q is the next power of x:
#D̃q = min{xk : xk > #Dq,k ∈ [log#D]}.

In the experiments, we set B as the average size of files in
Enron. We selected a minimum γ satisfying γ≥ #W/2∧B|γ
to ensure that each injected file f can be exactly divided into
| f |w/B blocks. We tested the BVA and BVMA against SEAL
with only padding module (see Figure 8(a)) and also investi-
gated the BVA applying both padding and ORAM modules
(see Figure 8(b)). Note we tested SEAL’s padding overhead
instead of ORAM cost, as it was hard to evaluate the ORAM’s
complexity which relies on various factors (e.g., block vari-
ables, access method, bucket size). We could regard the over-

head as the lower bound of SEAL’s cost. This makes sense as
ORAM definitely yields extra and noticeable cost.

In Figure 8(a), the increase of x (in the padding module) has
little influence over the recovery rate. The recovery remains
at about 70%. But the padding cost, especially in the setup
and query, increases by 200% and 400% (when x is up to 16),
which seriously affects the practicability. Figure 8(b) shows
that padding and ORAM modules disturb the stability of the
BVA’s performance. For example, when x = 16, the BVA
achieves 70% recovery in the best case and only 10% in the
worst case. The negative impact incurred by SEAL on the
average recovery rate is still limited. Under various x, the BVA
can maintain 60% recovery on average. We note that one may
keep increasing x, but this will make SEAL become less and
less practical. The results indicate that the static padding is
not the best countermeasure to our attacks.

Extend SEAL to Dynamic Padding. We notice that SEAL
[15] has potential for extension to support dynamic updates
(e.g., by handling the update operations using SDa [14]); but
it is currently unknown how we can properly extend SEAL
to support dynamic padding. A straightforward idea4 could
be to fill the total rlp of the corresponding keyword into xt

after every batch update. We designed an extra experiment
(see Table 4) to evaluate our attacks against such a dynamic
variant. We assume that after a batch injection (by our attacks),
the padding module recalculates the rlp of each keyword and
then fills it to the proper xt . The padding can appropriately

4Following the SEAL’s padding (as well as settings), the idea supports
the strategy during (dynamic) update.



Table 4: Performance under the extended SEAL. The overhead (× / No.) represents (the ratio between the extra overhead of
padding and “no padding"; the number of files). Setup&Fill and Inj&Fill are the storage overheads on the database setup and file
injection, respectively. S-Query and I-Query are the average query bandwidth overheads before and after Inj&Fill, respectively.

Extended SEAL Overhead (× / No.) Recovery rate %
Setup&Fill S-Query Inj&Fill I-Query BVA BVMA

no padding 0 / 30k 0 / 730 0 / 12 (injection) 0 / 735 70 87
x = 2 0.5 / 45k 0.4 / 1,058 2,730 / 33k 1.8 / 2,106 < 1 < 1
x = 4 1.6 / 79k 1.2 / 1,595 16,384 / 197k 7.6 / 6,316 < 1 < 1
x = 16 2.0 / 91k 4.7 / 4,147 81,920 / 983k 88 / 66,027 < 1 < 1
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Figure 8: BVA against static (pre-injection) padding&ORAM
(SEAL). Note “x=0" is the baseline (“no defense").

resist VIAs (< 1% recovery rate) but produce huge overheads.
More concretely, given x = 2 (i.e., the minimum padding), as
compared to “no padding", the query-after-injection overhead
raises by nearly 200%. Meanwhile, the number of extra files
for padding expands by > 103×. The padding requires approx.
33,000 extra files against injections and this number is even
larger than the total files of the entire database (30,109 files).

Dynamic Padding by ShieldDB. ShieldDB [46] uses the
parameter α to set the size (i.e., number of keywords) of each
cluster. Concretely, assume that the added files containing
the keyword w are Uw, where w is located in the keyword
cluster C. After padding, the update length #Ũw of w is: #Ũw =
max{#Uwm ,∀wm ∈C}.

