
Detecting Multi-Step IAM Attacks in AWS Environments via Model Checking

Ilia Shevrin
Citi

Oded Margalit
Ben-Gurion University

Abstract
Cloud services enjoy a surging popularity among IT profes-
sionals, owing to their rapid provision of virtual infrastruc-
ture on demand. Hand-in-hand with the growing usage, there
is also a growing concern about potential security vulnera-
bilities arising from misconfigurations, exposing resources
or allowing malicious actors to escalate privileges. Model
checking is a known method for verifying that a finite-state
Boolean model of a system satisfies certain properties, where
the model and the properties are described in formal logic. In
case it doesn’t, a finite trace leading to a violating state can
be generated.

In this paper, we present an approach to construct a finite-
state Boolean model from the Identity and Access Manage-
ment (IAM) component of Amazon Web Services (AWS),
and a property from an attack target, e.g., read a classified S3
bucket object. We run a model checker that detects whether
some initial setup allows an attacker to escalate privileges
and reach the target in one or more steps by applying IAM
manipulating actions. We show that our approach can dis-
cover existing misconfigurations in real AWS environments,
and that it can detect multi-step attacks in setups containing
tens of AWS accounts with hundreds of resources in under a
minute.

1 Introduction

Cloud services have risen in popularity in the past years
thanks to their ability to effectively supply the customer
with virtual infrastructure on demand. The rapid adoption
inevitably led to concerns about the security posture of ap-
plications deployed on remote, provisioned hardware. AWS
devised the Shared Responsibility Model [9], where secu-
rity and compliance is a shared responsibility between the
provider and the customer. The cloud provider is responsible
for the Security of the Cloud − protecting the infrastructure
that runs all of the services offered in the Cloud. The customer
is responsible for the Security in the Cloud − managing and
encrypting the data, classifying the assets, and using IAM

tools to apply permissions.
Hence, the burden of configuring the IAM permissions

for the application is left to the customer, and along with
an increase in the scope and complexity of cloud-deployed
systems, it should come as no surprise that according to recent
surveys [42], cloud service misconfigurations and privileged
user abuse are involved in 42.2 and 37.8 percent respectively
of security attacks. In their words, misconfiguration of cloud
resources is a pervasive issue, as evidenced by the plethora
of exposed S3 (Simple Storage Service) buckets. Privileged
user abuse is likely symptomatic of the complexity of IAM
policies and settings that are tied to most cloud operations.

Furthermore, OWASP released in 2021 the top 10 web ap-
plication security risks document [2]. At least 3 out of 10
items could be connected to the IAM configuration vulnera-
bilities problem. They are identification and authentication
problems, which leads to initial cloud principal compromise;
broken access control, which directly relates to flaws in
policies leading to unwanted escalation of privileges by at-
tackers; and security misconfiguration, which can serve as
an umbrella term for imperfect policies containing errors and
typos that have security implications. Additionally, several
techniques of the influential MITRE ATT&CK framework [5]
directly address this topic − Exploitation for Privilege Esca-
lation (T1068); Domain Policy Modification (T1484); Abuse
Elevation Control Mechanism (T1548).

Recently, Rhino Security Labs researchers showed that cer-
tain combinations of permissions in AWS IAM policies can
be exploited in privilege escalation methods, by performing
certain AWS actions under certain conditions [27]. To de-
tect these combinations, instead of performing syntactic scans
on the policy documents, we purpose a model checking ap-
proach. We construct a finite-state Boolean model, which is
essentially a transition system where the AWS actions are
assigned semantics from an adversarial point of view. This
model is then formally checked that it satisfies certain reach-
ability properties. These properties are derived from attack
targets such as "read a classified S3 bucket object", or "get
full administrator permissions". If the model checker finds a

trace that satisfies the property, it produces a list of steps that
describe the AWS actions an attacker must perform until they
reach the target. Alternatively, the model checker may output
that the setup is safe if it manages to prove that no traces exist.

Constructing such a model poses many challenges due to
the richness of the AWS IAM service, and due to the fact
that real-world cloud configurations are usually expected to
contain hundreds of cloud resources. Hence, the modeling is
essentially an exercise in careful abstraction of complicated
real-world frameworks. In this paper, we attempt to provide
motivation for deciding when to abstract certain elements of
AWS while keeping others. For example, an IAM action that
updates the inline policy of a role (PutRolePolicy) is crucial
to model because it may serve as a means for a privilege
escalation, but the JSON content of the updated policy itself
can be abstracted since we assume the attacker provides the
most permissive content suited for their needs (e.g., allow all
actions on all resources).

Moreover, the modeling process is not a one-time effort,
as at any time there may be IAM exploits that are not for-
malized in the model, or that are not even discovered yet by
security researchers. The model checker will not be able to
produce traces with these exploits. However, we envision that
with time our model will cover more and more exploits, en-
hancing its credibility and reducing false positives and false
negatives. In the meantime, our model already covers many
known exploits, and our evaluation shows that our approach
is able to detect existing misconfigurations in pre-deployment
environments and assist security engineers in verifying their
IAM policies.

Another challenge is the scalability of the model checking
process. While we greatly depend on the quality of our un-
derlying formal reasoning tools, we also provide a technique
to alleviate the performance burden on the model checker.
We can construct the model efficiently using only Boolean
variables while leaving the original model checking interface
intact. Our evaluation shows that the model checker can detect
attack vectors of up to 5 steps on accounts with hundreds of
resources in under a minute.

In brief, our contributions in the paper are as follows.

• We define a Boolean model of the AWS IAM component
and discuss ways to model and abstract various IAM
elements while maintaining correctness in the context of
our threat model. (Section 5).

• We define and implement a model checking process that
receives an AWS organization setup and a target property
to check, and detects multi-step attacks exploiting AWS
actions (Sections 6 and 7). To the best of our knowledge,
this is the first work that attempts to apply model check-
ing on the IAM component in cloud environments to
detect multi-step privilege escalation attacks.

• We evaluate the scalability of our approach and the qual-
ity of the detected results (Section 8).

• We present a technique to improve model checking per-
formance by translating non-Boolean variables (such as
strings) into Boolean arrays, thus essentially reducing
the problem to pure Boolean satisfiability (Appendix A).

2 Model Checking

Model checking [22] is a known method for checking
whether a finite-state model of a system meets a given spec-
ification. The model and the specification (or a property),
are formulated in a precise formal language, mostly using
mathematical logic. A popular class of properties is safety
properties, which guarantee that a bad thing never happens in
the system.

Model checking strength lies in the premise that it explores
the full state space of the model, giving it two advantages: it
is capable of detecting rare bugs, by generating a trace, or a
counter-example, leading to a violation of the validated prop-
erty; and it can generate a proof assuring that the model sat-
isfies the property. The exhaustive nature of model checking
often leads to the state-space explosion problem as the mod-
eled systems grow. Attempts to deal with this problem include
algorithms such as Bounded Model Checking (BMC) [43]
using k-induction, and IC3 [19, 25].

Many model checking techniques usually integrate sat-
isfiability (SAT) solvers [35] in their algorithms. A SAT
solver determines whether there exists an assignment to a
given Boolean formula, such that the formula evaluates to
true. A satisfiability modulo-theorem (SMT) solver receives
a richer set of inputs, that is, formulas with respect to the-
ories such as real arithmetic, arrays, and strings. Fast and
efficient SAT/SMT solvers exist [17, 23], and are applied in
areas such as program verification, static analysis, and model
checking [24].

Specifically, a BMC algorithm constructs in each loop iter-
ation k a Boolean formula unfolding the model up to step k,
and then constrains it with the negation of the property in step
k. The satisfiability of this formula is then checked in a SAT
solver. A satisfying assignment is directly translated to a trace
in step k, while an unsatisfied result signals the algorithm to
proceed to the next step. A k-induction algorithm is interwo-
ven in the loop, that is, if the algorithm proves the statement
that "the last k steps are safe" implies that "step k+1 is safe",
it may stop and conclude global safety.

3 AWS Identity and Access Management

In the context of AWS IAM, a statement is a permission
defined by the following elements (as of 2022 [4]):

1. Effect is either allow or deny.

2. Action / NotAction defines what action(s) can / cannot
be performed.

3. Resource / NotResource defines on what resource(s)

the action can / cannot be performed. A resource is a
cloud object with a unique identifier, such as S3 bucket,
IAM role, or Lambda function.

4. Principal / NotPrincipal defines by what principal(s)
the action can / cannot be performed. Various AWS
services, as well as resources such as IAM roles and
IAM users may serve as principals.

5. Condition defines additional conditions depending on
the action. A condition is composed of an operator, key
and value.

The values in each element are usually represented as Ama-
zon Resource Names (ARN). The ARN is most commonly
defined by the following format.

arn:partition:service:region:account -id:resource -
type/resource -id

For example, arn:aws:iam::1234:role/MyRole is the
ARN of an IAM role named MyRole belonging to account
1234. Some of the ARN’s elements can be omitted for spe-
cific resources, for instance IAM resource ARNs do not have
regions. The name identifier in an ARN may contain wildcard
characters − Asterisk "*" is a placeholder for zero or more
characters; question mark "?" is a placeholder for a single
character.

Conditions are composed of a condition operator, for exam-
ple ArnEquals or StringNotLike; a condition key, for ex-
ample policyARN or instanceType; and a condition value
which may be of any type depending on the key. In case
of policyARN, the value is formatted as an ARN and the
accompanying operator works on ARN values; in case of
instanceType the value is a string and the accompanying
operator works on string values. To simplify presentation,
we omit the service prefix that preceeds action and condition
names in AWS.

For example, a statement JSON may contain the following
content.

