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Abstract
Large Language Models (LLMs) such as OpenAI Codex are
increasingly being used as AI-based coding assistants. Un-
derstanding the impact of these tools on developers’ code is
paramount, especially as recent work showed that LLMs may
suggest cybersecurity vulnerabilities. We conduct a security-
driven user study (N=58) to assess code written by student
programmers when assisted by LLMs. Given the potential
severity of low-level bugs as well as their relative frequency
in real-world projects, we tasked participants with implement-
ing a singly-linked ‘shopping list’ structure in C. Our results
indicate that the security impact in this setting (low-level C
with pointer and array manipulations) is small: AI-assisted
users produce critical security bugs at a rate no greater than
10% more than the control, indicating the use of LLMs does
not introduce new security risks.

1 Introduction

Large Language Models (LLMs) are deep neural networks
trained on massive text corpora [1, 2] to learn the underly-
ing distribution of natural language or structured text. When
trained on code, LLMs can be used for code completion, bug
fixing, and summarization [3–5], useful features for devel-
opers. Recent offerings are thus commercializing LLMs for
code, including GitHub Copilot, which after its public release
in June 2022 added 400,000 new users in just two months [6].

However, recent work has shown that LLM completions
may contain critical security vulnerabilities [7, 8]. This sug-
gests that despite gain in developer productivity, LLM based
code assistants should be used with caution (or not at all) due
to security concerns. This prior work has evaluated the secu-
rity of LLM code assuming that its entirely generated by the
LLM (we will call this the autopilot mode). In practice, code
completion LLMs assist developers with suggestions that they
can accept, edit or reject—a real-world security evaluation
must account for the role of developers and how they interact

∗Equal Contribution

Reads

Suggests Writes Security
Tests

AI (LLM)

User

Code

?

Figure 1: What is the security impact of LLM assistance?

with LLM based code assistants. While programmers prone
to automation bias might naively accept buggy completions,
other developers might produce overall less buggy code by
only accepting safe suggestions and using time saved to fix
other bugs.

This leads us to the key question motivating this work:
Do developers with access to an LLM-based code comple-
tion assistants produce less secure code than the code pro-
duced by programmers without this access (Fig. 1)? An
affirmative answer to this question could be a significant
showstopper for LLM based code assistants. To answer this
question, we perform the first security-motivated randomized
trial comparing programmers with and without access to a
Codex-based code completion assistant powered by OpenAI’s
code-cushman-001 LLM.

Our user study in Section 3 had 58 computer science un-
dergraduate and graduate students with programming back-
grounds split randomly into ‘control’ (no Codex LLM access)
and ‘assisted’ (with Codex LLM access) groups. Given the
relative frequency of memory-based errors in low-level lan-
guages such as C and C++ (≈70 % of CWEs assigned by Mi-
crosoft each year [9]), as well as their relative severity (classes
of memory related bugs take many of MITRE’s ‘Top 25 Com-
mon Weakness Enumeration (CWE) Most Dangerous Soft-
ware Weaknesses’ list, including positions #1 and #5 [10]),
we design a study where the participants were (t)asked to com-
plete a set of 12 functions that perform basic operations on a
linked list representing a “shopping list” in C. To understand



the programming patterns in both groups, we created a cloud-
based integrated development environment (IDE) that links to
a Codex LLM in the back-end to behave like GitHub Copilot.
The IDE logs user inputs and interactions with Codex LLM
at a fine-grain. Using data from the user study, we investigate
the impact of LLMs across three research questions:

RQ1: Confirm motivation for this research: Does an AI code
assistant help novice users write better functional code?

RQ2: Given functional benefits, does the code that users
write with AI assistance have an acceptable incidence rate
of security bugs vis-a-vis code written without assistance?

RQ3: How do AI assisted users interact with potentially
vulnerable code suggestions—i.e., where do bugs originate
in an LLM-assisted system?

Our analysis, presented in Section 4, addresses these ques-
tions both quantitatively and qualitatively. We examined com-
pleted code for functionality and security, using manual and
automated methods. We sought to examine the code for bugs
from the Common Weakness Enumeration (CWE) [11] tax-
onomy. We find that in our setting (a low-level linked list in
C implemented by computer science students), the security
impacts are minimal. We confirm existing findings on the
productivity benefits of AI-assistance (RQ1), while finding
that the AI-assisted group produced security-critical bugs at a
rate no greater than 10 % higher than the control group (non-
assisted) (RQ2). When investigating the origin of bugs within
the assisted users (RQ3), 63 % of the bugs originate in code
written by humans and 36 % of the bugs were present in taken
suggestions. In the interests of open science we provide all
data open source in [12].

2 Background and related work

2.1 AI code assistants target productivity
Academic and commercial AI code assistant tools are prolifer-
ating. Examples include OpenAI’s Codex [3, 5], AI21’s Jurra-
sic J1 [13,14], Salesforce CodeGen [15] and CodeBERT [16].
These LLMs can write functionally correct code, with studies
showing capabilities in solving introductory programming
tasks [17, 18] and algorithmic challenges [19]).

Recent user studies examine the effects of code LLMs
on developer productivity. Vaithilingam et al. [20] measured
productivity from a group of developers (N=24) completing
code tasks in Python. Each developer used GitHub Copilot to
complete one task and the default non-AI based IntelliSense
assistant to complete a different task and discussed which they
preferred on three tasks of increasing difficulty. The exact
task/assistant choice were randomized across participants.
Overall, the participants preferred using Copilot as it helped
them get started quicker. Analysis showed that the average
task completion time when using Copilot was shorter although

this result was not statistically significant—possibly because
some participants did not complete the tasks in the allotted
time, or due to the small sample size. They found Copilot
generates code a lot quicker than typing or finding it from
other sources. However, they also theorize that it is often
buggy and so time saved writing code may then need to be
spent in debugging Copilot generated code.

Imai [21] tasked a group of developers (N=21) to imple-
ment code for a ‘minesweeper’ game. The study participants
were randomly asked to use (1) GitHub Copilot as a code
assistant, (2) a human pair programmer as the ‘driver’ control-
ling the computer and writing the code, and (3) a human pair
programmer as the ‘navigator’ assisting ‘driver’, and reading
the code the ‘driver’ is writing and examining it for issues.
The study concluded that Copilot tended to result in more
lines of code than with the human-based pair-programming
in the same amount of time. However, the quality of code pro-
duced by Copilot was lower. Pair-programming with Copilot
does not match the profile of human pair-programming. The
study did not examine whether or not Copilot improves over
a developer without a pair programmer.

A study by Ziegler et al. [22] from GitHub examines user
perspectives on productivity during usage of GitHub Copilot.
Here, a large number of users running the GitHub Copilot
technical preview were invited to complete a survey on their
perspectives, and a subset of these responded (N=2,047). Here,
84% (1,724-out of-2,047 completions) self-scored a SPACE-
type survey with a positive perspective aggregate. They felt
Copilot had a more beneficial effect on their productivity than
a negative one. Using internal metrics collected by the tool,
GitHub authors determined that the number of suggestions
accepted by the users was the greatest indicator of the positive
perspective. The more suggestions a developer accepts, the
more likely they feel the tool makes them productive. Github
Copilot user’s acceptance rate of suggestions is 6.6% per hour.

A Google study by Tabachnyk et al. [23] used a large num-
ber of developers (N>10,000). They found that since the de-
ployment of a proprietary LLM, the fraction of all code added
by the LLM has increased to 2.6%, and developers have re-
duced their coding iteration duration by 6 % and reduced their
number of context switches by 7 %, i.e. the LLM has had a
measurable (and positive) impact on developer productivity.

2.2 Prompts to suggestions: How LLMs code

LLMs such as the GPT-type transformers which underpin
Codex [3] function by building probabilistic sequences of to-
kens based on the frequency of observed tokens in the training
data [2]. In other words, they act as an ‘autocomplete’ tool.
Given some input sequence, they will find the most probable
next token(s) in the output sequence. For instance, if an LLM
is given “int main(int argc, char *” as the ‘prompt’,
it would likely return “argv” as the ‘suggested’ next token,
as this is a very common sequence in C programs.



In an LLM, ‘tokens’ refer to common sets of individual
characters. These are used via ‘byte pair encoding’ [24] to
allow the LLMs to ingest more text into their fixed-size input
windows. This allows the LLM to process more information.
Codex builds on the same tokenizer as GPT-3, extending it
to include tokens for runs of whitespace. This makes it work
better for code indentation [3]. The average token for Codex
is about four characters.

LLMs are not restricted to predicting just one token at a
time, however. They are autoregressive, feeding predictions
back in on themselves and performing searches across chains
of tokens (e.g. beam search is used in GPT-3 [1]). In the code-
writing LLMs, this allows for them to write large quantities
of code ‘at once’. For example, given the right input prompt
containing a well-defined function signature, an LLM may
produce an entire function body.