BVA and BVMA cannot distinguish the keywords belong-
ing to the same cluster. Their recovery rates could significantly
decline if ShieldDB sets a large α. For example, they achieve
around 3% recovery rate under α = 128 [50]. To tackle this
issue, we propose an optimization using “multi-group" binary
injections against ShieldDB. The optimized attack guarantees
that the keywords in the same cluster have the same rlp to
bypass the padding. See Appendix H for more details.

We conducted experiments to evaluate the performance of
our optimized attack against ShieldDB (see Figure 9). For
simplicity, we considered two batch paddings. One is to clus-
ter and fill the keywords in the setup phase for the server;
while the other is in the injection phase, where we inject spe-
cific files containing all the keywords and further use padding
to obfuscate the response length. In Figure 9, we show the
recovery rate and injection length against ShieldDB in Enron
under different parameters (α, t), where t(t ≤ α) is the num-
ber of keyword groups. The experiments demonstrated that
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Figure 9: Optimization against dynamic (post-injection)
padding (ShieldDB).

the α has little impact on the recovery rate, and even when
α = 128, the recovery can remain > 90%. To mitigate the
impact of padding, we set the number of keyword groups (t)
to be the same as that of clusters (α) in ShieldDB. We observe
a steady increase in the injection length from approximately
20 to 200 and finally up to around 600. Figure 9(a) and 9(b)
show that we can still counter ShieldDB by increasing the
number of injected files (thereby enhancing the attack ability).
The results reveal that a "larger" number of injections can
lead to a "higher" recovery rate.

4.4 Injections with Client Active Update
If a large number of file updates (e.g., > 50% of the database)
covering almost all keywords occur between the baseline and
recovery phases, our attacks without optimization may fail.
To tackle this issue, we modify BVA below to limit the impact
of updates while preserving an O(log#W ) injection length.

In the baseline phase, the adversary observes queries’ re-
sults and identifies the largest rsp (denoted as rspmax). It pre-
dicts (or sets) the total size of all files that the client may up-
date during the attack (denoted as T sizeupd). In the injection
phase, the adversary sets γ > rspmax +T sizeupd ∧ γ≥ #W/2
and then injects files according to BVA’s binary injection strat-
egy. In the recovery phase, for a target query q, the adversary
observes its response size (denoted as rspq) after injection
and update and then recovers the query q as the keyword
w⌊rspq/γ⌋ (see more details and experiments in [50]).

In the modified attack, we impose an upper bound of γ

to eliminate the negative impact of client updates. Actually,
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Figure 10: The modified attack’s recovery rate with update percentage (UP).

setting a small γ (e.g., γ = c ·#W , c is a constant and c≪ #W )
already can help us to obtain a reasonable recovery rate. We
implemented the modified attack and conducted experiments
on Enron. We used half of Enron (about 15k files) as the real
database and the rest as the auxiliary database used for "add"
file operations (which means that each newly added file is
from this auxiliary database). We assume the client can select
an operation from [add,delete] for each update. For an add
operation, the client randomly selects a file from the auxiliary
database and further creates the keyword-file indexes; as for
a delete operation, it deletes a file and the keyword-file pairs
randomly from the real database. We examined the recovery
rate under the client’s update scenarios: (1) all add operations
(see Figure 10(a)); (2) uniform add and delete operations (see
Figure 10(b)); (3) all delete operations (see Figure 10(c)).

