
We Really Need to Talk About Session Tickets:
A Large-Scale Analysis of Cryptographic Dangers with TLS Session Tickets

Sven Hebrok1, Simon Nachtigall1,3, Marcel Maehren2, Nurullah Erinola2, Robert Merget4,2,
Juraj Somorovsky1, and Jörg Schwenk2

1Paderborn University
2Ruhr University Bochum

3achelos GmbH
4Technology Innovation Institute

Abstract
Session tickets improve the performance of the TLS protocol.
They allow abbreviating the handshake by using secrets from
a previous session. To this end, the server encrypts the secrets
using a Session Ticket Encryption Key (STEK) only know to
the server, which the client stores as a ticket and sends back
upon resumption. The standard leaves details such as data
formats, encryption algorithms, and key management to the
server implementation.

TLS session tickets have been criticized by security experts,
for undermining the security guarantees of TLS. An adver-
sary, who can guess or compromise the STEK, can passively
record and decrypt TLS sessions and may impersonate the
server. Thus, weak implementations of this mechanism may
completely undermine TLS security guarantees.

We performed the first systematic large-scale analysis of the
cryptographic pitfalls of session ticket implementations. (1)
We determined the data formats and cryptographic algorithms
used by 12 open-source implementations and designed online
and offline tests to identify vulnerable implementations. (2)
We performed several large-scale scans and collected session
tickets for extended offline analyses.

We found significant differences in session ticket imple-
mentations and critical security issues in the analyzed servers.
Vulnerable servers used weak keys or repeating keystreams
in the used tickets, allowing for session ticket decryption.
Among others, our analysis revealed a widespread implemen-
tation flaw within the Amazon AWS ecosystem that allowed
for passive traffic decryption for at least 1.9% of the Tranco
Top 100k servers.

1 Introduction
TLS (Transport Layer Security) [43] is one of the most fre-
quently used cryptographic protocols to ensure secure com-
munication on the Internet. It guarantees the security of

The title is a reference to Filippo Valsorda’s Blog post “We need to Talk
About Session Tickets” [59].

different application layer protocols, including email commu-
nication and web services over HTTP. Due to the diversity of
applications and the importance of TLS in general, we have
seen significant developments in the area of TLS in the last
three decades. This led to the development of new protocol
versions and protocol extensions. Today, TLS 1.2 [17] and
TLS 1.3 [43] are mostly used.

To set up a secure connection, both communication par-
ties need to agree on a TLS version, a set of cryptographic
algorithms, and they need to establish a shared secret. This is
achieved by the so-called TLS handshake. To establish a com-
mon secret in an initial full TLS handshake (see Figure 1), the
client and server use public-key algorithms, for example, the
Diffie-Hellman key exchange over elliptic curves (ECDHE).
There are two main drawbacks of the full TLS handshake.
First, it includes computationally expensive public-key oper-
ations for both parties. Second, the full handshake requires
two round trips in TLS 1.2 and one round trip in TLS 1.3; this
causes a significant delay before encrypted application data
can be sent.

TLS Session Resumption TLS session resumption is a
mechanism with the primary goal of reducing latency in TLS
connections. By performing a resumption handshake (see Fig-
ure 2), both communication parties rely on the secret state
negotiated in a previous handshake which allows them to
omit computationally expensive public-key cryptographic op-
erations and reduce the number of round trips. A blog post
from Cloudflare [51] reports that a resumption can be done
in half the time of a full handshake with only about 4% of
the CPU load compared to a full handshake. Session resump-
tion is thus especially useful for servers under high load and
clients running on low-power devices. TLS session resump-
tion can be implemented using session IDs, where both server
and client must store the secret state, or with session tickets,
where storage is outsourced to the client. In this paper, we
only consider the latter method.

Session Tickets TLS session tickets [45] provide a mecha-
nism to implement session resumption without requiring an



additional database on the server. According to a study from
2018, 78% of the Alexa Top Million TLS-enabled websites
supported session tickets [53]. To use session resumption with
session tickets, both parties have to support it. The server
generates a Session Ticket Encryption Key (STEK), which
contains a set of symmetric keys only known to this server. It
can then use the STEK to encrypt the secret TLS session state
and insert the ciphertext into a session ticket which is sent to
the client during the (initial) handshake. The client stores the
secret TLS session state and the (public) session ticket. In the
next TLS handshake, the client returns the session ticket to
the server. The server can decrypt it using the STEK and thus
retrieve the secret session state. Now both parties have the
previous session state and can resume the session.

Security of TLS Session Tickets While TLS session tick-
ets bring significant performance improvements for TLS con-
nections [51], they have become a major target of criticism
raised by security experts [48, 53, 59]; if an attacker can re-
trieve the STEK, they can impersonate the server or decrypt
recorded TLS connections. Such dangers are not only the-
oretical; in 2020, Fiona Klute discovered a vulnerability af-
fecting the security of the session resumption mechanism in
GnuTLS [35, 62]. The server used an all-zero STEK in the
initial key rotation interval, allowing an attacker to decrypt
the session tickets and learn the included secret TLS state.

The security impact of a STEK compromise depends on
the TLS version used.

• In TLS 1.2 and before, session tickets contain the master
secret used to derive keys for the initial session, where
the ticket was issued, and the resumed session, where the
ticket is redeemed. If an attacker compromises the STEK,
they can passively decrypt the initial and all resumed ses-
sions, thus effectively breaking confidentiality and forward
secrecy promises. Since session tickets are transferred be-
fore the TLS channel encryption is established, the attacker
does not even need to wait for the session to be resumed;
they can break the initial TLS session independently of the
used key exchange algorithm.

• In TLS 1.3, session tickets contain the resumption secret,
a secret derived from the previous master secret. Based on
the resumption secret, the parties can derive an early secret
to protect the early application data sent in the first round
trip of the session resumption handshake. Obtaining the
resumption secret always enables an attacker to decrypt this
early application data. The security properties of regular
application data are tied to new secrets derived for the new
session. However, depending on the specific resumption
mode used, a passive attacker able to eavesdrop on the
new session may still be able to decrypt the new session.
When resuming a session, the client and server can solely
rely on the previously established key (psk_ke mode) or
perform a new Diffie-Hellman key exchange (psk_dhe_ke)
that influences the derived keys. Only the latter achieves

forward secrecy for new application data but also negates
some of the performance benefits of session resumption.

Independently of the used TLS version, an active attacker can
use a compromised STEK to impersonate the server.

Systematic Evaluation Despite the criticism expressed by
security experts [48, 53, 59] and the known negative effects
of incorrect session ticket implementations on TLS secu-
rity [35,62], no systematic large-scale analysis of the dangers
associated with bad implementations of session tickets ex-
ists. We structured the first such analysis along the following
research questions:

RQ1: Which cryptographic vulnerabilities may be
introduced through faulty TLS session ticket imple-
mentations?

Klute showed a major implementation bug in the STEK
generation used by GnuTLS [35, 62]. We systematically ex-
tend this test case to use it in our offline tests later. The
flexibility of the session ticket standard [45] allows for many
other implementation flaws. In Section 3, we describe poten-
tial implementation flaws, for example, unencrypted session
tickets, reused keystreams, and the usage of weak crypto-
graphic algorithms. These potential flaws are later evaluated
in online and offline tests.

Since some of the discussed flaws are only relevant in spe-
cific configurations (e.g., keystream reuse only in connection
with stream ciphers or counter modes), we needed to get an
overview of the implementations of the session ticket mecha-
nism in open-source libraries:

RQ2: How do state-of-the-art open-source libraries
implement session tickets?

Section 4 presents our analysis of 12 open-source TLS
libraries and their implementation of TLS session tickets.
While we found all libraries to be generally secure, our analy-
sis gave us an impression of real-world implementations of
session tickets. We observed that none of the libraries com-
pletely adhere to the standard recommendations [45]. Every
library deviates in at least one property, be it a variable in
the session ticket format, the encryption algorithm, or the au-
thentication algorithm. This knowledge allowed us to design
precise online and offline tests for session ticket implementa-
tion bugs for large-scale analyses of session ticket usage in
the deployed TLS ecosystem (Section 5).

RQ3: Are real-world TLS servers vulnerable to the
proposed attacks?

To answer this question, we performed three sets of scans
against the hosts in the Tranco list [38] and publicly available
IPv4 hosts (Section 6). Our scans and the related online and
offline tests uncovered that over 1.9% of the Tranco top 100k



ClientHello
+Empty Ticket Extension

Server Hello
+Empty Ticket Extension

ClientKeyExchange
ChangeCipherSpec
Finished

NewSessionTicket
ChangeCipherSpec
Finished

Client Server

Figure 1: A TLS 1.2 handshake using a Diffie-Hellman key
exchange and session ticket negotiation.

occasionally used an empty STEK to encrypt their session
tickets (Section 6.2.1). The flaw could allow an attacker to
passively decrypt TLS traffic as long as session tickets were
used. It was caused by a faulty key rotation mechanism in
AWS’s ALBs (Application Load Balancers). In further scans,
we discovered vulnerabilities caused by partially initialized
keys (Section 6.2.2) and a reused keystream (Section 6.2.3).
These allowed passive adversaries to decrypt the session tick-
ets.

Contributions We make the following contributions:

• We systematically analyze cryptographic implementation
pitfalls in the session ticket handling of TLS servers and
their impact on TLS connections (Section 3).

• We conduct a source code analysis of 12 open-source sys-
tems and study their usage of cryptographic algorithms,
session ticket formats, and vulnerability mitigations (Sec-
tion 4).

• Based on our analyses, we implement online and offline
tests for the potential vulnerabilities (Section 5) and per-
form large-scale security scans of the TLS ecosystem (Sec-
tion 6).

• Our scans detect critical security issues in the collected
session tickets, including repeating keystreams and weak
keys, allowing to decrypt the TLS communication (Sec-
tion 6.2.1). Most notably, we discovered an issue in a large
portion of AWS hosts, affecting around 1.9% of Tranco
top 100k hosts.

2 Background on TLS
The Transport Layer Security (TLS) protocol allows two com-
municating peers (client and server) to establish a secure
channel. It is split into two phases: the handshake and the
transmission of application data. The handshake establishes
keys and parameters to secure the application data. In this
paper, we focus on the handshake. Throughout TLS ver-
sions 1.0 to 1.2, the general protocol structure, especially the
handshake, remained very similar. For better readability, we
subsequently use TLS 1.2 in place of this version range.