2.3 Security concerns of LLM-generated code

Unfortunately, the somewhat naïve mechanisms that underpin
LLM suggestion generation discussed in the previous subsec-
tion have been shown to cause problematic outcomes from a
security standpoint, for two primary reasons: (1) LLMs may
be trained over potentially insecure or buggy code (and will
then reproduce those insecurities/bugs), and (2) Code that
may be secure in isolation may be insecure depending on the
sequence it is executed in relation to other pieces of code.

For an example of (1), consider the use of the ‘MD5’ hash
algorithm once widely used to protect secure information such
as passwords. MD5 has been cryptographically broken, and
so should no longer be used. However, code examples with
MD5 remain on open source repositories. Therefore LLMs
learn to (incorrectly) suggest MD5 for hashing passwords.
For (2), consider storing text in a buffer. This can occur safely
using functions such as snprintf. However, if that buffer
was just free-d, then the same line of code calling snprintf
would result in a use-after-free vulnerability.

The issue of GitHub Copilot’s code suggestions contain-
ing security vulnerabilities was first studied by Pearce et
al. [8]. They found that as measured by the GitHub Cod-
eQL [25] static analysis tool, 40 % of the suggestions in
relevant contexts contain security-related bugs (i.e. from
MITRE’s Common Weakness Enumeration (CWE) taxon-
omy [11]). Likewise, Siddiq et al. [7] showed that for the Hu-
manEval dataset (which examine functional capabilities and
not security) GitHub Copilot emits certain CWEs in around
2 % of cases as measured by Bandit analysis tool [26].

That said, LLMs may also generate secure code as a re-
placement for insecure code [27] (i.e. may be used for bug
patches). Although this was only shown to reliably work for
small synthetic examples rather than for case studies taken
from real-world vulnerabilities, where the results were incon-
clusive, this indicates that the issue of insecure code sugges-
tions by LLMs remains unresolved.

Additional security concerns come from code beyond just
their execution. The primary issue concerns code plagia-
rism [17]. Commercial organizations and academic institu-
tions are worried that employees and students may misrepre-
sent AI code LLM outputs as their own. Although outside the
scope of this work, code licensing issues [28–30] have been
highlighted where the LLM may be trained over open-source
licenses which impose requirements on their derivations. As
the legal status of code produced by LLMs is an open question,
this could expose end-users to legal issues. Corporations may
disallow employees from using public LLMs. On the other
hand, in universities, it may be the case that using an AI as-
sistant be considered academic dishonesty, especially if used
in an examination setting (e.g. a solitary assignment). One ex-
ample highlighting this was presented in [31], where students
equipped with a code-writing GPT-J LLM passed introduc-
tory programming assignments without triggering suspicion
from MOSS [32], a commonly-used anti-plagiarism software.
In addition to the plagiarism-detection issue, they conclude
that the LLMs will not be stumped with novel questions—
GPT-J could solve problems outside the training set. When
considering prose, rather than code, these issues have also
been observed. Wahle et al. [33] suggest using LLMs trained
to detect plagiarism, and demonstrate that this technique can
have greater success than typical tools such as TurnItIn. How-
ever, this has not yet been demonstrated for code.

2.4 Evaluating code security

There are several techniques to determine the security of
a piece of code. Identified bugs can be classified into the
aforementioned CWE taxonomy [11].

Static Analysis tools detect security-related bugs attempts
statically at compile-time. Source code is parsed and an-
alyzed for buggy design patterns. Common techniques in-
clude access-control analysis, information-flow analysis, and
checks for application-programming-interface (API) con-
formance [34]. Common static analysis tools are listed by
OWASP [35], and include GitHub CodeQL [25].

Run-time analysis can also occur by using tools such as de-
buggers and sanitizers like ‘Address Sanitizer’ (ASAN) [36]
and ‘Undefined Behavior Sanitizer’ (UBSAN) [37]. These can
identify bugs and instrument the underlying code at compile
time to help identify the root cause, providing detailed infor-
mation about the locations and causes of any errors. Unlike
static analysis, sanitizers require a proof-of-concept ‘crashing’
input to trigger bugs. These can be found by ‘fuzzers’.

Fuzzers run the program on concrete, randomly generated
inputs in an attempt to uncover bugs and vulnerabilities. Bugs
found with fuzzing are generally guaranteed to be true pos-
itives, and the proof-of-concept input that demonstrates the
bug can be helpful to developers in fixes. Since the release of
“American fuzzy lop” [38] in 2013, fuzzing has received sig-
nificant attention. Google’s oss-fuzz [39] provides continuous



fuzzing for over 650 open source projects. Standards bodies
such as NIST recommend fuzzing for secure development
practices [40]. Major academic security conferences typically
feature a dozen or more papers on fuzzing each year. While a
full treatment is beyond the scope of this paper, we direct the
reader to the survey by Manes et al. [41].

Manual analysis: Despite the pressing need for automated
tooling, manual analysis for security bugs continues to be
utilized at all stages of software design [42], as manual code
review is often essential to identify certain classes of bugs [43].
For example, in the study analyzing Copilot’s outputs [8],
despite their use of GitHub CodeQL in identifying many
CWE instances, other CWEs were still checked manually.

In this study, we primarily use manual analysis, as dis-
cussed in Section 4.3.

3 Design of the security-focused user study

3.1 Overview
We seek to determine the impact of LLM assistance on the
security qualities of the code written by programmers, com-
paring against baseline code written by programmers without
assistance. Here, completions suggested by an LLM may be
accepted by the users and inserted into their source code file.
Suggestions may also be accepted and subsequently edited.

Similar to the previous two user studies using LLMs
[20, 21], we examined undergraduate and postgraduate stu-
dents from two software development courses at an R1 re-
search university. We recruited participants by advertising on
related social media. We tasked the participants with a pro-
gramming assignment. Since real-world programming tends
to be project-based (i.e. over a collection of related func-
tions) rather than a collection of disparate tasks, we modeled
the assignment in this manner. This is similar to Imai’s [21]
‘minesweeeper’ assignment. We prompted participants to
complete a “shopping list” program implementation in C.
This was chosen as a majority of bugs are memory-based
issues in low-level languages such as C/C++ [9]. Participants
had to complete 12 functions related to this list (1 provided by
us and 11 to complete). By providing a well-defined API (the
list of functions), the program can be thought of as 12 sepa-
rate programming tasks which may be analyzed separately.
To minimize the risk of users running out of time, users were
given two weeks to complete the assignment.

To understand the effects of the LLM suggestions, we ran-
domly split the cohort into two groups. The ‘control’ group
was not given suggestions (the LLM was inactive). The ‘as-
sisted’ group was given code suggestions by the LLM. All
groups were given identical video instructions to sign in to
an online web portal where they complete the assignment
in a controlled development environment, with an additional
segment that either explains that they would get LLM sugges-
tions and how to accept or reject them (‘assisted’ group), or

that they would not get suggestions (‘control’ group). They
were told that when they thought they were done, they should
upload the program and complete an exit questionnaire for
demographic information. We analyzed the completed code
for functional and security correctness. This is discussed in
Section 4. Our institutional review board approved this study.

3.2 Participant recruitment

We recruit CS (or related discipline) students for our user
study. Prior work has noted that CS students can be reason-
able proxies for developers in the context of software engi-
neering user studies. Tahaei et al. [44] found that “recruiting
CS students from our University’s mailing list resulted in the
highest data quality in terms of programming skills (highest),
costs (lowest), number of duplicates (low), and passing at-
tention check questions (high) compared to the other tested
crowdsourcing platforms.” Further, Ko et al. [45] note that
university students can be appropriate participants when their
knowledge and skills fit the one for the target audience. Fi-
nally, Salman et al. [46] found that students and professionals
do similarly on various code quality metrics. Intuitively, this
makes sense: university level coding students will likely soon
join industry as professional software developers.

We selected participants with a range of experience from
three sources: (1) an undergraduate junior “operating sys-
tems” software class, (2) a senior- and MS-level “application
security” software class, and (3) an informal student “soft-
ware chat group” which operates over Discord app. During
recruitment, we outlined the goals of this study to measure the
impact of the LLM on code writing and informed participants
of a US$50 compensation. For more details on the recruitment
process and ethical considerations, see the Appendix.

In total, 105 participants signed up for this study, and were
randomly divided into the ‘assisted’ group (to be prompted
with code generated by the AI code assistant), and the ‘con-
trol’ group (to not). The participants used their own computer
and resources, and were informed that they could use the In-
ternet to help in the general case, but they should not ask their
peers or others for code writing assistance. As noted in [45],
more structured studies in lab environments provide greater
control at the expense of realism, and the choice between
the two is subjective. Both types have been used in software-
engineering literature. Here, we opted for a more realistic
setup at the expense of structure; as [45] notes, “if a tool is
entirely new, it may be more valuable to observe a tool being
used in more realistic conditions with fewer controls.” We
expect the motivation levels between treatment and control
to be similarly distributed because participants are randomly
assigned to these groups. Not all participants ended up engag-
ing with the assignment: in total, 58 users completed code for
analysis. We present demographics of these in Section 4.1.