In the experiments, we tested the impact of different γ and
update percentage UP on the recovery rate, where UP repre-
sents the proportion of updated files in the dataset. The results
show that increasing γ improves the recovery rate (e.g., obtain-
ing > 50% recovery rate when γ = 32#W ), but this also leads
to larger injection sizes (i.e., O(γ · #W )). Furthermore, the
recovery rate shows different trends for different update oper-
ations. Figure 10(a) shows that increasing "add" operations
can harm the recovery rate. For example, when γ = 32#W , the
recovery rate on UP = 0% is about 20% higher than that on
UP = 100%. Figure 10(b) demonstrates that random updates
barely affect the attack performance. In the last sub-figure,
we see that "delete" operations are beneficial for the recov-
ery (e.g., when γ = 32#W , the recovery rate on UP = 50% is
about 10% higher than that on UP = 0%). Especially when
UP = 100%, our modified attack achieves a 100% recovery
rate on all reasonable γ (i.e., γ≥ #W/2). This is because both
the original and the updated files are all considered as noise,
and UP = 100% indicates that the noise is eliminated (i.e.,
all files in the original database are deleted), allowing us to
obtain a perfect recovery rate.

5 Conclusion

We proposed new attacks against dynamic SSE using a binary
volumetric injection strategy. Unlike existing attacks requir-

ing a significant amount of prior knowledge (e.g., LAA [7,25])
and injections (e.g., [3, 38]), our attacks can offer a high re-
covery rate with fewer injections and pose a non-trivial threat
to current defenses (e.g., padding). We provided empirical
evidence to confirm the performance of our attacks. More
experimental results are available in the full version [50].
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A Summary of Notations and Concepts

We denote [n] as the set of integers {1, ...,n}. For a set S, we
use #S to refer to its cardinality. For a file f (or file set F),
we use | f |w (|F |w) to represent its word count, also called
file size. A → x means that x is the output of an algorithm A .
N denotes natural number. We use λ to denote the security
parameter. See the frequently used notations in Table 5.

B Searchable Symmetric Encryption

A standard dynamic SSE [30] includes a polynomial-time
algorithm, Setup, executed by the client and two protocols,
Query and U pdate, run between the client and the server.
• Setup(λ): This probabilistic algorithm takes the security
parameter λ as the input and outputs (K,δ;D), where K and
δ are the secret key and state of the client, respectively; and
D is an empty encrypted database stored in the server.
• U pdate(K,δ,op,(w, id);D): The update protocol carries
K, δ, op ∈ {add,delete}, a keyword-file pair (w, id), and D
as input. It outputs a new client state δ′ and an encrypted
database D′ after the "add/delete" operation.
• Query(K,δ,q;D): This protocol takes the client secret key
K, state δ, and query q as input, in which the server takes the
database D as input. It returns D(q) as the query’s response.

In the query protocol, the client only retrieves the response
identifiers. Later, it can perform an extra interaction with the
server to obtain the encrypted files with the identifiers.

C Definition for Attack Round

The multiple-round [38] and search attacks [3] recover one
target query via many rounds of injections and observations.
Recall that the adversary in the context of the multiple-round
attack “forces" the client to replay the same query repeat-
edly, in which “completing a replay of the client query" is
regarded as “one attack round". The search attack requires the
adversary to carry out a sufficient amount of observations on
the client’s queries after a successful single file injection. In
this context, an attack round is referred to as “the adversary
completes a single file injection". In other attacks for multi-
ple queries, the adversary aims to reveal the queries through
an immediate observation right after multiple files injection.
Here, completing a batch of file injections is also seen as an
attack round. We define the attack round as follows.

Definition 1 Let OB be a non-empty set (except the OB0) of
continuous observation operations and INJ denote a non-
empty set containing continuous “inject" operations. We de-
note Γ = (OB0, INJ1,OB1, INJ2,OB2, ...INJt ,OBt) as all the
pairwise operations for an injection attack. Then, the total
number of the attack round is t.