ClientHello
+Ticket Extension

Server Hello
+Empty Ticket Extension

NewSessionTicket
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Client Server

Figure 2: A TLS 1.2 resumption handshake using session
tickets

As shown in Figure 1, the client initiates the TLS hand-
shake with a ClientHello message that enumerates sup-
ported features, such as the protocol version and crypto-
graphic algorithms. Some of these features are expressed
through Extensions, such as the SessionTicketExtension,
which requests a session ticket from the server. The server
chooses suitable parameters from the offered features and
communicates its choices through a ServerHello message.
If a client requests a session ticket through its ClientHello,
this message may also contain an empty SessionTicketEx-
tension if the server is willing to issue a ticket. In TLS 1.2,
the server continues to send a Certificate message fol-
lowed by a ServerKeyExchange message containing an
ephemeral public key if Diffie-Hellman key exchange was
negotiated. The server ends its flight of messages with
a ServerHelloDone message. The client replies with a
ClientKeyExchangemessage containing its chosen key ma-
terial, such as a Diffie-Hellman key share. At this point,
both parties can derive all required symmetric session keys.
Subsequently, the client sends a ChangeCipherSpec mes-
sage which informs the server that all following messages
will be protected using the established keys and algorithms.
The client finishes its flight of messages with a Finished
message, which provides a cryptographic checksum of the
handshake transcript. The server concludes the handshake
by sending a ChangeCipherSpec and Finished message
of its own. If the server is willing to issue a requested ses-
sion ticket, a NewSessionTicket message is sent before
the ChangeCipherSpec. Note that the NewSessionTicket
message is hence left unencrypted in TLS 1.2.

In TLS 1.3, the handshake was modified significantly to
reduce the round trip times (RTT) required before exchanging
application data. To achieve this, both peers already send pub-
lic keys in their respective Hello messages. As a result, ses-
sion keys can be derived after processing the ServerHello
message, and all following handshake messages can be en-
crypted. Consequently, in TLS 1.3, a NewSessionTicket
message, sent either during or after the handshake, is always
protected using the derived session keys.

To eliminate any delay before the exchange of application
data entirely, TLS 1.3 also provides the option to send en-
crypted application data along with the ClientHello. This
application data is referred to as early data. In order to en-



crypt the early data, a client must possess a PSK that was
either configured manually or established in a previous ses-
sion. We expand upon the security properties of early data in
Section 2.1.1.

Session Secrets TLS uses a variety of keys for crypto-
graphic operations. These keys are derived from so-called
secrets established during the handshake. The keys and se-
crets are derived using hash-based functions. We give an
overview in Figure 3. In TLS 1.2, these are the premaster
secret and master secret. The premaster secret is established
using the key exchange.

TLS 1.3 replaced the premaster secret with the handshake
secret. TLS 1.3 further introduces the early secret, resumption
secret, and Pre-Shared Key (PSK)s. We give more details on
the different secrets and how they are affected by session
tickets in Section 3.1.

2.1 Session Resumption
Session resumption allows two parties to reuse previously
established keys and parameters (henceforth just called state)
in a new TLS session. The handshake of this resumed session
does not require a new key exchange and no authentication
of the peers, which eliminates the need for asymmetric cryp-
tography. As asymmetric cryptography accounts for a large
part of the handshake’s latency and computational costs, a
resumption handshake benefits both the client and server. Ses-
sion resumption in TLS can be classified into two concepts:
Session IDs and session tickets.

When using session IDs, the client and server remember
the session’s state, and the server sends an arbitrary ID to
the client. Upon resumption, the client reuses the state and
sends the ID to the server. The server uses the ID to look up
the state from the earlier session. To communicate that the
resumption request was accepted, the server likewise includes
the ID in its ServerHello.

ID-based resumption may require the server to store large
numbers of states. To alleviate this, session tickets have
been specified [45]. Here, the server puts the state into a
session ticket structure which it encrypts and sends to the
client. The client stores the ticket for the server alongside the
session state. Upon resumption, the client loads the state and
sends the ticket to the server (cf. Figure 2). The server can
then decrypt the ticket and extract the state from the ticket
so that both parties are now in possession of the previous
session’s state. For this to work, it is sufficient if only the
server understands the ticket format, as the client can handle
tickets opaquely. Further, it is crucial that only the server is
able to extract the state from the session ticket, as the same
key is typically used for all clients. The key used to encrypt
the session state is called a Session Ticket Encryption Key
(STEK). We also consider the key used to authenticate the
ticket to be part of the STEK.

Regardless of the chosen mechanism, the server can always
reject the client’s resumption request and fall back to a full

struct {
opaque key_name[16];
opaque iv[16];
opaque encrypted_state <0..2^16-1>;
opaque mac[32];

} ticket;

Listing 1: Recommended session ticket format in RFC 5077.
The RFC recommends that session tickets are encrypted with
AES-128-CBC and protected by HMAC-SHA-256 over all
previous fields.

handshake by sending the messages depicted in Figure 1.

Recommended Ticket Structure The usage of tickets was
initially defined in RFC 4507 [44], which was shortly after
updated by RFC 5077 [45]. The RFC further recommends
a structure for session tickets, which is shown in Listing 1,
consisting of four values:

key_name: A 16-Byte STEK identifier that the server can
use to select the key to decrypt the session state. It is
recommended to generate this identifier randomly for each
key.

iv: 16-Byte initialization vector which is used in the encryp-
tion of the encrypted_state.

encrypted_state: The session state contains all neces-
sary cryptographic parameters of the server to resume the
session. This state is encrypted since only the server is
authorized to read the contents of the session state. The
length of the state (2 bytes) should be included before the
actual state.

mac: Session tickets shoud be integrity protected. The Mes-
sage Authentication Code (MAC) is computed over all
previously named fields.

RFC 5077 recommends using AES-128 CBC as the encryp-
tion algorithm and HMAC-SHA-256 as the authentication
algorithm. Thus, the server’s STEK must consist of two keys,
one for each algorithm.

Additionally, the RFC recommends a list of parameters to
include in the plaintext state. These are the selected protocol
version, cipher suite, and compression method along with the
master secret. Besides these, it is recommended to include a
timestamp to recognize expired tickets.

Note that servers do not need to comply with these RFC
recommendations; they can use their own ticket structure or
different cryptographic algorithms. Since the tickets are only
processed by the servers and handled by clients opaquely,
such RFC deviations do not cause interoperability issues.

Security Properties The implementation of session re-
sumption with session tickets in TLS has significant con-
sequences for the security of TLS sessions [59]. Since the



Key Exchange

Premaster Secret

Master Secret

Handshake Secret Key Exchange

Master Secret

symmetric keys 1 symmetric keys 1Resumption Secret

PSK1

TLS 1.2 TLS 1.3

symmetric keys 2

Handshake Secret

Master Secret

symmetric keys 2Resumption Secret

PSK2

Key Exchange

Initial Handshake Resumption Initial Handshake Resumption

Early Secret

<optional>

Figure 3: Overview of the key generation in TLS. The solid arrows denote a hash-based one way function. This function also
takes other data as input which we omit for clarity here (e.g., random numbers from the Hello Messages). Upon resumption in
TLS 1.2, the same master secret is reused to derive the symmetric keys. In contrast, in TLS 1.3, the PSK is used to compute the
early secret which is only used to protect early application data.

session tickets contain the master secret for deriving the ses-
sion keys, it is crucial that the STEK is only accessible to the
server. Otherwise, if the attackers could retrieve the STEK,
they could effectively break all connections using session
tickets. They could also decrypt connections established with
perfect forward secure cipher suites. A compromised STEK
has two fatal consequences for sessions in TLS 1.2:

1. Since resumed sessions rely solely on the encrypted mas-
ter secret, they never achieve forward secrecy. After
obtaining the STEK, an attacker can extract and decrypt
the session ticket from a recorded session before decrypt-
ing the resumed session itself.

2. Obtaining the master secret within a session ticket also
enables an attacker to decrypt the previous session in
which this master secret was established.

In order to mitigate the effects of a STEK compromise on
forward secrecy, the RFC recommends rotating the STEK
every 24 hours.

2.1.1 Session Resumption in TLS 1.3

TLS 1.3 unified the concepts of session IDs and session tick-
ets into the notion of Pre-Shared Keys (PSK). Both, IDs and
tickets, are now sent through the NewSessionTicket mes-
sage as a ticket. The client is not able to tell if this ticket is
just a reference to a PSK stored in the server’s database or
a session state encrypted with the server’s STEK. Only the
length of the ticket may hint at which mechanism is used. In
contrast to TLS 1.2, the NewSessionTicket messages are
always sent encrypted using the negotiated session keys.

Recommended Ticket Structure TLS 1.3 does not recom-
mend a ticket structure. RFC 8446 [43] only states that the
session ticket has to be self-encrypted and self-authenticated
by the server. However, in practice, most TLS implementa-

tions use the same ticket structures as for TLS 1.2, as we will
show in Section 4.

Security Properties To address the negative security impli-
cations that session tickets present in TLS versions up to 1.2,
TLS 1.3 introduced some significant changes. To ensure the
forward secrecy of the previous session in which the session
ticket was issued, TLS 1.3 does not reuse the same master
secret. Instead, TLS 1.3 uses a secret derived from the master
secret. An attacker cannot reconstruct the initial master secret
so a compromise of the STEK no longer affects the initial
session. TLS 1.3 further allows the communicating parties to
optionally perform a new Diffie-Hellman key exchange upon
resumption. While this negates some of the performance ad-
vantages of a session resumption, it ensures forward secrecy
for the resumed session. A resumed session still does not
re-authenticate the server, that is no certificate message is
sent or verified, which still provides a speedup.

Both application messages sent with the ClientHello
(early data) and all messages exchanged in a resumed ses-
sion without the optional key exchange can still be decrypted
by an attacker later if the contents of the session ticket get
compromised.

Since NewSessionTicketmessages are always encrypted
in TLS 1.3, obtaining the session ticket is only possible for
an attacker when the client requests the session resumption
by including the ticket in its ClientHello.

2.2 TLS-Attacker
TLS-Attacker [1, 47] is a well-established framework for sys-
tematic analyses of TLS implementations. It implements TLS
while allowing to generate arbitrary protocol flows and make
very granular modifications to the exchanged messages. This
way, we can easily access the tickets received by a server
and prepare modified tickets to send to the server. TLS-
Scanner [2] builds on TLS-Attacker. It contains a multitude



of tests that are run automatically against a specified server.
It provides a report that allows to determine supported TLS
features and potential issues quickly. To perform large-scale
scans, TLS-Crawler [42] can be used. It is a framework
that utilizes TLS-Scanner to scan many servers in parallel
and writes the results to a database. Moreover, it allows for
distributing the scan tasks across multiple machines.

3 Cryptographic Pitfalls in Session Ticket Im-
plementations

As mentioned in Section 2.1, the session ticket format is not
strict. Since the session ticket is additionally encrypted with
a key only known to the server, the connecting client is un-
able to see if the server is using the recommended format.
A server deviating from the recommended ticket design or a
server making an implementation flaw would hence not be ap-
parent to a client but could have severe consequences for the
security of the connection. This section discusses potential
deviations from the recommended format, their consequences,
and potential cryptographic implementation pitfalls. All of
these flaws allow an attacker to recover the secrets, for exam-
ple, the master secret, from the ticket.