3.3 Programming assignment
Summary: The students were tasked with completing a pro-
gramming assignment that consisted of a shopping list imple-
mented using a singly linked list data structure1. The complete
assignment was provided all-at-once with all 11 functions si-
multaneously (task was to complete the C file to the specified
API). Participants could implement functions in any order and
update previous answers. The students were provided with
documentation in the form of header files and a README,
as well as an instructional video. Other supporting documents
included a Makefile as well as 12 basic functional tests such
that the students could automatically test their code.

Open source: We open source the assignment in [12].
Justification for the C Language: This study focuses on

the security implications of using LLM code assistants by pro-
grammers. Given the frequency of memory-related bugs in
C [9] such as null pointer references, and array and buffer over-
flows, we chose the C programming language for the study;
these bugs are both consequential (frequently leading to ex-
ploitable code and severe errors) and relatively easy for devel-
opers to inadvertently express via vulnerable design patterns.
Further, unlike modern languages such as Go or Rust, the
default compilation toolchains for C do not adequately check
for these issues. Finally, all recruited participants should have
experience programming in C due to syllabus requirements—
i.e., this assignment should not be their first exposure to C.

Instructions: Video and text instructions walked the
students through signing in to the development environ-
ment, compiling, and their code. We gave the students a
folder that contained the files listed in Fig. 2. These con-
tained documentation on what to do and how to do it
(README.md, Makefile, list.h), the file they were to com-
plete (list.c), and supplementary testing files to mea-
sure their progress and completion (main.c, test.sh,
unittests.exp, example_load_file.txt). These were
designed similarly to an industry-standard setup for program-
ming - i.e., the users had to run make test to build and run
tests and evaluate their code. Students were told they could
use any resource on the Internet, such as Google and Stack
Overflow. But they were not allowed to ask other students. We
asked the students to complete as much of the functionality
as they could during the two weeks of the study. They were
not obligated to finish all functions to be compensated.

Introduction to the implementation: The basic shopping
list definition is provided in Fig. 3(a). It is a singly-linked
list with each node containing a char* string pointer, a price
(float), and a quantity (int). No specific information is pro-
vided regarding other properties of these variables. The users
are then provided with the function APIs in the remainder
of list.h, as #includes and implementation hints at the
beginning of list.c (Fig. 3(b)).

Basic functions: The ‘basic’ API functions are presented

1https://en.wikipedia.org/wiki/Singly_linked_list

* Core documents:

README.md - contains study instructions

Makefile - script for compiling code/running tests

list.h - documentation and list API

list.c - file for participants to complete

* Supplementary documents:

main.c - instantiates a basic list application

runtests.c - the basic unit test suite

example_load_file.txt - for testing

Figure 2: Provided study documents / files

1 / / Node of t h e s i n g l y l i n k e d l i s t
2 t y p e d e f s t r u c t _node {
3 c h a r * item_name ;
4 f l o a t p r i c e ;
5 i n t q u a n t i t y ;
6 s t r u c t _node * n e x t ;
7 } node ;

(a) Node definition (in list.h)

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < g e t o p t . h>
4 # i n c l u d e < s t r i n g . h>
5 # i n c l u d e " l i s t . h "
6

7 # d e f i n e MAX_ITEM_PRINT_LEN 100
8

9 / / Note : A l l l i s t _ f u n c t i o n s s h o u l d r e t u r n a s t a t u s code
10 / / EXIT_FAILURE or EXIT_SUCCESS t o i n d i c a t e s u c c e s s .

(b) #includes and implementation hints (in list.c)

Figure 3: Preliminary codes

in Fig. 4. Here, ‘basic’ refers not to the difficulty of the under-
lying code, but of the fundamental code required in any linked
list implementation – functions to add an item (at a position),
update an item, remove an item, and swap two items. We
chose to complicate matters by (1) making all API functions
use a position index rather than importing and exporting node
pointers; (2) making the linked-list one-indexed, rather than
the more standard zero-indexed; and (3) making all I/O to
the API via function arguments and argument pointers with
the API functions instead of returning success/failure status.
These design choices increase the chance of unintended bugs,
as they increase the complexity of traversing the linked list.

‘Tricky’ functions - string manipulation, advanced
traversal, saving and loading: The list of complex, non-
standard functions are presented in Fig. 5(b). These are sep-
arated into print functions (Fig. 5(a)), the advanced traver-
sal functions (Fig. 5(b)), and saving and loading functions
(Fig. 5(c)). These functions also require index positions
and argument pointers. Using pointers for return values
increases the number of pointer manipulations needed for
functionality, increasing the chance that code may be writ-
ten with unintended security-relevant bugs. For example,
list_item_to_string, which uses a documented “exter-
nally allocated string”, needs to be written to avoid potential
buffer overflows (what is the maximum length this string is
allowed to be? It is provided in the earlier #define from

https://en.wikipedia.org/wiki/Singly_linked_list


1 / / c r e a t e a new l i s t
2 i n t l i s t _ i n i t ( node ** head ) ;
3

4 / / add a new i t em ( name , p r i c e , q u a n t i t y ) t o t h e l i s t a t
p o s i t i o n pos

5 i n t l i s t _ a d d _ i t e m _ a t _ p o s ( node ** head , c h a r * item_name ,
f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos ) ;

6

7 / / u p d a t e t h e i t em a t p o s i t i o n pos
8 i n t l i s t _ u p d a t e _ i t e m _ a t _ p o s ( node ** head , c h a r * item_name

, f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos ) ;
9

10 / / remove t h e i t em a t p o s i t i o n * pos *
11 i n t l i s t _ r e m o v e _ i t e m _ a t _ p o s ( node ** head , i n t pos ) ;
12

13 / / swap t h e i t em a t p o s i t i o n pos1 wi th t h e i t em a t
p o s i t i o n pos2

14 i n t l i s t _ s w a p _ i t e m _ p o s i t i o n s ( node ** head , i n t pos1 , i n t
pos2 ) ;

Figure 4: Basic linked list functionality (comments simplified)

1 / / p r i n t a s i n g l e l i s t i t em t o an e x t e r n a l l y a l l o c a t e d
s t r i n g

2 / / Th i s s h o u l d be i n t h e f o r m a t o f :
3 / / " q u a n t i t y * item_name @ $x . xx p r i c e ea "
4 i n t l i s t _ i t e m _ t o _ s t r i n g ( node * head , c h a r * s t r ) ;
5

6 / / p r i n t t h e l i s t t o s t d o u t
7 / / Th i s s h o u l d be i n t h e f o r m a t o f :
8 / / " pos : q u a n t i t y * item_name @ $x . xx p r i c e ea " p l a c e s .
9 i n t l i s t _ p r i n t ( node * head ) ;

(a) String manipulation functions (comments simplified)

1 / / f i n d t h e i t em p o s i t i o n wi th t h e h i g h e s t s i n g l e p r i c e
2 i n t l i s t _ f i n d _ h i g h e s t _ p r i c e _ i t e m _ p o s i t i o n ( node * head ,

i n t * pos ) ;
3

4 / / c a l c u l a t e t h e t o t a l c o s t o f t h e l i s t ( sum of a l l
p r i c e s * q u a n t i t i e s )

5 i n t l i s t _ c o s t _ s u m ( node * head , f l o a t * t o t a l ) ;
6

7 / / de − d u p l i c a t e t h e l i s t by combin ing i t e m s wi th t h e
same name

8 / / by ad d i ng t h e i r q u a n t i t i e s
9 / / The o r d e r o f t h e r e t u r n e d l i s t i s u n d e f i n e d and may

be i n any o r d e r
10 i n t l i s t _ d e d u p l i c a t e ( node ** head ) ;

(b) Advanced traversal functions (comments simplified)

1 / / s ave t h e l i s t t o f i l e f i l e n a m e
2 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
3 / / i tem_name , p r i c e , q u a n t i t y \ n
4 i n t l i s t _ s a v e ( node * head , c h a r * f i l e n a m e ) ;
5

6 / / l o a d t h e l i s t from f i l e f i l e n a m e
7 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
8 / / i tem_name , p r i c e , q u a n t i t y \ n
9 i n t l i s t _ l o a d ( node ** head , c h a r * f i l e n a m e ) ;

(c) Saving and Loading the list (comments simplified)

Figure 5: Advanced implementation requirements

Fig. 3(b)). This is easy to miss. Other complex implementa-
tions arise from list_deduplicate, which requires traver-
sal and item removal code, and list_save and list_load
which need to deal with files and the list.

Figure 6: Example suggestion by Codex Assistant. Suggested
code is in grey italic. Prompt is all text before the cursor.

3.4 The ‘Codex Assistant’ for code suggestions

In this section we will introduce the AI-based system which
generates code for the ‘assisted’ study group. This assistant
was modeled after the commercial GitHub Copilot. It is built
as an extension for Visual Studio Code which parses the file
under development, sends data to the OpenAI Codex API,
and provides a completion back to the user presented in faded
grey text which they may accept or reject (see Fig. 6).