{"Effect": "Deny",
"Action": ["AttachRolePolicy","DetachRolePolicy

"],
"Resource": "arn:aws:iam::1234:role/MyRole",
"Condition": { "ArnNotLike": {

"PolicyARN": "arn:aws:iam::1234: policy/Dev*"
}}}

This statement denies attaching and detaching IAM policies
whose name is not matched by the regular expression Dev*,
to the IAM role MyRole in account 1234. It does not state
anything about the policies that are allowed to be attached.

A policy is an array of statements. Policies may belong to
resources, defining what can be performed on the resources
by which principals (resource-based policies); or to principals,
defining what the principals can perform on other resources
(identity-based policies). For the latter, policies may be de-
fined inline for a single principal, or as IAM policy resources
(AWS managed or custom), which can be attached to users,

groups, or roles. Policies may be also evaluated on a global
organization scope and not for a single resource (service con-
trol policies, attached to accounts). Policies may also serve as
permissions boundaries, limiting effective permissions of a
principal to a conjunction of their permissions boundary with
their attached policies. The fundamental policy evaluation
rule is that a permission requires at least one allow statement
across all relevant policies and no deny statement.

Resources in AWS belong to accounts, which in turn belong
to organizational units, and together form the organization
hierarchy. When evaluating permissions, AWS takes into ac-
count many factors: the principals’ identity-based policies,
the principals’ permissions boundary, the service control poli-
cies attached to the account and the organization units in the
organization tree, and the resource-based policies attached to
the relevant resources. Then a final allow/deny outcome is
produced according to the elaborate policy evaluation logic
described in the AWS documentation [3, 6]. We briefly sum-
marize it as follows.

1. Deny evaluation. An explicit deny statement in any
IAM policy that applies to the request results in a final
decision of Deny.

2. Organizations SCPs. Absence of an allow statement in
global AWS Organizations service control policies (im-
plicit deny) results in a final decision of Deny. Otherwise,
the evaluation continues.

3. Resource-based policies. Within the same account, the
presence of an allow statement in a resource-based policy
results in a final decision of Allow. For cross-account
requests, absence of an allow statement in a resource-
based policy results in a Deny.

4. Identity-based policies. The identity-based policies are
evaluated and the absence of an allow statement results
in a Deny.

5. IAM permissions boundaries. The permissions bound-
ary is evaluated only if such exists. Absence of an allow
statement results in a Deny.

6. Session policies. Session policies are evaluated if the
principal is a session principal and such a policy exists.
Absence of an allow statement results in a Deny. Other-
wise, the final decision is Allow.

An IAM role resource type has both an identity-based
policy and a resource-based policy. The latter is called a trust
policy and it defines which principals can assume this role,
i.e., obtain temporal credentials allowing them to operate on
behalf of this role.

4 A Motivating Example

Consider an AWS account that contains the following two
resources. To simplify the presentation we use names instead
of full ARNs.

dept2/Admin. An IAM role with an inline policy docu-
ment as follows.
"Effect": "allow",
"Action": "*Role*",
"Resource": "dept2/*"

"Effect": "deny",
"Action": "*Role*",
"Resource": "dept2/Admin"

This policy grants permission to perform a plethora of role-
related IAM actions (such as creation of new roles and chang-
ing roles’ policies), but only on roles with the name pattern
defined by the regular expression dept2/*. As a precaution,
the policy denies explicitly these actions on dept2/Admin
themselves.
classified. An S3 bucket with a resource policy docu-

ment as follows.
"Effect": "allow",
"Action": "GetObject",
"Resource": "classified/*",
"Principal": "dept1/*"

"Effect": "deny",
"Action": "GetObject",
"Resource": "classified/*",
"NotPrincipal": "dept1/*"

This policy grants read access to objects in the bucket only
to roles with the name pattern defined by the regular expres-
sion dept1/* and denies access to the rest of the organization.

At a first glance, only dept1/* roles can access the clas-
sified bucket. However, in case dept2/Admin’s credentials
are compromised by a malicious actor that is at least partially
aware of the existing permissions in the account, a chain of ac-
tions may lead an unauthorized principal to gradually elevate
privileges until they can read data from a classified bucket.
The loophole lies in the fact that while dept2/Admin cannot
alter their own permissions, they can create new roles and
modify their permissions to achieve the desired results.

The 5-step chain of actions for the attacker is as follows.
1. Perform CreateRole in order to create a new role whose

name adhers to dept2/* pattern.

2. Perform PutRolePolicy in order to give the new role
permissions that allow it to perform S3 service actions,
and in particular bucket policy modifying actions.

3. Perform AssumeRole in order to get temporary session
credentials for the newly created role.

At this stage, the attacker escalated their privileges to
the administrator level, because they can authenticate
with the new role. However, they cannot read from the
classified bucket yet because the regular expression in
the policy doesn’t match the name.

4. Perform DeleteBucketPolicy to delete the restricting
bucket policy of classified (authenticating with the
credentials of the new role).

5. Perform GetObject and read classified objects in the
target bucket.

Observe that the compromised principal is not granted full
access privileges, and there is no usage of the star "*" wildcard.
Of course, dept2/Admin defined permissions are sensitive
as they contain IAM actions, but it might be not enough for
a syntactic policy scanning tool to alert on. Instead, the at-
tack succeeded due to a combination of actions and naming
patterns that can be easily left unnoticed when examined in
isolation. Assessing the regular expressions found across all
policies, taking into account complex evaluation rules, re-
quires a deeper analysis effort than simply scanning for a set
of pre-defined best-practice dangerous patterns.

5 AWS IAM Model

We present a definition of a finite-state Boolean model of
the AWS IAM component. The model and an attack target
property serve as an input to a model checker, which outputs a
finite trace if such exists, i.e., a sequence of steps as performed
by an attacker leading to the target.

The model itself is a Boolean formula over operators =,
∧, ∨,→, and ¬ with their respective semantics. We wish to
keep the model confined exclusively to Boolean logic, so we
encode variables of data types such as enumerations, lists, and
strings as arrays of Boolean variables. An enumeration is a
one-hot encoding Boolean array where each variable repre-
sents equivalence to a single value. A list is a Boolean array
where each variable represents the containment of a specific
element in the list. A string is a Boolean array where each vari-
able represents a regular expression match. The correspond-
ing algorithms for translating strings to Boolean variables
are provided in detail in Appendix A. We remark that this
encoding dramatically improves model checking performance
as it alleviates the SAT solver from the computational burden
of formally reasoning about other data types, see evaluation
in Section 8.

The model is logically divided into four main components,
the organization state, the attacker state, the policy evaluation
logic and the action semantics. Roughly speaking, the attacker
executes actions that change the organization or the attacker
states and affect the policy evaluation logic outcome, thus
allowing them to execute other actions and get closer to their
target.

The model is constructed from external sources such as the
AWS documentation and security research publications, and
from the initial AWS organization setup. From the external
sources we define the policy evaluation logic and the seman-
tics of the actions that the attacker can use. This information
is unlikely to change often and is outside of our control. From
the initial setup, we gather all the information about the cloud
resources and build the organization and attacker states. This
information is subject to relatively frequent changes. This
conceptual division can be illustrated through a puzzle such

as Sudoku or Sokoban − the description of the puzzle rules
versus the puzzle setup. One may regard two different setups
as producing two distinct models, but in our context, we refer
to the whole construction as a single model.

5.1 Threat Model

We make the following assumptions about the attacker and
the cloud environment:

• The attacker begins with at least one compromised set of
credentials of an AWS principal, obtained by any means.
It can be either via phishing, by exploiting a security
flaw in a cloud application, or by having internal access
in advance.

• The attacker can perform AWS actions via any interface,
for example, the AWS web console, command line, or
AWS SDK− the means of execution is transparent to the
model. Also, the attacker may perform actions within
any time interval, i.e., the attack may be scripted and
executed automatically within seconds, or manually in
the course of hours or days.

• The attacker is aware of what resources exist in the orga-
nization and their properties. For example, an attacker
may know beforehand that a permissive IAM policy ex-
ists in the account, so that they can attach it to themselves
and escalate privileges. Without the attacker’s discovery
of the available resources, the likelihood of executing an
attack is perhaps reduced but still not eliminated, given
that the vulnerable permissions are nonetheless there.

• The attacker is not affected by configurations outside
IAM evaluation, such as the network layer. Specifically,
when deciding whether an attacker can perform an action,
the model does not consider elements such as firewall or
router rules.

• Given the chance to update an IAM policy document (via
PutRolePolicy for example), an attacker always chooses
the most permissive contents, to escalate privileges as
much as possible.

• Besides having an initial set of credentials, the attacker
can acquire different credentials of principals in the or-
ganization by executing actions such as AssumeRole.
These credentials are not expired during the attack (even
though they may have an expiration date, we assume the
attack is finished by that time).

Some authors [11] define monotonicity as the property of
a model such that no action an attacker takes interferes with
the attacker’s ability to take any other action. Generally, we
cannot assume monotonicity in the context of AWS IAM as it
is possible to attach a policy with both allow and deny state-
ments, thus forbidding the principal to perform something
that they could on a previous step, but allowing something
else. Observe that lack of monotonicity increases the problem

complexity, as in the course of an attack, the attacker may
first reduce their permissions in order to gain more later.

5.2 Modeled AWS Elements

AWS is known to offer a very rich set of services, many of
which contain hundreds of actions and resource types. AWS
IAM service in particular supports over one hundred different
actions. We focus our modeling efforts on a subset of all
AWS elements that can be regarded as means. Means actions
are used by the attacker to change the organization or the
attacker states in the next step via a defined transition relation,
advancing them toward the target. Such actions meet one of
two criteria: (1) directly affect policy evaluation logic; (2) are
exploited in known IAM privilege escalation methods. The
rest of the AWS actions are regarded as ends, i.e., potential
targets for the attacker. In particular, all AWS read actions
are not means, as we assume the attacker already knows what
resources exist in the organization.