Unencrypted Session Tickets The first possible vulnera-
bility can appear if wrongly configured servers issue session
tickets with an unencrypted session state. Such configuration
mistakes would allow attackers to access the session secrets
directly. While the vulnerability seems contrived, the session
ticket mechanism would work perfectly fine with unencrypted
session states. The session ticket structure is opaque for the
client, and it would not notice if connection secrets would
be transmitted within it. Similar issues have been found in
the context of S/MIME and OpenPGP [24, 46]; they led to
sending plaintext emails even when encryption was turned
on [24, 46].

Weak Encryption Keys Inspired by the bug in
GnuTLS [35], another vulnerability can appear if a
vulnerable server uses default keys or keys with low entropy
to protect its session tickets. This vulnerability might be
caused by uninitialized memory and lead, for example, to
session tickets encrypted with zero-keys. This enables an
attacker to decrypt tickets and extract the session secrets.

Reused Keystream If implementations deviate from the
proposed encryption algorithms, algorithm-specific issues
may appear. An example of this is keystream reuse in ciphers
like ChaCha20, or cipher modes like GCM, CCM or CTR.
This mistake was previously observed in some TLS servers
using AES-GCM [12]. In these cipher modes, a keystream
is generated and XORed onto the plaintext to compute the
ciphertext. Concretely, with a keystream Ks, and a plain-
text P, the ciphertext C is computed as Ks ⊕P = C. If two
different plaintexts Pi and Pj use the same keystream, assum-
ing the attacker is in possession of Pj, they can compute the
other plaintext as Pi =Ci ⊕C j ⊕Pj. An attacker can abuse a

server that occasionally encrypts session tickets with repeat-
ing keystreams by frequently requesting session tickets until
a session ticket with a keystream used in a victim’s session
ticket has been received. The attacker can verify the attack’s
success by checking whether the decrypted master secret is
suitable to decrypt the victim session.

Cryptographic Wear-out Depending on the selected algo-
rithms and the number of session tickets expected to be issued
with a given STEK, a problem called cryptographic wear-out
can appear. Typically, ciphers have a threshold of ciphertext
that can be generated under a given key until they become in-
secure. For example, for AES-GCM, the nonce should never
be repeated as using the same nonce under the same key with
different plaintexts leaks the XOR of the plaintexts and the
authentication key [12]. The nonces in AES-GCM are 12
bytes long, meaning that randomly chosen IVs will collide
with 50% probability after 248 session tickets. Since 50% is
typically not conservative to be considered secure, real-world
systems additionally require a security margin. With an ac-
ceptable collision risk of 1/232, AES-GCM allows for the
encryption of 232 (≈ 4.2 billion) session tickets. This limita-
tion has also been set by the National Institute of Standards
and Technology (NIST) [23]. Depending on the longevity
of the STEK and the server infrastructure, it is possible that
this limit gets exhausted, which can result in a nonce colli-
sion, allowing the users of affected sessions to decrypt the
other colliding session. For AES-CBC with HMAC, crypto-
graphic wear-out is not of practical concern as the block and
the initialization vector size are both 16 bytes, allowing for
the encryption of 248 session tickets before the threshold is
passed, which is unlikely to be ever hit by a real server, even
if the STEK is never rotated.

Nonce collisions are not the only threat one needs to con-
sider when using authenticated encryption schemes. Other
security properties, like integrity or indistinguishability, also
degrade with increasing data sizes and rotated encryption
keys [9, 16, 31, 39]. However, in the case of the considered
schemes in this paper, the practical importance of this degra-
dation on session tickets is limited.

Broken Authenticated Encryption Similar to the encryp-
tion scheme, an implementation may use different algorithms
to protect the integrity and authenticity of its session tickets.
An implementation may even decide not to use authenticated
encryption or no authenticity and integrity protection at all.
This could, for example, be the omission of the HMAC or its
validation. Even if authentication is enforced, similarly to the
default STEKs, servers might use weak HMAC keys. This
would allow an attacker to re-compute correct HMACs over
modified session tickets, rendering authenticated encryption
useless.

Broken authenticated encryption does not directly lead to
session ticket decryption. However, it can open doors for new
potential attacks. For example, RFC 5077 [45] recommends



the usage of AES-CBC for session ticket encryption along
with HMACs, in the Encrypt-then-MAC scheme. Broken
authentication might allow the attacker to modify the cipher-
texts and make the implementation vulnerable to a padding
oracle attack [4, 47, 60]. The padding oracle attack exploits
the malleability of the Cipher Block Chaining (CBC) mode of
operation and strict padding validation by the receiving appli-
cation. It allows the attacker to query the server with carefully
modified ciphertexts. If the server leaks information about the
padding validity, the attacker can decrypt the plaintext and
thus the session ticket after a few hundred queries.

Note that even if authentication with HMACs is enforced,
a server might still reveal a padding oracle vulnerability when
using MACs in an insecure way. For example, servers can
use the MAC-then-Encrypt scheme, whose application makes
secure padding oracle prevention very challenging [4, 42, 47].
The same scheme is used in TLS-CBC, making it tempting
for implementations to reuse existing code.

Weak Algorithms If the server uses a weak algorithm, dif-
ferent attacks to recover the plaintext may be possible. For
example, the algorithm could use short keys (e.g., 56 bytes
in the case of DES), allowing an attacker to brute-force the
STEK (cf. weak keys). Other attacks might be feasible de-
pending on the algorithm.

Decryption Side Channels Depending on the structure of
the session ticket, an implementation may be vulnerable to
side-channel attacks, such as a timing side channel [4, 15, 54].
For example, a server could leak information about the ticket
plaintext based on how fast it rejects a manipulated ticket
and falls back to a full handshake. These attacks are hard to
exploit for a remote attacker due to the noise introduced by
network nodes.

3.1 Impact on the TLS Sessions
All presented pitfalls allow an attacker to decrypt the session
ticket and, therefore, potentially retrieve the master secret.
However, due to the design differences of session resumption
in TLS 1.2 and TLS 1.3, the impact differs between these two
versions. If the attacker gets possession of the session secrets
stored in a TLS 1.2 session ticket, they can decrypt all sessions
where the compromised session ticket was either issued or
redeemed. In TLS 1.3, the attacker can decrypt the 0-RTT
data of all sessions where the compromised session ticket was
redeemed. If no additional key exchange is performed, the
following application data can also be decrypted. The impact
also depends on the secret contained in the ticket. If the ticket
contains the master secret instead of the PSK, the session in
which the ticket was issued can be decrypted.

For some of the presented attacks, a passive Mallory-in-
the-Middle (MitM) attacker suffices to break the security of
the TLS session and eavesdrop on the exchanged application
data. An active attacker can impersonate the server when the
client resumes the session, in all TLS versions.

If the attacker can also forge new tickets (for example, due
to a Session Ticket Encryption Key (STEK) compromise), they
can also set the client identity stored in the ticket. This may
allow them to circumvent client authentication or impersonate
another identity.

4 Analysis of Session Tickets in Open-Source
TLS Libraries

To start our evaluation, we looked at the session ticket im-
plementation in common open-source TLS libraries. We
manually analyzed the source code of TLS libraries for their
used session ticket format and the potential implementation
flaws proposed in Section 3. In total, we evaluated nine dif-
ferent TLS libraries. We additionally evaluated three web
servers. While these web servers also use libraries covered in
our open-source analysis, they might behave differently due
to how they utilize them. Our goal was to better understand
how different servers handle session tickets and if they fulfill
the recommendations of RFC 5077 [45]. We summarize the
results in Table 1.

Encryption & Authentication Algorithms We first look
at the encryption and authentication algorithms used by the
different implementations. RFC 5077 recommends using
AES-128-CBC to encrypt the tickets and HMAC-SHA-256 to
authenticate the tickets (including the encrypted contents).
All tested libraries use authenticated encryption with strong
algorithms. Note that GnuTLS uses HMAC-SHA1. While
still secure, this is weaker than the recommended HMAC-
SHA256. Most libraries diverge from the recommended al-
gorithms and use different modes. Rustls is the only library
not to use AES, and uses ChaCha20 instead. Further, half of
the analyzed libraries use an AEAD algorithm instead of an
HMAC algorithm for authentication. Apache and Nginx both
use OpenSSL, but compared to OpenSSL’s example server,
Apache uses AES-128-CBC instead of AES-256-CBC for en-
cryption and Nginx supports both options. OpenLiteSpeed
uses BoringSSL by default with the same session tickets con-
figuration as BoringSSL’s example server.

Session Ticket Format Next, we evaluate the format of
the session tickets and compare them to the recommended
session ticket format specified in RFC 5077 (Listing 1). The
web servers use the format of the underlying libraries. Most
libraries follow the ticket format recommendation. However,
apart from GnuTLS and mbedTLS, they do not include the
size of the encrypted state within the ticket. The encrypted
state is the only field with a variable size in the ticket; hence
the format is still unambiguous. Most deviations are simple
changes in the length of the IV or MAC because they use
different algorithms.

We found two libraries that notably diverge from the rec-
ommendation: Rustls and Botan. Rustls does not include
any key_name at all. Botan includes additional fields: An
8-byte magic_constant and a 16-byte key_seed. With just



Session Ticket Format Symmetric Algorithms

Library Version magica key_name seeda ivb len mac Encryption Authentication

RFC 5077 – 16 – 16 2 32 AES-128-CBC HMAC-SHA256

BoringSSL 2021c – 16 – 16 – 32 AES-128-CBC HMAC-SHA256
Botan 2.19.2 8 4 16 12 – 16 AES-256-GCM (GMAC)
GnuTLS 3.7.6 – 16 – 16 2 20 AES-256-CBC HMAC-SHA1
GoTls go1.18.3 – 16 – 16 – 32 AES-128-CTR HMAC-SHA256
MatrixSSL (TLS 1.2) 4.3.0 – 16 – 16 – 32 AES-256-CBC HMAC-SHA256
MatrixSSL (TLS 1.3) 4.3.0 – 16 – 12 – 16 AES-256-GCM (GMAC)

mbedTLSd 3.1.0 – 4 – 12 2 16
AES-128/256-GCM
AES-128/256-CCM

(GMAC)
(CBCMAC)

OpenSSL 3.0.3 – 16 – 16 – 32 AES-256-CBC HMAC-SHA256
Rustls 0.20.6 – – – 12 – 16 ChaCha20 Poly1305
s2n 1.3.15 – 16 – 12 – 16 AES-256-GCM (GMAC)

Apache 2.4.54 Format of OpenSSL AES-128-CBC HMAC-SHA256
Nginx 1.22.0 Format of OpenSSL AES-128/256-CBC HMAC-SHA256
OpenLiteSpeed 1.17.6 Format of BoringSSL AES-128-CBC HMAC-SHA256
a: These fields are only added by Botan. c: BoringSSL does not use releases. We analyzed the commit dddb60e from 2021-08-31.
b: IV or Nonce. d: mbedTLS can be configured to use different algorithms.