The general flow for using a coding assistant like ours or
Copilot is as follows. The user types any amount of code, such
as comments, function names and arguments, or implementa-
tions. On the user pausing (750 ms of inactivity) the extension
will select all code prior to their cursor and select text in re-
verse up to a finite amount—ours took up to 1,800 tokens (see
Section 2.2). It passes this text to the OpenAI Codex API for
the code-cushman-001 LLM. We chose this LLM as it is
the fastest to operate and gave us response times similar to
GitHub Copilot. To prompt the LLM we used the following
parameters. The max_tokens: 64. This was chosen to keep
the speed of generation high and the suggestions relatively
short (we did not want the LLM to suggest code beyond the
function currently being developed). The temperature: 0.6.
We set the temperature to 0.6 based on the results reported in
the original Codex work [3] as well as in [47], which show
that the best pass@10 rate is at temperature=0.6. In addition,
this somewhat high temperature ensures the LLM does not
provide the same answers to all users. This is important as the
same starting list.c file is provided to all users, and as our
focus is on user acceptance of code suggestions rather than
the LLM, it is beneficial if some suggestions by the LLM are
unusual or creative. The top_p: 1.0. OpenAI documentation
suggests varying temperature or top_p, not both.

Input (and settings) thus provided, the assistant responds
with a code suggestion presented in gray italics (e.g. Fig. 6).
The user can accept the suggestion by pressing space bar or
reject by continuing to type.

3.5 ‘Autopilot’- automated task completion

In addition to the two user groups, we created 30 solutions that
were generated entirely by the Codex LLM as an ‘autopilot’
group. We produced ten solutions from each of the three
code LLMs offered by OpenAI: code-cushman-001 (max



2048 tokens), code-davinci-001 (max 4096 tokens) and
code-davinci-002 (max 8000 tokens). The last LLM is
capable of filling in the middle given a prefix and suffix [48]).

We queried the LLM to generate code for one function
at a time in the order they appear in the template list.c
file, requesting 512 tokens with a stop sequence of “\n}\n”.
The prompt included the function declaration and as much
of the previous file context as would fit in the LLM’s context
window (minus 512 tokens to allow room for the generated
response), including any code previously generated by the
LLM. The temperature and top_p were set to the same
values as in the AI assistant IDE plugin (0.6 and 1.0) for the
reasons indicated in the previous section. After generating
a function, we check if the result compiled. If compilation
failed, we request another completion, up to a maximum of
10 attempts per function. If no code compiled, we used the
template’s implementation of the function, which just returns
EXIT_FAILURE. This procedure models a user that relies on
the AI assistant, accepting suggestions unconditionally, with
minimal checks to see if the code compiles. Moving on to the
next function once it seems to work and giving up if it fails
after several attempts. This is our baseline to compare control
and AI-Assistant groups. The initial file was identical to the
starting template with one exception: we added a comment
near the top of the file that listed the members of the node
structure, which is defined in a header and is otherwise not
visible to the LLM, as noted here:

1 / / Members o f t h e node s t r u c t :
2 / / c h a r * item_name , f l o a t p r i c e , i n t q u a n t i t y , node *

n e x t

Without this addition, an unassisted LLM must guess the
member names, creating unusable solutions. This intervention
is realistic since our goal is to mimic a hands-off human user.
Two users in the ‘assisted’ group independently deployed this
strategy by copying the struct definition from the header
file into list.c (commented out).

We will present results for the ‘autopilot’ group where
appropriate, except for manual security analysis (Section 4.3),
which was too time-consuming to expand to full set of 30
‘autopilot’ solutions (instead we audited the first five).

3.6 Experimental infrastructure
This study provided a controlled, consistent environment via
a containerized cloud-based IDE usable inside standard web
browsers, based on the open-source Anubis software2 which
is commonly used at New York University. This environment
contained a virtual Visual Studio Code instance, which auto-
matically loaded the project upon a user signing in. Based on
their group membership, the system would automatically ei-
ther provide code suggestions or not. This custom IDE made
it straightforward to add data collection for active participants
and prevent the IDE from being connected to other LLMs.

2https://github.com/AnubisLMS/Anubis

In addition to the ‘final form upload’, which collected the
self-reported ‘finished’ list.c files (as well as collected the
study’s demographic information), we also took snapshots of
the complete list.c file environment every 60 seconds that
the file was open. This allowed us to track changes over time.
In addition, we recorded when suggestions from the Codex-
based AI assistant were taken or when they were rejected.

3.7 Statistical tests
We use standard statistical hypothesis tests to analyze results.
We check if LLM code assistants improve code quality with-
out exacerbating security. Analogously, in medical settings,
it is required to show that a treatment is effective (code qual-
ity) while not exacerbating side effects (security). Standard
comparative tests are used to establish efficacy— i.e., that the
mean efficacy of the treatment is higher than the control. For
side effects, non-inferiority tests are used—the test seeks to es-
tablish that the side effects are within a “maximum clinically
acceptable difference” that one is willing to tolerate [49].

We describe the two tests below.
Comparative hypothesis test: Given treatment and control

groups with means µ1 and µ0, respectively, and assuming
(without loss of generality) that smaller means are better, a
comparative hypothesis test seeks to reject the null hypothesis
H0 in favor of the alternate H1.

• Null hypothesis (H0): Treatment and control groups have
the same mean, i.e., µ1 = µ0.

• Alternate (H1): Treatment group has a lower mean that
control, i.e., µ1 < µ0.

A comparative test establishes that the treatment is “better”
than the control. We use this test to compare assisted (i.e.,
treatment) and control groups in terms of number of compiling
functions and unit tests passed (in both cases, larger is better,
so the hypothesis test is modified accordingly.).

Non-inferiority hypothesis test: Under the same assump-
tions as above, the null and alternate hypotheses of a non-
inferiority test are:

• Null hypothesis (H0): The treatment mean is more than
δ% larger than control, i.e., µ1 > (1+ δ

100 )×µ0,

• Alternate (H1): The mean of the treatment group is less
than δ% larger than control, i.e., µ1 < (1+ δ

100 )×µ0,

where δ is the tolerance threshold. We use non-inferiority tests
to compare bug incidence, measured as CWEs/LoC (Equa-
tion 1, Section 4.3.2) and average CWEs/function (Equa-
tion 2), in the assisted and control groups.

There is no commonly accepted threshold for the amount
of decrease in code security that is considered acceptable for
a new programming tool. Different organizations may make
different choices depending on their threat model. For this



Table 1: Study participant enrolment demographics
Control Assisted Total
Undergraduates (UG)

UG Y2 (Sophomores) 2 7
UG Y3 (Juniors) 8 5
UG Y4 (Seniors) 4 4

UG (Unspecified) 2 1
UG (Total) 16 17 N (UG) = 33

Postgraduates (PG)
PG (MS) 10 10

PG (PhDs) 1 1
PG (Unspecified) 1 0

PG (Total) 12 11 N (PG) = 23
Other Participants

Other (Total) 1 1 N (Other) = 2
Total N (Control) = 29 N (Assisted) = 29 N (Total) = 58

study we pick a threshold of 10% (i.e., we test the hypothesis
that AI assistance introduces no more than 10% more vulner-
abilities per line of code), but we make our data and analysis
available so that other thresholds can be tested if desired. The
10% threshold was chosen due to its common use in prior
work (e.g. [50] in medical studies). As [50] notes, “This mar-
gin has to incorporate a value judgment that...can only be
made subjectively and involves benefit/risk assessments...In
the medical community, this margin has been reached via
consensus.” We hope to see a similar effort in the software
security community to establish acceptable consensus values.
With δ = 10%, rejecting the null confirms that the bug inci-
dence in the Codex assisted group is at worst 10% greater
than the control group; we believe that this would show that
Codex assistance does not exacerbate security “too much.”

4 Study results and analysis

4.1 User population (Demographics)

As noted (Section 3.2), 58 participants completed code for
analysis. As part of the study the participants completed a
brief demographic questionnaire. Table 1 shows the academic
enrolment information broken down by study group. There
was a good balance between undergraduates (UG), postgrad-
uates (PG), and others (e.g. recent graduates) across the two
study groups (‘control’ and ‘assisted’).

To examine pre-existing participant knowledge, we asked
the three questions presented in Table 2. The first question
checks if the assignment was similar to previous work com-
pleted by the participants, and about half of each of the ‘con-
trol’ and ‘assisted’ groups self-reported having written a
linked list in C before. The latter two questions aimed to vali-
date our goals with participant recruitment (i.e., they should
have some experience with C and knowledge of the linked
list data structure). The majority of participants in both study
groups had both written C code before and had previously or
were currently taking a data structures or algorithms class.

Table 2: Study participant experience demographics
Control Assisted Total

Is this the first linked list implementation you have ever made in C?
Yes (first list) 15 14 29

No (not first list) 11 12 23
Declined to answer 3 3 6

Is this the first time that you have ever programmed in C?
Yes (first time) 3 4 7

No (not first time) 23 21 44
Declined to answer 3 4 7
Are you taking, or have you ever taken a data structures or algo. class?