To cover actions that meet (1), we formalize in the model all
the IAM policy manipulating actions, including Organizations
actions that affect SCPs, and actions that affect resource-based
policies such as PutBucketPolicy or DeleteBucketPolicy.
The model must also recognize crucial IAM resource types,
such as users, roles and policies, AWS Organizations resource
types such as accounts and SCPs, and policy condition keys
such as policyARN.

To cover actions that meet (2), we formalize in the model
all the actions considered to be vulnerable by security re-
searchers, even though they may not change the IAM state
directly, e.g., InvokeLambda or RunInstances. To this end,
we formalized all the AWS actions semantics from the IAM
privilege escalation methods described in the Rhino Secu-
rity Labs article [27]. The model must also recognize the
associated resource types such as Lambda functions and EC2
instances. In Section 5.6 we describe the additional formal-
ization that is required to support these methods.

In Appendix C we present the full list of the modeled AWS
actions and their semantics. Actions and resource types are
encoded as one-hot-encoding Boolean arrays.

5.3 Organization and Attacker States

The organization state formula encodes the current state of
the organization resources. All the resources are divided into
accounts and are identified via constants of type, name, and
the account they belong to. For resources of specific types,
we encode additional information that is relevant to the policy
evaluation logic. For example, for IAM policies we encode
their policy document state (see Section 5.4.2); for IAM roles,
users, and groups we encode their inline policy document
state, and their attached IAM policies lists; for IAM roles and
users we encode their permissions boundary policies. For S3
buckets we encode their encrypting KMS (Key Management

System) key if such exist. For IAM roles we encode their trust
policy document state. For IAM users and groups we also
encode their names as Boolean arrays because these resource
types can have their names modified after creation via an
update action, hence they are not constant in the model. For
accounts as Organizations service objects we also store their
attached SCPs and the organizational unit hierarchy.

We also take into account resources that are created during
the attack (recall example in Section 4). Hence, for every
resource type, the organization state contains extra variables to
accommodate a fixed number of such to-be-created resources.
Each of these to-be-created resources has a corresponding
Boolean flag that is turned on following execution of a create
action in the previous step (for instance, CreateRole turns on
the flag for an IAM role).

The attacker state formula encodes two elements. First,
the request performed by the attacker in the current step −
a combination of variables representing an AWS action, the
resource on which the action is performed, the principal who
performs the action, and additional parameters. Second, a
list (of fixed-size, but configurable length) of compromised
principals whose credentials (passwords for users, or access
and secret keys for roles) were acquired during the attack, for
example after performing AssumeRole and reading the role’s
credentials. When the attacker executes requests, they must
be authenticated as a principal from this list.

Additional variables represent additional request parame-
ters that are utilized when needed. For example, AttachRole-
Policy requires the IAM policy to be attached to the role as a
parameter. In practice, AWS actions usually support a long
list of parameters in the request, but the majority of them does
not affect the outcome of potential attacks, hence they are
omitted. For example, in the actual API, AssumeRole action
requires passing over a DurationSeconds parameter which
limits the duration in seconds of the role session. Since the
concept of time is absent from our model, we may simply
ignore this parameter.

5.4 Policy Evaluation Logic

The policy evaluation logic determines under what condi-
tions to allow or deny a given request. This logic is extracted
from the AWS documentation flowchart [6] as the source of
truth. We model this flowchart as a formula that includes all
the encoded policy documents from all the resources across
the organization. We proceed by describing how a single
JSON policy document is encoded as a Boolean formula.

5.4.1 Policy Document

Each element in a policy document statement is mapped to
a set of assignments to request variables. Effect field divides
the statements into two lists, one for allow and one for deny.
Negated elements in the statement wrap the formula in a

logical negation. An array of values for an element is mapped
to a disjunction between the formulas.

Some elements in the policy documents are not relevant to
the model and are treated as follows. Unrecognized actions
and resource types are simply skipped, while unrecognized
condition operators and keys are evaluated based on the effect.
If the effect is allow, it is assumed that the condition holds and
does not interfere with the evaluation. If the effect is deny, it
is assumed the condition does not hold, so the deny statement
is not taken into consideration. Naturally, this may impact
the false positives rate, but such false positives can still be
seen as valid hypothetical attacks under different extra-IAM
conditions.

Finally, all the elements in the statement are brought to-
gether into a single conjunction. All these conjunctions in
both allow and deny lists are brought together into two sep-
arate disjunctions. In Section 5.4.3 we see how these two
formulas are applied in unison to form the full evaluation
logic formula.

Consider the example policy and its corresponding set of
constraints in Figure 1. The formula AllowStatements rep-
resents the permission to attach and detach policies with the
prefix pref- from roles from account 1234, with the suf-
fixes being either -sufa or -sufb. Another allow statement
contains a condition on the request IP range. Given that the
network layer is not modeled, we decide how to deal with
this statement according to the effect. We assume that the re-
quest originates within the given source IP range and evaluate
the condition to true. The formula DenyStatements repre-
sents the restriction to get objects from all buckets except
my-bucket. Another deny statement checks IP range, but
here we assume the request originates outside the IP range,
and evaluate the condition to false, which in fact renders the
whole statement void.

With such encoding, the model checker may produce attack
vectors exploiting the permission to perform AssumeRole
from the allowed IP range, while in reality it may be the case
that all the principals are expected to operate from a different
IP range, thus rendering the attack vectors incorrect. However,
such findings still hold value, if we are to assume a change in
the network configuration that takes place independently of
the IAM policies and inadvertently makes the attacks realiz-
able.

5.4.2 Policy State

IAM Policy documents can be modified during an attack−
an attacker may add or remove various statements in a policy
to gain additional privileges. We abstract the policy document
into three states: original, updated, and deleted. All policies
are initially in their original state. Certain actions transform
the policy to the updated state, e.g., PutRolePolicy for role
inline policies, or CreatePolicyVersion for managed policies.
We assume that the new updated policy is as permissive as

 (action = AttachRolePolicy ∨ action = DetachRolePolicy) ∧
 (resourceAccount = 1234) ∧
 (resourceName ∈ "*-sufa" ∨ resourceName ∈ "*-sufb") ∧
 (resourceType = Role) ∧
 (attachedPolicyName ∈ "pref-*")

 action = GetObject ∧
 ¬(resourceName = "my-bucket" ∧ resourceType = Bucket)

 "Effect": "Allow",
 "Action": ["AttachRolePolicy", "DetachRolePolicy"],
 "Resource":
 ["arn:aws:iam::1234:role/*-sufa",
 "arn:aws:iam::1234:role/*-sufb"],
 "Condition": {
 "StringLike": {
 "PolicyARN": "arn:aws:iam::1234:policy/pref-*" }}

 "Effect": "Deny",
 "Action": "GetObject",
 "NotResource": "arn:aws:s3:::my-bucket/*"

 "Effect": "Allow",
 "Action": "AssumeRole",
 "Resource": "*",
 "Condition": {
 "IpAddress": {"sourceIp": "xxx.xxx.xxx.xxx" }}

 "Effect": "Deny",
 "Action": "AssumeRole",
 "Resource": "*",
 "Condition": {
 "IpAddress": {"sourceIp": "xxx.xxx.xxx.xxx" }}

 (action = AssumeRole) ∧ TRUE

 FALSE

AllowStatements

DenyStatements

Figure 1: An example of an IAM policy document (left) and its translation into a corresponding formula (right)

the attacker desires. Similarly, Certain actions transform the
policy to a deleted state, e.g., DeleteRolePolicy for role inline
policies. A deleted policy has neither its allow statements nor
its deny statements evaluated.

For each policy, we represent these states with Boolean
variables updated and deleted. In order to allow a request,
a policy must not be deleted, and either be updated or allow
the request via one of its statements. In order to deny a request,
a policy must not be deleted, not be updated, and also deny
the request via one of its statements. Allowing (or denying)
a request via one of its statements means that AllowState-
ments (or DenyStatements respectively) formula evaluates
to true when its variables are substituted with the request
assignments.

5.4.3 Policy Evaluation Flowchart

The formula for the policy evaluation logic is constructed
according to the flowcharts published by AWS [3, 6]. This
formula is ultimately composed of all the sub-formulas of
all the resource and identity policy documents across the
organization.

We define the formula for the policy evaluation logic for
same-account requests and for cross-account requests as pre-
sented in Figure 2. In the figure, AWS policy evaluation
flowchart is translated into a formula with parts correspond-
ing to each evaluation stage. Each part contains the formulas
of the relevant IAM policy documents. For example, Iden-
tityBasedPoliciesAllow formula contains the allow sub-
formulas for IAM policies and user/role/group inline policies.
Service control policies are additionaly evaluated according
to the inheritance rules described in [8].

For cross-account evaluation, both the resource-based pol-

icy and the identity-based policy must allow the request, in-
stead of at least one of them [3]. resourceAccount = prin-
cipalAccount formalizes a request within the same account.
When true, the policy evaluation formula is reduced to the sin-
gle account flowchart from [6]. Otherwise, an extra condition
is formalized as well.

Observe that from an adversarial point of view, it is not
beneficial to manually add session policies when assuming
a role, because they do not grant more permissions, but only
limit existing permissions by triggering an additional condi-
tion in the flowchart. Therefore we may discard the handling
of session policies in our model, assuming that an adversary
always has a more efficient attack without considering this
choice.

5.5 Action Semantics

The requests executed by the attacker directly affect the or-
ganization state. We define for each AWS action that serves as
an attack means unique semantics that describes the transition
relation, i.e., the result of the execution in the next step. Each
action that we model was carefully studied in the context of
the security model, to decide upon its effect on the organiza-
tion. We base our semantics on hands-on experimentation in
real AWS environments and AWS documentation.