Table 1: Ticket format of evaluated TLS libraries and web servers. Similarities with the session ticket format according to
RFC 5077 are highlighted in bold. All libraries used either AEAD algorithms or the Encrypt-then-MAC paradigm.

4 bytes, the key name is shorter than recommended. Addi-
tionally, Botan derives the key name from the STEK and
a per-ticket key used for encryption from the seed and the
STEK.

Cryptographic Wear-out We discovered that for some li-
braries, cryptographic wear-out is a potential danger. Ma-
trixSSL in TLS 1.3 and s2n use AES-GCM with random IV’s
to encrypt their session ticket, meaning that these implemen-
tations should only encrypt up to 232 session tickets under a
given STEK. The situation is similar for Rustls, which uses
ChaCha20 with a random IV to encrypt its session tickets.
For the same reasons as with GCM, ChaCha20 should only
be used to encrypt up to 232 session tickets until the threshold
is reached. If it is realistic to reach this limit depends on the
key rotation policy and the load the used server is capable of
handling.

We deem the other implementations to not suffer from wear-
out. At first glance, Botan also seems to suffer from the issue,
but a random seed is used to construct a short-term STEK that
drastically reduces wear-out. The GoTls implementation uses
AES-CTR with a random IV. This allows GoTls to encrypt up
to 248 blocks with the same key until the threshold is reached.
Since session tickets are typically small, it is unlikely that the
block limit is exceeded before key rotation happens.

5 Scanning and Evaluation Methodology
While in a lab setting only a limited number of servers can be
examined, a much bigger range of servers can be evaluated
in a real-world setting. Previous research has shown that
real-world evaluations of TLS servers yield interesting new
insights [8, 11, 14, 20, 21, 29, 36, 41, 42, 56, 57]. Since the
session ticket format can be chosen arbitrarily by the server,
the major challenge was to design black-box tests for a limited

evaluation of session tickets suitable for large-scale studies
on the TLS ecosystem.

Based on our results of the evaluation of open-source li-
braries, we implemented tests for a subset of the implementa-
tion pitfalls and vulnerabilities mentioned in Section 3 with
TLS-Scanner. We divided the tests into two categories: online
and offline tests. Online tests demand active modifications of
session tickets during the scanning, while offline tests only
require access to collected session tickets. Cryptographic
wear-out cannot reasonably be evaluated with black-box tests
and is therefore outside the scope of this analysis. Timing
side-channel attacks have also been excluded as they require
either very precise or many measurements for each host to
determine accurate results.

5.1 Online Server Scans
Session Ticket Support For each tested TLS version, we
start by testing whether a server issues and resumes tickets.
For this, we perform an initial handshake and check whether
it contained a ticket. If it contained a ticket, we perform ten
additional handshakes to collect more tickets. Should the
server not issue tickets in all connections, we consider it to
only support tickets partially. In addition to the session tickets,
we also store the corresponding secrets used to derive keys for
each connection. For TLS 1.2, these are the premaster secret
and master secret. For TLS 1.3, the secrets are the handshake
secret, master secret, resumption secret, and PSKs. To test
whether the ticket mechanism is functional, we also check
whether the server accepts one issued ticket.

Missing Authenticity Protection To test the authentication
and integrity algorithms, we perform tests where we manipu-
late the session ticket. As shown in our open-source analysis
(cf. Table 1), every session ticket byte is protected using a



unauthenticated
prefix

prefix
e.g. key_name iv l

e
n

enc_state mac
block 1 block 2 · · · block n−1 block n

mac input

decryption input decryption input

IV offset
ciphertext

offset
MAC input start MAC input end

Figure 4: Assumed ticket format. The enc_state is split into blocks in case a block cipher is used. The correct inputs for the
MAC and decryption are annotated.

MAC. Therefore, any session ticket modification must lead
to ticket invalidation. To test whether this is correctly im-
plemented, we induce bitflips in the ticket and send it to the
server. For each byte in the ticket, we once induce a single
bitflip and observe the server behavior. If the server accepts
any ticket, we know it does not properly check the ticket
authenticity.

Padding Oracle Attacks While TLS-Scanner provides
tests for TLS padding oracles [60], these could not be ap-
plied to our use case. These tests assume that TLS-Scanner
is in possession of symmetric encryption keys and thus can
precisely encrypt the ciphertext, allowing it to include mal-
formed padding on purpose. In our case, we do not know
which padding is included, which block size is used, or where
the ciphertext in the ticket is ending. Based on our analy-
ses in Section 4, we assume servers use a format where the
ticket contains the ciphertext and MAC as the last fields (cf.
Figure 4).

To detect a CBC padding oracle vulnerability, we need to
modify the second to last ciphertext block n−1. Based on
the assumed format, we combine possible MAC lengths (0,
16, 20, 28, 32, 48, 64) with possible block lengths (8, 16) to
get possible positions for block n−1. To get the last byte, we
need to modify this block such that the last block n contains
a valid 1-byte padding. To this end, we xor the last byte of
block n− 1 with each guessed plaintext p and a one byte
padding. If we guessed correctly, the last block will contain a
1 byte padding and a vulnerable server behaves differently.

We consider two possible padding schemes: PKCS#7 [33]
and padding as defined for block ciphers in TLS 1.2 [18].
To speed up our attack, we assume the last block to already
contain padding. Therefore, we have less possible plaintexts
to test.

We send each modified ticket to the server and observe
its behavior. We observe differences in the message types,
how messages are split into TLS records, and the state of
the TCP socket. If a difference is observed, we confirm the
vulnerability by guessing the second to last byte. For this
byte, we do not assume a specific value but test all possible
byte values. If the behavior is again different, we consider the
server vulnerable.

We send each ticket multiple times to counteract indepen-
dent behavior changes being detected as behavior differences

to our padding changes. We initially send each ticket twice.
If some behavior difference is detected, we send each ticket
again to check for statistical significance. For the last byte,
we send the ticket eight additional times, and for the sec-
ond byte, two additional times. We use the statistical tests
from [41] to test whether the behavior difference was signifi-
cant (p < 0.05).

5.2 Offline Analysis

The last group of tests needs no further interaction with the
server. First, we perform basic analyses of the retrieved tick-
ets. We store the length of every session ticket. Next, we
attempt to identify prefixes, like the key name, and continue
with the analysis of cryptographic issues.

Detecting Prefixes To detect the prefixes, we build a prefix
tree of the received tickets. The root node represents an empty
string at depth zero. For each ticket, we add each byte to the
tree. After the tree is built, we sum up the degrees of each
depth. That is, we count how many divergences there are at
each position in the tickets. We consider the depth with the
highest degree to be the prefix length. This should detect the
prefix length, even if we receive tickets with different key
names, for example, due to a load balancer.

Unencrypted Tickets The first issue we check is whether
the tickets are encrypted at all. For this, we iterate over each
ticket and check whether one of the corresponding secrets is
contained directly in the ticket bytes. If we find a secret, we
consider the server vulnerable.

Reused Keystream Another issue we analyze is the reuse
of keystreams. To check whether a keystream was reused, we
take two tickets and their corresponding secrets. Let T1 =
Ks ⊕ p1 and T2 = Ks ⊕ p2 be two tickets, where Ks is the
reused keystream used to encrypt the plain state pi for each
ticket. To check whether a keystream was reused, we XOR
their bytes: Tx := T1 ⊕ T2 = Ks ⊕ p1 ⊕Ks ⊕ p2 = p1 ⊕ p2.
We then XOR the secrets corresponding to these tickets, for
example, the master secrets ms1 and ms2: msx :=ms1 ⊕ms2.
If the XOR value of the tickets Tx = p1⊕ p2 contains the XOR
value of the secrets msx, we know the tickets used the same
keystream. We repeat this for each pair of tickets received
from the server and their corresponding secrets.



Online Results

Session Tickets

Scan JobsTLS-Crawler
Controller

Tranco

ZMap
port 443

ZMap
port 443

ZGrab2
TLS

Session Tickets

pre-T1M,
T1M,
T100k

IP100k

IPF

Offline Results

Offline
Tests

Results

g
TLS-Crawler

Worker

TLS-Scanner
with Online Tests

TLS-Attacker

List of Servers

Figure 5: Setup for our scans. Blue parts contain our contribution. Orange parts are responsible for communicating with other
servers on the internet.

5.2.1 Weak Keys

To test the issued tickets for the usage of weak keys in encryp-
tion and authentication algorithms, we created a list of possi-
ble key candidates. This list contains keys with repeating byte
values (e.g., 0x000000...) and keys with consecutively in-
creasing bytes (e.g., 0x000102...). We chose these specific
keys to account for manually set or hard-coded keys that were
chosen by humans or might have been copied from code ex-
amples. In addition, to target keys possibly constructed from
uninitialized memory, we included known debug values from
different applications [61], for example, uninitialized heap
memory for applications compiled with Microsoft’s C/C++
in debug mode (0xCDCD...) [10]. Inspired by [26], we also
included keys used as examples in the NIST specification of
AES [6]. In total, our list includes 144 different weak keys.
We list our selection of keys in Section A.2.

We use our list of weak keys for extensive tests of the re-
trieved tickets. For the default encryption key, we attempt to
decrypt the given ticket and test whether the decrypted plain-
text contains one of the secrets corresponding to the ticket.
For the default HMAC key, we compute the HMAC tag and
test whether the ticket contains the resulting tag. By perform-
ing these tests, we consider two additional parameters:

Algorithm In our source code analysis (cf. Table 1), we ob-
served eight different encryption algorithms and five different
authentication algorithms. We extended the list of encryption
and authentication algorithms with different key sizes. This
led us to a total of 15 encryption algorithms and 5 HMAC
algorithms. We provide a complete list of the used algorithms
in Section A.1.

Ticket format As we perform a black-box evaluation, we
do not know the structure of a received ticket. In our open-
source analysis, we have seen that libraries generally follow a
similar format. We do not know which format closed-source
libraries use. Nonetheless, we make the following assump-
tions about the format of received tickets: We assume that
the ticket might start with some prefix, like the key name.
Additionally, we allow for a prefix that is not authenticated
using the MAC. Next, we have an IV, followed by an optional

length field (len), the ciphertext, and the MAC. The assumed
format is shown in Figure 4.