Currently taking 3 2 5
Previously taken 21 24 45

Never taken 2 1 3
Declined to answer 3 2 5

4.2 RQ1 - Functionality

We assess the functionality of the code using unit tests. Be-
sides the 11 Basic Tests (see Fig. 7) that we provided to the
participants, we wrote 43 Expanded Tests to exercise edge
cases (e.g., adding an element to the head of the list, pro-
viding the same position for both arguments to list_swap_
item_positions), invalid parameters (e.g., NULL pointers,
zero/negative indices), and validating that return value and
state of the list are correct after each API call.

Split Testing: We faced two challenges in automatically
testing the functionality of the submitted code. First, many
submissions did not compile (19/58 = 32.8%). This in-
cludes 9/30=30% in the Assistant group and 10/28=35.7%
in the Control group). Second, the tests in the test suite may
need to use other API functions in addition to the one un-
der test (e.g. a test for list_delete_item_at_pos might
need to create a nonempty list by using list_init and
list_add_item_at_pos). If there is a serious bug in one
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Figure 7: Functionality for each group. Each group has to im-
plement 11 functions and 11 basic tests. We had 43 expanded
tests. We show per group, the average % of functions Im-
plemented, regardless of whether they compiled or not, the
average % of those functions that Compiled, the average %
of each group that passes the 11 Basic Tests and the average
% that passes the 43 Expanded Tests from each group.



of the core functions, it will cause all tests that depend on
it to fail (even if the function under test itself is correct). It
is difficult to measure the functionality of the program as a
whole.

Our testing procedure solves both of these problems by
splitting the user’s code into individual functions (one per API,
including any required helper functions or data structures).
For each function under test, we create a version of the sub-
mitted code where the other API functions are replaced by our
own known-good reference implementations. If an extracted
function does not compile, we mark it as non-compiling and
mark its associated tests as failing. As the template code “im-
plements” each function by returning EXIT_FAILURE, and
some tests expect failure, unmodified code may spuriously
pass some tests. So, we also require code modification.

Our tests thus automatically measure four distinct quan-
titative aspects of functionality for each submission: (i) %
functions that were implemented, (ii) % functions that com-
piled, (iii) % basic tests passing, and (iv) % expanded tests
passing. The four measures are shown for each group (‘con-
trol’, ‘assisted’, and ‘autopilot’) in Fig. 7.

Results: We see systematic differences between the ‘as-
sisted’ and the ‘control’ group. the ‘assisted’ group had a
small but consistent advantage over the ‘control’ group. The
’autopilot’ group outperformed both ‘assisted’ and ’control’
groups on functions implemented and compiled—this is by de-
sign since our autopilot code generation procedure repeats sev-
eral times till code compiles. Interestingly, ‘autopilot’ slightly
underperforms ‘assisted’ on basic tests, but slightly overper-
forms on expanded tests. In other words, the AI code assistant
does help the users write better code in terms of functionality.

Finally, the ‘assisted’ group wrote more code overall (280.9
average lines of code compared to 247.5 LoC in the control
group). We note, however, that due to the small sample size,
none of these comparisons reach statistical significance at the
standard p < 0.05 level (as tested using Fisher’s exact test for
the completion data, which is a binary variable, and Welch’s
t-test for the remaining comparisons).

For interest, we include a graph indicating the time at which
users in the different groups completed the study, with the as-
sisted group writing their submissions faster. This is depicted
in Fig. 12, in the Appendix.

4.3 RQ2 - Security analysis

Although there are many different tools available for find-
ing security-relevant flaws in C source code (as discussed in
Section 2.4), we found that none of them were appropriate
for our use case. Static analysis tools such as CodeQL [25]
gave rates of false positives and negatives too high for our
purposes. Meanwhile, fuzzing the participant code created
records difficult to deduplicate (this is an open research prob-
lem [41]). Further, as fuzzing is dynamic, any vulnerability
causing a crash along a program path rendered vulnerabili-

ties later in the path unreachable, underestimating the true
vulnerability count. For these reasons, we opted to manu-
ally audit the 58 user-generated submissions, and five of the
code-cushman-001 LLM answers for comparison, a process
further discussed here.

4.3.1 Bug data encoding

Working one function at a time, a panel of three of the co-
authors collectively read through blinded copies of submitted
source code, annotating security-relevant bugs as comments.
This process was guided by compiler logs and the basic and ex-
tended test suites; as well as thorough manual lexical analysis.
As all annotation was performed collectively, no inter-rater
reliability checks needed to occur. This manual audit took
about 22 hours over the course of one week translating into
66 person-hours overall—manual analysis, while thorough,
does not scale well.

From this, we created a table of 67 unique bug classes
across all functions. Our focus was on memory related or
undefined bugs that cause CWEs such as the ones on Ta-
ble 6. Full records with all annotations are provided open
source [12]. A summary, with severe bugs found per function
with incidence rates is in Table 7 (in the Appendix).

Example bug finding process: One study participant
provided the code exactly as it appears in Fig. 6 for
list_item_to_string. This was a second-year UG stu-
dent who had written C code before and took an algorithms
class. They were in the ‘assisted’ group.

This code passes basic functional tests. However, it has
three CWEs. The first weakness is CWE-476: NULL Pointer
Dereference. This can occur in the case where str is NULL
when this function is called (this is not checked for in the code,
and the API cannot guarantee the values it will be passed as
arguments). This CWE is ranked at position #11 on Mitre’s
2022 ‘Top 25’ list [10]. The next weakness is CWE-758: Re-
liance on Undefined, Unspecified, or Implementation-Defined
Behavior. This can occur when head->item_name is NULL,
and occurs because sprintf does not define what should
happen when NULL is passed to the ‘%s’ argument. This is
a minor (some would say negligible) issue, as in the standard
libraries for gcc sprintf will print it as (null).

The third and final weakness is the most serious. It is CWE-
787: Out-of-bounds Write, ranked as #1 on Mitre’s ‘Top 25’
list. This occurs because the function sprints to an exter-
nally allocated string. What is the length of this string? It
is defined in a #define at the top of list.c (see Fig. 3(b),
line 7). This is important because head->item_name is a
user-controlled value, meaning they could store a very long
string in here which would run off the end of the buffer. The
only safe way to implement this function is to use s_nprintf
with the n set to the value of this #define. This function is
scored as passing the basic tests, failing extended tests
(they pass in NULL as str for one case), and features three



CWEs, two ranked as severe.

4.3.2 Metrics

We analyze the quality of each user’s submission using the
bug per line-of-code (LoC) as our metric. Since we associate
each bug with a CWE, we will use CWEs/LoC as the metric.
Since most users submitted valid implementations for a subset
of the 11 functions they were tasked with implementing, we
compute CWEs/LoC over those functions. We adopt two
notions of validity: (1) the function compiles or (2) it compiles
and passes unit tests.

The CWEs/LoC are computed as follows. if Ei j is the num-
ber of CWEs in function j of user i’s submission, Vi j ∈ {0,1}
is a binary variable that is one only if user i submitted valid
code for function j, and Li j are the LoCs written by user i for
function j, then the CWEs/LoC for user i are:

M1
i =

∑
11
j=1 Ei jVi j

∑
11
j=1 Li jVi j

. (1)

We report CWEs/LoC in ’assisted’ and ’control’ groups by
averaging M1

i over users in these groups. We compute Severe
CWEs/LoC metric focusing on the top-25 security CWEs
reported by Mitre [11]. The results are shown in Figure 8.

Since our methodology allows us to test each function
independently, we can compare CWE incidence rates on a
per function basis. For this, we compute the average CWEs
for function j as:

M2
j (g) =

∑i∈Ng Ei jVi j

∑i∈Ng Vi j
, g ∈ {Assist,Control} (2)

where NAssist and NControl are Codex assisted and control
group users, respectively.

4.3.3 Topline results—CWEs/LoC

Fig. 8(a)-Fig. 8(b) shows boxplots of the CWEs/LoC over
compiling functions and functions passing unit tests for the
three groups, while Fig. 8(c)-Fig. 8(d) do the same for severe
CWEs. For all four cases, we found that the ‘assisted’ group
has fewer bugs compared to ‘control’, with up to a 22% lower
mean for the ‘assisted’ group compared with the ’control’ for
severe CWEs over passing tests. For severe CWEs, the com-
parisons are also statistically significant using non-inferiority
tests with δ= 10%, i.e., we can conclude that severe bugs/LoC
for the ‘Assisted’ group are no more than 10% greater than in
the ‘Control’ group.

4.3.4 Per function CWE rates

Our topline results suggest that CWE incidence in ‘assisted’
and ‘control’ groups are close. We now check whether these
groups differ at the function level, i.e., whether Codex assisted

Control Assisted Autopilot
0.050

0.075

0.100

0.125

0.150

0.175

0.200

Bu
gs

 p
er

 L
oC

(a) CWEs/LoC over compiling
functions.

Control Assisted Autopilot

0.10

0.15

0.20

0.25

0.30

Bu
gs

 p
er

 L
oC

(b) CWEs/LoC over functions that
pass unit test.

Control Assisted Autopilot
0.05

0.10

0.15

0.20

0.25

0.30

Bu
gs

 p
er

 L
oC

(c) Severe CWEs/LoC over com-
piling functions. Non-inferiority
test is significant with p = 0.04.
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(d) Severe CWEs/LoC over func-
tions that pass unit test. Non-
inferiority test gives p = 0.06.