In Figure 3 we present an example of an action and its
semantics − PutRolePolicy, which transfers the inline policy
of a given IAM role to an updated state. In the formula, the
updated variable for the role which is the resource of the
current request is turned on in the next step. Also, we add
constraints that keep this variable unchanged between steps
for all other roles in all accounts, as obviously other resources

 SameAcc :=
 resourceAccount = principalAccount

 PolicyEvaluationLogic :=

 ServiceControlPoliciesAllow ∧
 ((ResourceBasedPoliciesAllow ∧ SameAcc) ∨
 (IdentityBasedPoliciesAllow ∧
 PermissionsBoundariesAllow)) ∧
 (ResourceBasedPoliciesAllow ∨ SameAcc) ∧
 ¬ServiceControlPoliciesDeny ∧
 ¬ResourceBasedPoliciesDeny ∧
 ¬PermissionsBoundariesDeny ∧
 ¬IdentityBasedPoliciesDeny

 Allow(policy) := ¬policy.deleted ∧ (policy.updated ∨ policy.AllowStatements)

 AllowForResource(account, resource) :=
 ∃policy ∈ account.IAMPolicies: (policy ∈ resource.AttachedPolicies ∧ Allow(policy)) ∨ Allow(resource.InlinePolicy)

 IdentityBasedPoliciesAllow :=
 ∃account ∈ Accounts: principalAccount = account.id ∧
 (∃role ∈ account.IAMRoles: principalName = role.name ∧ AllowForResource(account, role)) ∨
 (∃user ∈ account.IAMUsers: principalName = user.name ∧ (AllowForResource(account, user) ∨
 ∃group ∈ account.IAMGroups: (group ∈ user.GroupsUserBelongsTo ∧ AllowForResource(account, group))))

Figure 2: The policy evaluation logic flowcharts, taken from AWS 2022 documentation [3, 6], are translated into a formula that
encompasses all IAM policy documents in the organization. In this figure we also show the subformula for IdentityBased-
PoliciesAllow

should not be affected by this request.
Other action semantics are defined in a similar fashion −

according to their effect on the organization from an adver-
sarial point of view. AttachRolePolicy modifies the attached
policies list for an IAM role; UpdateAssumeRolePolicy al-
ters the trust policy for an IAM role; CreateRole updates the
variables of a to-be-created IAM role and turns on its flag;
AssumeRole adds the IAM role to the credential list of the
attacker. The list of modeled actions and their semantics is
presented in Appendix C.

5.6 Modeling Different IAM Exploits

As stated above, the modeling process is an ongoing ef-
fort. In order to enrich the model, we must be continuously
aware of new IAM exploits. These exploits serve as additional
means for an attacker to realize their goals, hence modeling
them enhances the quality of the model checker findings by
detecting a broader range of attacks and reducing false nega-
tives.

We briefly describe several known privilege escalation
methods for AWS IAM and how we attempt to model them.
These methods are described in the article by Rhino Security
Labs [27]. In many cases, elements in the attack can be ab-
stracted if their independence from the IAM policy evaluation
logic is identified, e.g. abstract coding details or network layer
properties.

Lambda Function Invocation. Lambda functions in AWS

are serverless compute objects that provide the user with the
ability to run code without provisioning servers. A function
runs on behalf of an execution role, which sets the effective
permissions for the code execution. An attacker with permis-
sion to invoke lambda functions can steal the credentials of
any function’s role by maliciously overriding the function’s
original code and instead printing the execution role creden-
tials to any output source accessible to the attacker. Once the
attacker gets hold of the role credentials, they can perform
requests as if they had already assumed the role. Below is a
piece of code in NodeJS that the attacker can configure inside
the Lambda function to output the role’s access and secret
key once the function is invoked.

exports.handler = async (event) => {
const response = {

statusCode: 200,
body: {

"AWS_ACCESS_KEY_ID": process.env.
AWS_ACCESS_KEY_ID ,

"AWS_SECRET_ACCESS_KEY": process.env.
AWS_SECRET_ACCESS_KEY ,

"AWS_SESSION_TOKEN": process.env.
AWS_SESSION_TOKEN

}};
return response;

};

We model a lambda function as a resource with an execu-
tion role, and a Boolean variable representing the state of the
function’s code − whether it was overridden by an attacker
to reveal execution role credentials as a consequence of a

 Keep(v) := v = v'

 action = PutRolePolicy →
 ∀account ∈ accounts:
 (resourceAccount = account.id →
 ∀role ∈ account.IAMRoles:
 (resourceName = role.name → role.InlinePolicy.updated') ∧
 (resourceName != role.name → Keep(role.InlinePolicy.updated))) ∧
 (resourceAccount != account.id →

 ∀role ∈ account.IAMRoles: Keep(role.InlinePolicy.updated)

 action != PutRolePolicy →
 ∀account ∈ accounts:
 ∀role ∈ account.IAMRoles: Keep(role.InlinePolicy.updated)

Figure 3: PutRolePolicy action API reference, taken from AWS 2022 documentation [7], is translated into a formula that defines
the transition relation, i.e., the effect on the organization state. The prime notation x′ is used to denote a variable x at the next step

call to UpdateFunctionCode. We define the semantics of In-
vokeFunction similarly to AssumeRole, only in this case the
function’s execution role is added to the attacker’s credentials
list. Observe that an attacker might as well simply override
the function with code that performs the next steps on behalf
of the execution role, but from our point of view as the model
designers, it is more convenient to treat InvokeFunction as a
"credential reading" action.

EC2 Instance SSH Access. Amazon Elastic Compute
Cloud (EC2) instances provide scalable cloud compute abili-
ties on-demand. Each instance is associated with an instance
profile that holds a role. An attacker with Secure Shell (SSH)
access to a specific instance with IP IP_ADDRESS can run a
metadata query and retrieve this role’s credentials with the fol-
lowing command, assuming the name ROLE_NAME is known.

TOKEN=’curl -X PUT "http://[IP_ADDRESS]/latest/
api/token" -H "X-aws-ec2-metadata -token -ttl-
seconds: 21600"’ \

&& curl -H "X-aws-ec2-metadata -token: $TOKEN" -v
http://[IP_ADDRESS]/latest/meta -data/iam/
security -credentials/[ROLE_NAME]

We model an EC2 instance as a resource with an IAM
instance profile, and an IAM instance profile as a resource
with an IAM role. Since the resolution of whether a given
IP source is allowed SSH access to an instance is out of the
scope of the policy evaluation logic, we assume global SSH
access. We define a "pseudo-action" "SSH Into Instance"
with semantics similar to AssumeRole and InvokeFunction
− add the associated instance profile role to the attacker’s
role credentials list. By "pseudo-action" we mean that it is
associated with a transition relation, but does not depend on
the IAM policy evaluation logic and instead allowed during
every step.

6 Model Checking Process

Once we have the model of the AWS IAM component at
hand, we run model checking on it in order to detect multi-step
attack vectors. We define an initial state formula that reflects
the initial organization setup and the initial assumptions for
the attacker. While all the constraints discussed in the previous
section are safety constraints, i.e., assertions that occur in
every step, the initial state formula applies only in the first
step. Every resource is initialized with specific properties
according to type. For example, the initial formula for an IAM
role defines the initial values for its name, attached policies,
and permissions boundary, and asserts that its inline and trust
policies are not updated and not deleted. Also, all flags for
the to-be-created resources are set to false.

In our motivating example, we get the organization setup
that contains a single account with at least one IAM role and
one S3 bucket. The role and the bucket each have their respec-
tive inline policy documents. There may be other resources
in the account that do not participate in the attack.

For the attacker, we assert facts about the initial compro-
mised credentials list. We can assign specific values and de-
tect attacks starting only from specific principals, or we can
skip the initial assignment altogether. The latter allows the
model checking process to discover all the principals in the
organization that can reach the target, by providing different
assignments for the initial step. Note the high degree of flex-
ibility − we can exclude certain principals from the list, or
come up with theoretical combinations of several compro-
mised principals working in cooperation in order to execute
an attack.

In our motivating example, we either explicitly assume
that the attacker starts with credentials to role dept2/admin,
or alternatively, we leave the list unassigned and discover
dept2/admin upon running the model checker and examin-
ing the satisfying assignments of the SAT solver.

Next, we translate an attack target to a property that the

model checker attempts to satisfy in one or more iterations.
An attack target is best seen as a reachability goal for an
attacker, for instance, "perform GetObject on bucket clas-
sified". The property itself is theoretically any proposition
expressible in Boolean logic. It can be a simple combination
of action and resource as in the motivating example and in
our evaluations, or a more complex assertion such as "authen-
ticate as a user from account a whose name matches some
regular expression and perform a cross-account action on any
bucket in account b that matches another regular expression".
The scope and richness of potential properties can greatly
benefit threat modeling teams in executing complex breach
and attack simulations.

After the model checker detects a trace, it is translated to
an attack vector by extracting the variable assignments to the
attacker state in each step. In our example, the assignment in
the first step corresponds to the CreateRole action on a role
resource in the special slot. In the second step, it corresponds
to PutRolePolicy on the IAM role that was created in the
previous step (that has the creation flag set to true), and so
forth. Another potential output of the model checker is that
no traces were discovered up to a certain depth, or a proof
that no traces exist and the system is safe (see future work in
Section 10).

Additionally, the model checker may exhaust all results by
logically negating a discovered trace and re-running reach-
ability with an extra constraint. This enhances the usability
of the approach since often security engineers do not settle
for detecting a single attack, but rather seek to gain maxi-
mum visibility of the organization’s security posture. This
enhancement works effectively well when the initial attacker
credentials are left unassigned, and all the principals in the
organization that can maliciously reach a target in one or more
steps are detected. The diagram of the full model checking
process is presented in Figure 4.

Can reach
target?