For example, in the search attack with a W , the attack process
is Γ = (OB0, INJ1, OB1, ..., INJ⌈log#W⌉,OB⌈log#W⌉). Thus,

Table 5: Notation and Concept

Notation Description
D An encrypted database.
W A keyword universe W = {w1,w2, ...,wm}.
Q A sequence of queries Q = {q1,q2, ...,ql}.
R The response to each query.
F A set of injected files.
| f |w Total word count for a file f .
f ileu Injected files containing a keyword wu.
offset Minimum file size for decoding.
γ Basic injection size for BVA.
k Keyword partitions for multiple-round.
m Injection constant for single-round.
T Size threshold of each file.
LP Leakage pattern.
RL Response length RL = {rl1,rl2, ...,rll}.
RS Response size RS = {rs1,rs2, ...,rsl}.
Freq Query frequency Freq = { f req1, ..., f reql}.
Qr A query recovery set, Qr ⊆ Q.
Leakage Pattern Description
access pattern (ap) identifiers of the files matching a query.
access injection pattern (aip) identifiers of injected files matching a query.
search pattern (sp) whether a query is repeated.
response length pattern (rlp) the number of (response) returned files.
response size pattern (rsp) the total word count of (response) returned files.
volume pattern (vp) include rlp and rsp.
Volume Information Description
injection length (ILen) the number of injected files.
injection size (ISize) the total word count of injected files.
injection volume include ILen and ISize.
update length the number of update files.
Attack Description
passive attack attacks only based on the observations.
injection attack attacks can actively inject files.
volumetric injection attacks (VIAs) injection attack relying on rlp (or rsp).
Defense Description
ORAM oblivious retrieval to hide ap and aip.
padding index dummy files to obfuscate vp.
TC limit file size to avoid large-size file injection.

the number of attack round is ⌈log#W⌉. As for other attacks
against multiple queries (e.g., single-round, decoding, and our
attacks) their attack process is as Γ = (OB0, INJ1,OB1) and
thus, they only require one attack round.

D An Example: BVA vs. Decoding

In the example (see Figure 11), we assume there exists a spe-
cial case where γ= offset so that the BVA and decoding attack
can achieve the same recovery rate. We see that the BVA only
needs three files (each with a size of 2k−1 ·offset) as compared
to the decoding attack injecting seven files (each with a size
of (t−1) ·offset), where k ∈ [3] and t ∈ [8]. Specifically, the
BVA yields 7 ·offset injection size, while the decoding attack
is 4× of the cost of the BVA, i.e., 28 ·offset.

E Effect of Search Pattern on BVMA

We tested the effect of the sp on the recovery rate of
the BVMA (see Figure 12(a)). By exploiting the sp (i.e.,
“BVMA_SP"), the attack slightly improves the recovery,
around 5% (under 100% keywords leakage); without the sp
(i.e., “BVMA_NoSP"), it still provides around 80% recovery.
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(a) BVA injection
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(b) Decoding injection [3]

Figure 11: An example: the adversary knows #W = 8.

F Queries with Different Distributions

We used Google Trends and PageViews Toolforge to simulate
the queries in the real-world distribution. Alternatively, one
may use other query distributions, such as uniform query.
In this section, we tested the recovery rate under two query
distributions: real-world and uniform (see Figure 12(b)). We
assumed that the adversary knows W and has spent at least
8 weeks on observations in Enron. We set error bars for the
BVA to evaluate the recovery when γ ∈ [#W/2,offset/4].

The recovery rate of the BVA varies moderately (about
a 20% gap) under the real-world query, but fluctuates (e.g.,
< 50% recovery in the worst case and > 90% in the best
case) under the uniform distribution. This indicates that the
BVA with a small γ (e.g., γ = #W/2) cannot perform stably in
uniform query. The average recovery rates on the two distri-
butions only differ approximately 10%. The gap could nearly
disappear if we set γ to be sufficiently large (e.g., γ = offset/4)
to yield the max. recovery under both distributions. Recall that
besides the frequency information, the BVMA relies on two
types of volume patterns for query recovery. The adversary
can distinguish queries and exclude the incorrect keywords by
exploiting the patterns. The uniform query (hiding frequency
information) only harms the recovery of the BVMA by 10%
as compared to the real-word query.