Figure 8: Comparing CWEs/LoC over compiling/passing
functions for ‘all CWEs’ and ‘severe CWEs’ for each group.
Statistically significant p-values between ‘assisted’ and ‘con-
trol’ for non-inferiority test (δ = 10%) are noted.

users introduce more bugs in certain functions compared to
the control group or vice-versa. The per-function CWE rates
(see Equation 2 to see how compute this) of severe CWEs
(those within Mitre’s ‘Top 25’) written by the three study
groups are presented in Table 3. We present the results for
(a) all functions that compile, and (b) the compiling functions
that then go on to pass the basic suite of tests. We present
the number of passing functions from each group, as well as
the number of CWEs found in those functions. The rate is
the division of these two numbers (see Equation 2). Security-
related errors within functions that pass tests are naturally
more concerning than those in functionally-buggy code, as
code that appears to be functional has a higher chance of
being deployed as-is.

As shown, the results for individual function vary across
groups. Where the ‘assisted’ group has a 10% higher rate
of bugs compared to the ‘control’ is highlighted in blue.
Over functions that pass unit tests, ‘assisted’ users have more
bugs for functions that perform input/output operations on
the linked list. Conversely, functions for which the ‘control’
group has 10% higher rate of bugs compared to ‘assisted’ are
highlighted in blue. These functions tend to involve pointer
manipulations and/or more complex logic. Where a differ-



ence between the two groups is statistically significant, we
annotate the fields with a †.

In terms of absolute CWE rates, for the ‘control’
and ‘assisted’ groups, list_add_ item_at_pos,
list_remove_item_at_pos, and list_update_
item_at_pos feature significantly higher incidence
rates of severe CWEs (≈50 % greater than the ‘average’
function rate), likely reflecting the increased difficulty when
writing pointer and string manipulations (notoriously fiddly
in C). For interest, we also include Table 7 (in the Appendix)
which presents the number of each type of CWE identified in
the different functions by each study group.

Table 3: Counting the # of Severe CWEs identified in each
function/group. N = (N)umber of submitted functions which
compile / which pass the tests. Rate is the average of the
Severe CWEs count per function in this group. Yellow cells
indicate ‘control’ has 10 % higher rate of bugs than ‘assisted’,
Blue is reverse. Cells with † indicate where this difference is
statistically significant. The ‘Autopilot’ group in this Table
describes only the first 5 code-cushman-001 answers.

Function Group Compiling Passing
N # CWEs Rate N # CWEs Rate

list_add_
item_at_pos

Control 20 61 3.05 † 12 38 3.17
Assisted 26 88 3.38 † 16 53 3.31
Autopilot 5 13 2.6 1 2 2.0

list_cost_sum
Control 13 12 0.92 10 10 1.0
Assisted 16 14 0.88 14 14 1.0
Autopilot 5 9 1.8 4 8 2.0

list_deduplicate
Control 12 20 1.67 † 4 7 1.75
Assisted 15 14 0.93 † 3 5 1.67
Autopilot 5 4 0.8 1 2 2.0

list_find_
highest_price_
item_position

Control 14 14 1.00 † 8 11 1.38 †
Assisted 19 12 0.63 † 11 09 0.82 †
Autopilot 5 14 2.8 1 1 1.0

list_item_
to_string

Control 21 47 2.24 13 29 2.23
Assisted 26 56 2.15 20 43 2.15
Autopilot 5 10 2.0 4 6 1.5

list_load
Control 12 19 1.58 4 6 1.5 †
Assisted 17 27 1.59 4 8 2.0 †
Autopilot 5 0 0.0 0 0

list_print
Control 24 16 0.67 9 4 0.44 †
Assisted 27 22 0.81 13 10 0.77 †
Autopilot 5 2 0.4 1 1 1.0

list_remove_
item_at_pos

Control 13 49 3.77 10 43 4.30 †
Assisted 19 74 3.89 14 51 3.92 †
Autopilot 5 16 3.2 3 9 3.00

list_save
Control 14 4 0.29 7 1 0.14
Assisted 17 5 0.29 7 2 0.29
Autopilot 5 0 0.0 0 0

list_swap_
item_positions

Control 12 26 2.17 5 11 2.20 †
Assisted 20 43 2.15 6 7 1.17 †
Autopilot 5 15 3.0 0 0

list_update_
item_at_pos

Control 14 38 2.71 † 10 36 3.6
Assisted 24 88 3.67 † 16 60 3.75
Autopilot 5 16 3.2 3 13 4.33

Totals
Control 139 290 2.09 84 180 2.14
Assisted 204 451 2.21 124 278 2.24
Autopilot 49 99 2.02 18 43 2.39

4.3.5 CWE incidence rates

Fig. 9 shows the prevalence of the ten most common CWEs
in user submissions. CWE descriptions in Table 6 in the Ap-
pendix, along with their severity rank—if a CWE is not first-
order severe, a possible second-order severity is presented

alongside. For instance, with CWE-401, which is unranked,
the downstream effect is CWE-400, ranked at (#23).

CWE-787 (out-of-bounds write), the most severe CWE, is
about equally prevalent in the ‘control’ and ‘assisted’ groups,
but far less prevalent in the ‘autopilot’ group. This is likely
due to the main root cause of CWE-787, which was, by far,
most frequently caused by the use of sprintf rather than
snprintf (e.g. in list_item_to_string as previously dis-
cussed in Section 4.3.1).

CWE-416 (use after free), the second most severe CWE,
is more prevalent in the ‘assisted’ group compared to the
‘control’. This appears to be due to mistakes frequently made
by the ‘assisted’ group when manipulating the handling of
the char* item_name fields. Here, when creating a new
shopping list node, the item_name is passed as an argument.
There are many ways that this name could be stored. The
unsafe and naïve way is to copy the char* pointer values.
As the API is not provided any guarantees about the memory
location this is pointing to, it is not safe to assume that this
value will persist beyond the call of this function. Performing
a pointer copy may thus lead to CWE-416 if the memory is
later freed (there will now be a dangling pointer to the freed
memory). The ‘safe’ way to manage the item_name variable
is to perform a copy of the string into a new variable. There
are two reasonable methods—the first (and easiest) would
use strdup, and the second would use strlen followed by
a malloc(strlen+1) followed by a strcpy.

Across all submissions, CWE-476 (NULL Pointer Deref-
erence) was the most commonly observed potential vul-
nerability. This is because the API of the shopping list
does not guarantee argument correctness: so every single
pointer should always be checked against NULL. Special
cases are where a function takes a double-pointer, such as
list_add_item_at_pos taking node** head. Here, both
head and head* need to be checked against NULL. Such re-
quirements were often missed by all participants, human and
LLM. These had downstream effects. For example, it causes
a large proportion of the CWE-758 instances (Reliance on
Undefined Behavior), a CWE frequently observed when code
uses standard library functions that may ingest NULL pointers
(e.g. printf, strcpy, strlen).

4.3.6 Observations

The impact of code suggestions on cybersecurity (RQ2) is less
conclusive than the impact on functionality (RQ1). Table 3
suggest that certain kinds of functions may be more or less
difficult to write safely depending on their complexity and the
experience of the developer—it appears that the LLMs may
sometimes reduce the incidence rates of bugs, and sometimes
increase them. Meanwhile, aggregating CWEs per participant
LoC (Fig. 8) suggests that there may be a slight benefit to
using LLMs, with Fig. 8(d) in particular highlighting that as
code is made to pass tests it may be made more secure by
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Figure 9: Top 10 CWEs per group and their prevalence as %
of total CWEs. CWE descriptions are in Table 6.

using the LLM. This is contrary to literature [7, 8] which
suggests that LLMs should be used with care due to their
habit of suggesting vulnerable patterns.

4.4 RQ3 - On the origin of bugs

To better understand how LLM assistance contributed to the
code written by users in the Assisted group, we created a visu-
alization tool (Fig. 11 in the Appendix) that colors each user’s
code based on the accepted suggestions logged during the ex-
periment (ignoring code from our provided initial template).
The tool takes each suggestion in reverse chronological order
(most recent first) and attempts to match it to a portion of
the final document, initially using exact string matching and
then attempting approximate matches up to a normalized edit
distance of 50%. With code originating from the LLM, the
original suggestion will be shown on hover.

Using this tool, we examined each of the 564 security vul-
nerabilities identified in Section 4.3.5 and coded them as
‘originating from a Codex suggestion’ or as ‘introduced man-
ually by a human user’ (Table 4). We found that humans
introduced 356 of the bugs in our dataset (63%), while only
36% were introduced by the LLM and present in the user’s
code verbatim (16%) or with modifications (20%).

Overall, 60% of the non-template code was written by a
human. This accords with our findings in Section 4.3.5: the
rate at which vulnerabilities are introduced by the LLM is
similar to the rate at which they are introduced by humans.
This makes sense intuitively: LLMs attempt to predict the
most likely continuation of their input, and so the quality of
the code they output tends to match the quality of their input.