In our implementation, this translates into the following
constraints: When checking for a default HMAC key, we
consider two offsets describing the HMAC input start and
the HMAC input end. We assume that the prefix and suffix
lengths are multiple of 8 bytes. Further, we assume that the
prefix length is between 0 to 128 bytes and the suffix length is
between 16 to 64 byes. This results in up to 126 combinations.

When checking for a default encryption key, we consider
two offsets pointing to the IV/nonce and to the ciphertext,
respectively. We assume the IV starts at any position in the
range of 0 to 128 bytes. For the offset of the ciphertext, we
assume that it starts immediately after the IV or two bytes after
it. We also allow for an IV that is set to all zeroes and is not
contained in the ticket. This results in up to 434 considered
formats.

6 Large-Scale Evaluation
Scan Setup In Figure 5, we give an overview of the tools we
used in our scans. We applied two approaches for the scans.
Our first approach uses TLS-Crawler to perform the scans. We
first determined which hosts to scan using the Tranco list [38]
or ZMap [22] to find random IPv4 hosts that responded to a
TCP SYN on port 443. These were fed into TLS-Crawler,
which is split into controller and workers. The controller
creates a list of scan jobs that are handled by worker instances.
The workers run TLS-Scanner, where our online tests are
implemented, against multiple servers simultaneously. To
connect to the server, our tests utilize TLS-Attacker. After the
online tests are run, the session tickets, including the session
key material, are passed to the offline tests to analyze. All
results are collected in a database.

Our second approach, for larger scans, did not use TLS-
Crawler. Instead, we used ZGrab2 [3], as it is more fitted to
scans on the whole IPv4 space. ZGrab2 stores the sesison
tickets and corresponding key material, which we fed into our
offline tests to generate results for these hosts.

We performed multiple scans against hosts on the Tranco
list and publicly available IPv4 hosts. This mix represents the
most popular websites as well as random smaller TLS servers,



Statistics Offline Analysis Online Analysis

Scan Date Tested
Versions

Supports
TLS

Issues
Ticket

Resumes
Ticket

Unencrypted
Ticket

Weak
STEK

Reused
Keystream

Missing Auth.
Protection

Padding
Oracle

pre-T1M 2021-04 1.2 66,992 53,059 – 0 1,923 – – –
T1M 2021-05 1.2 – 1.3 760,293 594,238 547,159 0 3 – – –
T100k 2022-04 1.0 – 1.3 71,200 58,069 55,003 0 1 0 0 0
IP100k 2022-04 1.0 – 1.3 80,972 57,493 55,969 0 0 0 0 0
IPF 2022-08 ≤1.2 39,390,365 29,621,531 – 0 189 1 – –

Table 2: Results from our scans. We performed the pre-T1M and T1M scans to retrieve a first insight into the session ticket
ecosystem. Subsequently, we added tests for keystream reuse and introduced the online analysis. For IPF, we performed an
offline analysis on tickets obtained with ZGrab2 and tested only the highest protocol version, up to TLS 1.2, supported by the
server.

covering a variety of implementations. Overall we performed
the following scans.

T1M (and pre-T1M) We performed the first scan of the
Tranco top 1M in May 2021 to retrieve the first insights into
the session ticket ecosystem. This scan only covered a subset
of our proposed vulnerabilities. We only scanned for keys
consisting exclusively of zero-bytes in TLS 1.2 and 1.3. The
other vulnerabilities and keys were envisioned after this scan
and hence were not scanned here.

Before performing the final T1M scan, we performed test
scans, subsequently summarized as the pre-T1M scan. The
pre-T1M scan is an artifact of our research workflow meant
to verify the first version of our scanner. Unexpectedly, our
scanner quickly detected a large portion of Amazon servers
vulnerable to zero-key flaws (cf. Section 6.2). Due to the
severity of the discovered issue, we had to notify Amazon
immediately before we could extend the original study with
further ideas. As the issue fix would alter the results of subse-
quent scans, the pre-T1M entry presents the findings of this
initial scan.

T100k and IP100k We performed two smaller but more
detailed scan of 100k hosts each in April 2022. These were
chosen as the top 100k from the Tranco list and 100k random
IPv4 hosts that responded on port 443. For these, we per-
formed the extensive online and offline tests to check whether
these seem relevant. We tested TLS versions 1.0 through 1.3
for each host.

IPF Last, we scanned the entire IPv4 address range in Au-
gust 2022. As earlier scans did not reveal issues in the online
tests, we only performed offline tests. Only evaluating the
offline tests further saves resources on not only our end but
also on the scanned servers. To this end, we only collected
session tickets and performed the offline tests afterward. This
also means that we do not try to resume tickets. We performed
three TLS connections per host using ZGrab2, each time at-
tempting to obtain a session ticket. This is a reduction from
the previous scans, where we performed ten connections to
collect tickets. We chose this number as it reduces the number
of connections while hopefully still managing to connect to
different servers if there is a load balancer. Note that ZGrab2

does not support TLS 1.3, hence this scan only contains data
up to TLS 1.2.

Ethical Considerations & Responsible Disclosure Our
scans respected the rules for Internet-wide scanning proposed
by Durumeric et al. [22]. All scans were performed from a
dedicated server from our university that was set up in coop-
eration with our ISP. Its routing and IP address are separated
from the main university network to not interfere with it.

To reduce the impact on the scanned servers, we verified
locally that our tests do not cause any harm to locally deployed
servers. By shuffling the connections made to the servers, we
spread the computational load over time, reducing the risk of
interrupting services. This is especially relevant for tests with
a high amount of requests, like tests for CBC padding oracle
attacks. Further, we established a reverse DNS entry for our
IP, where we provided a website with contact information and
information about the purpose of our scans. We cooperated
with our ISP, which forwarded abuse emails to us. Using
this information, the administrators could contact us and we
were able to put their IPs on a block list for further scans or
convince them about the benign nature of our scans.

We responsibly disclosed all of our findings to the respec-
tive developers and our national CERT. AWS developers
acknowledged our findings and promptly fixed the issue on
their servers [5]. While we did not get feedback from Stack-
path, the issue was also resolved on their servers. We further
contacted a hosting provider and an infrastructure company.
The hosting provider told us they would forward our report to
their customers. The infrastructure company did not respond.
We sent the remaining list of servers to our local CERT.

6.1 Online Tests
In the T100k scan, we observed that 82% of the TLS servers
issue tickets in at least one TLS version, as shown in Table 2.
For the IP100k scan, 71% of TLS servers issue tickets in at
least one version. Of these, around 95% (T100k) and 97%
(IP100k) supported resumption with the issued tickets. In
both scans, we observed that less than 1% issued tickets only
on some connections. Most servers either always sent tickets
or never. Support for session tickets in the T100k seemed
higher in newer versions, while in the IP100k, it was similar



Encryption Authentication

Scan Servers
Found Algorithm Key Algorithm Key

pre-T1M 1903 AES-256-CBC 00 00 ... 00 00 – –
20 AES-128-CBC 00 00 ... 00 00 HMAC-SHA256 00 00 ... 00 00

T1M 3 AES-128-CBC 00 00 ... 00 00 HMAC-SHA256 00 00 ... 00 00

T100k 1 AES-128-CBC 00 00 ... 00 00 HMAC-SHA256 00 00 ... 00 00

IPF

5 AES-256-CBC 00 00 ... 00 00 – –
94 AES-128-CBC 00 00 ... 00 00 HMAC-SHA256 00 00 ... 00 00
12 AES-256-CBC 00 00 ... 00 00 HMAC-SHA384 00 00 ... 00 00

3 AES-128-CBC 10 11 ... 1e 1f HMAC-SHA256 20...2f 00...00a

75 AES-256-CBC 31...31 00...00b HMAC-SHA256 31...31 00...00b

a: This key consists of 16 consecutively increasing bytes followed by 16 0x00 bytes.
b: This key consists of 16 0x31 bytes followed by 16 0x00 bytes.

Table 3: Weak keys discovered in our scans.

for all TLS versions. We provide an overview of the ticket
support per version in Table A.4.

Authenticated Tickets and Padding Oracles In our scans,
we could not detect missing authenticity protection or a server
vulnerable to padding oracle attacks. Our open-source analy-
sis identified that the implementations use Encrypt-then-MAC
or AEAD ciphers, which prevent such attacks. This may also
be the case for servers deployed on the Internet. However,
our tests did not search for more elaborate side channels (e.g.,
timing-based side channels). We thus cannot rule out all
vulnerabilities enabling these attacks.

6.2 Offline Tests
In the scans focusing on offline tests, we determined similar
support for session tickets. We did not find any unencrypted
tickets, however, we found several servers that still allowed
us to recover the plaintext.

6.2.1 Weak STEKs: AWS and Stackpath

We identified several weak STEKs in the offline tests for our
scans. The results are shown in Table 3. Below, we further
analyze our findings.

AWS In the initial scans, we found 1,903 unique hosts,
all within the Tranco top 100k, belonging to AWS ALBs
that used an all-zero STEK. These tickets were encrypted
using AES-256-CBC and the format of RFC 5077 without
the length field. We did not find the HMAC key and assume
it was set correctly. Due to the high impact, we decided to
report our finding before continuing with the full scan. We
could see from the already obtained data that the hosts were
not vulnerable at all times but only in some time intervals.
This suggested an error in the key rotation, which was later
confirmed to us by AWS developers. They stated that the
issue mostly affected so-called redirector hosts. These are
responsible for redirecting clients from an initial domain (e.g.,
example.com) to a final domain (e.g., www.example.com).
However, we want to stress that connections to the initial

domain often also contain HTTP cookies which should be
confidential. Further, a MitM attack is also still possible.

Stackpath During the initial prescans, we also found 20
hosts belonging to Stackpath that used an all-zero STEK and
HMAC key. These tickets were encrypted using AES-128-
CBC, authenticated using HMAC-SHA256, and used the for-
mat of RFC 5077 without the length field. Again, we im-
mediately reported the issue. The affected servers behaved
differently than AWS servers. Only few tickets were vul-
nerable, but this was not limited to a specific timeframe as
in the case of AWS. Interestingly, we found that all servers
were hosted on the same IP address. Using an online reverse
DNS lookup tool, we found a total of 171 domains on the
same IP.1 By rescanning these and collecting 1,000 tickets per
hostname, we determined 90 hostnames for which we could
observe vulnerable tickets. We identified that on vulnerable
hosts, on average 1.4% of the issued tickets per host were
affected. Stackpath did not give us any insight into how this
came to be but resolved the issue.

6.2.2 Further Weak STEKs

During the final T1M scan, we found three more hosts using
an all-zero key for both encryption and HMAC. These hosts
used AES-128-CBC with HMAC-SHA256 and supported
TLS 1.2. One of these hosts also supported TLS 1.3, also
using zero-keys for session tickets. We did not further investi-
gate these hosts. For the T100k, we found the host supporting
TLS 1.2 and 1.3 to still be using a zero-key.