Trace

Negate trace
and run again

Model CheckerAWS IAM Formal Model

Initial Organization Setup
Attacker's Principals

Action Semantics
Policy Evaluation Logic

Safety Formulas

Initial FormulaAWS
Org.
Setup

Attack
Vectors

Attack
Target

Figure 4: Model Checking Process

7 Implementation

We implement the model construction and model checking
in Java, using the Z3 theorem prover open source library [23].
Our implementation consists of reading the AWS organization
initial setup and an attack target from a JSON file, constructing

the model using the Z3 Java API and admitting it to a cus-
tom variant of the bounded model checking (BMC) algorithm
from Sheeran et al [43]. Getting the up-to-date organization
setup is a technical detail and can be automated by running
the GetAccountAuthorizationDetails AWS action or other
IAM read actions, periodically or on-demand. We implement
a Boolean-only model integrated with the optimization pre-
sented in Appendix A, along with a model version that also
uses string variables. We wish to focus on trace detection, so
we strip the original BMC algorithm from the k-induction
part, leaving only the reachability part.

Observe that the execution of the model checker is done
offline, i.e., we can apply any manual modifications to the
organization setup file and dry-run a theoretical setup with-
out having to apply the changes in AWS. This characteristic
resembles AWS Policy Simulator [10], a tool that lets users
simulate and troubleshoot IAM policies before applying them.

Furthermore, to enhance the validity and confidence in our
model, we simulated each detected attack vector as a script in a
testing AWS environment to ascertain that it indeed produces
the expected outcome. An invalid result would mean that
the model does not represent correctly the AWS IAM logic.
Usually, this is caused by a bug in the formalization that can
be immediately fixed, but also due to environment differences
in extra-IAM factors such as networking, see Subsection 5.4.1.

8 Evaluation

In order to evaluate our approach we define two research
questions examining two different aspects.

• Quantitative. How does the approach scale w.r.t. orga-
nization volume and length of detected attack vectors?

• Qualitative. How does the approach carry out in detect-
ing existing misconfigurations in real-world setups?

8.1 Quantitative Evaluation

To evaluate the performance we devise several simple mis-
configuration scenarios that the model checker is expected to
detect, similar to the example in section 4. We use real-world
AWS organization data supplied to us by a large financial
institution. The data consists of nearly 100 accounts with a
varying number of IAM resources in each, ranging from tens
to thousands. We test our scenarios in the context of two user
stories:

• The user chooses a single account and a principal be-
longing to this account, and wishes to detect multi-step
attacks assuming the principal is compromised.

• The user chooses a subset of the organization accounts
and without specifying a principal, wishes to detect priv-
ilege escalation attacks, perhaps involving cross-account
actions, that may materialize in these accounts.

acc. size
range 200-300 300-400 400-500 500-600 600-700

Model Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str

Scn. 1 3.79 4.69 4.52 5.10 6.33 6.38 4.67 5.56 6.10 6.52
Scn. 2 5.21 8.00 5.72 8.15 8.52 27.92 6.50 14.93 7.64 14.71
Scn. 3 6.47 20.18 7.22 27.11 12.14 79.98 8.36 39.62 11.37 123.02
Scn. 4 8.67 56.37 13.34 94.30 15.00 280.62 18.02 timeout 23.13 timeout
Scn. 5 16.81 timeout 13.66 timeout 37.60 timeout 19.84 timeout 37.87 timeout

Table 1: Trace detection times in seconds for the single account use case

acc. 5 10 20 40 80
Model Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str Bool-Only Bool+Str

26.34 149.12 63.09 485.40 84.47 timeout 148.95 timeout 389.42 timeout

Table 2: Trace detection times in seconds for the cross-account use case

The scenarios are injected into the existing setup by mod-
ifying the input JSON file to append special resources and
policy documents. The names and conditions in the policies
are chosen in such a way so that they do not interfere with the
existing organization policies and produce unexpected output.
The additional setup for all the scenarios is presented in Ap-
pendix B. The executions are conducted on a standard Intel
Core i7-8650U 1.90GHz laptop with 32GB RAM, running
on 64-bit Windows 10 enterprise edition.

For the first, single account test, we choose 5 accounts of
varying total IAM resource size ranges (ranging from 200 to
700), and for each account we run 5 scenarios with a fixed
initial principal and an expected attack vector of length 1 to 5.
For the second, cross-account test, we choose the n largest ac-
counts in terms of IAM resources, where n = 5,10,20,40,80,
making for an average of approximately 200 resources per
account. We verify the detection of a pre-defined 2-step vector
for all n. In this use case, we leave the attacker’s principal
credentials array unassigned in the initial stage.

We define the total running time as the time for reading
the organization file, constructing the model, and performing
the model checking until the expected trace is discovered.
For each run, we measure the total running time in seconds,
once for the model with both Boolean and string variables,
and once for the Boolean-only model with the encoding of
Appendix A. We set a global timeout limit of 1,200 seconds.

Results. We present the results for the single-account use
case in table 1 and for the cross-account use case in table 2.
From the results we gather that execution time grows with
the model size and with the trace length, which is expected
for both approaches. Also, we observe that a larger model
does not necessarily predict longer running times, probably
due to the heuristic nature of the underlying SAT solver. Note
that according to recent reports [1] the majority of real-world
attack vectors take a relatively short number of steps, e.g., not
more than 5 steps, and furthermore, it would be reasonable to
assume that our tested data volumes already cover the scope

of many real-world companies’ cloud infrastructures.
The Boolean-only model outperforms the model with string

variables in all tests. The Boolean-only model takes less than
40 seconds in all the single account scenarios and less than
9 minutes for the cross-account scenarios. In the largest sce-
narios w.r.t. account size and vector length, the model with
string variables often reaches a timeout. This outcome can be
explained by the reliance on additional reasoning about string
theory in the underlying SMT solver, which is more computa-
tionally heavy than Boolean-only algorithms in SAT solvers.
In general, one should confine the reasoning to Boolean logic
instead of using more complicated data types in order to im-
prove performance, but such effort is not always trivial and
depends on careful examination of the domain specific prob-
lem.

8.2 Qualitative Evaluation

To evaluate the quality of detected traces, we use real pre-
production AWS organization data maintained by a cloud
security team in a large financial institution. The organization
contains approximately 100 accounts with an average num-
ber of around 300 IAM resources per account. The security
team was offered an interface to the model checker and was
instructed on how to create requests with different targets and
organization setups, and how to read the results. Addition-
ally, we holistically reviewed all the findings and attempted
to recognize common patterns.

The security team was interested in targets that were simple
combinations of action and resource − can an attacker gain
read/write permissions on S3 objects or SQS (Simple Queue
Service) queues. All the targets were limited to a single ac-
count. All the targets left the initial attacker credential list
free to discover which principals can reach the target in one
or more steps. In figure 5 we show the actions that the secu-
rity engineers checked. We gathered a total of 141 different
requests, of which 42 did not return any results up to a certain

depth limit (which in our data was arbitrarily set to 10), while
99 contained results. Recall that we keep only the reachability
part in the BMC algorithm, so a "no results" answer is not a
proof that there are no traces of greater length, and each such
request should be further examined.

Figure 5: Breakdown of the target actions in the requests
gathered from the security team

Results. In Figure 6 we show the average number of de-
tected attack vectors per request (and total), by vector length
(number of steps). Observe that the values decrease with
length, which is expected and backed up by recent surveys [1].
Only 2 vectors of length 5 were detected. 60% of the results
were 1-step vectors, i.e., principals that can immediately reach
the target, of which some are principals that are supposed to
have the target permissions. The unexpected 1-step vectors
are in fact instant IAM misconfigurations in the system rather
than multi-step attacks. All of the results were classified as
correct − none were affected by extra-IAM conditions. All
the requests that didn’t contain results were due to the fact
that the target was indeed unreachable in the account.

Figure 6: Average number of detected attack vectors per re-
quest (and total), by vector length

Additionally, we examined all the inner steps (except the
last step − the target itself) in all the attack vectors, for all
the requests. In Figure 7 we show a breakdown by the ac-
tion performed in each step during the attack. We see that
some actions are remarkably common, for instance Update-
AssumeRolePolicy and AssumeRole, which indicates that
many potential attacks involve switching between roles to
gain privileges. Other common actions are the policy docu-
ment updating actions such as PutRolePolicy. We also ob-
serve several recurring patterns or "attack building blocks",
namely, a combination of 1-3 steps that are often executed

together and result in a privilege escalation, e.g., CreateFunc-
tion followed by InvokeFunction. However, these figures
only reflect the cloud infrastructure under test, and cannot in-
dicate the general ubiquity of different AWS actions or vector
lengths.

Figure 7: Breakdown of the actions used in all the attack
vectors that the model checker detected for all the requests

We also stumbled upon a curious case during the evaluation.
We observed an IAM policy whose contents were presum-
ably copy-pasted from a different account, mistakenly leaving
the original account identifiers in several locations. Both ac-
counts contained a role with an identical name. The original
document included an explicit deny statement prohibiting the
role in the first account to perform certain actions. However,
in the second account this statement was ineffectual unless
the account identifiers were corrected. Hence we were able
to detect attack vectors in the second account that exploited
this misconfiguration, by allowing the second account role to
perform actions that otherwise should have been denied.

In conclusion, the tool helped the security team gain better
visibility on their IAM configuration. The security engineers
were pleased that many misconfigurations were spotted before
the deployment of the policies to production. Considering all
the ≥2-step traces as real attacks, and that at least a certain
percentage of the 1-step vectors was caused by misconfigu-
rations, we estimate that approximately 50% of the findings
amounted to cases that should be fixed. Moreover, several
attack vectors revealed sneaky bugs in policy documents that
could not be detected by other tools or by a human eye. The
analysis of each finding w.r.t. metrics such as severity, impact,
and remediation is still left to the IAM engineer. Nonetheless,
in practice, a change to a single policy document was usually
enough to remediate the majority of the attack vectors for a
single target.