We can qualitatively examine the origin of a single bug. As
an example, consider the potential use-after-free CWE-416
discussed in Section 4.3.5. This is chosen as incidences of this
bug were lexically similar between users and suggestions.We

Table 4: Attribution of bugs and LoCs for Codex-assisted
users. Approx. is code manually modified from a suggestion.

Human Codex Approx.
LoC 60% 16% 18%
Bugs 63% 16% 20%

Table 5: Origins of CWE-416 ‘use after free’ bug when
item_name is improperly copied by users in ‘assisted’ group.

Participant
UUID

First location
of bug

(document /
suggestion)

# Bug
suggestions

# Bug
suggestions

accepted

# Bugs
in final

file

0640 Suggestion 5 3 3
1f1c Document 5 0 2
2125 Document 0 0 3
26a4 Suggestion 3 1 2
3533 Suggestion 2 1 1
36de Suggestion 69 5 4
3cff Suggestion 2 2 2
514e Document 1 1 1
7193 Suggestion 13 1 2
74bd Suggestion 4 2 2
925c Suggestion 8 2 1
a3ed Suggestion 10 2 2
a4b3 Suggestion 11 5 4
a5ba Document 0 0 1
a80d Document 6 3 3
a974 Suggestion 12 5 3
b59f Suggestion 8 2 2
be6f Suggestion 4 1 2
c23b Suggestion 20 10 5
dac3 Document 10 2 2
dc47 Suggestion 1 0 2
ddac Suggestion 13 1 1
ec83 Document 11 3 2
fd62 Suggestion 12 1 1

are interested in examining the question of how users interact
with buggy suggestions from the LLMs, and how bugs might
‘amplify’ via LLM suggestions if present in code.

To examine this, we first identify the CWE-416 incidences
using the annotated final files from RQ2. We then pro-
gressively can scan the document and suggestion snapshots
recorded during the user study, looking for the first recorded
incident of that bug—for example, the first time that a new
node’s item name is incorrectly set directly to the function
argument item_name (i.e. without using a proper string copy
mechanism). We then count the number of times that the bug
was present in suggestions by the LLM, as well as the number
of suggestions containing the bug that were accepted by the
user. As user acceptance of suggestions is still not fully re-
flective of the final state of the code (as accepted code may be
further edited), we also scan the final ‘finished’ code files to
count the number of these bugs present. Note that this bug can
occur in multiple locations—both list_add_item_at_pos
and list_update_item_at_pos need to copy item names.

We report results of this investigation in Table 5. Looking
at this bug, in most cases it comes from the LLM suggestion
originally, and even when it appears in the document first,
the LLM will go on to suggest the bug. Users that had the
highest number of this bug had the highest number of buggy
suggestions provided and also accepted the highest number



of suggestions. This table provides some insights into the
usage of the LLM in general: users ‘1f1c’, ‘2125’, ‘a5ba’, and
‘dc47’ self-author the bug without suggestions and do not go
on to accept buggy suggestions from the LLM (nor in many
cases even generate relevant suggestions).

5 Discussion

5.1 Implications for LLM assistants
Functionality (RQ1): our results corroborate recent studies
that have suggested that LLM assistants improve developer
productivity [22, 23]. While we do not directly measure
productivity, the fact that ‘assisted’ users submitted more
lines of code and completed a greater fraction of functions
suggests enhanced productivity. One surprising result was
the relatively high quality of code produced in ‘autopilot’
mode (albeit for a relatively simple task).

Security (RQ2): While prior work found that LLM code
assistants may suggest security-critical bugs/CWEs [8], it did
not attempt to determine a comparison of the tool against
human developers nor did it examine how the (potentially vul-
nerable) suggestions may impact developers using the tools.
Meanwhile, other studies which have included human devel-
opers [21–23] have not considered security. As such, to the
authors’ knowledge, the user study presented in this work is
the first such study that measures how LLM suggestions may
impact the security of the code. We have found no conclusive
evidence to support the claim LLM assistants increase CWE
incidence in code in general, even when we looked only at
severe CWEs. Our results indicate that the security impact in
this setting is small: AI-assisted users produce critical security
bugs at a rate no greater than 10% higher than the control,
indicating that LLMs do not introduce new security risks.
This suggests that security concerns with LLM assistants
might not be as severe as initially suggested, although stud-
ies with larger sample sizes and diverse user groups are
warranted.

Bug origins (RQ3): Our results indicate that users interact
with the LLM in interesting ways. Users provide prompts that
may include bugs, accept buggy prompts which end up in the
‘completed’ programs as well as accept bugs that are later
removed. In some cases, users also end up with more bugs
than were suggested by the LLM! In addition, the users that
accepted the most bugs from the LLM also had the most bugs
in their final files, further suggesting that the use of a buggy
LLM may lead users toward buggy code.

5.2 Threats to validity
User selection: This study recruited university students rather
than professional developers. While this may have an impact
on the generalizability of the results due to differences in be-
havior and code performance, previous work [51] has found

no difference between experienced software developers and
students regarding security-aware coding. In this work, we ob-
served a defect density of 0.15 bugs/LoC which while greater
than reported figures of 0.07 bugs/LoC [52], is reasonable
given the time constraints of the assignment.

Code assignment difficulty: We designed both the assign-
ment and chose the programming language with the intention
of examining how the developers might miss bugs in their
designs. As such, the singly-linked shopping list has a number
of unusual traits and a non-optimal API. This increases the
difficulty of the assignment, which may itself have an impact
on the study results—if a developer is unable to ‘solve’ the
coding challenge at hand, they may get frustrated and hand in
a substandard solution. Further, C is considered a more diffi-
cult programming language for inexperienced programmers
than other languages [53] such as Python or MATLAB. Other
contexts (i.e. other languages, other programming tasks) may
yield different results than those found in this study.

Data capture: Due to limitations of the cloud-based IDE,
it was not possible to capture all data from participants. For
instance, rather than capturing every keypress from the users,
we were restricted to taking ‘snapshots’ of their development
over time (every 60 seconds). This limits the kind of fine-
grained analysis that might have been possible with more
pervasive measurements.

6 Conclusions

In this paper we set out to investigate the cybersecurity impact
of LLM code suggestions on participants writing code in a
user study. With N=58 users, we determined that the LLM has
a likely beneficial impact on functional correctness; and does
not increase the incidence rates of severe security bugs in
our context (i.e., low level C code with pointer and array ma-
nipulations). This is somewhat surprising given the existing
published studies on how vulnerable code can be suggested
by the LLMs [7, 8]. When considering the origin of bugs that
were found, the data suggests that the users do not use the
extra productivity benefits to fix bugs in their code—although
suggestions are being modified (e.g. variable names), if a sug-
gestion contained a bug it may not be fixed. This suggests
that further research needs to be undertaken on highlighting
problematic lines of code (‘nutritional labels’) to encourage
users to check for security in real-time, as well as improving
code LLMs so that they can produce code that is more secure
than the user’s existing code.
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User study recruitment and ethical considerations:
This study involved human participants and was approved

by New York University’s Institution Review Board (IRB) as
#IRB-FY2022-6074. The key details are noted here.

Participants were recruited in phases from students and
ex-students of the classes of two of the authors of this paper.
As there is a potential power dynamic between an instructor
and their students, a hard firewall was established between
student participants and their instructors. All knowledge of
enrolled participants was restricted to a single research inves-
tigator (and author of this paper), and this investigator was not
the instructor or supervisor of any of the study participants.
Students were informed of this firewall, and were informed
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that their participation status would be kept strictly confi-
dential from their instructors, and that participating (or not
participating) would have no impact on their grades.

During recruitment, participants were told both verbally
and via advertising material for the study that they would
be randomly divided into two groups, one with access to
an LLM code-assistant, and one without, and would then
be asked to complete a programming challenge. They were
also told that the code between each of the groups would be
compared (Quote from the advertising material: “Will one
group outperform the other?”, see Fig. 10). Verbal discussion
of the study included potential metrics, including time taken,
functionality measurements, and security issues.

As participants were informed that metrics including secu-
rity analysis would be a part of the study, this study did not
deceive any participants. It also did not deceive them with
regards to the LLM itself, as AI responses from the Codex
LLM were not modified (e.g. no bugs were artificially added
to suggestions above the ones already present).

Large Language Models such as GitHub Copilot and Ope-
nAI Codex have recently been commercially released with
the goal of helping developers write software code. While
the marketing material touts the benefits of these “AI Pair
Programmers”, the actual impacts of these LLMs is yet
to be formally investigated. In this research, we aim to
begin this exploration by challenging participants such as
yourself with completing a range of programming ques-
tions similar to those posed at the undergraduate level in
computer science and software engineering courses. The
research question is simple: Half the participants will have
assistance via an LLM (OpenAI Codex) and the other half
will not. Will one group outperform the other?

Figure 10: Introductory paragraph to the recruitment material.

Figure 11: Our visualization tool explores LLM suggestion
acceptance. Grey: Initial template; blue: human-written code;
green: code accepted exactly from Codex suggestion; orange:
approximate matches. Pop-up: Codex suggestion (on hover).