The distributions do not seriously affect our attacks’ av-
erage recovery rate (< 10%). The attacks perform slightly
better on the real-world distribution than the uniform. This
is because under the real-world query, the adversary can al-
ways recognize its target query of which frequency is higher
than others. In contrast, the uniform distribution makes the
adversary difficult to distinguish the target query, incurring
the drop of the recovery rate.

G Comparison in Lucene and Wikipedia

We show the comparison among the single-round, decoding
and our attacks in Lucene and Wikipedia (see Table 6 and Fig-
ure 13, 14). The single-round attack is least time-consuming
(< 1s) but yields the poorest recovery (when m = 1) or injec-
tion length (when m = #W ) in Lucene. The decoding attack
and our attacks are at a comparable performance level in
terms of recovery and running time. In Wikipedia, our attacks
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Figure 12: Supplementary experiments of BVA and BVMA.

achieve around 60− 80% recovery in which the BVA and
BVMA take around 3 and 15 mins respectively. For injec-
tion length, other attacks inject 102× more files than ours.
The BVMA only requires 106 injection size in Wikipedia.
To maintain a similar level of recovery (e.g., Kws = 0.25),
the decoding and single-round attacks (with m = #W ) cost
at least 106× more injection size than the BVMA. We see
that the BVMA in Wikipedia (up to 60% recovery) does not
perform as well as in Enron and Lucene. If it performs on the
same injection size as the BVA (but still much < that of the
decoding and single-round attacks), its recovery will be close
to the BVA’s.

H Optimization against ShieldDB

We developed an optimization (see Algorithm 4) against
ShieldDB [46], which is an extension of the BVA and BVMA.
It starts with the BVA injection method and further optimizes
the method by keyword grouping. Following the BVMA, the
optimization uses the rlp to determine the keyword clustering.
Following the attack model, it has three main stages.

In the baseline phase, we determine the cluster CW at which
each keyword is located (line 3) and record rsp of queries as
R̃S (line 4). Here, each row CW [i, :] represents a set containing
all the keywords in cluster i, and each column CW [:, j] repre-
sents the keyword set under the same position ( j) of different
clusters. Recall that in the update phase of ShieldDB, there
are two cases for file upload according to if the keywords of
clusters have been stored in the server.

Case 1: The server’s current database has not yet contained
any keywords of a cluster. In this case, only after all keywords
of the cluster have been (updated and) stored in the local
cache, they are filled and uploaded.

Case 2: All the keywords in the cluster have already been
stored in the server’s database. There are two conditions that
trigger the uploads: 1) when the time interval between the last
upload and the current time slots exceeds a certain threshold
(i.e., Tthreshold); 2) when the number of keyword-file pairs
(i.e., (w, id)) of the cluster locally stored exceeds a concrete
size (i.e., Cthreshold).

Once the corresponding conditions are satisfied, the system



Table 6: Running time for query recovery (10×1,000 queries for Enron and Lucene, 10×5,000 queries for Wikipedia). Note
the cost of the BVA is within the time range by varying γ = [#W/2,offset/4].

Running time Decoding Single-round (m = 1) Single-round (m = #W ) BVA BVMA
Enron 2.48s 0.01s 0.02s (1.81s,2.46s) 19.16s
Lucene 3.54s 0.01s 0.02s (2.53s,3.15s) 33.10s
Wikipedia 3min 42s 0.05s 0.06s (2min 52s, 3min 37s) 15min 34s
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Figure 13: Comparison on the recovery rate, injection length, and injection size with different Kws leakages in Lucene.
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Figure 14: Comparison on the recovery rate, injection length, and injection size with different Kws leakages in Wikipedia.