9 Related Work

Detection of multi-step attacks. Various formal ap-
proaches are applied in the domain of software security, specif-
ically the network layer. Ritchey et al. [40] show how to con-

struct a model from a given network configuration, and then
apply model checking to detect attack paths in several steps.
Similarly to our approach, their model describes the transition
from the current state to the next state, thus allowing gener-
ation of multi-step attack scenarios. Sheyner et al. [44] use
model checking to automatically generate attack graphs that
map all the possible counter-examples leading to an undesir-
able state in the network configuration. These works model a
pre-defined list of exploits that the attacker can use in order
to progress toward their goal, comparably to our modeling of
IAM exploits and actions semantics.

Ammann et al. [11] further discuss the scalability chal-
lenges that model checking poses due to the state-explosion
problem. In other works [38, 39] the authors utilize a Data-
log reasoning engine, rather than model checking, to detect
security vulnerabilities in entire networks and generate attack
graphs. For these works, the authors assume the monotonicity
property (see 5.1) for the attacker. More recently, Celik et
al. [21] extracted state models from IoT devices and applied
model checking to verify security properties.

Verification of access control policies. Attempts to model
and verify security configurations in the form of access con-
trol policies are proposed in various works [28–31]. These
works attempt to verify policy implementations against the
original intentions of the authors by expressing various prop-
erties in a specification language. These works serve as good
evidence of the fact that access control policies profit well
from formal treatment. Other works [16, 26, 45] proposed
approaches to model and verify properties of firewall and net-
work configurations using formal reasoning. However, these
works verify security properties on the existing state of the
policies and do not attempt to detect multi-step attack vectors
by modeling transitions between states.

Security verification in the cloud. Recently, major cloud
providers attempted to use formal methods to validate var-
ious security aspects of their cloud offering. For example,
Microsoft uses Z3 theorem prover [23] to validate global
properties of data center networks in Azure [18, 32]. Amazon
pushed the topic forward and revealed TIROS [12], which for-
mally validates network reachability, and ZELKOVA [14, 15],
which detects misconfigurations in IAM policies. Specifi-
cally, ZELKOVA attempts to verify whether an S3 bucket has
public access. To answer this question, they formalize the
"having public access" property along with the policy evalua-
tion logic and the network layer, and evaluate it using an SMT
solver. Amazon also applied formal methods in an attempt
to explain correctness of policies [13]. A recent open source
tool IAMSPY [34] also models AWS policy evaluation logic,
and using Z3 theorem prover answers whether an action is
permitted on a resource. Cauli et al. [20] suggested formal
reasoning to assess the security of cloud infrastructure before
deployment. However, these works do not model the transi-
tion relation between steps, but focus on analyzing the current

state of the organization.

Static analysis tools for cloud security. Finally, config-
uration scanners and static code analysis tools (often called
linters) exist in abundance as open source and proprietary li-
braries. For example, Rhino Security Labs released PACU [33]
following an article [27] listing multiple privilege escalation
methods exploiting AWS IAM. Similar tools [37] operate on
a variety of cloud environments. However, these approaches
do not analyze the policies in a formal manner, but rather scan
them for occurrences of dangerous permissions according to
common best-practice recommendations.

10 Discussion and Future Work

Recent efforts by the major cloud providers demonstrate
that formal reasoning can indeed be suited to security con-
cerns, yet, to quote from a recent survey [41], formal methods
will not answer questions that are not posed and models are
limited reflections of reality. Our formal depiction of AWS
IAM is neither complete, as the modeling of all the vulnerable
AWS elements is a long process, nor sound, as we consciously
abstract away certain elements while risking false positives.
Yet, we envision that with time, the formal model will consoli-
date into a proven and reliable representation of AWS IAM as
judged by domain professionals. It will happen via a process
where security researchers discover new IAM exploits, and
developers integrate these exploits into the model by formal-
izing the relevant action semantics. Eventually, the model will
become an integral part of a security compliance solution for
cloud customers.

For future research, we suggest the following directions.
In this paper we focused only on detecting vulnerabilities
in the IAM configuration, while model checking is also ca-
pable of providing a proof that a configuration is safe. An
interesting direction would be to try to apply different model
checking algorithms such as Property Directed Reachability
(PDR) [25] or interpolation based techniques [36], in order
to provide formal assurance that organizations are hermeti-
cally secure from specific attack targets. Moreover, we can
employ advanced APIs of SAT solvers, such as unsatisfiable
core computation, to find a minimal set of policies effective
for allowing or denying a certain permission.

Additional direction is to integrate numerical weights into
the model based on external security assessments and be able
to rank results by severity or likelihood. Various SMT solvers
are known to support such optimization problems. Then, at-
tacks involving sensitive principals may precede potential
low severity attacks. Also, one may explore different ways to
automatically sort and repair potential false positive traces.

Another natural direction is to extend the support to other
environments and domains. For example, Google and Mi-
crosoft offer cloud services as well, and IAM misconfigu-
rations are a prevailing concern there as much as in AWS.

Furthermore, network solutions and technologies have greatly
developed since the days of Ammann et al. [11], so one may
try to reevaluate the idea of finding network security issues
using model checking, inspired by the approaches described
in this paper.

11 Conclusion

We presented a novel approach to construct a Boolean
model of the AWS IAM component. This model is formally
checked for the presence of multi-step attacks involving priv-
ilege escalation by exploiting IAM misconfigurations. We
implemented the model checking process and evaluated the
performance of trace detection, obtaining very encouraging
results. We also evaluated the ability to discover real attacks
in a cloud environment belonging to a large institution. Over-
all, we can conclude that applying formal reasoning to detect
IAM multi-step attacks in cloud environments is indeed a
feasible task and can serve as a reliable mechanism to provide
additional assurance to security experts.

Acknowledgements

We thank the anonymous reviewers and our shepherd for
their constructive feedback. This research was funded by the
Citi TLV Cyber Security Innovation Center. We thank Uri Ka-
hana, Max Leibovich, Revital Gavriel, Gil Fitussi, and Mickey
Hovel from the Citi TLV Cyber Security Innovation Center
for the implementation and deployment efforts, and we thank
Jeanette Cheng, Yong Hang Lin, and David Gubitosi from
the Citi Cloud Security Engineering team for providing the
testing pre-production organization data and participating in
the evaluation efforts.

References

[1] 2020 dbir results and analysis - verizon enterprise solu-
tions. https://www.verizon.com/business/resources/
reports/dbir/2020/results-and-analysis/, 2020.

[2] Owasp top ten web application security risks. https://owasp.
org/www-project-top-ten, 2021.

[3] Cross-account policy evaluation logic. https://docs.
aws.amazon.com/IAM/latest/UserGuide/reference_
policies_evaluation-logic-cross-account.html,
2022.

[4] Iam json policy elements reference - aws documen-
tation. https://docs.aws.amazon.com/IAM/latest/
UserGuide/reference_policies_elements.html, 2022.

[5] Mitre att&ck R©. https://attack.mitre.org/, 2022.
[6] Policy evaluation logic - aws identity and access manage-

ment. https://docs.aws.amazon.com/IAM/latest/
UserGuide/reference_policies_evaluation-logic.
html, 2022.

[7] Putrolepolicy api reference. https://docs.aws.amazon.
com/IAM/latest/APIReference/API_PutRolePolicy.
html, 2022.

[8] Service control policies (scps) - aws organizations.
https://docs.aws.amazon.com/organizations/
latest/userguide/orgs_manage_policies_scps.html,
2022.

[9] Shared responsibility model - amazon web services
(aws). https://aws.amazon.com/compliance/
shared-responsibility-model/, 2022.

[10] Testing iam policies with the iam policy simula-
tor. https://docs.aws.amazon.com/IAM/latest/
UserGuide/access_policies_testing-policies.html,
2022.

[11] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scal-
able, graph-based network vulnerability analysis. In Vijayalak-
shmi Atluri, editor, Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS 2002, Washing-
ton, DC, USA, November 18-22, 2002, pages 217–224. ACM,
2002.

[12] John Backes, Sam Bayless, Byron Cook, Catherine Dodge,
Andrew Gacek, Alan J. Hu, Temesghen Kahsai, Bill Kocik,
Evgenii Kotelnikov, Jure Kukovec, Sean McLaughlin, Jason
Reed, Neha Rungta, John Sizemore, Mark A. Stalzer, Preethi
Srinivasan, Pavle Subotic, Carsten Varming, and Blake Wha-
ley. Reachability analysis for aws-based networks. In Isil
Dillig and Serdar Tasiran, editors, Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part II, volume 11562 of
Lecture Notes in Computer Science, pages 231–241. Springer,
2019.

[13] John Backes, Ulises Berrueco, Tyler Bray, Daniel Brim, By-
ron Cook, Andrew Gacek, Ranjit Jhala, Kasper Søe Luckow,
Sean McLaughlin, Madhav Menon, Daniel Peebles, Ujjwal Pu-
galia, Neha Rungta, Cole Schlesinger, Adam Schodde, Anvesh
Tanuku, Carsten Varming, and Deepa Viswanathan. Stratified
abstraction of access control policies. In Shuvendu K. Lahiri
and Chao Wang, editors, Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I, volume 12224 of Lecture
Notes in Computer Science, pages 165–176. Springer, 2020.

[14] John Backes, Pauline Bolignano, Byron Cook, Catherine
Dodge, Andrew Gacek, Kasper Søe Luckow, Neha Rungta,
Oksana Tkachuk, and Carsten Varming. Semantic-based au-
tomated reasoning for AWS access policies using SMT. In
Nikolaj Bjørner and Arie Gurfinkel, editors, 2018 Formal Meth-
ods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,
October 30 - November 2, 2018, pages 1–9. IEEE, 2018.

[15] John Backes, Pauline Bolignano, Byron Cook, Andrew Gacek,
Kasper Søe Luckow, Neha Rungta, Martin Schäf, Cole
Schlesinger, Rima Tanash, Carsten Varming, and Michael W.
Whalen. One-click formal methods. IEEE Softw., 36(6):61–65,
2019.

[16] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
A general approach to network configuration verification. In
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pages 155–168. ACM, 2017.