During the IPF scan, we found 189 servers using a weak
key. Out of these, 111 servers used an all-zero key. For five
hosts, we did not detect a weak key for the HMAC algorithm.
Twelve hosts used SHA384, which no analyzed open-source
library uses. This implies that they use a different implemen-
tation or reconfigured the used library. The remaining 78
servers did not use keys that solely consisted of zero-bytes.

1We used https://www.yougetsignal.com/tools/web-sites-
on-web-server/.

https://www.yougetsignal.com/tools/web-sites-on-web-server/
https://www.yougetsignal.com/tools/web-sites-on-web-server/


0 1 2 4 8 16 32 64 128
T1M

T100k
IP100k

IPF

Prefix length size in bytes

10−15

10−10
10−5

Figure 6: Detected ticket prefix sizes in our scans. The color
is logarithmic and denotes the frequency observed in our scan,
where 100% is the sum of all hosts.

We explore the structure of these keys below.

Non-Constant Keys Three servers encrypted their tickets
using AES-128-CBC using the following key consisting of
increasing bytes 0x101112...1F. Looking at the first bytes
of the ticket, we identified a key name that also uses bytes that
count up, starting at zero (i.e., 0x000102...0F). We further
discovered that the authentication tag was computed using
HMAC-SHA256 with the key 0x2021...2f. By connecting
to the server and taking a look at the HTTP response, we
determined that it is an nginx server. We briefly explore a
possible cause for this in Section 7.1.

Partial Keys We found another set of 75 servers that used an
HMAC key that only consisted of the byte 0x31 (ASCII ‘1’).
These servers used HMAC-SHA256 but with a 16-byte key,
which internally gets padded with zero-bytes [37]. Investi-
gating these servers, we could find that they also use AES-
256-CBC with a key consisting of 16 × 0x31 bytes followed
by 16 × 0x00 bytes. We assume the key was only partially
initialized, and the initialized part was set to a weak value.

6.2.3 Reused Keystream

In our IPF scan, we tested for reused keystreams and found
one affected server. Upon connecting to the server at a later
date, the server no longer reused keystreams. The web inter-
face shows that the server runs a software called ’GateMan-
ager’. Further, the format of the observed tickets resembles
mbedTLS. Hence, we assume that the server had low en-
tropy when scanned. When looking at the format (assuming
mbedTLS), we can see that the tickets during the scan reused
the same nonce. We contacted the software vendor but could
not identify the root cause of this issue.

6.3 Session Ticket Structures
While performing our scans, we also collected statistics about
the session ticket structure. As shown in Table 1, most ana-
lyzed open-source libraries use a key name of 16 bytes. This
was also the dominant prefix length we observed through-
out our scans, followed by a prefix length of zero bytes. We
further found many hosts that used a prefix length of four
bytes, which is also consistent with our open-source analysis.
We provide an overview of the observed prefix lengths in
Figure 6.

We further found that servers issue session tickets of vastly

name
16B

aes_key
16B

hmac_key
16B

si
ze name

16B
hmac_key

32B
aes_key

32B

0B 16B 32B 48B

0B 2B 18B 50B 82B

Old

New

Figure 7: Internal structure of Nginx to store session key
material. The format changed in December 2016. We show
the format before (old) and after (new) this change.

different lengths. Most ticket lengths were multiples of 16
in the range of 160 to 240 bytes, as shown in Figure A.9.
However, not all servers responded with tickets of reasonable
size. As shown in Figure A.8, many servers also responded
with tickets longer than 1,000 bytes. The longest tickets we
received were over 9,000 bytes. We could not observe such
deviations in the tickets from the Tranco top 100k hosts; all
the collected tickets were smaller than 700 bytes (cf. T100k).

We also received surprisingly short tickets. While the RFC
defines no minimum ticket length, we expected that a ticket
would contain enough bytes to encrypt the 48 bytes of the
master secret in order to achieve a stateless session resumption
or at least 32 bytes to mimic a session ID. The shortest
“tickets” we received were 14 bytes and consisted of the ASCII
string TICKET FAILURE. We observed this behavior for 18
servers during our IPF scan.

7 Discussion
We discovered two critical issues in our evaluation: using
weak keys and reusing a nonce. In the following, we take
a closer look at possible causes for the usage of weak keys.
Afterward, we discuss possible countermeasures for both
issues.

7.1 Potential Causes for Weak Keys
The web servers we analyzed in Section 4 allow the STEK
to be provided as a file. For all servers, this file contains
the key name, the AES key, and the HMAC key. Since
the servers simply read the file contents, a static config file
containing only zero-bytes or predictable structures, such as
00 01 02 ... 2f, could result in weak keys.

The internally used structures of the analyzed web servers
are similar to the file formats. In the following, we take a
closer look at Nginx as it changed its internal structure in
December 2016. The old and the new format are shown in
Figure 7. The new format is longer and introduces an ad-
ditional size field. If the size is set to 48, Nginx will use
AES-128-CBC. Otherwise, it will use AES-256-CBC. We
argue that this change could be the cause for some servers
with weak keys we discovered with uninitialized or partially
initialized keys. If an external program modifying this struct
is unaware of the change, it might still assume the old for-
mat, while Nginx uses the new format. This can cause two
behaviors, which we both observed in our scan. Either the
hmac_key is initialized, but the aes_key is left empty. Or,



only 16 bytes of each hmac_key and aes_key are set.
The first case occurs if the external program assumes all

fields are aligned in memory and writes 48 bytes into the
struct. In this case, the name and hmac_key are set, and
aes_key is left uninitialized. Since size is not explicitly set
to 48, Nginx will expect 32-byte keys. However, even if size
is set to 48, the aes_key is still uninitialized. We have seen
such behavior in our AWS finding and five times in the IPF
scan (cf. Table 3).

The second case occurs if the external program assumes
that the keys are still expected to be 16 bytes and writes each
key independently. In this case, only 16 bytes are written
to the hmac_key and aes_key. We have seen this behavior
for the 75 hosts that used a key consisting of 16 0x31 bytes
followed by 16 0x00 bytes (cf. Table 3).

7.2 Countermeasures
While the root causes for the uncovered issues can be hard to
fix generically, we propose that TLS libraries deploy defense-
in-depth countermeasures to protect themselves from catas-
trophic implementation defects. Note that TLS 1.3, due to its
changes to the key resumption, message flow, and re-keying
option, already mitigates some issues and is therefore pre-
ferred to TLS 1.2, as discussed in Section 2.1.1.

Weak Keys To prevent the usage of weak keys, we propose
that libraries validate the keys when they are set. That is,
whenever the STEK is rotated, the libraries validate the key
material. This validation could be as trivial as checking that
not every byte is a zero-byte. In most cases, this check is
rather cheap and would have already prevented most of our
discovered issues. However, since most STEKs live for at
least an hour [48] and the STEK only has to be validated on
a change, the check could also be more complex. Libraries
could, for example, check the entropy using the hamming
weight or the average hamming distance between each byte.
While these tests may not be computationally free, more
sophisticated tests might be justified, given the impact of a
weak STEK.

Reused Nonces & Cryptographic Wear-out The impact
of reused nonces and cryptographic wear-out can be miti-
gated by sticking to AES-CBC with HMAC, as proposed
in RFC 5077. If these algorithms are not available, the li-
brary should respect the safety limits of the used cipher and
mode of operation. This could, for example, be achieved
through an internal counter that automatically switches the
STEK once the threshold is reached. Since AES-GCM fails
catastrophically in the case of nonce reuse, misuse-resistant
algorithms should be preferred. Examples of this include
AES-SIV [27], AES-GCM-SIV [28], AEZ [30], and MRO
from the MEM-AEAD [25] cipher family. If these algorithms
are not implemented, validating the reuse of the last nonce as
a minimal check would already mitigate many vulnerabilities
related to repeated randomness. This is, for example, already

implemented in the Bouncy Castle cryptography library for
AES-GCM in general.2

8 Related Work
TLS Large-Scaled Scans Several studies focused on the
evaluation of the TLS ecosystem. Kotzias et al. conducted
the first longitudinal study based on passive measurements
and scans of the entire IPv4 address space over the course
of six years [36]. Durumeric et al. analyzed the certificates
used for HTTPS traffic [21]. These studies primarily focused
on port 443. Holz et al. and Mayer et al. conducted studies
that analyzed the ecosystem of other application protocols
that utilize TLS to establish a secure channel, such as SMTP,
IMAP, and XMPP [32, 40].

Large-scaled scans have also been conducted to estimate
the attack surface for various known vulnerabilities and imple-
mentation pitfalls. Durumeric et al. scanned the IPv4 address
space to determine how common the Heartbleed vulnerabil-
ity was [20]. Valenta et al. identified several servers that
did not validate key exchange parameters correctly [56, 57].
Dorey et al. further analyzed the prevalence of composite
Diffie-Hellman moduli [19]. Böck et al. searched for servers
vulnerable to Bleichenbacher’s attack [11]. Merget et al. con-
ducted large-scaled scans to estimate the impact of padding
oracle attacks [42] and the Raccoon attack [41]. Brinkmann
et al. searched for servers vulnerable to protocol confusion
attacks [14]. Sullivan et al. analyzed collected TLS traffic and
found servers that compute faulty RSA signatures allowing
an attacker to obtain the secret key [50].

Entropy of Key Material Several studies identified insuf-
ficient entropy for generated key material for TLS and for
operating systems that run the libraries. In a large-scale
scan, Heninger et al. found TLS servers that shared RSA
primes enabling an attacker to break the security of the af-
fected RSA keys [29]. In a subsequent study, Heninger et al.
also found servers generating exploitable ECDSA signatures
due to flawed PRNGs [13]. Strenzke evaluated OpenSSL’s
PRNG and found issues that may surface for embedded de-
vices [49]. Hughes analyzed the use of randomness inside
TLS implementations based on collected traffic and identified
various cases of low entropy [34].

TLS Session Tickets The effects of TLS session tickets on
forward security have been studied in several articles [55, 59].
In 2016, Springall et al. evaluated how performance enhance-
ment mechanisms, such as session tickets, weaken the forward
secrecy of TLS in practice [48]. They discovered that 41%
of the websites continuously listed in the Alexa Top Million
rotated their STEK daily to mitigate the effects on forward
secrecy. However, about 10%, in contrast, reused the STEK
for at least 30 days. While they also provided an overview of
the STEK identifiers used by TLS implementations, they did

2Added in release 1.56. https://www.bouncycastle.org/
releasenotes.html

https://www.bouncycastle.org/releasenotes.html
https://www.bouncycastle.org/releasenotes.html


not test for implementation pitfalls.
In 2018, Sy et al. evaluated how users can be tracked across

the web via TLS session resumption mechanisms, such as
session tickets [53]. Their analyses of collected traffic showed
that 65% of all users could be tracked permanently by at least
one website using TLS session tickets with a lifetime of at
least seven days due to a continuous renewal of the ticket. For
a ticket lifetime of 24 hours, only 1.3% of users visit a website
frequently enough to be tracked continuously. A theoretical
analysis of the privacy properties of session tickets in TLS
1.3 was done by Arfaoui et al. [7].