fills the relevant keywords and uploads them to the server.
By utilizing the upload strategy of ShieldDB, we can use the
observe-inject-observe approach to guess the cluster for a w.
First, we inject a file containing all keywords and wait for a
time period > Tthreshold to ensure that the injected file has
been uploaded to the server. It ensures that all keywords have
been included in the server, and the subsequent uploads (and
injections) follow Case 2. To predict the cluster, we observe
the rlp of all queries, send an injected file containing only w to
the client, wait for a duration > Tthreshold, and then observe
the rlp once more. In this case, only the cluster containing w
is uploaded to the server (where none of the keywords in other
clusters is updated). We then determine that w belongs to the
cluster with the "changed" rlp after the injection. We can see
that the above process requires an O(#W ) injection length
and attack rounds. Note that we can also determine the cluster
by using extra prior knowledge. Recall that ShieldDB uses a
training dataset to cluster keywords in the real dataset. The
training dataset could not be kept entirely confidential. We
can leverage other public datasets with similar distributions

to identify the cluster.
In the injection phase (lines 5-10), we choose t (t ≤ α)

groups of keywords, with each group containing the keywords
in a column of CW . We select different γ (from the set Γ) for
each group to launch the binary injection (similar to the BVA).
This grouping approach ensures that the target keywords in
the cluster share the same number of injected files. After
injection and padding, we record the total response length of
each keyword as T RL (line 13).

In the recovery phase (lines 14-20), given a target query qi,
we first identify the candidate clusters by using qi’s rlp and
then collect the correct keywords CW [v,u], from the clusters,
satisfying: rsi− v ·Γ[u] = r̃s j, i f ∃r̃s j ∈ R̃S, where rsi is the
rsp of qi, and Γ is the injection parameter set.

I Discussions

Other Countermeasures Besides the clustering-based
padding strategies [5, 7, 15, 46, 49], one may consider us-
ing other defense systems. For example, some PIR (e.g.,



DORY [13]) and ORAM (e.g., [20, 29]) related techniques
focus on protecting the ap and sp (besides the vp). These solu-
tions could not be as simple and natural as a direct padding (on
vp). Chen et al. [10] obfuscated the ap and vp by adding ran-
dom false-positive and false-negative files, but this approach
cannot protect the sp. Patel et al. [37] and Wang et al. [47]
introduced the volume-hiding encrypted multi-maps with low
server storage. Shang et al. [40] proposed to hide the sp by
obfuscating the search token. As these technologies do not
protect the leakage in the dynamic context, they cannot work
properly against VIAs. Kamara and Moataz [28] investigated
the dynamic volume-hiding system. But their approach does
not support the client to make atomic update, e.g., adding and
deleting a single keyword-file pair; and it also requires a high
query bandwidth. [2, 52] extended KM [28] and PPYY [37]
to propose fully dynamic volume-hiding encryption systems,
respectively. They can resist most of the query recovery at-
tacks with a price that the query complexity is proportional
to the maximum rlp (O(rl pmax)). We say that an effective
countermeasure to VIAs should be hybrid and probabilistic,
i.e., being able to hide both file size and response length by
random (or differentially private) noisy padding.

It is also interesting to see that some systems, such as [23,
24], apply trusted hardware (e.g., SGX) to counter VIAs. We
say that is orthogonal to this work.

Queries with multiple keywords. Our attacks can also apply
to those dynamic SSE schemes that enable multiple keywords
queries [8,32]. We here present a heuristic solution to support
our attacks for conjunctive queries with two keywords. Given
W = {w1, ...,wm}, we combine any two keywords into one
search query. That means a new search set W = {wt |wt =
(wi,w j), i, j ∈ [m], i ̸= j)} is generated while a tuple (wi,w j)
is paired as a conjunctive query. For each element wt ∈W ,
we inject a file with size of t · γ (γ is the parameter of BVA)
containing the element. As a result, we inject m(m−1)/2
files in total. It is an open problem to reduce the injection
volume for the conjunctive queries.