[17] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009.

https://www.verizon.com/business/resources/reports/dbir/2020/results-and-analysis/
https://www.verizon.com/business/resources/reports/dbir/2020/results-and-analysis/
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://attack.mitre.org/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html

[18] Nikolaj Bjørner and Karthick Jayaraman. Checking cloud
contracts in microsoft azure. In Raja Natarajan, Gautam Barua,
and Manas Ranjan Patra, editors, Distributed Computing and
Internet Technology - 11th International Conference, ICDCIT
2015, Bhubaneswar, India, February 5-8, 2015. Proceedings,
volume 8956 of Lecture Notes in Computer Science, pages
21–32. Springer, 2015.

[19] Aaron R. Bradley. Sat-based model checking without unrolling.
In Ranjit Jhala and David A. Schmidt, editors, Verification,
Model Checking, and Abstract Interpretation - 12th Interna-
tional Conference, VMCAI 2011, Austin, TX, USA, January
23-25, 2011. Proceedings, volume 6538 of Lecture Notes in
Computer Science, pages 70–87. Springer, 2011.

[20] Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk.
Pre-deployment security assessment for cloud services through
semantic reasoning. In Alexandra Silva and K. Rustan M.
Leino, editors, Computer Aided Verification - 33rd Interna-
tional Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part I, volume 12759 of Lecture Notes in Com-
puter Science, pages 767–780. Springer, 2021.

[21] Z. Berkay Celik, Patrick D. McDaniel, and Gang Tan. Soteria:
Automated iot safety and security analysis. In Haryadi S.
Gunawi and Benjamin Reed, editors, 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA,
July 11-13, 2018, pages 147–158. USENIX Association, 2018.

[22] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,
and Roderick Bloem, editors. Handbook of Model Checking.
Springer, 2018.

[23] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an
efficient SMT solver. In C. R. Ramakrishnan and Jakob Rehof,
editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer, 2008.

[24] Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfia-
bility modulo theories: introduction and applications. Commun.
ACM, 54(9):69–77, 2011.

[25] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Ef-
ficient implementation of property directed reachability. In
Per Bjesse and Anna Slobodová, editors, International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD

’11, Austin, TX, USA, October 30 - November 02, 2011, pages
125–134. FMCAD Inc., 2011.

[26] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,
Ramesh Govindan, Ratul Mahajan, and Todd D. Millstein. A
general approach to network configuration analysis. In 12th
USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, pages
469–483. USENIX Association, 2015.

[27] Spencer Gietzen. Aws iam privilege escalation – methods
and mitigation. https://rhinosecuritylabs.com/aws/
aws-privilege-escalation-methods-mitigation/, Jun
2021.

[28] Antonios Gouglidis, Ioannis Mavridis, and Vincent C. Hu. Se-
curity policy verification for multi-domains in cloud systems.
Int. J. Inf. Sec., 13(2):97–111, 2014.

[29] Dimitar P. Guelev, Mark Ryan, and Pierre-Yves Schobbens.
Model-checking access control policies. In Kan Zhang and
Yuliang Zheng, editors, Information Security, 7th International
Conference, ISC 2004, Palo Alto, CA, USA, September 27-29,
2004, Proceedings, volume 3225 of Lecture Notes in Computer
Science, pages 219–230. Springer, 2004.

[30] Vincent C. Hu, D. Richard Kuhn, Tao Xie, and JeeHyun Hwang.
Model checking for verification of mandatory access con-
trol models and properties. Int. J. Softw. Eng. Knowl. Eng.,
21(1):103–127, 2011.

[31] Graham Hughes and Tevfik Bultan. Automated verification of
access control policies using a SAT solver. Int. J. Softw. Tools
Technol. Transf., 10(6):503–520, 2008.

[32] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C. Bissonnette, Shane
Foster, Andrew Helwer, Mark Kasten, Ivan Lee, Anup Namd-
hari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. Vali-
dating datacenters at scale. In Jianping Wu and Wendy Hall,
editors, Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM 2019, Beijing, China, Au-
gust 19-23, 2019, pages 200–213. ACM, 2019.

[33] Rhino Security Labs. pacu: The aws exploitation framework.
https://github.com/RhinoSecurityLabs/pacu, 2022.

[34] With Secure Labs. Withsecurelabs/iamspy. https://github.
com/WithSecureLabs/IAMSpy, 2022.

[35] Sharad Malik and Lintao Zhang. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM,
52(8):76–82, 2009.

[36] Kenneth L. McMillan. Interpolation and sat-based model
checking. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,
volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

[37] nccgroup. nccgroup/pmapper: A tool for quickly evaluating
iam. https://github.com/nccgroup/PMapper, 2022.

[38] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A
scalable approach to attack graph generation. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA,
October 30 - November 3, 2006, pages 336–345. ACM, 2006.

[39] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel.
Mulval: A logic-based network security analyzer. In Patrick D.
McDaniel, editor, Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005.
USENIX Association, 2005.

[40] Ronald W. Ritchey and Paul Ammann. Using model checking
to analyze network vulnerabilities. In 2000 IEEE Symposium
on Security and Privacy, Berkeley, California, USA, May 14-17,
2000, pages 156–165. IEEE Computer Society, 2000.

[41] Kim Schaffer and Jeffrey M. Voas. What happened to formal
methods for security? Computer, 49(8):70–79, 2016.

[42] Dave Shackleford. Sans 2019 cloud security survey. 2019.
[43] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Check-

ing safety properties using induction and a sat-solver. In War-
ren A. Hunt Jr. and Steven D. Johnson, editors, Formal Methods

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://github.com/RhinoSecurityLabs/pacu
https://github.com/WithSecureLabs/IAMSpy
https://github.com/WithSecureLabs/IAMSpy
https://github.com/nccgroup/PMapper

in Computer-Aided Design, Third International Conference,
FMCAD 2000, Austin, Texas, USA, November 1-3, 2000, Pro-
ceedings, volume 1954 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2000.

[44] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lipp-
mann, and Jeannette M. Wing. Automated generation and
analysis of attack graphs. In 2002 IEEE Symposium on Secu-
rity and Privacy, Berkeley, California, USA, May 12-15, 2002,
pages 273–284. IEEE Computer Society, 2002.

[45] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-
Nee Chuah, and Prasant Mohapatra. FIREMAN: A toolkit
for firewall modeling and analysis. In 2006 IEEE Symposium
on Security and Privacy (S&P 2006), 21-24 May 2006, Berke-
ley, California, USA, pages 199–213. IEEE Computer Society,
2006.

A Translating Theories to Boolean Formulas

We describe a technique to translate variables of certain
data types such as strings into an array of Booleans, taking
advantage of the fact that for the purpose of policy evaluation
we only need to know whether a resource name matches a
regular expression. Many SMT solvers keep extra information
about a string instance to enrich their reasoning power. For
instance, SMT solvers may provide support for operators such
as "length", "indexOf", and so on, all of which we do not need
in our model. Recall Figure 1 where a policy document con-
tained conditions based on regular expression matching, and
our translation that contained resourceName ∈ "*-suf".
The variable resourceName is in fact a Boolean array, where
each Boolean represents whether the name matches a specific
regular expression. We focus on strings, but this technique
can be applied to other types such as integers, arrays, dates or
IP ranges.

During the policy document parsing, we collect the regular
expressions that affect resources by type. Going back to the
example in Sect. 4, we collect "dept1/*", "*dept2/*", and
"dept2/admin" for the IAM role resource type. We treat
constant strings as a regular expression that is matched by a
single element. The length of the underlying Boolean array is
the number of distinct regular expressions, so for a role in the
motivating example it is 3.

An assignment to this array represents a set of strings that
match the relevant regular expressions. The order of the as-
signments is irrelevant, so we use the notation name[regex] to
refer to the Boolean that encodes name∈ regex. Logical equiv-
alence between two string variables, i.e., name1 = name2 is
modeled as

∧
(name1[regex] = name2[regex]) over all regular

expressions according to resource type. Updating the string
in the next step is similarly modeled as

∧
(name1[regex] =

name′2[regex]). Observe that setting name[dept1/∗] = true,
can be interpreted as having the name "dept1/Alice", but
also "dept1/Bob" − these names are equivalent in the sense
that an attack conducted using one name can be replicated
using the other name.

An enumeration or a list in our model are Boolean ar-
rays where each variable represents equivalence to a single
value (or containment of the value in the list). For enumera-
tions we add a mutual exclusion formula between its Boolean
variables, whereas for strings we must pre-compute the con-
straints because not all the regular expression combinations
are legal for a given resource type. For example, a string can-
not match both "A*" and "B*", so we must add a formula
stating that name[A∗]→ ¬name[B∗]. Likewise, if we have
"A*" and "AA*" we add name[AA∗]→ name[A∗]. These re-
strictions are in fact pre-computed using an SMT-solver that
supports string theory, which is employed during model con-
struction solely for this purpose but not for the main model
checking algorithm. The computed constraints formula is
added to the semantics of the create action, in order to prevent
attacks where an attacker creates a resource with an illegal
name that bypasses regular expression conditions. We show
in Alg. 1 a procedure to compute the constraints formula for
a Boolean array str given a regular expression list regexes.

We remark that this algorithm is not complete, as only
pairs of regular expressions are checked in order to determine
the relationship between them, and not the full power-set in
order to discover constraints tied to groups of three and more
variables. However, it can be shown that going over all the
pairs is enough when the regular expressions contain only "*"
(and not the single character wildcard "?").