In 2016, Valsorda found a vulnerability in the session ticket
mechanism of the F5 TLS stack that allowed an attacker to
extract 31 bytes of uninitialized memory at a time [58]. Due
to the similarity to the Heartbleed bug [20], the vulnerability
was named Ticketbleed. Valsorda performed a large-scale
scan of the Alexa Top Million list and showed that 949 web
servers were vulnerable.

9 Conclusions
Our large-scale analysis of session tickets confirmed critiques
raised by many cryptographic experts [48,53,59]. We showed
that improper usage of session tickets can have devastating
consequences for TLS connections and break forward secrecy
guarantees delivered by TLS. The concrete issues discovered
seem unlikely, but are an important reminder that looking for
seemingly trivial or contrived issues can be worthwhile for
auditors.

While our study could already detect a significant number
of vulnerable servers, it was limited by the number of tests
we could perform in a large-scale black-box evaluation. We
only performed a white-box analysis of some servers in the
lab. This did not cover all deployed TLS stacks, especially
closed-source stacks. A white-box analysis of the used imple-
mentations might find more issues, making session tickets a
generally risky feature.

Since even servers administrated by well-established cloud
providers were affected by these issues, the community must
acknowledge that catastrophic software defects happen in the
real world and that we must build resilient security systems
and avoid dangerous shortcuts.

At its core, we attribute the observed issues to the unau-
ditability of session tickets. Since the STEK and the layout
are unknown and never revealed to the client, clients cannot
simply validate the strength of the key, the presence of a MAC,
or even the algorithms used. This lack of transparency creates
a space for bad implementations, silently failing crypto, and
hidden backdoors. While key generation always seems to
have this potential, it is especially severe for one-sided sym-
metric keys, as with asymmetric keys, at least the public key
can be audited externally [29, 52]. Having hard-to-analyze
keys in a protocol at a place where a weak or leaked key
causes the protocol to fail catastrophically is a huge risk that
requires careful consideration. Since these keys cannot be

audited externally, we argue that libraries should start audit-
ing them themselves before they use them. In public key
cryptosystems, it is already common practice to ensure that
the generated key material is of a specific form, for example,
to ensure that the key material will result in a strong key or
as a safety net for failing random number generators. Adding
additional checks to randomly drawn symmetric keys could,
at least to some extent, ensure that accidentally weak key
material does not break the protocol.

On the positive side, we could not observe any padding
oracle in our scans. This vulnerability resurfaced in many re-
cent scientific papers analyzing TLS record processing [4,47]
and affected nearly 2% of the Alexa Top 1 Million servers
in 2019 [42]. Compared to TLS record encryption, which
uses the MAC-then-Encrypt construction, RFC 5077 recom-
mends using Encrypt-then-MAC for AES-CBC with HMAC.
Encrypt-then-MAC cryptographically prevents CBC padding
oracle attacks, and we believe this is the main reason for
not finding this vulnerability in session tickets. This exam-
ple shows how a standard can positively affect a large-scale
deployment of a cryptographic protocol.

Another positive development connected to session tickets
is their usage in TLS 1.3, which reduces the impact of ses-
sion ticket implementation dangers. First, TLS 1.3 servers
send session tickets over an encrypted TLS channel, allowing
attackers to obtain them only during the session resumption.
Second, TLS 1.3 session tickets can be used such that reveal-
ing their contents does not break forward secrecy and only
affects the resumed session. These two major differences pos-
itively affect the security of TLS 1.3 and should be considered
when designing new cryptographic protocols.

Our work has also shown that the freedom in the specifica-
tion led to the usage of different session ticket structures and
cryptographic algorithms. These changes can have an impact
on the security of session tickets. Given the previous works
on security bounds affecting indistinguishability and integrity
of encryption schemes in different contexts [9, 16, 31, 39], we
would like to encourage implementors to be mindful when
selecting different algorithms and to have these limits in mind.

Acknowledgments
We would like to thank the reviewers as well as Kenneth
Paterson for their valuable feedback and comments, which
helped to improve the quality of our paper. Sven Hebrok
was supported by the research project “North-Rhine West-
phalian Experts in Research on Digitalization (NERD II)”,
sponsored by the state of North Rhine-Westfalia – NERD II
005-2201-0014. This research was partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 450197914, under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972, and by the German
Federal Ministry of Education and Research (BMBF) through
the project KoTeBi.



References
[1] TLS-Attacker. https://github.com/tls-attacker/TLS-
Attacker.

[2] TLS-Scanner. https://github.com/tls-attacker/TLS-
Scanner.

[3] ZGrab 2.0. https://github.com/zmap/zgrab2.

[4] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In 2013 IEEE Symposium on
Security and Privacy, SP 2013.

[5] Amazon. Resolved: Application load balancer session ticket is-
sue, Apr 2021. https://aws.amazon.com/security/security-
bulletins/AWS-2021-002/.

[6] National Institute of Standards and Technology. Advanced Encryption
Standard (AES). Technical Report Federal Information Processing
Standard (FIPS) 197, U.S. Department of Commerce, November 2001.

[7] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu,
and Cristina Onete. The privacy of the TLS 1.3 protocol. 2019.

[8] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David Adrian,
J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney,
Susanne Engels, Christof Paar, and Yuval Shavitt. DROWN: Breaking
TLS using SSLv2. In 25th USENIX Security Symposium (USENIX
Security), 2016.

[9] Mihir Bellare and Björn Tackmann. The multi-user security of authen-
ticated encryption: AES-GCM in tls 1.3. In 6th Annual International
Cryptology Conference on Advances in Cryptology — CRYPTO 2016.

[10] Andrew Birkett. Win32 debug crt heap internals. https://www.
nobugs.org/developer/win32/debug_crt_heap.html.

[11] Hanno Böck, Juraj Somorovsky, and Craig Young. Return of bleichen-
bacher’s oracle threat (ROBOT). In 27th USENIX Security Symposium
(USENIX Security), 2018.

[12] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and
Philipp Jovanovic. Nonce-disrespecting adversaries: Practical forgery
attacks on GCM in TLS. In 10th USENIX Workshop on Offensive
Technologies (WOOT), 2016.

[13] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice
attacks against weak ECDSA signatures in cryptocurrencies. In Finan-
cial Cryptography and Data Security - 23rd International Conference,
FC, 2019.

[14] Marcus Brinkmann, Christian Dresen, Robert Merget, Damian Pod-
debniak, Jens Müller, Juraj Somorovsky, Jörg Schwenk, and Sebastian
Schinzel. ALPACA: application layer protocol confusion - analyzing
and mitigating cracks in TLS authentication. In 30th USENIX Security
Symposium, USENIX Security 2021.

[15] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuag-
noux. Password interception in a SSL/TLS channel. In Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, 2003.

[16] Jean Paul Degabriele, Jérôme Govinden, Felix Günther, and Kenneth G.
Paterson. The security of chacha20-poly1305 in the multi-user setting.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS, 2021.

[17] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.2. RFC 5246 (Proposed Standard), August 2008.

[18] M. Dolan. International Standard Audiovisual Number (ISAN) URN
Definition. RFC 4246 (Informational), February 2006.

[19] Kristen Dorey, Nicholas Chang-Fong, and Aleksander Essex. Indis-
creet logs: Diffie-hellman backdoors in TLS. In 24th Annual Network
and Distributed System Security Symposium, NDSS, 2017.

[20] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,
Michael Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, and Vern Paxson. The matter of Heartbleed.
In Proceedings of the 2014 Internet Measurement Conference, IMC,
2014.

[21] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halder-
man. Analysis of the HTTPS certificate ecosystem. In Proceedings of
the 2013 Internet Measurement Conference, IMC, 2013.

[22] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast
internet-wide scanning and its security applications. In 22nd USENIX
Security Symposium (USENIX Security), 2013.

[23] Morris Dworkin. Recommendation for Block Cipher Modes of Opera-
tion: Galois/Counter Mode (GCM) and GMAC, 2007. Special Publica-
tion (NIST SP), https://tsapps.nist.gov/publication/get_
pdf.cfm?\pub_id=51288.

[24] Enigmail Forum. Enigmail 1.7 completely broken.
https://sourceforge.net/p/enigmail/forum/support/
thread/3e7268a4.

[25] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves.
Improved masking for tweakable blockciphers with applications to
authenticated encryption. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, 2016.

[26] greenluigi1. How I hacked my car, May 2022. https://
programmingwithstyle.com/posts/howihackedmycar/.

[27] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-
resistant authenticated encryption at under one cycle per byte. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[28] D. Harkins. Synthetic Initialization Vector (SIV) Authenticated En-
cryption Using the Advanced Encryption Standard (AES). RFC 5297
(Informational), October 2008.

[29] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halder-
man. Mining your Ps and Qs: Detection of widespread weak keys
in network devices. In 21st USENIX Security Symposium (USENIX
Security), 2012.

[30] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
authenticated-encryption AEZ and the problem that it solves. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2015.

[31] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam.
The multi-user security of gcm, revisited: Tight bounds for nonce
randomization. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2018.

[32] Ralph Holz, Johanna Amann, Olivier Mehani, Mohamed Ali Kâafar,
and Matthias Wachs. TLS in the wild: An internet-wide analysis of
tls-based protocols for electronic communication. In 23rd Annual
Network and Distributed System Security Symposium, NDSS, 2016.

[33] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652
(Internet Standard), September 2009.

[34] James P. Hughes. Badrandom: The effect and mitigations for low
entropy random numbers in TLS, 2021. UC Santa Cruz, https:
//escholarship.org/uc/item/9528885m.

[35] Fiona Klute. Cve-2020-13777: TLS 1.3 session resumption works
without master key, allowing mitm, June 2022. https://gitlab.
com/gnutls/gnutls/-/issues/1011.

[36] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G.
Paterson, Narseo Vallina-Rodriguez, and Juan Caballero. Coming of
age: A longitudinal study of TLS deployment. In Proceedings of the
Internet Measurement Conference 2018, IMC, 2018.

https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Scanner
https://github.com/zmap/zgrab2
https://aws.amazon.com/security/security-bulletins/AWS-2021-002/
https://aws.amazon.com/security/security-bulletins/AWS-2021-002/
https://www.nobugs.org/developer/win32/debug_crt_heap.html
https://www.nobugs.org/developer/win32/debug_crt_heap.html
https://tsapps.nist.gov/publication/get_pdf.cfm?\pub_id=51288
https://tsapps.nist.gov/publication/get_pdf.cfm?\pub_id=51288
https://sourceforge.net/p/enigmail/forum/support/thread/3e7268a4
https://sourceforge.net/p/enigmail/forum/support/thread/3e7268a4
https://programmingwithstyle.com/posts/howihackedmycar/
https://programmingwithstyle.com/posts/howihackedmycar/
https://escholarship.org/uc/item/9528885m
https://escholarship.org/uc/item/9528885m
https://gitlab.com/gnutls/gnutls/-/issues/1011
https://gitlab.com/gnutls/gnutls/-/issues/1011


[37] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), February 1997.