SEAL’s Dynamic Padding. We used a straightforward ap-
proach to extend SEAL to support the dynamic padding. The
extension can effectively resist VIAs, but its overhead (w.r.t.
Inj&Fill) is extremely impractical, for example, the cost is
even higher than simply streaming the entire database to the
client. It is an open problem to design a more practical solu-
tion to balance the security and efficiency. One may consider
combining clustering-based schemes (e.g., [7]) with the prob-
abilistic padding (e.g., [37]). For example, for each batch
update, one may divide keywords into several clusters and
then fill each keyword in a cluster to xt + noise, so that the
keyword’s rlp will contain the same xt and probabilistic (and
different) noise, where x is the parameter of SEAL.

LEAKER. Kamara et al. [26] proposed an open-source at-
tack evaluation framework LEAKER to test the recovery of
passive LAA with different known file rates. LEAKER unfor-

Algorithm 4: Optimization against ShieldDB
1 procedure OP_against_ShieldDB(Q̃,W ,Q,α, t)
2 // Baseline
3 Pick up the keywords CW [i, j] which represents the jth

keyword in the ith cluster ; // adversary can obtain
this information based on other knowledge or
additional injection

4 Observe the leakage information R̃S as in BVA.Baseline(Q̃);
5 // Injection
6 In j_F ← /0;
7 Select t co-prime numbers Γ[1], ...,Γ[t] satisfying that

{Γ[k]≥ #W/(2α) | k ∈ [t]};
8 for j = 1→ t do
9 inject files F by calling algorithm BVA.Injection(CW [:, j])

but replace the injection parameter γ with Γ[ j];
10 In j_F = In j_F ∪F ;
11 // Padding
12 Pad In j_F to IPad_F according to the padding strategy and

upload IPad_F to server ; // Completed by the client
13 Record the total response length T RL of each keyword after

injection and padding ; // adversary can obtain this
information with the help of CW , In j_F

14 // Recovery
15 initialize an empty set Qr;
16 gather the new observed response size RS, response length RL

for victim’s target queries Q;
17 for i = 1→ #RS do
18 CA← /0;
19 add keywords to CA[:, :] from CW [ j, :] satisfying that

T RL[ j]≡ RL[i], j ∈ [#CW ]
20 find CW [v,u] satisfying that rsi− v ·Γ[u] = r̃s j for

CW [v,u] ∈CA,∃r̃s j ∈ R̃S add CW [v,u] to Qr;
21 return Qr;

tunately cannot cover injection attacks [3,38,51] as it does not
capture the necessary information leakage obtained and used
by active adversaries. Extending this evaluation framework
to test injection attacks could be an interesting problem. We
note that is orthogonal to the main focus of this work.
Experiments on Multiple Datasets. In Section 4.3, 4.4 and
Appendix E, F, we conducted the experiments in Enron. Our
attacks performance will not differ significantly in Lucene
and Enron as these email datasets share similar scales and
keyword distributions. The Wikipedia could moderately harm
the performance. For example, the recovery against static
padding will be similar to that of Figure 14 (around 60%);
whilst dynamic padding could further restrict the attacks per-
formance. Under the clients’ active updates, the attacks could
achieve similar trends and results as in Figure 10. Interested
readers may use our codes to conduct extra experiments.


	Introduction
	Model Definitions
	Leakage Model
	Attack Model

	Practical Volumetric Injection Attacks
	Binary Variable-Parameter Attack
	Binary Volumetric Matching Attack
	Attacks against Threshold Countermeasure

	Evaluation
	Experimental Setup
	Comparison with Other Attacks
	Attacks against Padding
	Injections with Client Active Update

	Conclusion
	Summary of Notations and Concepts
	Searchable Symmetric Encryption
	Definition for Attack Round
	An Example: BVA . Decoding
	Effect of Search Pattern on BVMA
	Queries with Different Distributions 
	Comparison in Lucene and Wikipedia
	Optimization against ShieldDB
	Discussions