Algorithm 1 Compute string constraints according to an array
of regular expressions

1: procedure GETCONSTRAINTS(str, regexes)
2: constr← []
3: s← new SMT-Solver
4: tester← new SMT-String
5: for reg1, reg2 over distinct regex pairs do
6: formula← tester ∈ reg1 ∧ tester ∈ reg2
7: if s.check(formula) == unsat then
8: constr.add(str[reg1]→¬str[reg2])
9: break

10: formula← tester /∈ reg1 ∧ tester ∈ reg2
11: if s.check(formula) == unsat then
12: constr.add(str[reg2]→str[reg1])
13: break
14: formula← tester ∈ reg1 ∧ tester /∈ reg2
15: if s.check(formula) == unsat then
16: constr.add(str[reg1]→str[reg2])
17: break
18: return conjunction over all constr

After a trace is found, an attack is constructed from the
satisfying assignment. For string variables, a matching string
is invented from the assignment to the corresponding Boolean
array. This is done in the procedure described in Alg. 2. The
function receives a Boolean assignment asgn from the model
checking algorithm and the corresponding regexes list of the

same length, and extracts a string from the SMT-solver. The
assertion in line 10 checks that the formulas being added to
the solver are satisfiable. In case this assertion fails, there
might be a bug in the constraints computed in Alg. 2, and the
assignment to the variables in asgn cannot produce a legal
string.

Observe how an SMT-solver is utilized only in Alg. 1 and
Alg. 2 to perform the necessary formal reasoning on strings,
leaving the IAM model to depend solely on Boolean variables.
This allows us to utilize a fast Boolean SAT-solver for the
heavy-duty task of model checking and trace detection.

Algorithm 2 Propose string according to the assignment from
the model checking

1: procedure PROPOSESTRING(asgn, regexes)
2: s← new SMT-Solver
3: tester← new SMT-String
4: for i← 0 to regexes.length do
5: reg← regexes[i]
6: if asgn[i] == true then
7: s.add(tester ∈ reg)
8: else
9: s.add(tester /∈ reg)

10: assert(s.check() == sat)
11: return s.evaluate(tester)

B Benchmark Setup

In every scenario we add a non-encrypted test S3 bucket
named classified, a test S3 object in this bucket, and a test
IAM role. The attack target for all the scenarios is defined
as GetObject on any object in classified. In the single
account scenarios we add the resources to the same account.
In the cross-account scenario we add the bucket to the largest
account, and the IAM role to the second largest account, in
order to deliberately create a cross-account attack. Observe
that essentially only two accounts are required for the attack
to be realized, and the other accounts are present solely for
examining the scalability factor. The expected attack vector
length for the single account scenarios is 1-5 respectively.

Scenario 1. dept2/Role is immediately allowed to access
the classified bucket by virtue of its name. This scenario
serves as a one-step sanity check. There is no inline policy
for dept2/Role and the resource policy for classified is
defined as follows.
"Effect": "allow",
"Action": "GetObject",
"Principal": "dept2/*",
"Resource": "classified/*"

"Effect": "deny",
"Action": "GetObject",
"NotPrincipal": "dept2/*",
"Resource": "classified/*"

Scenario 2. dept1/Admin executes PutBucketPolicy on
themselves, then GetObject. There is no resource policy
for classified and the inline policy for dept1/Admin is
defined as follows.
"Effect": "allow",
"Action": "*Role*",
"Resource": "dept1/*"

Scenario 3. dept1/Admin creates a role with any name, in
particular with a name adhering to dept2/*. So CreateRole
is followed by AssumeRole and then GetObject via the new
role. The resource policy for classified is defined as in
Scenario 1 and the inline policy for dept1/Admin is defined
as follows.
"Effect": "allow",
"Action": "*Role*",
"Resource": "*"

"Effect": "deny",
"Action": "*Role*",
"Resource": "dept1/Admin"

Scenario 4. dept1/Admin creates a role with a name ad-
hering to dept1/*. So CreateRole is followed by PutRole-
Policy to elevate the privileges of the created role, then As-
sumeRole, and finally GetObject via the new role. There is
no resource policy for classified and the inline policy for
dept1/Admin is defined as follows.
"Effect": "allow",
"Action": "*Role*",
"Resource": "dept1/*"

"Effect": "deny",
"Action": "*Role*",
"Resource": "dept1/Admin"

Scenario 5. dept1/Admin creates a role with a name ad-
hering to dept1/*, but now there is a resource-based explicit
deny. So CreateRole is followed by PutRolePolicy to ele-
vate the privileges of the created role, then AssumeRole, then
PutBucketPolicy or DeleteBucketPolicy to remove the deny
statements of the bucket, and finally GetObject. The resource
policy for classified is defined as in Scenario 1, and the
inline policy for dept1/Admin is defined as in Scenario 4.

Cross-Account Scenario. dept2/Role executes PutRole-
Policy on themselves, granting them GetObject allow permis-
sion needed in cross-account requests for the identity-based
policy (in addition to the already existing allow permission
in the resource-based policy) and then accesses the bucket.
This is a two-step vector. The resource policy for classi-
fied is defined as in Scenario 1, and the inline policy for
dept2/Role is defined as follows.
"Effect": "allow",
"Action": "*Role*",
"Resource": "*"

C Modeled AWS Elements List

Table 3 lists the means actions whose semantics are for-
malized in the model, and their associated resource types.

Service Resource Type Action Semantics

IAM User CreateUser Turns on a to-be-created user resource flag
UpdateUser Updates the name attribute of the user
CreateLoginProfile Adds the user to the attacker’s credentials list
UpdateLoginProfile Same as above
PutUserPolicy Updates user’s inline policy to fully privileged (updated state)
DeleteUserPolicy Removes users’s inline policy (deleted state)
AttachUserPolicy Adds a given managed policy to user’s attached policies list
DetachUserPolicy Removes a given managed policy from user’s attached policies list
PutUserPermissionsBoundary Updates user’s permissions boundary policy
DeleteUserPermissionsBoundary Removes user’s permissions boundary policy

Group CreateGroup Turns on a to-be-created group resource flag
UpdateGroup Updates the name attribute of group
PutGroupPolicy Updates group’s inline policy to fully privileged (updated state)
DeleteGroupPolicy Removes group’s inline policy (deleted state)
AttachGroupPolicy Adds a managed policy to group’s attached policies list
DetachGroupPolicy Removes a managed policy from group’s attached policies list
AddUserToGroup Adds the group to a user’s groups list
RemoveUserFromGroup Removes the group from a user’s groups list

Role CreateRole Turns on a to-be-created role resource flag
AssumeRole (STS service) Adds the role to the attacker’s credentials list with a new session name
UpdateAssumeRolePolicy Updates role’s trust policy to fully privileged (updated state)
PassRole Auxiliary action that must be allowed on several occasions, such as when

setting a lambda execution role, or an instance profile role
PutRolePolicy Updates role’s inline policy to fully privileged (updated state)
DeleteRolePolicy Removes role’s inline policy (deleted state)
AttachRolePolicy Adds a managed policy to role’s attached policies list
DetachRolePolicy Removes a managed policy from role’s attached policies list
PutRolePermissionsBoundary Updates role’s permissions boundary policy
DeleteRolePermissionsBoundary Removes role’s permissions boundary policy

Policy CreatePolicy Turns on a to-be-created policy resource flag
CreatePolicyVersion Updates the policy to fully privileged (must have less than 5 versions)
DeletePolicyVersion Deletes an arbitrary policy version (to have less than 5 versions)
SetDefaultPolicyVersion Updates the default version of the policy

Instance Profile CreateInstanceProfile Turns on a to-be-created instance profile resource flag
AddRoleToInstanceProfile Updates instance profile’s role
RemoveRoleFromInstanceProfile Removes instance profile’s role

Organizations SCP UpdatePolicy Updates the service control policy to fully privileged (updated state)
Account/OU AttachPolicy Adds an SCP to account’s or to organizational unit’s SCP list

DetachPolicy Removes an SCP from account’s or from organizational unit’s SCP list
Lambda Function CreateFunction Turns on a to-be-created function resource flag

InvokeFunction Adds the function’s execution role to the attacker’s credentials list
AddPermission Updates functions’s resource policy to fully privileged (updated state)
UpdateFunctionConfiguration Updates function’s execution role
UpdateFunctionCode Updates function’s code to reveal role credentials on execution

Event Source Mapping CreateEventSourceMapping Adds the EventSourceMapping’s execution role to the credentials list
UpdateEventSourceMapping Same as CreateEventSourceMapping

EC2 Instance RunInstances Turns on a to-be-created instance resource flag
"SSH into instance" Adds the instance’s role to the attacker’s credentials list
AssociateInstanceProfile Updates instance’s instance role in case it was empty
DisassociateInstanceProfile Removes instance’s instance role
ReplaceInstanceProfile Updates instance’s instance role in case it was already set

S3 Bucket PutBucketPolicy Updates bucket’s resource policy to fully privileged (updated state)
DeleteBucketPolicy Removes bucket’s resource policy (deleted state)

KMS Key PutKeyPolicy Updates key’s resource policy to fully privileged (updated state)
Decrypt Must be allowed when accessing encrypted resources such as S3 buckets

Glue CreateDevEndpoint Adds the DevEndpoint’s role to the attacker’s credentials list
CloudFormation Stack CreateStack Adds the stack role to the attacker’s credentials list

UpdateStack Same as CreateStack
DataPipeline Pipeline CreatePipeline Turns on a to-be-created pipeline resource flag

PutPipelineDefinition Updates pipeline’s role
ActivatePipeline Adds the pipeline’s role to the attacker’s credentials list

Table 3: Modeled AWS actions and their respective semantics

	Introduction
	Model Checking
	AWS Identity and Access Management
	A Motivating Example
	AWS IAM Model
	Threat Model
	Modeled AWS Elements
	Organization and Attacker States
	Policy Evaluation Logic
	Policy Document
	Policy State
	Policy Evaluation Flowchart

	Action Semantics
	Modeling Different IAM Exploits

	Model Checking Process
	Implementation
	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Related Work
	Discussion and Future Work
	Conclusion
	Translating Theories to Boolean Formulas
	Benchmark Setup
	Modeled AWS Elements List