[38] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczynski, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. 2019.

[39] Atul Luykx and Kenneth G. Paterson. Limits on Authenticated Encryp-
tion Use in TLS, 2017. https://www.isg.rhul.ac.uk/~kp/TLS-
AEbounds.pdf.

[40] Wilfried Mayer, Aaron Zauner, Martin Schmiedecker, and Markus
Huber. No need for black chambers: Testing TLS in the e-mail
ecosystem at large. In 11th International Conference on Availability,
Reliability and Security, ARES, 2016.

[41] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk. Raccoon attack: Finding and
exploiting most-significant-bit-oracles in TLS-DH(E). In 30th USENIX
Security Symposium, USENIX Security, 2021.

[42] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis
Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt. Scalable scanning
and automatic classification of TLS padding oracle vulnerabilities. In
In 28th USENIX Security Symposium (USENIX Security), 2019.

[43] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (Proposed Standard), August 2018.

[44] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport Layer
Security (TLS) Session Resumption without Server-Side State. RFC
4507 (Proposed Standard), May 2006.

[45] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport Layer
Security (TLS) Session Resumption without Server-Side State. RFC
5077 (Proposed Standard), January 2008.

[46] SEC Consult Blog. Fake crypto: Microsoft outlook s/mime
cleartext disclosure (cve-2017-11776). https://sec-
consult.com/blog/detail/fake-crypto-microsoft-
outlook-smime-cleartext-disclosure-cve-2017-11776/.

[47] Juraj Somorovsky. Systematic fuzzing and testing of TLS libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[48] Drew Springall, Zakir Durumeric, and J. Alex Halderman. Measuring
the security harm of TLS crypto shortcuts. In Proceedings of the 2016
Internet Measurement Conference, IMC, 2016.

[49] Falko Strenzke. An analysis of openssl’s random number generator. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2016.

[50] George Arnold Sullivan, Jackson Sippe, Nadia Heninger, and Eric
Wustrow. Open to a fault: On the passive compromise of TLS keys
via transient errors. In 31st USENIX Security Symposium (USENIX
Security), 2022.

[51] Nick Sullivan. TLS session resumption: Full-speed and secure,
February 2015. https://blog.cloudflare.com/tls-session-
resumption-full-speed-and-secure.

[52] Petr Svenda, Matús Nemec, Peter Sekan, Rudolf Kvasnovský, David
Formánek, David Komárek, and Vashek Matyás. The million-key
question - investigating the origins of RSA public keys. pages 893–
910. USENIX Association, 2016.

[53] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer.
Tracking users across the web via TLS session resumption. In Proceed-
ings of the 34th Annual Computer Security Applications Conference,
ACSAC, 2018.

[54] Ye Tang, Huiyun Li, and Guoqing Xu. Cache side-channel attack
to recover plaintext against datagram tls. In 2015 5th International
Conference on IT Convergence and Security (ICITCS), 2015.

[55] Tim Taubert. Botching forward secrecy - the sad state of server-
side tls session resumption implementations, November 2014.
https://timtaubert.de/blog/2014/11/the-sad-state-of-
server-side-tls-session-resumption-implementations/.

[56] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney, Joshua
Fried, Marcella Hastings, J. Alex Halderman, and Nadia Heninger.
Measuring small subgroup attacks against Diffie-Hellman. In 24th
Annual Network and Distributed System Security Symposium, NDSS,
2017.

[57] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia Heninger. In
search of CurveSwap: Measuring elliptic curve implementations in the
wild. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P, 2018.

[58] Filippo Valsorda. Ticketbleed (CVE-2016-9244), February 2017.
https://filippo.io/ticketbleed/.

[59] Filippo Valsorda. We need to talk about session tickets, September
2017. https://blog.filippo.io/we-need-to-talk-about-
session-tickets.

[60] Serge Vaudenay. Security flaws induced by CBC padding - applications
to ssl, ipsec, WTLS ... In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of
Cryptographic Techniques, 2002.

[61] Wikipedia. Magic number (programming), Apr 2022.
https://en.wikipedia.org/w/index.php?title=Magic_
number_(programming)&oldid=1084703437#Debug_values.

[62] David Ziemann. Analysis of the gnutls session ticket bug (cve-2020-
13777), July 2020. https://www.hackmanit.de/de/blog/118-
analysis-of-the-gnutls-session-ticket-bug-cve-2020-
13777.

A Appendix

T100k IP100k

TLS 71,200 71.20% 80,972 80.97%

TLS 1.0 32,064 45.03% 36,484 45.06%
Issues Ticket 19,182 59.82% 26,534 72.73%
Resumes Ticket 18,050 94.10% 25,805 97.25%

TLS 1.1 35,112 49.31% 39,753 49.09%
Issues Ticket 21,362 60.84% 30,256 76.11%
Resumes Ticket 20,116 94.17% 29,408 97.20%

TLS 1.2 70,648 99.22% 72,118 89.07%
Issues Ticket 54,111 76.59% 52,851 73.28%
Resumes Tickets 51,152 94.53% 51,382 97.22%

TLS 1.3 38,630 54.26% 30,700 37.91%
Issues Ticket 33,631 87.06% 26,221 85.41%
Resumes Ticket 31,624 94.03% 25,335 96.62%
Issues Ticket (̸= 32B) 30,177 78.12% 22,770 74.17%
Resumes Ticket (̸= 32B) 28,878 95.70% 22,252 97.73%

Table A.4: Servers supporting session tickets by protocol
version. For TLS 1.3, we also filtered servers that did not
offer session tickets of 32 bytes length. These are most likely
Session IDs.

A.1 Tested Algorithms
We used the following Algorithms when testing for weak
keys:

DES in ECB and CBC modes.

https://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://sec-consult.com/blog/detail/fake-crypto-microsoft-outlook-smime-cleartext-disclosure-cve-2017-11776/
https://sec-consult.com/blog/detail/fake-crypto-microsoft-outlook-smime-cleartext-disclosure-cve-2017-11776/
https://sec-consult.com/blog/detail/fake-crypto-microsoft-outlook-smime-cleartext-disclosure-cve-2017-11776/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations/
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations/
https://filippo.io/ticketbleed/
https://blog.filippo.io/we-need-to-talk-about-session-tickets
https://blog.filippo.io/we-need-to-talk-about-session-tickets
https://en.wikipedia.org/w/index.php?title=Magic_number_(programming)&oldid=1084703437#Debug_values
https://en.wikipedia.org/w/index.php?title=Magic_number_(programming)&oldid=1084703437#Debug_values
https://www.hackmanit.de/de/blog/118-analysis-of-the-gnutls-session-ticket-bug-cve-2020-13777
https://www.hackmanit.de/de/blog/118-analysis-of-the-gnutls-session-ticket-bug-cve-2020-13777
https://www.hackmanit.de/de/blog/118-analysis-of-the-gnutls-session-ticket-bug-cve-2020-13777


0 2,000 4,000 6,000 8,000
100

104

108

Ticket size in bytes

N
um

be
ro

fR
ec

ei
ve

d
Ti

ck
et

s

IPF

0 2,000 4,000 6,000 8,000
100

104

108

Ticket size in bytes

N
um

be
ro

fR
ec

ei
ve

d
Ti

ck
et

s

T1M

0 2,000 4,000 6,000 8,000
100

104

108

Ticket size in bytes

N
um

be
ro

fR
ec

ei
ve

d
Ti

ck
et

s

IP100k

0 2,000 4,000 6,000 8,000
100

104

108

Ticket size in bytes
N

um
be

ro
fR

ec
ei

ve
d

Ti
ck

et
s

T100k

Figure A.8: Observed ticket sizes in our scans.

64 80 96 112 128 144 160 176 192 208 224 240 256 272 288
T1M

T100k
IP100k

IPF

Ticket size in bytes

10−15
10−10
10−5

Figure A.9: Most commonly observed ticket sizes in our scans. The color is logarithmic and denotes the frequency observed in
our scan, where 100% is the sum of all tickets.

3DES in ECB and CBC modes.

AES with 128bit and 256bit keys. In ECB, CBC, CTR, CCM,
and GCM modes. Note that for CCM and GCM we have
ignored the authentication tags.

ChaCha20 on its own.

When testing for weak authentication keys we always as-
sume that an HMAC is used. For the underlying hash algo-
rithms we test MD5, SHA1, SHA256, SHA384, SHA512.

A.2 Tested Default Keys
We now describe which keys we generate. Inspired by keys
found in code examples, we chose a mixture of educated
guesses and known values.

48× Constant Bytes We consider keys consisting of the
same byte repeated (e.g., 0x00000000). For the values
we chose multiples of 16±1 (e.g., 0, 1, 15, 16, 17, ...).

48× Increasing Bytes We also chose keys consisting of con-
secutively increasing bytes values (e.g., 0x00010203). As

a starting point, we again chose multiples of 16±1.

3× Special Values We further include two special cases
of keys with consecutively increasing bytes: Start-
ing at 0 or 1 with a step size of 16 (0x00102030
and 0x01112131). Additionally, we included
0x00112233445566778899aabbccddeeff if the
key size is 16 bytes.

41× Debug Values We used 41 known debug values [61],
some of which are used to denote uninitialized memory.
We repeated these values to fill the desired key length.

4× NIST Keys Inspired by [26], we also included keys that
are used as example keys in the NIST specification of
AES [6]. However, we only use them if the desired key
length is appropriate.

This results in up to different 144 keys due to overlap and
some keys only being tested in specific key sizes.


	Introduction
	Background on TLS
	Session Resumption
	Session Resumption in TLS 1.3

	TLS-Attacker

	Cryptographic Pitfalls in Session Ticket Implementations
	Impact on the TLS Sessions

	Analysis of Session Tickets in Open-Source TLS Libraries
	Scanning and Evaluation Methodology
	Online Server Scans
	Offline Analysis
	Weak Keys


	Large-Scale Evaluation
	Online Tests
	Offline Tests
	Weak STEKs: AWS and Stackpath
	Further Weak STEKs
	Reused Keystream

	Session Ticket Structures

	Discussion
	Potential Causes for Weak Keys
	Countermeasures

	Related Work
	Conclusions
	Appendix
	Tested Algorithms
	Tested Default Keys