CWE frequency within each study group:
Table 6 lists the most common CWEs from each study

group with their descriptions, downstream-CWEs if they are
severe, and the MITRE ‘Top 25’ rank.

Table 7 presents the severe CWE counts per function by
study group, with bugs associated according to Table 6. The
N for each category refers to the (N)umber of compiling func-
tions from participants. Rate refers to the count of this CWE
divided by the N. The ‘Autopilot’ group contains only to the
first 5 answers from code-cushman-001.

Table 6: Top 10 most common CWEs in each study group,
along with downstream severe CWEs if a non-severe CWE
would lead to a different severe CWE.

CWE ID Description ‘Top 25’
Rank

CWE-476 NULL Pointer Dereference 11
CWE-758 Reliance on Undefined Behavior -
CWE-401 Missing Release of Memory
↪→ CWE-400 Uncontrolled Resource Consumption 23
CWE-252 Unchecked Return Value -
CWE-416 Use after Free 7
CWE-787 Out-of-bounds Write 1
CWE-843 Access using Incompatible Type
↪→ CWE-119 Improper Restriction of Buffer Ops 19
CWE-457 Use of Uninitialized Variable
↪→ CWE-119 Improper Restriction of Buffer Operations 19
CWE-835 Infinite Loop -
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Figure 12: Study completion time between ‘Assisted’ and
‘Control’ participant groups. Although the deadline was 14
days, a small minority of participants from both groups re-
quired additional time.



Table 7: Severe CWE counts per function by study group. ‘Autopilot’ group refers to the first 5 code-cushman-001 answers.
Function Name Group Observed CWE Compiling Passing

N # this
CWE Rate N # this

CWE Rate

list_add_item_at_pos

Control

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 20 7 0.35 12 2 0.17
CWE-400: Uncontrolled Resource Consumption 20 9 0.45 12 6 0.5
CWE-416: Use After Free 20 19 0.95 12 14 1.17
CWE-476: NULL Pointer Dereference 20 26 1.3 12 16 1.33

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 26 13 0.5 16 7 0.44
CWE-400: Uncontrolled Resource Consumption 26 14 0.54 16 7 0.44
CWE-416: Use After Free 26 30 1.15 16 22 1.38
CWE-476: NULL Pointer Dereference 26 31 1.19 16 17 1.06

Autopilot
CWE-400: Uncontrolled Resource Consumption 5 2 0.4 1 0 0.0
CWE-416: Use After Free 5 4 0.8 1 0 0.0
CWE-476: NULL Pointer Dereference 5 7 1.4 1 2 2.0

list_cost_sum
Control CWE-476: NULL Pointer Dereference 13 12 0.92 10 10 1.0
Assisted CWE-476: NULL Pointer Dereference 16 14 0.88 14 14 1.0
Autopilot CWE-476: NULL Pointer Dereference 5 9 1.8 4 8 2.0

list_deduplicate

Control

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 12 1 0.08 4 0 0.0
CWE-400: Uncontrolled Resource Consumption 12 6 0.5 4 2 0.5
CWE-416: Use After Free 12 1 0.08 4 1 0.25
CWE-476: NULL Pointer Dereference 12 11 0.92 4 4 1.0
CWE-787: Out-of-bounds Write 12 1 0.08 4 0 0.0

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 16 1 0.06 3 0 0.0
CWE-400: Uncontrolled Resource Consumption 16 4 0.25 3 4 1.33
CWE-416: Use After Free 16 2 0.13 3 0 0.0
CWE-476: NULL Pointer Dereference 16 7 0.44 3 1 0.33

Autopilot CWE-400: Uncontrolled Resource Consumption 5 3 0.6 1 1 1.0
CWE-476: NULL Pointer Dereference 5 1 0.2 1 1 1.0

list_find_highest_price_item_position
Control CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 14 1 0.07 8 0 0.0

CWE-476: NULL Pointer Dereference 14 13 0.93 8 11 1.38
Assisted CWE-476: NULL Pointer Dereference 19 12 0.63 11 9 0.82
Autopilot CWE-476: NULL Pointer Dereference 5 14 2.8 1 1 1.0

list_item_to_string

Control
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 21 4 0.19 13 0 0.0
CWE-476: NULL Pointer Dereference 21 27 1.29 13 17 1.31
CWE-787: Out-of-bounds Write 21 16 0.76 13 12 0.92

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 26 2 0.08 20 1 0.05
CWE-416: Use After Free 26 1 0.04 20 0 0.0
CWE-476: NULL Pointer Dereference 26 27 1.04 20 22 1.1
CWE-787: Out-of-bounds Write 26 26 1.0 20 20 1.0

Autopilot CWE-476: NULL Pointer Dereference 5 7 1.4 4 4 1.0
CWE-787: Out-of-bounds Write 5 3 0.6 4 3 0.75

list_load

Control

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 12 3 0.25 4 0 0.0
CWE-400: Uncontrolled Resource Consumption 12 5 0.42 4 1 0.25
CWE-476: NULL Pointer Dereference 12 6 0.5 4 3 0.75
CWE-787: Out-of-bounds Write 12 5 0.42 4 2 0.5

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 18 6 0.33 4 1 0.25
CWE-400: Uncontrolled Resource Consumption 18 8 0.44 4 3 0.75
CWE-416: Use After Free 18 1 0.06 4 0 0.0
CWE-476: NULL Pointer Dereference 18 7 0.39 4 2 0.5
CWE-787: Out-of-bounds Write 18 5 0.28 4 2 0.5

list_print

Control
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 24 12 0.5 9 2 0.22
CWE-400: Uncontrolled Resource Consumption 24 2 0.08 9 1 0.11
CWE-476: NULL Pointer Dereference 24 2 0.08 9 1 0.11

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 27 17 0.63 13 8 0.62
CWE-400: Uncontrolled Resource Consumption 27 2 0.07 13 1 0.08
CWE-416: Use After Free 27 1 0.04 13 1 0.08
CWE-476: NULL Pointer Dereference 27 1 0.04 13 0 0.0
CWE-787: Out-of-bounds Write 27 1 0.04 13 0 0.0

Autopilot CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 5 1 0.2 1 1 1.0
CWE-476: NULL Pointer Dereference 5 1 0.2 1 0 0.0

list_remove_item_at_pos

Control CWE-400: Uncontrolled Resource Consumption 13 28 2.15 10 25 2.5
CWE-476: NULL Pointer Dereference 13 21 1.62 10 18 1.8

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 19 1 0.05 13 0 0.0
CWE-190: Integer Overflow or Wraparound 19 1 0.05 13 0 0.0
CWE-400: Uncontrolled Resource Consumption 19 47 2.47 13 36 2.77
CWE-476: NULL Pointer Dereference 19 25 1.32 13 15 1.15

Autopilot CWE-400: Uncontrolled Resource Consumption 5 7 1.4 3 3 1.0
CWE-476: NULL Pointer Dereference 5 9 1.8 3 6 2.0

list_save
Control

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 14 1 0.07 7 0 0.0
CWE-400: Uncontrolled Resource Consumption 14 2 0.14 7 0 0.0
CWE-787: Out-of-bounds Write 14 1 0.07 7 1 0.14

Assisted CWE-400: Uncontrolled Resource Consumption 17 3 0.18 7 1 0.14
CWE-787: Out-of-bounds Write 17 2 0.12 7 1 0.14

list_swap_item_positions

Control
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 12 1 0.08 5 0 0.0
CWE-400: Uncontrolled Resource Consumption 12 2 0.17 5 0 0.0
CWE-476: NULL Pointer Dereference 12 23 1.92 5 11 2.2

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 20 3 0.15 6 0 0.0
CWE-190: Integer Overflow or Wraparound 20 2 0.1 6 0 0.0
CWE-400: Uncontrolled Resource Consumption 20 9 0.45 6 0 0.0
CWE-476: NULL Pointer Dereference 20 29 1.45 6 7 1.17

Autopilot CWE-400: Uncontrolled Resource Consumption 5 4 0.8 0 0
CWE-476: NULL Pointer Dereference 5 11 2.2 0 0

list_update_item_at_pos

Control

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 14 1 0.07 10 0 0.0
CWE-400: Uncontrolled Resource Consumption 14 10 0.71 10 10 1.0
CWE-416: Use After Free 14 10 0.71 10 10 1.0
CWE-476: NULL Pointer Dereference 14 17 1.21 10 16 1.6

Assisted

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 24 5 0.21 16 1 0.06
CWE-400: Uncontrolled Resource Consumption 24 26 1.08 16 22 1.38
CWE-416: Use After Free 24 22 0.92 16 19 1.19
CWE-476: NULL Pointer Dereference 24 30 1.25 16 18 1.13
CWE-787: Out-of-bounds Write 24 5 0.21 16 0 0.0

Autopilot
CWE-400: Uncontrolled Resource Consumption 5 6 1.2 3 5 1.67
CWE-416: Use After Free 5 3 0.6 3 2 0.67
CWE-476: NULL Pointer Dereference 5 7 1.4 3 6 2.0
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